Supporting Information

Direct visible-light-induced synthesis of P-stereogenic phosphine oxides

under air conditions

Ying Zhang,[‡]^a Jia Yuan,[‡]^b Guanglong Huang,^c Hong Yu,^a Jinpeng Liu,^a Jian Chen,^a Sixuan Meng,^a Jian-Ji Zhong,^c Li Dang,^{*c} Guang-Ao Yu,^{*a} and Chi-Ming Che^{*bc}

Table of Contents

1. General considerations	S2
2. General procedures for visible-light-promoted phosphinylation of heteroaryl halides under air	S2
3. X-ray Structural Determination	S14
4. Computational Methods	S15
5. References	
\$33	
6. ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra for all products	S34
7. HPLC spectra for all products	S85

1. General considerations

All chemical reagents were purchased from Alfa-Aesar and J&K Scientific Ltd. (*R*)-*tert*-butyl(phenyl)phosphine oxide, (±)-methyl(phenyl)phosphine oxide and (±)-cyclohexyl(phenyl)phosphine oxide were synthesized according to the published procedures. ¹ Chira Resolution – Semi-Prep HPLC (chiracel AD-H column, 15% 2-Propanol in Hexane, 5 ml/min) – (*S*)-[cyclohexyl(phenyl)phosphine oxide] t = 8.304 min, (*R*)-[cyclohexyl(phenyl)phosphine oxide] t = 9.542 min. Utilizing a 10 x 250 mm column with stacked injections of variable sizes (50 mg/ml concentration), we have been able to resolve up to 100 mg of racemic monomer in a 4 hour period.

The ¹H, ¹³C, ¹⁹F and ³¹P NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts (δ) for ¹H and ¹³C are referenced to internal solvent resonances and reported relative to SiMe₄. Chemical shifts for ¹⁹F are reported relative to an external CFCl₃ standard. Chemical shifts for ³¹P are reported relative to an external 85% H₃PO₄ standard. High resolution mass analysis is performed on Varian 7.0T Fourier-transform mass spectrometry with ESI resource. High performance liquid chromatography (HPLC) was performed on DIONEX Ultimate 3000 series chromatographs using a Daicel Chiracel *AD*-H (4.6 mm Ø x 250 mm) or *OJ*-H (4.6 mm Ø x 250 mm) or *AS*-H (4.6 mm Ø x 250 mm) column with *n*-hexane/*i*-PrOH as an eluent. UV-vis absorption spectrum was recorded on a Hewlett-Packard 8453 diode array spectrophotometer.

Scheme S1. Synthesis of optically pure (R)-tert-butyl(phenyl)phosphine oxide [1]

2. General procedures for visible-light-promoted phosphinylation of heteroaryl halides under air

To a round bottom flask, heteroaryl halides (0.6 mmol), (*R*)-*tert*-butyl(phenyl)phosphine oxide (0.5 mmol), NaOH (0.75mmol) and DMSO (2.5 mL) were added. The mixture was stirred at room temperature under 7 W blue LED irradiation. After stirring for 6 h, the reaction mixture was quenched with 10 mL of water and extracted with 10 mL of CH_2Cl_2 three times. The combined organic fractions were dried by $MgSO_4$, filtered and concentrated via rotary evaporation. The crude product was purified by chromatograph on silica gel (dichloromethane/acetone).

