# **Supplementary Information (SI)**

# Diverse Continuous Photooxygenation Reactions of (+) and (-)-α-

Pinenes to the Corresponding Pinocarvones or trans-Pinocarveols

Gabriel H. S. Rosa,<sup>a§</sup> Thiago I. S. Santos,<sup>a§</sup> Timothy J. Brocksom<sup>a</sup> and Kleber T. de Oliveira<sup>\*a</sup>

<sup>a.</sup> Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.

Email: kleber.oliveira@ufscar.br

§. These authors contributed equally.

## **Table of Contents**

| 1. | Complementary General Information           |
|----|---------------------------------------------|
| a  | Batch photoreactor construction             |
| b  | . Continuous Flow photoreactor construction |
| c  | . Tube-in-tube reactor                      |
| 2. | Bath results - setup S1                     |
| 3. | Flow setup S1                               |
| 4. | Flow Setup S2                               |
| 5. | Flow setup S3                               |
| 6. | NMR Spectra                                 |
| 7. | Reference                                   |

### 1. Complementary General Information

The CG-MS yields were determined in a SHIMADZU equipment: GCMS-QP5000 and GC17A using argon as gas (column 30 m, NA-5 MS XIL – 0.25 mm, 0.25 µm – Bonded T max: 330-350 °C): samples were prepared in ethyl acetate; injection temperature 250°C, injection split ratio 19, carrier gas He, pressure 100 KPa, and column flow rate 1.3 mL/min; oven temperature setting was 100°C for 5 min, heated at 15 °C.min<sup>-1</sup> to 150°C, then heated at 7.5 °C.min<sup>-1</sup> to 220 °C, and finally heated at 10 °C.min<sup>-1</sup> to 280 °C and held for 7 min. Conversion percentages were analysed on the basis of chromatogram areas, with mass ion source temperature 250°C, interface temperature 280°C, and solvent cut time 5 min. The standard curve was constructed for the measured product, and quantifications were performed using dodecane as an internal standard.

Continuous-flow experiments were performed using Syrris equipment (Asia modules): two channels of a syringe pump (500 and 1000  $\mu$ L), a KNAUER HPLC pump (AZURA P 4.1S), and a microchip reactor (250  $\mu$ L). Two back-pressure regulators (BPR with pressures as specified). For pumping the Ph<sub>3</sub>P solution, a Peristaltic Pump (New Era, model NE-9004C) was used.

### a. Batch photoreactor construction

Details on the construction of this photoreactor can be obtained in our previous publication,<sup>1,2</sup> and pictures of the steps and materials are presented in Figures S1-S2.



Figure S1. Materials used in the batch photoreactor.



Figure S2. Step-by-Step of Batch photoreactor assembly.

#### b. Continuous Flow photoreactor construction

Details on the construction of this photoreactor can be obtained in our previous publication,<sup>1,2</sup> and pictures of the steps and materials are presented in Figures S3.



**Figure S3.** Final assembly of the photoreactor and PFA tubular reactor for continuous flow synthesis.

#### c. Tube-in-tube reactor

The tube-in-tube (TIT) reactor used to oxygenate the solutions was constructed in our lab, based on the model by the Ley group<sup>3</sup>. Details of the construction of this reactor can be obtained in our previous work,<sup>1,2</sup> and pictures of the steps and materials are presented in Figures-S4.



Figure S4. Our home-made tube-in-tube reactor.

2. Batch results - setup S1



b)



**Figure S5 – a**) Batch setup reactor for the synthesis of (-)-pinocarvone. b) Conversion of (+)- $\alpha$ -pinene into (-)-pinocarvone.

# 3. Flow setup S1



Figure S6 - Flow setup 1 for the synthesis of (-)-pinocarvone (2a).

# 4. Flow Setup S2



Figure S7 – Flow setup 2 for the synthesis of pinocarvones (2a-b)

# Flow setup S3



Figure S8 - Flow setup 3 for the synthesis of the trans-pinocarveols (3a-b)..



S11



### <sup>13</sup>C{1H} NMR (CDCl<sub>3</sub>) – 100 MHz





DEPT-135 <sup>13</sup>C NMR (CDCl<sub>3</sub>) – 100 MHz



<sup>1</sup>H NMR (CDCl<sub>3</sub>) – 400 MHz



<sup>13</sup>C{1H} NMR (CDCl<sub>3</sub>) – 100 MHz





<sup>3</sup>C{1H} NMR (CDCl<sub>3</sub>) – 100 MHz

1



<sup>1</sup>H NMR (CDCl<sub>3</sub>) – 400 MHz



<sup>13</sup>C{1H} NMR (CDCl<sub>3</sub>) – 100 MHz

### 6. References

- 1 J. M. De Souza, T. J. Brocksom, D. T. McQuade and K. T. De Oliveira, *J. Org. Chem.*, 2018, **83**, 7574–7585.
- 2 A. A. N. De Souza, N. S. Silva, A. V Müller, A. S. Polo, T. J. Brocksom and K. T. De Oliveira, 2018, **83**, 15077–15086.
- P. B. Cranwell, M. O'Brien, D. L. Browne, P. Koos, A. Polyzos, M. Peña-López and S. V.
  Ley, Org. Biomol. Chem., 2012, 10, 5774–5779.