Supplementary material

Reaction system

- **S-1.** Reactions in the selected system for kinetic characterization and model development:
- A. main reaction: biocatalytic synthesis of (R)-2-azido-1-[4-(trifluoromethyl)phenyl]ethanol (2k);
- B. side reaction: spontaneous chemical synthesis of rac-2-azido-2-[4-(trifluoromethyl)phenyl]ethanol (3k);
- C. <u>side reaction</u>: spontaneous hydrolysis of *rac*-1k to *rac*-2-[4-(trifluoromethyl)phenyl]-1,2-ethanediol (4k).

Calibration curves

S-2. Calibration curves for **A.** *para*-nitro-2-bromo-1-phenylethanol (PNSHH) and **B.** *para*-nitro styrene oxide (PNSO).

S-3. Calibration curves for the substrates (1a-1k): A. 2-(2-fluorophenyl)oxirane (1a); B. 2-(3-fluorophenyl)oxirane (1b); C. 2-(4-fluorophenyl)oxirane (1c); D. 2-(2-fluorophenyl)-2-methyloxirane (1d); E. 2-(3-fluorophenyl)-2-methyloxirane (1e); F. 2-(4-fluorophenyl)-2-methyloxirane (1f); G.– 2-(2,6-difluorophenyl)oxirane (1g); H. 2-(3,4-difluorophenyl)oxirane (1h); I. 2-(2,4-difluorophenyl)oxirane (1i); J. 2-(2,4,5-trifluorophenyl)oxirane (1j); K. 2-[4-(trifluoromethyl)phenyl]oxirane (1k).

S-4. Calibration curves for the selected system: A. substrate (1k) and B. product (2k).

S-5. Calibration curves for individual enantiomers of the substrate: **A.** (*R*)-**1k** and **B.** (*S*)-**1k**

S-6. Product (R)-2k calibration curve on chiral column

Hydrolysis kinetics

Reaction enantioselectivity

S-8. Azidolysis curves of **A. 1c** with W249P, **B. 1c** with ISM-4, **C. 1k** with W249P, **D. 1k** with ISM-4. Legend: black squares (*R*)-**1c**; white squares (*S*)-**1c**; black triangles (*R*)-**1k**; white triangles (*S*)-**1k**. Reaction conditions: 20 mM *rac*-epoxide, 20 mM NaN₃, 10% *v*/*v* DMSO, $V_r = 3$ mL, 1000 rpm, 25 °C, $\gamma_{W249P} = 1$ mg/mL (left panel), $\gamma_{ISM-4} = 2$ mg/mL (right panel).

S-9. Proof of complete reaction enantioselectivity, i.e. absence of (*S*)-**1**k azidolysis with W249P enzyme. In order to check whether the enzymatic reaction is completely enantioselective towards (*R*)-**1**k, a reaction in the batch reactor was performed starting with (*S*)-**1**k and high enzyme concentration (3 mg/mL). Even after 24 h, the formation of the biocatalytic product (*S*)-**2**k was not recorded at all. Also, the consumption of the (*S*)-enantiomer over time follows the model-predicted consumption in the hydrolytic reaction, which is another proof that (*S*)-**1**k is not consumed, except in hydrolysis, in any other reaction (including the biocatalytic reaction). Conditions: $c_{(S)-1k} = 20 \text{ mM}$, $c_{\text{sodium azide}} = 20 \text{ mM}$, $\gamma_{W249P} = 3 \text{ mg/mL}$. Due to the weak response, **4**k was not monitored experimentally but was confirmed by the model.

Model validation

S-10. Model validation statistics for experiments conducted in batch reactor (**Fig 3.** in main text) that provides information about fitting of experimental data and models. Validation of mathematical model in batch reactor experiments ($V_r = 500 \mu$ L; 500 mM Tris-SO₄; pH 7.5; 25 °C; DMSO 10% *v*/*v*; 1000 rpm) conducted with different initial conditions: **A.** *c*_{sodium sodium azide} = 5 mM, *c*_{(*R*)-1k} = 6.26 mM, $\gamma_{W249P} = 0.30$ mg mL⁻¹; **B.** *c*_{sodium sodium azide} = 25 mM, *c*_{rac-1k} = 16.5 mM, $\gamma_{W249P} = 0.33$ mg mL⁻¹; **C.** *c*_{sodium sodium azide} = 10 mM, *c*_{rac-1k} = 20.1 mM, $\gamma_{W249P} = 2.0$ mg mL⁻¹; **D.** *c*_{sodium azide} = 20 mM, *c*_{rac-1k} = 40.3 mM, $\gamma_{W249P} = 2.0$ mg mL⁻¹.