(*R*)-*tert*-butyl(phenyl)(pyridin-2-yl)phosphine oxide (4): Performed according to the general procedure to afford 109 mg (84%) of **4** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (d, *J* = 4.4 Hz, 1 H, Ar), 8.19–8.12 (m, 3 H, Ar), 7.75–7.68 (m, 1 H, Ar), 7.43–7.33 (m, 3 H, Ar), 7.32–7.27 (m, 1 H, Ar), 1.14 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.7 (d, *J*_{C-P} = 117.2 Hz, Ar), 149.2 (d, *J*_{C-P} = 17.6 Hz, Ar), 135.9 (d, *J*_{C-P} = 8.5 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.3 (d, *J*_{C-P} = 2.5 Hz, Ar), 130.0 (d, *J*_{C-P} = 89.6 Hz, Ar), 129.2 (s, Ar), 129.0 (s, Ar), 127.8 (s, Ar), 127.7 (s, Ar), 124.9 (d, *J*_{C-P} = 2.9 Hz, Ar), 33.8 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 24.6 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.6 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₁₉NOP: 260.1199, found: 260.1197. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 90/10, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 12.392 min (minor) and t_{R2} = 13.512 min (major), ee = 98%. [α]_D²⁰ = +73.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-methylpyridin-2-yl)(phenyl)phosphine oxide (5): Performed according to the general procedure to afford 117 mg (86%) of **5** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.21 (m, 2 H, Ar), 8.06–8.01 (m, 1 H, Ar), 7.70–7.64 (m, 1 H, Ar), 7.50–7.41 (m, 3 H, Ar), 7.22 (d, *J* = 7.9 Hz, 1 H, Ar), 2.66 (s, 3 H, *CH*₃), 1.22 (d, *J* = 15.1 Hz, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 158.1 (d, *J*_{C-P} = 17.6 Hz, Ar), 155.8 (d, *J*_{C-P} = 118.7 Hz, Ar), 136.1 (d, *J*_{C-P} = 9.0 Hz, Ar), 132.8 (d, *J*_{C-P} = 7.5 Hz, Ar), 131.3 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.2 (d, *J*_{C-P} = 89.2 Hz, Ar), 127.7 (d, *J*_{C-P} = 10.9 Hz, Ar), 126.3 (s, Ar), 126.1 (s, Ar), 124.7 (d, *J*_{C-P} = 3.1 Hz, Ar), 33.8 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 24.7 (s, *C*(*C*H₃)₃), 24.6 (s, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.0 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NOP: 274.1355, found: 274.1353. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 5.965 min (major) and t_{R2} = 6.979 min (minor), ee = 97%. [α]_D²⁰ = +13.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(5-methylpyridin-2-yl)(phenyl)phosphine oxide (6): Performed according to the general procedure to afford 108 mg (79%) of **6** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (s, 1 H, Ar), 8.30–8.18 (m, 2 H, Ar), 8.16–8.10 (m, 1 H, Ar), 7.61 (d, *J* = 7.8 Hz, 1 H, Ar), 7.51–7.41 (m, 3 H, Ar), 2.39 (s, 3 H, *CH*₃), 1.21 (d, *J* = 15.1 Hz, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 153.4 (d, *J*_{C-P} = 119.8 Hz, Ar), 150.1 (d, *J*_{C-P} = 18.1 Hz, Ar), 136.3 (d, *J*_{C-P} = 9.0 Hz, Ar), 135.0 (d, *J*_{C-P} = 3.1 Hz, Ar), 132.8 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.3 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.3 (d, *J*_{C-P} = 89.6 Hz, Ar), 128.9 (s, Ar), 128.7 (s, Ar), 127.8 (d, *J*_{C-P} = 10.9 Hz, Ar), 33.8 (d, *J*_{C-P} = 69.8 Hz, *C*(CH₃)₃), 24.6 (s, C(CH₃)₃), 18.6 (d, *J*_{C-P} = 1.4 Hz, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.9 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NOP: 274.1355, found: 274.1352. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 11.099 min (major) and t_{R2} = 22.752 min (minor), ee = 99%. [α]_D²⁰ = +133.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(4-methylpyridin-2-yl)(phenyl)phosphine oxide (7): Performed according to the general procedure to afford 107 mg (78%) of **7** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.68–8.62 (m, 1 H, Ar), 8.22 (t, *J* = 8.1 Hz, 2 H, Ar), 8.10 (d, *J* = 2.9 Hz, 1 H, Ar), 7.50–7.41 (m, 3 H, Ar), 7.19 (s, 1 H, Ar), 2.38 (d, *J* = 2.5 Hz, 3 H, *CH*₃), 1.27–1.20 (m, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.2 (d, *J*_{C-P} = 117.3 Hz, Ar), 149.2 (d, *J*_{C-P} = 18.5 Hz, Ar), 147.3 (d, *J*_{C-P} = 8.7 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.3 (d, *J*_{C-P} = 2.4 Hz, Ar), 130.2 (d, *J*_{C-P} = 89.4 Hz, Ar), 130.0 (d, *J*_{C-P} = 17.0 Hz, Ar), 127.7 (d, *J*_{C-P} = 10.9 Hz, Ar), 125.8 (d, *J*_{C-P} = 2.7 Hz, Ar), 33.8 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 24.6 (s, *C*(*C*H₃)₃), 21.0 (s, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.9 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NOP: 274.1355, found: 274.1351. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 98/2, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 42.386 min (minor) and t_{R2} = 45.219 min (major), ee = 99%. [α]_D²⁰ = +25.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(3-methylpyridin-2-yl)(phenyl)phosphine oxide (8): Performed according to the general procedure to afford 43 mg (32%) of **8** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1 H, Ar), 7.91 (t, *J* = 8.3 Hz, 2 H, Ar), 7.48 (d, *J* = 4.8 Hz, 2 H, Ar), 7.43 (d, *J* = 7.4 Hz, 2 H, Ar), 7.27 (d, *J* = 2.6 Hz, 1 H, Ar), 2.51 (s, 3 H, CH₃), 1.36–1.30 (m, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.3 (d, *J*_{C-P} = 120.7 Hz, Ar), 145.5 (d, *J*_{C-P} = 18.6 Hz, Ar), 140.9 (d, *J*_{C-P} = 18.4 Hz, Ar), 139.3 (d, *J*_{C-P} = 8.0 Hz, Ar), 132.7 (d, *J*_{C-P} = 8.0 Hz, Ar), 131.3 (d, *J*_{C-P} = 86.7 Hz, Ar), 131.2 (d, *J*_{C-P} = 2.7 Hz, Ar), 127.8 (d, *J*_{C-P} = 10.8 Hz, Ar), 124.8 (d, *J*_{C-P} = 3.1 Hz, Ar), 35.0 (d, *J*_{C-P} = 71.1 Hz, *C*(CH₃)₃), 25.0 (s, C(CH₃)₃), 19.3 (s, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 38.7 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NOP: 274.1355, found: 274.1354. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 4.832 min (major) and t_{R2} = 5.279 min (minor), ee = 99%. [α]_D²⁰ = +52.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-methoxypyridin-2-yl)(phenyl)phosphine oxide (9): Performed according to the general procedure to afford 124 mg (86%) of **9** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.25–8.18 (m, 2 H, Ar), 7.84 (t, *J* = 6.5 Hz, 1 H, Ar), 7.72–7.65 (m, 1 H, Ar), 7.52–7.42 (m, 3 H, Ar), 6.91–6.81 (m, 1 H, Ar), 4.05 (s, 3 H, OCH₃), 1.25 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 163.2 (d, *J*_{C-P} = 18.0 Hz, Ar), 153.0 (d, *J*_{C-P} = 117.8 Hz, Ar), 138.5 (d, *J*_{C-P} = 10.0 Hz, Ar), 132.5 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.4 (d, *J*_{C-P} = 2.5 Hz, Ar), 130.1 (d, *J*_{C-P} = 89.8 Hz, Ar), 127.8 (d, *J*_{C-P} = 10.9 Hz, Ar), 123.1 (d, *J*_{C-P} = 16.4 Hz, Ar), 113.4 (d, *J*_{C-P} = 2.5 Hz, Ar), 53.9 (s, OCH₃), 33.7 (d, *J*_{C-P} = 69.9 Hz, *C*(CH₃)₃), ^{24.6} (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.9 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NO₂P: 290.1304, found: 290.1303. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 5.652 min (major) and t_{R2} = 6.192 min (minor), ee = 99%. [α]_D²⁰ = +56.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(4-phenylpyridin-2-yl)phosphine oxide (12): Performed according to the general procedure to afford 70 mg (42%) of 12 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.80–8.75 (m, 1 H, Ar), 8.46–8.41 (m, 1 H, Ar), 8.19 (t, *J* = 8.6 Hz, 2 H, Ar), 7.64 (d, *J* = 6.7 Hz, 2 H, Ar), 7.54 (d, *J* = 2.1 Hz, 1 H, Ar), 7.44–7.36 (m, 6 H, Ar), 1.22–1.60 (m, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.2 (d, *J*_{C-P} = 116.7 Hz, Ar), 148.8 (d, *J*_{C-P} = 18.3 Hz, Ar), 147.3 (d, *J*_{C-P} = 8.7 Hz, Ar), 136.3 (s, Ar), 131.8 (d, *J*_{C-P} = 7.6 Hz, Ar), 130.4 (d, *J*_{C-P} = 2.7 Hz, Ar), 129.0 (d, *J*_{C-P} = 89.7 Hz, Ar), 128.4 (s, Ar), 128.1 (s, Ar), 126.8 (d, *J*_{C-P} = 11.0 Hz, Ar), 126.1 (s, Ar), 125.9 (d, *J*_{C-P} = 17.5 Hz, Ar), 121.5 (d, *J*_{C-P} = 3.0 Hz, Ar), 32.9 (d, *J*_{C-P} = 69.5 Hz, *C*(CH₃)₃), 23.7 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.2 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₁H₂₃NOP: 336.1512, found: 336.1508. