Supplementary Information

Low-Temperature CO Oxidation over Rh/Al₂O₃ in a Stagnation-Flow Reactor

Nawaf M. Alghamdi,^{*1} Ribhu Gautam,¹ Jorge Gascon,² Dionisios G. Vlachos,^{3,4} and S. Mani Sarathy¹ ¹Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia 23955

²KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia 23955 ³Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, United States 19716

⁴Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), 221 Academy Street, Newark, DE, United States 19716 *nawaf.alghamdi@kaust.edu.sa

0 -

Figure S1. N_2 -physisorption isotherm (type IV), with a hysteresis loop due to capillary condensation.

Figure S2. The XRD patterns of the as-purchased catalyst and the catalyst calcined in air at 700 °C for two hours. The patterns look fairly identical, with the exception of a δ -Al₂O₃ peak appearing after calcination, due to exposure to high heat.

Figure S3. The H₂-TPR peak of calcined Rh/Al₂O₃, with one shoulder near 160 °C and another near 500 °C.

Figure S4. The H_2 -chemisorption profiles of the reduced catalyst: total chemisorption refers to the initial H_2 adsorption profile (chemisorbed and physisorbed), weak chemisorption refers to the H_2 that is physically adsorbed, and strong chemisorption is the difference between the two, i.e. chemisorbed.

Figure S5. Deactivation: reactivity was consistent for nearly 3.5 hours at which point a decrease was observed. The test was conducted at a flowrate of 24 g/min, stoichiometric inlet composition, 275 °C, and 0.6 bar.

Figure S6. O_2 conversion as a function of CO: O_2 volume ratio to test for hysteresis. No hysteresis behavior was observed upon changing the CO content at the expense of the inert, whereby the CO: O_2 ratio was varied from 0.4 to 4 (shown in black) then back to 0.4 (shown in red) at 300 °C and 24 g/min. This is justified by the fact that the CO content does not change the oxidation state of the surface. Towards high CO content the O_2 conversion starts to decrease because CO is poisoning the surface by occupying more active sites.

Figure S7. CO conversion as a function of temperature to test for hysteresis. No hysteresis behavior was observed upon changing the temperature from 200 °C to 300 °C (shown in black) then back to 200 °C (shown in red). This signifies that no sintering takes place on the catalyst surface upon short-time exposure to 300 °C.