Electronic Supplementary Material (ESI) for Chemistry Education Research and Practice. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Blooming Student Difficulties in Dealing with Organic Reaction Mechanisms – An Attempt at Systemization

Gyde Asmussen, *a Marc Rodemer b and Sascha Bernholt a

^a Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

^b University of Duisburg-Essen, Schuetzenbahn 70, 45127 Essen, Germany

Corresponding Author *Email: asmussen@leibniz-ipn.de

Supporting Information 1

Table 1: Coding scheme for classifying learning objectives and unachieved learning objectives into Bloom's revised taxonomy.

	Code	Code description	Example
		(unachieved) learning objective	
		includes	
	Factual	basic knowledge elements that are	"I don't know the electronegativity
	knowledge	content-related and are not	of chlorine off the top of my head
		connected with other knowledge	right now, nor that of carbon."
		elements, such as names of	(The students is not able to recall
		mechanisms, reactants or concepts,	electronegativity values.)
		and fixed properties like atomic size	
		or electronegativity values	
	Conceptual	complex knowledge elements that	The students should be able to
	knowledge	are content-related and connected	decide whether the reaction favors
		and influence each other, such as	the Hofmann or Saytzeff product.
		organic reaction mechanisms,	
5		reactants or chemical concepts	
ensic	Procedural	knowledge of organic chemistry	1
dime	knowledge	specific methods, algorithms, skills,	
edge		techniques or criteria for applying a	
owle		procedure, such as the steps that	
Кл		have to be completed to solve an	
		organic reaction mechanisms,	
		approaches for solving reaction	
		mechanisms or knowledge of	
		laboratory techniques	
	Metacognitive	knowledge of cognition in general	/
	knowledge	and the awareness one's own	
		cognition, such learning strategies	
		for learning organic reaction	
		mechanisms or knowledge of which	
		reaction mechanisms one has	
		understood and which one has not	
U	Remember	processes in which information is	The students should be able to recall

		retrieved from memory, such as	properties that influence the
		definitions of chemical concepts or	difference between reaction A and
		names of their properties	В.
	Understand	processes in which meaning is	"So, it's an E2 elimination,
		constructed from given information,	tetrahydrofluoride is my base then."
		such as translating representations	(The student is not able to classify
		into written or oral language, or	the base.)
		classifying representations as	
		specific reactants	
	Apply	processes in which information is	"And so I think that a CH_3 group will
		used in the context of a familiar or	split off. And then, afterwards you
		unfamiliar task, such as performing	have the nitrogen with chloride
		reaction steps or explaining how	again."
		chemical concepts influence the	(The student is not able to produce
		task	the correct products based on the
			mechanism.)
	Analyze	processes in which information is	The students should be able to
		differentiated to determine	derive properties that differ
		similarities and differences and to	between reaction A and B from the
		distinguish relevant parts from	representation.
		irrelevant parts, such as identifying	
		relevant parts of representations or	
		distinguishing one chemical concept	
		from another	
	Evaluate	processes in which information is	The students should be able to
		checked and weighed against each	compare and weigh influencing
		other based on different criteria,	properties to decide which reaction
		such as checking and justifying	proceeds faster.
		one's own solution or comparing	
		reactants on the basis of different	
0		criteria and making a decision	

Create	processes in which elements are	/
	reconstructed from an existing	
	whole to form something new, such	
	as planning a synthesis route	

Supporting Information 2

Code	Sub code	Example
Mechanism	Elimination	"Unlike E1 elimination, E2 elimination is synchronous."
	Nucleophilic	"This is a second-order nucleophilic substitution. Therefore, the
	substitution	chlorine leaves first as a chloride ion."
	Electrophile	"Electrophilic means that it is positively charged, i.e. it is
		electron loving. In this sense, that would be the ether there with
		the chlorine at the end."
	Intermediate	"Then the leaving group is removed and a cationic intermediate
		is formed []."
	Leaving group	"So I initially assumed that the chloride was leaving as a leaving
		group, so to speak."
	Lewis base	"[] we have a sterically hindered base, which then tends to
tant		favor the more highly substituted product, i.e., the terminally
React		eliminated product."
	Lewis acid	"One explains bases and acids by saying that a base is an
		electron pair donor and an acid is an electron pair acceptor."
	Nucleophile	"So generally you have a nucleophile, which is then also
		negatively charged."
	Product	"I'm still not sure if my final product is even the right one."
	Solvent	"We have the same solvent."
	Transition state	"The transition state is stabilized by conjugation of the resulting
		negative charge."
	Acidity	"Because [] by the nucleophile from the chloride, I lower the
		electron density at the methyl rest [], so the CH acidity
		increases and it's deprotonable and/ Yes, exactly, that's why it's
t		acidic now."
Concep	Activation energy	"Yes. So if I have a higher electronegativity, the reaction is more
		favorable, so my overall activation energy goes down, so to
		speak, the activation mountain is lower."
	Atomic radius	"That was so that also the atomic radius had nevertheless also
		something to do with the polarizability."

Table 2: List of all content-related codes with examples covering the applied concepts.

Basicity	"Basicity is actually the ability to accept electrons."
Charge	"The sulfur can attack because of its negative charge. This is
	because it is negatively charged. It has an excess of electrons
	and therefore wants to bind with its negative charge."
Electronegativity	"I was just thinking about which element is more
	electronegative, sulfur or oxygen []."
Electrophilicity	"From the stability of the cation versus the electrophilicity of the
	rest there it is difficult to estimate, I would say, compared to the
	reaction before."
Hofmann/ Saytzeff	"And sterically hindered bases tend to favor Hofmann, as far as I
	can remember, yes."
Hyperconjugation	"Okay. Does the term `hyperconjugation' mean anything to
	you?" "No."
Inductive effect	"So methyl groups or alkyl groups always have a +I-effect and
	this +I-effect means that they increase the electron density at
	the neighboring atom."
Leaving group ability	"I could imagine that a high basicity also describes a poor
	leaving group, because the bond would then be or should be
	correspondingly weaker for a good leaving group."
Mesomeric effect	"So I could imagine the mesomeric effect of bromine having an
	effect."
Nucleophilicity	"The solvent has an effect on the nucleophilicity of the
	nucleophile."
Partial charge	"We have a partial positive charge at the site of chlorine, at the
	carbon."
Polarizability	"The polarizability thus determines how easily I can polarize a
	molecule. This depends largely on how high the charge density
	is. Firstly, on the charge and secondly on the size of the ion, the
	ion radius."
Reaction rate	"That's why I would say that A proceeds faster, because the
	anion is less stable."
Resonance	"Could you try to explain what resonance is?"
	"Yes, I have the same number of atoms, but a different
	structure."

Stability	"I would say now it's stable because the N, the amine, has now
	reached the noble gas state."
Steric hindrance	"In the case of B, the nucleophile is sterically hindered due to
	branching, so attacking the backside is more difficult."
Solvation	"[] that the resulting leaving group is stably solvated in the
	solvent, that it does not do another reaction, even if it is
	reactive."

Supporting Information 3

Figure 1: Overview of nucleophilic substitution and elimination tasks used in the study. The two predict-the-product tasks are shown on the left and the case comparison task is shown on the right.