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 9.312 min (minor) and t_{R2} = 19.099 min (major), ee = 98%. [α]_D²⁰ = -86.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-fluoropyridin-2-yl)(phenyl)phosphine oxide (13): Performed according to the general procedure to afford 120 mg (87%) of 13 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.23–8.15 (m, 3 H, Ar), 7.82–7.75 (m, 1 H, Ar), 7.54–7.40 (m, 4 H, Ar), 1.23 (d, *J* = 15.4 Hz, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.4 (d, *J*_{C-F} = 113.3 Hz, Ar), 151.1 (d, *J*_{C-P} = 19.0 Hz, Ar), 138.7 (d, *J*_{C-P} = 8.7 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.7 Hz, Ar), 131.7 (d, *J*_{C-P} = 2.8 Hz, Ar), 129.2 (d, *J*_{C-P} = 90.7 Hz, Ar), 128.1 (s, Ar), 128.0 (s, Ar), 127.8 (d, *J*_{C-P} = 15.8 Hz, Ar), 126.0 (d, *J*_{C-P} = 2.6 Hz, Ar), 34.0 (d, *J*_{C-P} = 69.9 Hz, *C*(CH₃)₃), 24.5 (s, C(*C*H₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.4 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ - 65.5 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₁₈FNOP: 278.1105, found: 278.1105. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 7.739 min (major) and t_{R2} = 8.505 min (minor), ee = 99%. [α]_D²⁰ = +87.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-chloropyridin-2-yl)(phenyl)phosphine oxide (14): Performed according to the general procedure to afford 100 mg (68%) of 14 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.23–8.15 (m, 3 H, Ar), 7.81–7.75 (m, 1 H, Ar), 7.55–7.45 (m, 3 H, Ar), 7.42 (d, *J* = 8.1 Hz, 1 H, Ar), 1.23 (d, *J* = 15.4 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.5 (d, *J*_{C-P} = 113.2 Hz, Ar), 151.1 (d, *J*_{C-P} = 18.7 Hz, Ar), 138.7 (d, *J*_{C-P} = 8.7 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.7 Hz, Ar), 131.7 (d, *J*_{C-P} = 2.7 Hz, Ar), 129.3 (d, *J*_{C-P} = 90.6 Hz, Ar), 128.1 (s, Ar), 128.0 (s, Ar), 127.9 (s, Ar), 127.8 (s, Ar), 126.0 (d, *J*_{C-P} = 2.5 Hz, Ar), 34.0 (d, *J*_{C-P} = 69.9 Hz, *C*(CH₃)₃), 24.6 (s, C(CH₃)₃) ³¹P NMR (162 MHz, CDCl₃): δ 32.3 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₁₈CINOP: 294.0809, found: 294.0808. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 5.925 min (major) and t_{R2} = 6.412 min (minor), ee = 99%. [α]_D²⁰ = +283.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(5-(trifluoromethyl)pyridin-2-yl)phosphine oxide (15): Performed according to the general procedure to afford 67 mg (41%) of 15 as yellow solid ¹H NMR (400 MHz, CDCl₃): δ 9.02 (s, 1 H, Ar), 8.37–8.32 (m, 1 H, Ar), 8.14–8.09 (m, 2 H, Ar), 8.00 (d, *J* = 8.1 Hz, 1 H, Ar), 7.47–7.38 (m, 3 H, Ar), 1.17 (d, *J* = 15.4 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 161.91 (d, *J*_{C-P} = 1.3 Hz, Ar), 160.80 (d, *J*_{C-P} = 1.3 Hz, Ar), 146.08 (m, Ar), 145.91 (m, Ar), 133.11 (m, Ar), 132.74 (d, *J*_{C-P} = 7.8 Hz, Ar), 131.81 (d, *J*_{C-P} = 2.8 Hz, Ar), 128.94 (m, Ar), 128.04 (d, *J*_{C-P} = 11.1 Hz, Ar), 127.73 (d, *J*_{C-P} = 2.9 Hz, Ar), 123.2 (q, *J*_{C-F} = 272.7Hz, *C*F₃), 34.08 (d, *J*_{C-P} = 69.7 Hz, *C*(CH₃)₃), 24.5 (s, C(CH₃)₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -62.7 (s). ³¹P NMR (162 MHz, CDCl₃): δ 33.0 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₁₈F₃NOP: 328.1073, found: 328.1071. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 90/10, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 7.925 min (major) and t_{R2} = 22.659 min (minor), ee = 97%. [α]_{D²⁰} = +36.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(pyridin-3-yl)phosphine oxide (16): Performed according to the general procedure to afford 95 mg (73%) of 16 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.06 (s, 1 H, Ar), 8.68 (s, 1 H, Ar), 8.28–8.21 (m, 1 H, Ar), 7.90–7.83 (m, 2 H, Ar), 7.50–7.42 (m, 3 H, Ar), 7.40–7.35 (m, 1 H, Ar), 1.19 (d, *J* = 15.3 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 152.1 (d, *J*_{C-P} = 1.6 Hz, Ar), 152.0 (d, *J*_{C-P} = 9.9 Hz, Ar), 140.4 (d, *J*_{C-P} = 5.9 Hz, Ar), 132.1 (s), 132.0 (s), 131.9 (s), 130.6 (s, Ar), 129.7 (s, Ar), 128.6 (s, Ar), 128.5 (s, Ar), 123.5 (d, *J*_{C-P} = 6.3 Hz, Ar), 34.1 (d, *J*_{C-P} = 71.4 Hz, *C*(CH₃)₃), 25.0 (s, *C*(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.3 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₁₉NOP: 260.1199, found: 260.1198. HPLC analysis of the product: Daicel Chiralpak OJ-H column; *n*-hexane/*i*-PrOH = 95/05, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 11.859 min (minor) and t_{R2} = 13.179 min (major), ee = 98%. [α]_p²⁰ = -21.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-methylpyridin-3-yl)(phenyl)phosphine oxide (17): Performed according to the general procedure to afford 82 mg (60%) of 17 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.05–8.97 (m, 1 H, Ar), 8.24–8.14 (m, 1 H, Ar), 7.96–7.87 (m, 2 H, Ar), 7.56–7.47 (m, 3 H, Ar), 7.29 (s, 1 H, Ar), 2.62 (s, 3 H, CH₃), 1.25 (d, *J* = 15.3 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 161.6 (d, *J*_{C-P} = 1.9 Hz, Ar), 151.6 (d, *J*_{C-P} = 10.1 Hz, Ar), 140.6 (d, *J*_{C-P} = 6.4 Hz, Ar), 132.0 (d, *J*_{C-P} = 8.3 Hz, Ar), 131.8 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.4 (d, *J*_{C-P} = 91.8 Hz, Ar), 128.4 (d, *J*_{C-P} = 11.1 Hz, Ar), 124.3 (d, *J*_{C-P} = 88.4 Hz, Ar), 123.2 (d, *J*_{C-P} = 8.3 Hz, Ar), 34.1 (d, *J*_{C-P} = 71.7 Hz, C(CH₃)₃), 24.9 (s, C(CH₃)₃), 24.6 (d, *J*_{C-P} = 1.5 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.7 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₁NOP: 274.1355, found: 274.1354. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 17.125 min (minor) and t_{R2} = 17.919 min (major), ee = 99%. [α]_D²⁰ = +20.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(2,6-dimethylpyridin-4-yl)(phenyl)phosphine oxide (18): Performed according to the general procedure to afford 72 mg (50%) of **18** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.90 (m, 2 H, Ar), 7.57–7.45 (m, 5 H, Ar), 2.59 (s, 6 H, CH₃), 1.26 (d, *J* = 15.2 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.9 (d, *J*_{C-P} = 9.2 Hz, Ar), 141.0 (d, *J*_{C-P} = 82.8 Hz, Ar), 131.9 (t, *J*_{C-P} = 6.3 Hz, Ar), 129.9 (d, *J*_{C-P} = 91.3 Hz, Ar), 128.4 (d, *J*_{C-P} = 11.0 Hz, Ar), 122.4 (d, *J*_{C-P} = 6.6 Hz, Ar), 33.9 (d, *J*_{C-P} = 70.3 Hz, *C*(CH₃)₃), 25.0 (s, C(CH₃)₃), 24.6 (s, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.3 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₇H₂₃NOP: 288.1512, found: 288.1510. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 5.639 min (major) and t_{R2} = 7.379 min (minor), ee = 99%. [α]_D²⁰ = +13.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(quinolin-2-yl)phosphine oxide (19): Performed according to the general procedure to afford 113 mg (73%) of 19 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.36–8.21 (m, 5 H, Ar), 7.86–7.74 (m, 2 H, Ar), 7.60 (t, *J* = 7.5 Hz, 1 H, Ar), 7.50–7.40 (m, 3 H, Ar), 1.30 (d, *J* = 15.2 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.5 (d, *J*_{C-P} = 116.4 Hz, Ar), 147.7 (d, *J*_{C-P} = 19.9 Hz, Ar), 135.8 (d, *J*_{C-P} = 8.3 Hz, Ar), 132.9 (d, *J*_{C-P} = 7.6 Hz, Ar),

