Supplementary Information

Development of High Surface Area Cu Electrocatalyst for Effective Nitrous Oxide Reduction Reaction

Siraphat Nilvichean,¹ Kornkamon Meesombad,² Teera Butburee,² Pongkarn Chakthranont,^{*2} and Rungthiwa Methaapanon^{*1}

¹ Centre of Excellence in Particle and Material Processing Technology, Department of Chemical Engineering, Chulalongkorn University, Bangkok, Thailand 10330

²National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand 12120

Corresponding authors: pongkarn.cha@nanotec.or.th, rungthiwa.m@chula.ac.th

Catalyst	Cell	Electrolyte	j _{max} (mA cm ⁻²)	FE* of	Eonset	Tafel slope	Ref.
	type		(E, V vs RHE)	N ₂ at	(V vs	(mV dec ⁻¹)	
				j max	RHE)		
High surface	H-cell	0.1 M KOH	10.0	83.3%	0.27	124	This
area Cu			(-0.2 V)				work
Cu metal	H-cell	0.3 M K ₂ SO ₄	8 (-0.31 V)	78%	N/A	N/A	1
Polycrystal	RDE**	0.3 M K ₂ SO ₄	43.75 (-0.8 V)	N/A	-0.56	N/A	2
Cu							
In/Cu foam	H-cell	0.5 M NaOH	25 (-0.75 V)	~100%	<0	N/A	3
ZnO	H-cell	0.3 M K ₂ SO ₄	6.8 (-0.82 V)	91%	N/A	N/A	1
In ₂ O ₃	H-cell	0.3 M K ₂ SO ₄	8.5 (-0.47 V)	82%	N/A	N/A	1
SnO ₂	H-cell	0.3 M K ₂ SO ₄	6.6 (-0.57 V)	73%	N/A	N/A	1
Polycrystal	RDE	0.1 M NaOH	20 (0 V)	N/A	0.64	84	4
Pd							
$Pd_{60}Cu_{40}$	H-cell	$0.3 \text{ M} \text{ K}_2 \text{SO}_4$	6.0 (0.04 V)	N/A	0.73	96	5
		and 0.2 M					
		КОН					
Au@Pd	RDE	$0.2 \text{ M} \text{ K}_2 \text{SO}_4$	N/A	N/A	0.84	105	6
		and 0.3 M					
		КОН					
Polycrystal	RDE	0.1 M NaOH	7.4 (0.2 V)	N/A	0.5	111	4
Pt							
Pt on gas	Flow	1 M KOH	130 (0 V)	100%	0.44	N/A	7
diffusion	cell						
electrode							
Ir (100)	N/A	0.1 M HClO_4	Inactive	N/A	N/A	N/A	8
Ir (111)	N/A	0.1 M HClO_4	~0.85 (~0.1 V)	N/A	~0.3	N/A	8
L (110)							0
lr (110)	N/A	0.1 M HClO_4	~0.75 (~0.1 V)	N/A	~0.3	N/A	ð

Table S1. Activities of the reported N2ORR catalysts and their testing conditions

*Faradaic efficiency (FE) of N_2 can be calculated only if the gas product is quantified. Most of the N₂ORR studies reported in the literature have not performed any product detection for N_2 or H_2 .

** Rotating disk electrode (RDE) employs rotation motion to improve the mass transport of N_2O to the electrode, which leads to a higher j_{max} than H-cell system; however, product detection is not feasible in this setup as the electrochemical cell is not gas-tight.

Figure S1. High resolution transmission electron microscopy (HRTEM) image of Cu_2O electrodeposited at 40 °C for 30 minutes exhibits 0.2 nm lattice fringes associated with the (200) planes of Cu_2O .

Figure S2. (a) AFM measurements of the roughness, surface area, and surface ratio (real surface area/projected surface area) of electropolished Cu foil confirm that the Cu-Epolish sample was significantly flat (surface ratio = 1) and can be used to calculate the true electrochemically active surface area (ECSA) of the high surface area electrodes. (b) Surface morphologies of Cu₂O electrodeposited at 40 °C for 20, 30, and 40 min as characterized by AFM. Due to the highly porous structure of electrodeposited Cu₂O, the surface area ratio from AFM would underestimate the actual surface areas of these high surface area electrodes.

