Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Supporting information

Fabrication of a monolith reactor in a copper tube by polymerization of acetylene for flow catalysis

Tiefu Li,^a Jiaming Liu,^a Zipeng Li,^a Peng Zhang,^a Yunlong Yao,^a Zhichao Sun,^{a,b} Yao Wang,^{a,b,*} Ying-Ya

Liu,^{a,b} and Anjie Wang,^{a,b,*}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

^b Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China.

Corresponding authors:

Profs. Yao Wang and Anjie Wang

E-mails: wangyao@dlut.edu.cn; ajwang@dlut.edu.cn

Fig. S1 Comparison of the catalytic performances of the two half coiled monolith reactors in continuous transfer hydrogenation of furfural (Reaction conditions: 40 mmol/L furfural in isopropanol, 0.03 mL/min, 1.0 MPa).

Fig. S2 Variation of furfural conversion with time on stream in continuous transfer hydrogenation of furfural to produce furfuryl alcohol (Reaction conditions: 40 mmol/L furfural in isopropanol, 0.03 mL/min, 1.0 MPa).