Electronic Supplementary Information

Selective furfural hydrogenolysis towards 2-methylfuran by controlled poisoning of Cu-Co catalysts with chlorine

Alberto Barranca^a, Iker Agirrezabal-Tellería^a, Marcos Rellán-Piñeiro^b, Manuel A. Ortuño^b, I. Gandarias^a*

- ^a Department of Chemical and Environmental Engineering. Faculty of Engineering Bilbao. University of the Basque Country UPV/EHU. Plaza Ingeniero Torres Quevedo 1. 48013 Bilbao (Spain).
- ^b Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- * Correspondence: <u>inaki.gandarias@ehu.eus;</u> Tel.: +34 94 6017373

Сог	Contents			
1.	Figures	S 2		
2.	Tables	S7		

1 Figures

Figure S1. Furfural conversion, yield of the different products and RHDP/2-MF ratio for the Cu^N-Co^{Cl}/ γ -Al₂O₃ catalyst at different reaction temperatures. 3 MPa hydrogen, 0.250 $g_{cat} g_{FUR}^{-1}$, 3.5 h.

Figure S2. Cu 2p core-level (a), Co 2p core-level (b) and Cl 2p core-level (c), spectra of reduced Cu^x - Co^y/γ - Al_2O_3 series.

Figure S3. H_2 -TPR for bimetallic Cu^N - $Co^N_{[x]}$ catalytic series.

Figure S4. TPD-NH₃ profiles for: 1) Cu^N-Co^N; 2) Cu^N-Co^N_[0.25M]; 3) Cu^N-Co^N_[0.5M]; 4) Cu^N-Co^N_[1M]; 5) Cu^{Cl}-Co^{Cl}_[0.25M]; 6) Cu^{Cl}-Co^{Cl}_[0.5M]; 7) Cu^{Cl}-Co^{Cl}_[1M]

Figure S5. Furfural conversion, yield of the different products and RHDP/2-MF ratio for the Cu^N-Co^N catalyst at different dichloromethane (DCM):furfural and HCl:furfural ratios in the reaction medium. 3 MPa hydrogen, 0.250 $g_{cat} g_{FUR}^{-1}$, 3.5 h.

2 Tables

	Catalyst /γ-Al ₂ O ₃		т	Conv	Yield (%)				Ratio	Prod.	CB
Entry		gcat gfur ⁻¹	(K)	(%)	2-MF	FAL	THFA	PDOs	RHDP/2- MF	(mol _{2MF} kg _{cat} ⁻¹ h ⁻¹)	(%)
1	Cu ^{Cl}	0.125	453	10.1	2.20	3.20	0.00	0.00	0.00	0.50	95.3
2	Co ^N	0.125	453	100	31.1	33.2	10.7	8.80	0.62	7.10	82.0
3	Cu^N	0.125	453	100	9.10	79.0	0.00	0.90	0.10	2.08	88.1
4	Co ^{Cl}	0.125	453	72.0	22.1	46.5	0.00	0.00	0.00	5.05	98.0
5	Cu^{Cl} - Co^{Cl}	0.125	453	100	51.5	34.3	0.00	0.00	0.00	11.8	85.8
6	Cu^{Cl} - Co^{N}	0.125	453	100	56.5	31.5	0.00	2.30	0.04	12.9	90.3
7	Cu^N - Co^{Cl}	0.125	453	100	61.5	36.6	0.00	0.00	0.00	14.1	98.1
8	Cu^N - Co^N	0.125	453	100	34.0	0.00	17.6	25.2	1.26	7.77	76.8
9	Cu ^N -Co ^{Cl}	0.250	413	98.7	21.3	78.6	0.00	0.00	0.00	2.30	98.7
10	Cu ^N -Co ^{Cl}	0.250	433	100	58.6	30.7	0.00	1.20	0.02	7.10	95.1
11	Cu ^N -Co ^{Cl}	0.250	453	100	87.9	7.10	0.00	1.10	0.01	10.3	96.1
12	Cu ^N -Co ^{Cl}	0.250	473	100	93.8	4.90	0.70	2.20	0.03	11.5	100

Table S1. Operating conditions and results obtained in the activity tests of the Cux-Coy series.All experiments were carried out at a $P_{H2} = 30$ bar and 3.5 h reaction time.