131.5 (d, $J_{C-P} = 2.4$ Hz, Ar), 130.2 (s, Ar), 130.0 (s, Ar), 129.9 (d, $J_{C-P} = 88.9$ Hz, Ar), 128.0 (s, Ar), 127.9 (s, Ar), 127.8 (s, Ar), 124.26 (s, Ar), 124.1 (s, Ar), 34.4 (d, $J_{C-P} = 69.1$ Hz, $C(CH_3)_3$), 24.7 (s, $C(CH_3)_3$). ³¹P NMR (162 MHz, CDCl₃): δ 33.0 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for $C_{19}H_{21}$ NOP: 310.1355, found: 310.1354. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 6.879 min (major) and t_{R2} = 22.645 min (minor), ee = 98%. [α]_D²⁰ = +208.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(4-methylquinolin-2-yl)(phenyl)phosphine oxide (20): Performed according to the general procedure to afford 119 mg (74%) of **20** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.24–8.16 (m, 3 H, Ar), 8.06 (d, *J* = 4.0 Hz, 1 H, Ar), 7.97 (d, *J* = 8.4 Hz, 1 H, Ar), 7.71 (t, *J* = 7.4 Hz, 1 H, Ar), 7.57 (t, *J* = 7.6 Hz, 1 H, Ar), 7.42–7.33 (m, 3 H, Ar), 2.66 (s, 3 H,CH₃), 1.23 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.2 (d, *J*_{C-P} = 115.7 Hz, Ar), 147.5 (d, *J*_{C-P} = 20.2 Hz, Ar), 144.4 (d, *J*_{C-P} = 8.4 Hz, Ar), 132.9 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.4 (d, *J*_{C-P} = 2.4 Hz, Ar), 130.9 (s, Ar), 130.2 (d, *J*_{C-P} = 88.3 Hz, Ar), 129.5 (s, Ar), 128.1 (d, *J*_{C-P} = 2.4 Hz, Ar), 127.7 (d, *J*_{C-P} = 2.9 Hz, Ar), 124.8 (d, *J*_{C-P} = 18.4 Hz, Ar), 124.0 (s, Ar), 34.3 (d, *J*_{C-P} = 69.0 Hz, *C*(CH₃)₃), 24.8 (s, *C*(CH₃)₃), 18.7 (s, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.2 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₀H₂₃NOP: 324.1512, found: 324.1510. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 5.285 min (major) and t_{R2} = 9.705 min (minor), ee = 99%. [α]_D²⁰ = +100.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(2-methylquinolin-4-yl)(phenyl)phosphine oxide (21): Performed according to the general procedure to afford 113 mg (70%) of 21 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.81 (d, *J* = 8.5 Hz, 1 H, Ar), 8.03 (d, *J* = 8.4 Hz, 1 H, Ar), 7.92–7.85 (m, 2 H, Ar), 7.66 (t, *J* = 12.1 Hz, 2 H, Ar), 7.55 (d, *J* = 6.6 Hz, 1 H, Ar), 7.51–7.42 (m, 3 H, Ar), 2.77 (s, 3 H, CH₃), 1.40 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.8 (d, *J*_{C-P} = 10.5 Hz, Ar), 148.6 (d, *J*_{C-P} = 7.0 Hz, Ar), 137.2 (d, *J*_{C-P} = 80.2 Hz, Ar), 132.1 (d, *J*_{C-P} = 8.4 Hz, Ar), 131.9 (d, *J*_{C-P} = 2.4 Hz, Ar), 131.0 (s, Ar), 129.7 (s, Ar), 129.3 (s, Ar), 128.5 (d, *J*_{C-P} = 11.1 Hz, Ar), 127.8 (d, *J*_{C-P} = 3.4 Hz, Ar), 126.8 (d, *J*_{C-P} = 5.3 Hz, Ar), 126.5 (s, Ar), 126.3 (d, *J*_{C-P} = 8.3 Hz, Ar), 34.8 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 26.0 (s, C(CH₃)₃), 25.5 (s, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 42.9 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₀H₂₃NOP: 324.1512, found: 324.1510. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 8.792 min (minor) and t_{R2} = 10.739min (major), ee = 98%. [α]_D²⁰ = -84.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(isoquinolin-1-yl)(phenyl)phosphine oxide (22): Performed according to the general procedure to afford 119 mg (77%) of 22 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.44 (d, *J* = 8.6 Hz, 1 H, Ar), 8.70 (d, *J* = 5.4 Hz, 1 H, Ar), 8.14–8.04 (m, 2 H, Ar), 7.81 (d, *J* = 8.1 Hz, 1 H, Ar), 7.74 (d, *J* = 5.2 Hz, 1 H, Ar), 7.65 (t, *J* = 7.5 Hz, 1 H,

