SUPPORTING INFORMATION

EXPERIMENTAL SECTION

The reagents employed were of analar grade and the solvents used were purified and dried according to the standard procedure.^{S1} Melting points were measured in a RAAGA melting point apparatus. Infrared spectra were measured as KBr pellets on a Jasco FT-IR 400-4000 cm⁻¹ range. Electronic spectra of the compounds were recorded using JASCO 600 spectrophotometer. ¹H and ¹³C NMR spectra were recorded at room temperature with a Bruker 400 MHz instrument, chemical shifts were relative to tetramethylsilane (TMS) and expressed in parts per million (ppm). The metal precursor [Ru(acac)₂(CH₃CN)₂] and the ligands **HL¹** and **HL²** were prepared according to the reported procedure.^{S2,S3} Mass spectra were recorded with a Bruker Q-TOF high-resolution mass spectrometer.

Spectral data of the products

A1: ¹H NMR (CDCl₃, δ ppm): 9.10 (d, J = 6.4 Hz, 1H), 8.21 (s, 1H), 8.07 (s, 1H), 7.81 (d, J = 5.6 Hz, 2H), 7.71-7.75 (t, J = 7.2 Hz, 2H), 7.57-7.63 (m, 5H), 4.88 (s, 1H), 4.70 (d, J = 10.4 Hz, 3H), 4.42 (s, 2H), 4.12 (s, 4H), 4.01 (s, 2H), 3.25 (d, J = 6.8 Hz, 1H), 3.10-3.14 (t, J = 6.8 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, δ ppm): 190.5, 136.0, 127.8, 127.7, 127.5, 126.2, 125.0, 124.8, 124.6, 124.3, 124.0, 122.0, 85.0, 72.3, 69.8, 69.6, 62.0, 61.4, 29.7. ESI: m/z calcd. for C₃₄H₂₇NO₂Fe: 537.4287; Found: 537.1760 [M]⁺.

A2: ¹H NMR (CDCl₃, δ ppm): 9.10 (s, 1H), 8.14 (d, *J* = 48 Hz, 1H), 7.62-7.81 (m, 8H), 4.87 (s, 1H), 4.69-4.76 (t, *J* = 16 Hz, 2H), 4.42 (s, 1H), 4.15 (d, *J* = 20 Hz, 2H), 4.02 (s, 2H), 3.20 (d, *J* = 56 Hz, 1H), 1.47-1.51 (t, *J* = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 202.2, 137.3, 128.7, 126.9, 126.8, 125.5, 124.0, 79.2, 72.3, 69.8, 69.6, 53.5, 27.4.

A3: ¹H NMR (CDCl₃, δ ppm): 8.11 (s, 1H), 7.97 (s, 1H), 7.96-7.83 (t, J = 7.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.34-7.50 (m, 6H), 4.83 (s, 1H), 4.69 (s, 2H), 4.49 (d, J = 6.8 Hz, 1H), 4.42 (s, 1H), 4.13 (s, 2H), 4.01 (s, 2H), 3.08-3.21 (dd, J = 8 Hz, 1H), 2.42 (d, J = 16 Hz, 3H), 1.17 (s, 3H). ¹³C NMR (CDCl₃, δ ppm): 200.7, 158.0, 142.7, 133.6, 132.1, 129.6, 125.09, 125.03, 123.5, 123.1, 77.7, 70.8, 68.3, 68.1, 60.2, 60.0, 25.9, 19.7.

A4: ¹H NMR (CDCl₃, δ ppm): 7.83 (s, 1H), 7.52-7.58 (m, 4H), 7.13 (d, *J* = 8 Hz, 3H), 4.69 (s, 3H), 4.48-4.53 (q, 2H), 4.43 (s, 1H), 4.13 (s, 1H), 4.01-4.05 (t, *J* = 12 Hz, 1H), 2.44 (s, 3H), 2.33 (s, 1H), 1.37-1.41 (t, *J* = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 191.3, 160.1, 146.1, 139.4, 135.4, 127.0, 126.3, 126.1, 123.8, 123.0, 72.3, 69.8, 69.6, 61.8, 61.5, 29.7, 21.7.