Batch	Standard	Coefficient of	Correlation	Model selection
experiment	deviation (σ)	determination (R ²)	coefficient (ρ)	criterion (MSC)
Fig 3-A	0.802	0.924	0.953	1.490
Fig 3-B	1.148	0.987	0.977	1.929
Fig 3-C	1.737	0.981	0.907	1.560
Fig 3-D	1.043	0.913	0.955	1.494

S-11. Experimentally determined and model-confirmed enzyme operational stability decay during batch experiments ($V_r = 500 \ \mu$ L; 500 mM Tris-SO₄; pH 7.5; 25 °C; DMSO 10% *v/v*; 1000

rpm). Initial conditions: **A.** $c_{\text{sodium sodium azide}} = 5 \text{ mM}$, $c_{(R)-1\mathbf{k}} = 6.26 \text{ mM}$, $\gamma_{W249P} = 0.3 \text{ mg mL}^{-1}$; **B.** $c_{\text{sodium azide}} = 5 \text{ mM}$, $c_{rac-1\mathbf{k}} = 5.3 \text{ mM}$, $\gamma_{W249P} = 0.2 \text{ mg mL}^{-1}$; **C.** $c_{\text{sodium sodium azide}} = 10 \text{ mM}$, $c_{rac-1\mathbf{k}} = 9.2 \text{ mM}$, $\gamma_{W249P} = 0.2 \text{ mg mL}^{-1}$; **D.** $c_{\text{sodium sodium azide}} = 25 \text{ mM}$, $c_{rac-1\mathbf{k}} = 16.5 \text{ mM}$, $\gamma_{W249P} = 0.33 \text{ mg}$ mL⁻¹; **E.** $c_{\text{sodium sodium azide}} = 50 \text{ mM}$, $c_{rac-1\mathbf{k}} = 74.1 \text{ mM}$, $\gamma_{W249P} = 0.4 \text{ mg mL}^{-1}$.

S-12. Table of enzyme operational stability decay rate constants of the first order. Initial conditions: **A.** $c_{\text{sodium azide}} = 5 \text{ mM}$, $c_{(R)-1k} = 6.26 \text{ mM}$, $\gamma_{W249P} = 0.3 \text{ mg mL}^{-1}$; **B.** $c_{\text{sodium azide}} = 5 \text{ mM}$, $c_{rac-1k} = 5.3 \text{ mM}$, $\gamma_{W249P} = 0.2 \text{ mg mL}^{-1}$; **C.** $c_{\text{sodium azide}} = 10 \text{ mM}$, $c_{rac-1k} = 9.2 \text{ mM}$, $\gamma_{W249P} = 0.2 \text{ mg mL}^{-1}$; **C.** $c_{\text{sodium azide}} = 10 \text{ mM}$, $c_{rac-1k} = 9.2 \text{ mM}$, $\gamma_{W249P} = 0.2 \text{ mg mL}^{-1}$; **D.** $c_{\text{sodium azide}} = 25 \text{ mM}$, $c_{rac-1k} = 16.5 \text{ mM}$, $\gamma_{W249P} = 0.33 \text{ mg mL}^{-1}$; **E.** $c_{\text{sodium azide}} = 50 \text{ mM}$, $c_{rac-1k} = 74.1 \text{ mM}$, $\gamma_{W249P} = 0.4 \text{ mg mL}^{-1}$.

Experiment	<i>с</i> _{0,1k} , mМ	<i>k_d</i> , min ⁻¹
Α	6.26	0.00106 ± 5.7·10 ⁻⁵
В	5.26	0.00095 ± 1.4·10 ⁻⁴
С	9.22	0.00121 ± 1.5·10 ⁻⁴
D	16.5	0.001512 ± 7.7·10 ⁻⁵
E	74.1	0.001992 ± 6.8·10 ⁻⁵