Ar), 7.59–7.53 (m, 1 H, Ar), 7.50–7.40 (m, 3 H, Ar), 1.36 (d, J = 15.0 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.3 (d, $J_{C-P} = 117.0 \text{ Hz}$, Ar), 140.8 (s, Ar), 140.6 (s, Ar), 136.1 (d, $J_{C-P} = 6.7 \text{ Hz}$, Ar), 133.0 (d, $J_{C-P} = 7.8 \text{ Hz}$, Ar), 132.1 (d, $J_{C-P} = 19.2 \text{ Hz}$, Ar), 131.3 (d, $J_{C-P} = 2.4 \text{ Hz}$, Ar), 131.2 (d, $J_{C-P} = 87.6 \text{ Hz}$, Ar), 130.3 (s, Ar), 128.0 (s, Ar), 127.8 (s, Ar), 127.7 (s, Ar), 127.5 (s, Ar), 127.1 (s, Ar), 122.9 (d, $J_{C-P} = 2.9 \text{ Hz}$, Ar), 35.4 (d, $J_{C-P} = 70.5 \text{ Hz}$, C(CH₃)₃), 25.1 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 38.7 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₉H₂₁NOP: 310.1355, found: 310.1353. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 95/05, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 26.065 min (minor) and t_{R2} = 28.952 min (major), ee = 97%. [α]_D²⁰ = -28.0 (c = 1.0 in CHCl₃).