A5: ¹H NMR (CDCl₃, δ ppm): 8.31 (s, 1H), 8.13 (d, *J* = 8 Hz, 1H), 7.64 (d, *J* = 8 Hz, 1H), 7.51-7.56 (m, 2H), 7.34-7.45 (m, 4H), 7.11 (d, *J* = 16 Hz, 1H), 4.85 (d, *J* = 8 Hz, 3H), 4.54 (d, *J* = 16 Hz, 3H), 4.15 (d, *J* = 12 Hz, 6H), 2.68 (d, *J* = 8 Hz, 3H), 1.17 (s, 3H). ¹³C NMR (CDCl₃, δ ppm): 202.1, 139.4, 135.6, 130.4, 127.8, 126.99, 126.91, 126.5, 124.4, 120.4, 79.2, 72.8, 72.3, 70.1, 69.8, 69.6, 62.3, 27.4, 14.8.

A6: ¹H NMR (CDCl₃, δ ppm): 8.08 (s, 1H), 7.89 (d, J = 8 Hz, 3H), 7.72-7.77 (t, J = 12 Hz, 1H), 7.67-7.70 (t, J = 8 Hz, 1H), 7.56-7.62 (m, 2H), 7.42-7.48 (m, 3H), 7.34-7.37 (t, J = 8 Hz, 3H), 4.47-4.54 (q, 2H), 4.02 (d, J = 12 Hz, 1H), 1.35-1.39 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 198.8, 198.0, 136.9, 136.7, 136.6, 135.6, 135.0, 133.4, 133.1, 130.1, 128.7, 128.6, 128.1, 127.3, 127.1, 126.9, 126.6, 124.2, 124.1, 53.5, 29.72.

A7: ¹H NMR (CDCl₃, δ ppm): 8.08 (s, 1H), 7.97 (d, J = 8 Hz, 4H), 7.86 (d, J = 8 Hz, 1H), 7.53-7.57 (m, 3H), 7.49-7.51 (dd, J = 8 Hz, 1H), 7.43-7.47 (t, J = 8 Hz, 4H), 4.45-4.51 (q, 2H), 3.66 (s, 1H), 2.50 (s, 3H), 1.35-1.38 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 197.8, 197.5, 149.2, 144.1, 136.8, 136.0, 135.9, 135.6, 132.2, 132.0, 131.6, 131.1, 129.8, 127.6, 127.5, 127.1, 127.0, 126.7, 126.5, 125.39, 125.32, 124.9, 124.1, 60.6, 36.9, 20.5. ESI: m/z calcd. for C₂₇H₂₃NO₂: 393.4770; Found: 392.2936 [M-H]⁺.

A8: ¹H NMR (CDCl₃, δ ppm): 8.12 (s, 1H), 7.97 (d, J = 8 Hz, 3H), 7.68 (d, J = 8 Hz, 1H), 7.60 (d, J = 8 Hz, 1H), 7.54-7.58 (t, J = 8 Hz, 3H), 7.51 (d, J = 8 Hz, 1H), 7.43-7.47 (t, J = 8 Hz, 4H), 7.41 (d, J = 8 Hz, 1H), 4.93 (s, 1H), 4.59-4.65 (p, 2H), 2.75 (d, J = 8 Hz, 3H), 1.47-1.50 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 197.0, 148.6, 146.9, 145.1, 144.6, 135.5, 135.3, 135.2, 133.5, 132.3, 131.0, 129.2, 129.0, 127.6, 127.1, 126.2, 125.8, 124.4, 124.2, 68.8, 28.6, 16.8, 16.7. ESI: m/z calcd. for C₂₇H₂₃NO₂: 393.4770; Found: 392.1630 [M-H]⁺.

A9: ¹H NMR (CDCl₃, δ ppm): 9.04-9.13 (dd, *J* = 8 Hz, 1H), 7.94 (s, 1H), 7.80-7.82 (t, *J* = 4 Hz, 1H), 7.74 (s, 1H), 7.55-7.62 (m, 5H), 4.76 (s, 1H), 4.65-4.71 (q, 1H), 1.45-1.49 (t, *J* = 8 Hz, 2H). ¹³C NMR (CDCl₃, δ ppm): 197.5, 149.0, 143.9, 137.5, 135.5, 132.5, 132.2, 129.3, 127.6, 127.3, 127.1, 127.0, 126.7, 126.2, 124.5, 123.5, 123.4, 123.3, 61.5, 28.6. ESI: m/z calcd. for $C_{30}H_{23}NO_2$: 429.5091; Found: 430.1357 [M+H]⁺.

