Supporting information for

The synergetic effect of Pd, In and Zr on the mechanism of Pd/In₂O₃-ZrO₂ for CO₂ hydrogenation to methanol

Minhua Zhang^{a,b,c}, Fuchao Li^{a,b,c}, Maobin Dou^{a,b,c}, Yingzhe Yu^{a,b,c}, Yifei Chen^{a,b,c,*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D

Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China

^b Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China

° State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

* E-mail: yfchen@tju.edu.cn

Fig. S1. The initial, transition and final states of H_2 dissociation on (a) Pd₄ cluster and (b) In site of Pd₄/In₂O₃(110)-3O model

Table S1 Calculated reaction energies, E_r (eV), and activation barriers, E_a (eV), of H₂

dissociations			
Reaction site	E _a	E _r	
(a) Pd site on $Pd_4/In_2O_3(110)-3O$	0.16	-0.75	
(b) In site on Pd ₄ /In ₂ O ₃ (110)-3O	0.69	0.46	
(c) In site on $In_2O_3(110)$ -In	0.96	0.71	

Fig. S2. The transfer pathway of H on Pd₄/In₂O₃(110)-3O surface

Fig. S3. The initial, transitional and final states of the H transfer on $Pd_4/In_2O_3(110)$ -30 surface

	$E_{\rm m}$ (N) 1 (\cdot, \cdot) 1	$\cdot E_{-}(\mathbf{x}) \text{cm} \mathbf{c}$	
Table S2 Calculated reaction energies,	r^{2} (eV), and activation ba	urriers, ² a (eV), of H transfe	rs

		2 · · · · · · · · · · · · · · · · · · ·
Diffusion site	E _a	E _r
(a) Pd site \rightarrow Site 1	0.63	0.34
(b) Site $1 \rightarrow$ Site 2	0.55	0.24
(c) Site $2 \rightarrow$ Site 3	0.66	0.03

Table S3 Calculated reaction energies, E_r (eV), and activation barriers, E_a (eV), of elementary

ropotion stong	in CO	aonvargion	on In O	(110)	In surface
reaction steps	in CO	2 conversion	on $\ln_2 O_3$	(110))-in surface

1 -	2 3()	
Elementary reaction step	E _a	\overline{E}_r
(a) $CO_2 + H \rightarrow HCOO$	0.76	-0.87
(b) $CO_2 + H \rightarrow COOH$	0.99	0.01

Species	E _{ab}
b-CO ₂	-0.78
p-CO ₂	-0.62
СО	-1.26
HCOO	-2.99
H ₂ COO	-5.42
H ₂ COOH	-3.04
H_2CO	-1.21
H ₃ CO	-2.93
H ₃ COH	-0.51
СООН	-2.06
НСООН	-0.71
НСО	-2.13

Table S4 The adsorption energies of intermediates, E_{ab} (eV), on Pd₄/In₂O₃(110)-4O/Zr model