$$\begin{bmatrix} \mathsf{N} & \mathsf{O} \\ \mathsf{N} & \mathsf{P} & \mathsf{O} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{I} \\ \mathsf{f} \mathsf{B} \mathsf{u} \\ \end{bmatrix}$$

(*R*)-*tert*-butyl(phenyl)(pyrazin-2-yl)phosphine oxide (23): Performed according to the general procedure to afford 114 mg (88%) of 23 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.37 (s, 1 H, Ar), 8.78 (s, 1 H, Ar), 8.70 (t, *J* = 2.7 Hz, 1 H, Ar), 8.19–8.12 (m, 2 H, Ar), 7.55–7.45 (m, 3 H, Ar), 1.24 (d, *J* = 15.5 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 149.6 (d, *J*_{C-P} = 17.4 Hz, Ar), 146.0 (s, Ar), 144.0 (d, *J*_{C-P} = 13.3 Hz, Ar), 132.6 (d, *J*_{C-P} = 7.7 Hz, Ar), 131.9 (s, Ar), 128.1 (d, *J*_{C-P} = 11.1 Hz, Ar), 34.1 (d, *J*_{C-P} = 69.8 Hz, *C*(CH₃)₃), 24.4 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.5 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₄H₁₈N₂OP: 261.1151, found: 261.1148. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 9.185 min (minor) and t_{R2} = 16.112 min (major), ee = 97%. [α]_D²⁰ = +173.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(3-methylpyrazin-2-yl)(phenyl)phosphine oxide (24): Performed according to the general procedure to afford 115 mg (84%) of 24 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.57–8.51 (m, 2 H, Ar), 7.85 (t, *J* = 8.6 Hz, 2 H, Ar), 7.50 (d, *J* = 6.9 Hz, 1 H, Ar), 7.43 (t, *J* = 7.3 Hz, 2 H, Ar), 2.72 (s, 3 H, *CH*₃), 1.34–1.27 (m, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 159.9 (d, *J*_{C-P} = 17.6 Hz, Ar), 150.8 (d, *J*_{C-P} = 112.9 Hz, Ar), 144.6 (d, *J*_{C-P} = 3.0 Hz, Ar), 140.2 (d, *J*_{C-P} = 14.1 Hz, Ar), 132.5 (d, *J*_{C-P} = 8.1 Hz, Ar), 131.7 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.2 (d, *J*_{C-P} = 88.8 Hz, Ar), 128.0 (d, *J*_{C-P} = 11.0 Hz, Ar), 35.0 (d, *J*_{C-P} = 71.1 Hz, *C*(CH₃)₃), 24.8 (s, C(*C*H₃)₃), 22.8 (s, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.1 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₂₀N₂OP: 275.1308, found: 275.1304. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 90/10, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 7.519min (major) and t_{R2} = 8.092 min (minor), ee = 97%. [α]_D²⁰ = +21.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-(dimethylamino)pyrazin-2-yl)(phenyl)phosphine oxide (25): Performed according to the general procedure to afford 121 mg (80%) of 25 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1 H, Ar), 8.19–8.13 (m, 3 H, Ar), 7.53–7.43 (m, 3 H, Ar), 3.22 (s, 6 H, N(CH₃)₂), 1.25 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 153.2 (d, *J*_{C-P} = 15.0 Hz, Ar), 147.6 (d, *J*_{C-P} = 114.2 Hz, Ar), 136.2 (d, *J*_{C-P} = 18.4 Hz, Ar), 132.4 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.9 (d, *J*_{C-P} = 2.6 Hz, Ar), 131.4 (s, Ar), 129.82 (d, *J*_{C-P} = 89.8 Hz, Ar), 127.7 (d, *J*_{C-P} = 10.9 Hz, Ar), 37.8 (s, N(CH₃)₂), 33.8 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 24.5 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.5 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₃N₃OP: 304.1573, found: 304.1571. HPLC analysis of the product: Daicel Chiralpak AD-H column;