A10: ¹H NMR (CDCl₃, δ ppm): 8.04 (s, 1H), 7.90 (d, J = 8 Hz, 1H), 7.77 (d, J = 12 Hz, 1H), 7.73 (d, J = 8 Hz, 1H), 7.63-7.67 (m, 3H), 7.52-7.57 (dd, J = 8 Hz, 3H), 7.45-7.50 (m, 3H), 7.03-7.05 (t, J = 4 Hz, 1H), 4.71 (s, 1H), 4.50-4.55 (q, 2H), 1.38-1.41 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 196.6, 158.5, 142.6, 135.1, 134.9, 132.7, 132.6, 129.6, 129.3, 127.5, 127.3, 126.7, 126.6, 126.5, 126.2, 125.2, 124.0, 123.8, 123.5, 123.3, 122.9, 120.9, 61.0, 60.4, 28.6.

A11: ¹H NMR (CDCl₃, δ ppm): 8.50 (d, *J* = 8 Hz, 1H), 7.91 (d, *J* = 8 Hz, 1H), 7.79-7.82 (t, *J* = 8 Hz, 2H), 7.72 (s, 1H), 7.52 (d, *J* = 4 Hz, 1H), 7.43-7.50 (m, 4H), 7.40 (d, *J* = 8 Hz, 1H), 4.46-4.51 (q, 2H), 3.37 (s, 1H), 2.43 (s, 3H), 1.36-1.40 (t, *J* = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 184.9, 147.1, 144.5, 136.2, 134.6, 131.4, 131.1, 126.8, 126.3, 125.4, 61.1, 28.6, 20.5.

A12: ¹H NMR (CDCl₃, δ ppm): 8.64 (s, 1H), 8.13 (s, 1H), 7.93 (s, 1H), 7.80 (d, J = 4 Hz, 2H), 7.76-7.79 (t, J = 12 Hz, 1H), 7.61-7.63 (dd, J = 4 Hz, 1H), 7.58 (d, J = 8 Hz, 2H), 7.40-7.42 (dd, J = 8 Hz, 2H), 7.12-7.17 (m, 2H), 4.55-4.60 (q, 2H), 2.53 (s, 1H), 2.46 (s, 3H), 1.49-1.52 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 181.4, 159.1, 146.0, 144.7, 140.5, 138.7, 138.0, 132.7, 130.7, 128.3, 127.2, 126.6, 125.6, 125.3, 123.3, 121.8, 117.9, 61.2, 20.9, 13.6. ESI: m/z calcd. for C₂₅H₂₁NO₂S: 399.5047; Found: 397.8281 [M-2H]⁺.

A13: ¹H NMR (CDCl₃, δ ppm): 9.05-9.07 (t, J = 4 Hz, 1H), 7.96 (s, 1H), 7.82-7.83 (t, J = 4 Hz, 1H), 7.80 (d, J = 4 Hz, 1H), 7.75-7.78 (m, 1H), 7.65-7.67 (m, 1H), 7.63-7.64 (m, 1H), 7.61 (d, J = 4 Hz, 1H), 7.59 (d, J = 4 Hz, 2H), 7.57 (d, J = 4 Hz, 1H), 7.55-7.56 (m, 1H), 4.77 (s, 1H), 4.66-4.72 (q, 2H), 1.46-1.49 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 183.4, 146.8, 144.3, 134.9, 132.66, 132.62, 131.8, 129.2, 127.4, 127.2, 126.7, 126.2, 124.4, 123.5, 60.9, 28.6.

A14: ¹H NMR (CDCl₃, δ ppm): 8.66 (d, J = 8 Hz, 1H), 7.91 (d, J = 8 Hz, 2H), 7.85 (d, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H), 7.50-7.54 (dt, J = 8 Hz, 2H), 7.39-7.47 (m, 4H), 4.76 (s, 1H), 4.55-4.61 (q, 2H), 1.43-1.47 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 200.8, 134.4, 132.9, 132.0, 129.1, 127.6, 127.3, 127.0, 125.4, 124.9, 123.2, 60.0, 28.9, 28.6. ESI: m/z calcd. for C₃₀H₂₃NO₂: 429.5091; Found: 428.4094 [M-H]⁺.

A15: ¹H NMR (CDCl₃, δ ppm): 8.02 (s, 1H), 7.97 (d, J = 4 Hz, 3H), 7.88 (d, J = 8 Hz, 1H), 7.82 (s, 1H), 7.66 (d, J = 8 Hz, 1H), 7.52-7.58 (m, 4H), 7.42-7.48 (m, 4H), 7.37 (d, J = 8 Hz, 1H), 4.53-4.58 (q, 2H), 2.51 (s, 3H), 2.44 (s, 1H), 1.42-1.46 (t, J = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 161.0, 153.8, 145.8, 143.1, 133.2, 131.3, 131.2, 130.0, 127.3, 125.5, 124.0, 116.9, 115.6, 59.6, 27.3, 19.2. ESI: m/z calcd. for C₃₁H₂₅NO₂: 443.5357; Found: 445.1693 [M+2H]⁺.

