Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Selective Oxidation of Aldehyde by Oxygen over Macroporous

Alkaline Resin

Xiaojing Fu^a, Yuchan Han^a, Rui Chen^a, Qi Han^a, Rongfan Zhang^a and Jun Li^{*a}

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

*Corresponding author: Jun Li^{*a}

E-mail address: lij05@sit.edu.cn

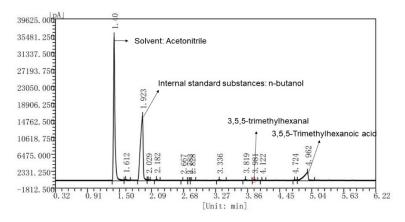


Figure 1: GC chromatogram in optimal state (Reaction conditions: aldehyde 0.04 mol, solvent 0.4 mol, reaction temperature 45°C, catalyst (alkaline resin D201-OH) 0.6 g and oxygen pressure 0.3 MPa, reaction time 40 min.)

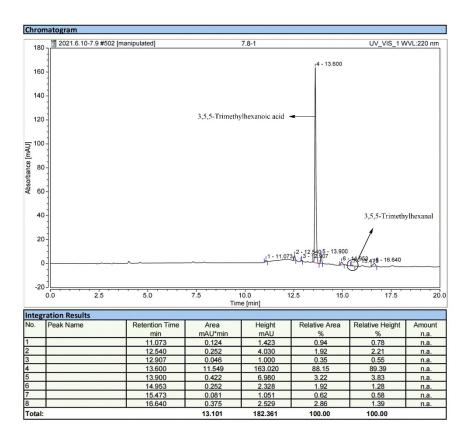


Figure 2: HPLC chromatogram under optimal conditions (Reaction conditions: aldehyde 0.04 mol, solvent 0.4 mol, reaction temperature 45°C, catalyst (alkaline resin D201-OH) 0.6 g and oxygen pressure 0.3 MPa, reaction time 40 min.)

Time (min)	Acetonitrile (%)	Distilled water (%)
0	30	70
8	50	50
11	90	10
20	90	10

Table1: gradient elution

Gradient elution used acetonitrile and distilled water as mobile phases.

$-CH_2N^+(CH_3)_3\cdot OH^-$
3.2
50-60
23.3
21.9
0.75
0.3-1.2
0.65-0.73
1.06-1.10

Table 2: Physicochemical properties of macroporous alkaline resin