n-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 11.279 min (major) and t_{R2} = 13.519 min (minor), ee = 99%. [α]_D²⁰ = +229.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(6-chloropyrazin-2-yl)(phenyl)phosphine oxide (26): Performed according to the general procedure to afford 73 mg (50%) of **26** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.26 (s, 1 H, Ar), 8.71 (d, *J* = 2.5 Hz, 1 H, Ar), 8.15–8.09 (m, 2 H, Ar), 7.56–7.48 (m, 3 H, Ar), 1.25 (d, *J* = 15.7 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 152.0 (d, *J*_{C-P} = 105.0 Hz, Ar), 148.8 (d, *J*_{C-P} = 13.5 Hz, Ar), 147.2 (d, *J*_{C-P} = 16.1 Hz, Ar), 146.3 (d, *J*_{C-P} = 2.6 Hz, Ar), 132.5 (d, *J*_{C-P} = 7.9 Hz, Ar), 132.1 (d, *J*_{C-P} = 2.8 Hz, Ar), 128.4 (d, *J*_{C-P} = 91.7 Hz, Ar), 128.3 (d, *J*_{C-P} = 11.3 Hz, Ar), 34.3 (d, *J*_{C-P} = 70.0 Hz, *C*(CH₃)₃), 24.4 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 32.2 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₄H₁₇ClN₂OP: 295.0762, found: 295.0760. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 98/02, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 38.425 min (minor) and t_{R2} = 42.452 min (major), ee = 97%. [α]_D²⁰ = +193.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(quinoxalin-2-yl)phosphine oxide (27): Performed according to the general procedure to afford 144 mg (93%) of 27 as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1 H, Ar), 8.29–8.21 (m, 3 H, Ar), 8.10–8.15 (m, 1 H, Ar), 7.90–7.84 (m, 2 H, Ar), 7.55–7.46 (m, 3 H, Ar), 1.32 (d, *J* = 15.5 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 152.6 (d, *J*_{C-P} = 109.1 Hz, Ar), 147.3 (d, *J*_{C-P} = 18.8 Hz, Ar), 142.5 (d, *J*_{C-P} = 2.3 Hz, Ar), 141.7 (d, *J*_{C-P} = 15.6 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.8 Hz, Ar), 131.9 (d, *J*_{C-P} = 2.8 Hz, Ar), 131.8 (s, Ar), 130.68 (s, Ar), 130.1 (d, *J*_{C-P} = 0.8 Hz, Ar), 129.7 (d, *J*_{C-P} = 1.6 Hz, Ar), 129.6 (s, Ar), 128.7 (s, Ar), 128.2 (s, Ar), 128.0 (s, Ar), 34.6 (d, *J*_{C-P} = 69.3 Hz, C(CH₃)₃), 24.5 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.2 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₈H₂₀N₂OP: 311.1308, found: 311.1307. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 13.772 min (major) and t_{R2} = 21.719 min (minor), ee = 98%. [α]_D²⁰ = +153.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(phenyl)(pyrimidin-2-yl)phosphine oxide (28): Performed according to the general procedure to afford 107 mg (83%) of **28** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, *J* = 4.7 Hz, 2 H, Ar), 8.10 (t, *J* = 8.8 Hz, 2 H, Ar), 7.52 (d, *J* = 7.3 Hz, 1 H, Ar), 7.48–7.39 (m, 3 H, Ar), 1.30 (d, *J* = 15.3 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.6 (d, *J*_{C-P} = 12.6 Hz, Ar), 132.9 (d, *J*_{C-P} = 8.0 Hz, Ar), 131.73 (s, Ar), 127.9 (d, *J*_{C-P} = 11.2 Hz, Ar), 121.9 (s, Ar), 34.1 (d, *J*_{C-P} = 69.5 Hz, *C*(CH₃)₃), 24.8 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 35.0 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₄H₁₈N₂OP: 261.1151, found: 261.1149. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 11.839 min (minor) and t_{R2} = 12.679 min (major), ee = 98%. [α]_p²⁰ = +173.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(5-methylpyrimidin-2-yl)(phenyl)phosphine oxide (29): Performed according to the general procedure to afford 122 mg (89%) of **29** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 2 H, Ar), 8.09 (t, *J* = 8.6 Hz, 2 H, Ar), 7.53–7.41 (m, 3 H, Ar), 2.38 (s, 3 H, *CH*₃), 1.29 (d, *J* = 15.2 Hz, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.8 (d, *J*_{C-P} = 13.1 Hz, Ar), 132.9 (d, *J*_{C-P} = 8.1 Hz, Ar), 131.8 (d, *J*_{C-P} = 2.4 Hz, Ar), 131.6 (d, *J*_{C-P} = 2.2 Hz, Ar), 127.8 (d, *J*_{C-P} = 11.1 Hz, Ar), 34.0 (d, *J*_{C-P} = 69.9 Hz, *C*(*CH*₃)₃), 24.8 (s, C(*CH*₃)₃), 15.9 (s, *CH*₃). ³¹P NMR (162 MHz, CDCl₃): δ 34.8 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₅H₂₀N₂OP: 275.1308, found: 275.1304. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 12.525 min (major) and t_{R2} = 22.972 min (minor), ee = 99%. [α]_D²⁰ = +141.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(4,6-dimethylpyrimidin-2-yl)(phenyl)phosphine oxide (30): Performed according to the general procedure to afford 119 mg (83%) of **30** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.12–8.05 (m, 2 H, Ar), 7.52–7.47 (m, 1 H, Ar), 7.46–7.40 (m, 2 H, Ar), 7.09 (d, *J* = 2.6 Hz, 1 H, Ar), 2.56 (s, 6 H, CH₃), 1.30 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 166.5 (d, *J*_{C-P} = 13.4 Hz, Ar), 166.3 (d, *J*_{C-P} = 144.0 Hz, Ar), 133.0 (d, *J*_{C-P} = 8.0 Hz, Ar), 131.5 (d, *J*_{C-P} = 2.7 Hz, Ar), 129.4 (d, *J*_{C-P} = 90.0 Hz, Ar), 127.7 (d, *J*_{C-P} = 11.1 Hz, Ar), 121.0 (d, *J*_{C-P} = 2.5 Hz, Ar), 34.0 (d, *J*_{C-P} = 69.5 Hz, *C*(CH₃)₃), 24.9 (s, *C*(CH₃)₃), 24.0 (s, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 34.3 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₂N₂OP: 289.1464, found: 289.1462. HPLC analysis of the product: Daicel Chiralpak AS-H column; *n*-hexane/*i*-PrOH = 90/10, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 7.879 min (major) and t_{R2} = 11.565 min (minor), ee = 99%. [α]_p²⁰ = +89.0 (c = 1.0 in CHCl₃).