Table S2. Operating conditions and results obtained in the activity tests of the Cu^N-Co^N_[X] and Cu^{Cl}-Co^{Cl}_[X] series. Operating conditions: $P_{H2} = 30$ bar H_2 ; T = 453 K; $g_{cat} g_{FUR}^{-1} = 0.125$

	Catalyst ∕γ-Al₂O₃	Conv. (%)		Yield	(%)		Ratio	Product.	CB
Entry			2-MF	FAL THFA	PDOs	RHDP/2- MF	(mol _{2MF} kg _{cat} ⁻¹ h ⁻¹)	(%)	
1	Cu ^N -Co ^N	100	34.0	0.00	17.6	25.2	1.26	7.77	76.8
2	Cu ^N -Co ^N _[0.25M]	99.9	59.9	24.3	0.00	2.77	0.05	13.7	87.4
3	Cu ^{N^} Co ^N _[0.5M]	100	77.2	22.0	0.00	3.89	0.05	17.7	103
4	Cu ^{N^} Co ^N [1M]	100	53.2	44.6	0.00	4.03	0.08	12.2	105
5	Cu ^{Cl} -Co ^{Cl}	100	51.5	34.3	0.00	0.00	0.00	11.8	85.8
6	Cu ^{Cl} ^Co ^{Cl} _[0.25M]	97.8	51.7	48.1	0.00	0.00	0.00	11.8	101
7	Cu ^{Cl} ^Co ^{Cl} [0.5M]	92.6	21.2	70.7	0.00	0.00	0.00	4.83	99.3
8	Cu ^{Cl^} Co ^{Cl} _[1M]	41.7	8.44	47.0	1.24	0.00	0.14	1.93	114

XPS Results										
Entry	Catalyst /Al ₂ O ₃	Be Cu ⁰ 2p _{3/2} (eV)	Be Cu ²⁺ 2p _{3/2} (eV)	Be Co ⁰ 2p _{3/2} (eV)	Be Co ^{x+} 2p _{3/2} (eV)	Be Cl ⁻ 2p _{3/2} (eV)	% at. Cl	Cu ⁰ /Cu ²⁺	Co ⁰ /Co ^{x+}	Cl/(Co+Cu)
1	Cu ^N -Co ^N [0.25M]	932.9	-	778.6	782.7	198.5	1.2	TR	1.2	0.38
2	Cu ^N -Co ^N [0.5M]	933.2	-	778.5	782.4	197.8	2.4	TR	1.6	0.40
3	Cu ^N -Co ^N [1M]	933.2	-	778.4	782.5	197.6	3.4	TR	1.2	0.67
4	Cu ^{Cl} -Co ^{Cl} [0.25M]	932.1	-	777.6	781.6	198.2	3.5	TR	1.3	0.43
5	Cu ^{Cl} -Co ^{Cl} [0.5M].	932.8	-	778.1	782.4	197.6	3.8	TR	1.1	0.46
6	Cu ^{Cl} -Co ^{Cl} [1M]	932.6	-	777.9	782.2	198.0	5.1	TR	0.5	0.62

 $\begin{array}{c} \textbf{Table S3. Binding energies for the surface species detected in the reduced Cu^N-Co^N_{[x]} and \ Cu^{Cl}-Co^{Cl}_{[x]} catalytic series. \end{array}$

 Table S4. Binding energies and percentage of atomic content for the Cl species detected in the spent (after activity test) Cu^N-Co^N catalyst with different DCM:FUR and HCl:FUR ratios; and for Cu^N-Co^N_[0.5M] after conventional activity test.

XPS Results								
Entry	Catalyst /Al ₂ O ₃	DCM:FUR	HCI:FUR	Be Cl ⁻ 2p _{3/2} (eV)	% at. Cl			
1	Cu ^N -Co ^N	6.10-4	0	-	0.5			
2	Cu ^N -Co ^N	6.10-3	0	198.3	1.3			
3	Cu ^N -Co ^N	6.10-2	0	197.5	2.4			
4	Cu ^N -Co ^N	0	6.10-4	198.1	0.4			
5	Cu ^N -Co ^N _[0.5M]	0	0	198.1	2.3			

Adsorption energies / eV									
θ(Cl)	Species	Mode	Mode a	Mode b	(a – b)				
0.00	FUR	Co(111)	-1.93	-0.84	-1.09				
	FUR	Co(0001)	-2.04	-0.85	-1.19				
	FAL	Co(111)	-1.66	-0.82	-0.84				
	FAL	Co(0001)	-1.74	-0.83	-0.91				
0.06	FUR	Co(111)	-1.95	-0.88	-1.07				
	FUR	Co(0001)	-2.08	-0.91	-1.17				
	FAL	Co(111)	-1.71	-0.86	-0.85				
	FAL	Co(0001)	-1.87	-0.89	-0.98				
0.25	FUR	Co(111)	-1.07	-0.91	-0.16				
	FUR	Co(0001)	-1.14	-0.91	-0.23				
	FAL	Co(111)	-1.17	-0.88	-0.29				
	FAL	Co(0001)	-1.28	-0.89	-0.39				
0.31	FUR	Co(111)	-0.56	-1.04	+0.48				
	FUR	Co(0001)	-0.41	-1.18	+0.77				
	FAL	Co(111)	-0.44	-1.07	+0.63				
	FAL	Co(0001)	-0.57	-1.12	+0.55				

Table S5. Adsorption energies (eV) of FUR and FAL on Co(111) and Co(0001) in parallel **a** andperpendicular **b** modes at different Cl coverages.