A16: ¹H NMR (CDCl₃, δ ppm): 8.19 (s, 1H), 7.98 (d, *J* = 8 Hz, 3H), 7.87 (d, *J* = 8 Hz, 1H), 7.79 (d, *J* = 8 Hz, 2H), 7.67-7.71 (t, *J* = 8 Hz, 3H), 7.63 (d, *J* = 8 Hz, 2H), 7.53-7.57 (t, *J* = 8 Hz, 3H), 7.43-7.47 (t, *J* = 8 Hz, 4H), 4.76 (s, 1H), 4.55-4.60 (q, 2H), 1.44-1.48 (t, *J* = 8 Hz, 3H). ¹³C NMR (CDCl₃, δ ppm): 202.3, 147.9, 145.4, 136.1, 135.9, 135.4, 133.9, 133.7, 132.9, 132.8, 130.3, 128.5, 128.4, 128.3, 127.8, 127.2, 126.5, 125.5, 124.6, 124.3, 62.0, 29.7. ESI: m/z calcd. for C₃₄H₂₅NO₂: 479.5678; Found: 476.1671 [M-3H]⁺.

A17: ¹H NMR (CDCl₃, δ ppm): 8.06 (s, 1H), 7.97-7.99 (dd, *J* = 8 Hz, 2H), 7.93 (s, 1H), 7.85 (d, *J* = 20 Hz, 1H), 7.53-7.57 (t, *J* = 8 Hz, 3H), 7.41-7.48 (m, 5H), 4.78 (s, 1H), 4.58-4.64 (p, 2H), 2.76 (d, *J* = 8 Hz, 3H), 2.68 (s, 3H), 1.46-1.50 (q, 3H).

A18: ¹H NMR (CDCl₃, δ ppm): 8.30 (d, *J* = 8 Hz, 1H), 7.94 (d, *J* = 8 Hz, 1H), 7.86 (s, 2H), 7.71 (d, *J* = 8 Hz, 2H), 7.47 (s, 2H), 7.41-7.43 (dd, *J* = 8 Hz, 2H), 4.76 (s, 1H), 4.55-4.60 (q, 2H), 2.48 (s, 3H), 1.44-1.47 (t, *J* = 8 Hz, 3H).

A19: ¹H NMR (CDCl₃, δ ppm): 7.96-8.01 (m, 1H), 7.85-7.88 (t, *J* = 8 Hz, 2H), 7.71 (d, *J* = 8 Hz, 1H), 7.59-7.63 (m, 2H), 7.41-7.50 (m, 6H), 7.36 (d, *J* = 8 Hz, 1H), 4.76 (s, 1H), 4.55-4.60 (q, 2H), 2.48 (s, 3H), 1.53-1.56 (t, *J* = 8 Hz, 3H).

Fig. S1. Electronic spectra of the ligands HL^1 , HL^2 and complexes RuL^1 and RuL^2

