Supporting information

Dehydrogenation of the liquid organic hydrogen carrier perhydrodibenzyltoluene – reaction pathway over Pt/Al₂O₃

Libin Shi¹²³, Suitao Qi^{*1}, Kevin J. Smith^{*2}, Majed Alamoudi²⁴, Yiming Zhou¹

1 Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical

Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China

2 Department of Chemical & Biological Engineering, University of British Columbia, 2360 East

Mall, Vancouver, BC, V6T 1Z3, Canada

3 SINOPEC Research Institute of Petroleum Processing, Beijing 100083, P.R China

4 Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz

University, Jeddah 21589, Saudi Arabia

*E-mail: suitaoqi@mail.xjtu.edu.cn (Suitao Qi); kjs@mail.ubc.ca (Kevin J. Smith)

Fig. S1 Dehydrogenation of H18-DBT at different temperature

Fig. S2 GC-MS results of dehydrogenation products at 270 °C and 300 °C

Fig. S3 Hx-DBT species from GC-MS results: composition change during dehydrogenation reaction for H18-DBT species to H12-, H6-, and H0-DBT species versus time.

Fig. S4. The experimental ¹H NMR results of dehydrogenation products of Pt/Mo-Al₂O₃ catalysts (fivepointed stars) and the different dehydrogenation pathways (solid lines)

Table S1	The average	residual	between e	each exper	imental po	oint and	each	dehyd	rogenation	1 path	way	over
Pt/Mo-Al ₂ O ₃												

	Average residual							
Plots	SSM	MSS	SMS	Statistical				
$f_{CS[0.8-1.8]} \sim f_{CS[2-2.5]}$	0.016	0.089	0.021	0.043				
$f_{CS[0.8-1.8]} \sim f_{CS[3.8-4.2]}$	0.074	0.010	0.010	0.031				
$f_{CS[2-2.5]} \sim f_{CS[3.8-4.2]}$	0.020	0.043	0.014	0.029				
$f_{CS[6.8-7.4]} \sim f_{CS[0.8-1.8]}$	0.079	0.083	0.012	0.035				
$f_{CS[6.8-7.4]} \sim f_{CS[2-2.5]}$	0.033	0.122	0.014	0.052				
$f_{CS[6.8-7.4]} \sim f_{CS[3.8-4.2]}$	0.122	0.012	0.009	0.032				