Figure S3. Photos of the Cu₂O electrodes deposited at (a) 25 °C, (b) 40 °C, and (c) 50°C. (d) Deposition potentials of the Cu₂O electrodes conducted at a fixed current density of -1.7 mA cm⁻² for 20 min at varying temperatures.

Figure S4. (a) Example of particle size measurement from edge-to-edge lengths of cubic particles. (b) Thickness profiles of Cu_2O films deposited at 40 °C for 20, 30, and 40 min measured by a stylus profiler.

Figure S5. (a) Cyclic voltammograms in the non-Faradaic region of the reduced Cu-30 min electrode measured at varying scan rates (in V/s). (b) Capacitive current densities ($j_{dl} = \frac{j_{anodic} - J_{cathodic}}{2}$

 $f_{dl} = \frac{2}{2}$) of all Cu electrodes measured at -0.75 V vs Ag/AgCl at varying scan rates; the slopes correspond to the double-layer capacitance (C_{dl}). The C_{dl} of Cu-Epolish of 0.14 mF cm⁻² was used as a basis for the roughness factor calculation.

Figure S6. Chronoamperometry current densities and Faradaic efficiencies at varying potentials of all catalysts. The electrolysis experiments were conducted in 0.1 M KOH under a 20 mL min⁻¹ N_2O gas flow rate.

50 min measured at varying potentials													
E (V vs RHE)	Cu-Epolish				Cu-30 min								
	R _{ct}	Q _{dl}	x	C _{dl} *	R _{ct}	Q _{dl}	x	C _{dl} *					
	(Ω)			$(mF cm^{-2})$	(Ω)			$(mF cm^{-2})$					
-0.18	16.95	4.38E-04	0.92	0.048	17.34	2.64E-02	0.90	4.04					

0.037

0.075

7.85

4.60

2.48E-02

1.35E-02

0.89

0.86

3.37

1.43

-0.29

-0.39

8.18

5.01

3.69E-04

1.02E-03

0.92

0.87

Table S2. Randles circuit components extracted from the Nyquist spectra of Cu-Epolish and Cu-30 min measured at varying potentials

The capacitance per unit area can be calculated from constant phase element (Q), constant phase (\propto), and electrode geometric area (A = 6 cm²) as follow: 1

$$C[mF \ cm^{-2}] = \frac{(QR)^{\frac{1}{\alpha}}}{1000 * R * A[cm^{2}]}$$

The average roughness factor of Cu-30 min calculated from EIS ($C_{dl Cu-30 min}/C_{dl Cu-Epolish}$) is 55.37.

Figure S7. Effects of N₂O flow rate on the current-voltage curves of (a) Cu-30 min and (b) Cu-40 min.

Figure S8. XRF spectrum of Cu-30 min catalyst before and after 7 h testing in N_2 ORR condition at 0.12 V vs RHE.

Figure S9. SEM images of Cu-30 min sample: (a) as-deposited Cu_2O , (b) after electrochemical reduction by CV, (c) after a typical N₂ORR experiment, and (d) after 7 h stability testing.

References

- 1. A. Kudo and A. Mine, *Applied Surface Science*, 1997, **121-122**, 538-542.
- 2. O. J. S. Kwon, S. Baek, H. Kim, I. Choi, O. J. S. Kwon and J. J. Kim, *Electroanalysis*, 2019, **31**, 739-745.
- 3. K. H. Kim, T. Lim, M. J. Kim, S. Choe, S. Baek and J. J. Kim, *Electrochemistry Communications*, 2016, **62**, 13-16.
- 4. A. Aziznia, A. Bonakdarpour, E. L. Gyenge and C. W. Oloman, *Electrochimica Acta*, 2011, **56**, 5238-5244.
- 5. S. Baek, K. Kim, O. S. Kwon, H. Kim, J. W. Han, O. J. Kwon and J. J. Kim, *Journal of Applied Electrochemistry*, 2020, **50**, 395-405.
- 6. K. Kim, J. Byun, H. Kim, K.-S. Lee, H. S. Lee, J. Kim, T. Hyeon, J. J. Kim and J. W. Han, *ACS Catalysis*, 2021, **11**, 15089-15097.
- 7. N. Furuya and H. Yoshiba, *Journal of Electroanalytical Chemistry*, 1991, **303**, 271-275.
- 8. R. Gómez and M. J. Weaver, *Langmuir*, 2002, **18**, 4426-4432.