Fig. S2. ¹H NMR spectrum of the ligand HL¹

Fig. S3. ¹H NMR spectrum of the ligand HL²

Fig. S4. EPR spectra of the Ru(III) complexes RuL^1 and RuL^2

Fig. S5. Hydrogen bonding interactions in the ligand HL²

Fig. S6. Hydrogen bonding interaction in the complex RuL¹

Fig. S7. Hydrogen bonding interaction in the complex RuL^2

Fig. S8. ¹H NMR spectrum of A1

Fig. S9. ¹H NMR spectrum of A2

Fig. S10. ¹H NMR spectrum of A3

Fig. S11. ¹H NMR spectrum of A4

Fig. S12. ¹H NMR spectrum of A5

Fig. S13. ¹H NMR spectrum of A6

Fig. S14. ¹H NMR spectrum of A7

Fig. S15. ¹H NMR spectrum of A8

Fig. S16. ¹H NMR spectrum of A9

Fig. S17. ¹H NMR spectrum of A10

Fig. S18. ¹H NMR spectrum of A11

Fig. S19. ¹H NMR spectrum of A12

Fig. S20. ¹H NMR spectrum of A13

Fig. S21. ¹H NMR spectrum of A14

Fig. S22. ¹H NMR spectrum of A15

Fig. S23. ¹H NMR spectrum of A16

Fig. S24. ¹³C NMR spectrum of A1

Fig. S25. ¹³C NMR spectrum of A2

Fig. S26. ¹³C NMR spectrum of A3

Fig. S27. ¹³C NMR spectrum of A4

Fig. S28. ¹³C NMR spectrum of A5

Fig. S29. ¹³C NMR spectrum of A6

Fig. S30. ¹³C NMR spectrum of A7

Fig. S31. ¹³C NMR spectrum of A8

Fig. S32. ¹³C NMR spectrum of A9

Fig. S33. ¹³C NMR spectrum of A10

Fig. S34. ¹³C NMR spectrum of A11

Fig. S35. ¹³C NMR spectrum of A12

Fig. S36. ¹³C NMR spectrum of A13

Fig. S37. ¹³C NMR spectrum of A14

Fig. S38. ¹³C NMR spectrum of A15

Fig. S39. ¹³C NMR spectrum of A16

Fig. S40. Mass spectrum of A1

Fig. S41. Mass spectrum of A7

Fig. S42. Mass spectrum of A8

Fig. S43. Mass spectrum of A9

Fig. S44. Mass spectrum of A12

Fig. S45. Mass spectrum of A14

Fig. S46. Mass spectrum of A15

Fig. S47. Mass spectrum of A16

Fig. S48. ¹H NMR spectrum of A17

Fig. S49. ¹H NMR spectrum of A18

Fig. S50. ¹H NMR spectrum of A19

 Table S1. EPR spectral data of the complexes

Complex	\mathbf{g}_{\parallel}	\mathbf{g}_{\perp}	g _{av}
6A	2.644	2.131	2.302
6B	2.181	1.996	2.057
$\sigma = (\sigma_{\parallel} + 2x\sigma_{\perp})/2$	3		

 $g_{av} = (g_{\parallel} + 2xg_{\perp})/3$

D–H···A	d(D–H)	d(H···A)	d(D····A)	<(DHA)	
HL ²					
N(3)-H(3)O(1)	0.879	1.888	2.623	139.90	
O(2)-H(23)O(1)	0.805	1.857	2.657	172.11	
N(2)- H(21)O(2)	0.858	2.017	2.817	154.71	
Symmetry operation: (x, y, z); (1/2-x,-y,1/2+z); (-x,1/2+y,1/2-z); (1/2+x,1/2-					
y,-z); (-x,-y,-z); $(1/2+x,y,1/2-z)$; $(x,1/2-y,1/2+z)$; $(1/2-x,1/2+y,z)$					
RuL ¹					
N(3)-H(3)O(1)	0.860	1.963	2.652	136.29	
O(2)-H(2)O(1)	1.002	1.853	2.805	157.51	
Symmetry operation: (x, y, z); (-x,-y,-z)					
RuL ²					
N(3)-H(3)O(1)	0.880	2.001	2.680	132.98	
O(2)-H(2)O(1)	0.921	1.818	2.708	161.79	
Symmetry operation: (x, y, z); (-x,-y,-z)					

Table S2. Hydrogen bonds for the ligand HL^2 and the Ru(III) complexes RuL^1 and RuL^2 [Å and °]

	A12 ethoxy intermediate		
Empirical formula	C ₁₉ H ₁₄ NO ₂ S		
Formula weight	320.37		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions			
a	8.757(3) Å		
b	12.951(4) Å		
с	15.309(5) Å		
α	107.153(7) °		
β	94.363(7) °		
γ	94.516(7) °		
Volume	1644.8(9)		
Ζ	4		
Density	1.294 Mg/m ³		
Absorption coefficient	0.205 mm ⁻¹		
<i>F</i> (000)	668		
θ range for data collection	2.47 to 27.21 °		
Limiting indices	-11≤ <i>h</i> ≤11,		
	-16≤ <i>k</i> ≤16,		
	-19 <i>≤l≤</i> 19		
Reflections collected	72175		
Independent reflections	7318 [R(int) = 0.4964]		
Absorption correction	Multi-scan		
Refinement method	Full-matrix least-squares on F^2		
Data/restraints/ parameters	7318/0/419		
Goodness-of-fit on F^2	0.957		
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.1009, wR2 = 0.1901		
R indices (all data)	R1 = 0.3167, wR2 = 0.2581		

 Table S3. Crystallographic data of the isolated ethoxy intermediate of A12

REFERENCES

- S1. A. I. Vogel, Textbook of Practical Organic Chemistry, 5th ed., Longman, London, 1989, 268.
- S2. T. Kobayashi, Y. Nishina, K. Shimizu and G. P. Sato, Chem. Lett., 1988, 1137.
- S3. R. Prabhakaran and S. Dharani, Indian Patent No. 202241023805 Filed.