(*R*)-[2,2'-bipyridin]-6-yl(*tert*-butyl)(phenyl)phosphine oxide (31): Performed according to the general procedure to afford 147 mg (87%) of **31** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, *J* = 4.3 Hz, 1 H, Ar), 8.58 (d, *J* = 8.1 Hz, 1 H, Ar), 8.45 (d, *J* = 7.9 Hz, 1 H, Ar), 8.30–8.21 (m, 3 H, Ar), 7.99–7.90 (m, 2 H, Ar), 7.52–7.43 (m, 3 H, Ar), 7.41–7.36 (m, 1 H, Ar), 1.31 (d, *J* = 15.1 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 156.2 (d, *J*_{C-P} = 62.5 Hz, Ar), 155.6 (s, Ar), 155.6 (d, *J*_{C-P} = 37.8 Hz, Ar), 149.4 (s, Ar), 137.2 (t, *J*_{C-P} = 4.3 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.5 (d, *J*_{C-P} = 2.6 Hz, Ar), 130.1 (d, *J*_{C-P} = 89.6 Hz, Ar), 129.3 (s, Ar), 129.2 (s, Ar), 127.9 (d, *J*_{C-P} = 10.9 Hz, Ar), 124.2 (s, Ar), 122.6 (d, *J*_{C-P} = 2.9 Hz, Ar), 120.9 (s, Ar), 33.9 (d, *J*_{C-P} = 69.6 Hz, *C*(CH₃)₃), 24.8 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.0 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₀H₂₂N₂OP: 337.1464, found: 337.1462. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 6.365 min (major) and t_{R2} = 6.739 min (minor), ee = 99%. [α]_{D²⁰} = +117.0 (c = 1.0 in CHCl₃).

(*R*)-[2,2'-bipyridin]-4-yl(*tert*-butyl)(phenyl)phosphine oxide (32): Performed according to the general procedure to afford 151 mg (90%) of **32** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.97 (d, *J* = 10.1 Hz, 1 H, Ar), 8.83 (t, *J* = 4.1 Hz, 1 H, Ar), 8.70 (d, *J* = 4.1 Hz, 1 H, Ar), 8.42 (d, *J* = 8.0 Hz, 1 H, Ar), 8.05–7.98 (m, 2 H, Ar), 7.96–7.90 (m, 1 H, Ar), 7.86–7.79 (m, 1 H, Ar), 7.58–7.49 (m, 3 H, Ar), 7.35–7.30 (m, 1 H, Ar), 1.31 (d, *J* = 15.3 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 155.9 (d, *J*_{C-P} = 8.9 Hz, Ar), 155.3 (d, *J*_{C-P} = 1.4 Hz, Ar), 149.4 (s, Ar), 149.32 (s, Ar), 141.8 (d, *J*_{C-P} = 82.8 Hz, Ar), 137.0 (s, Ar), 132.2 (d, *J*_{C-P} = 8.2 Hz, Ar), 132.0 (d, *J*_{C-P} = 2.7 Hz, Ar), 129.8 (d, *J*_{C-P} = 91.5 Hz, Ar), 128.6 (d, *J*_{C-P} = 11.1 Hz, Ar), 126.5 (d, *J*_{C-P} = 6.0 Hz, Ar), 124.1 (s, Ar), 122.9 (d, *J*_{C-P} = 8.0 Hz, Ar), 121.2 (s, Ar), 34.1 (d, *J*_{C-P} = 70.5 Hz, *C*(CH₃)₃), 25.1 (s, *C*(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.3 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₀H₂₂N₂OP: 337.1464, found: 337.1461. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 9.899 min (minor) and t_{R2} = 11.185 min (major), ee = 99%. [α]_{D²⁰} = +114.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(1,10-phenanthrolin-2-yl)(phenyl)phosphine oxide (33): Performed according to the general procedure to afford 160 mg (89%) of **33** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.28–9.20 (m, 1 H, Ar), 8.63–8.56 (m, 2 H, Ar), 8.54–8.49 (m, 1 H, Ar), 8.36–8.30 (m, 1 H, Ar), 8.25–8.20 (m, 1 H, Ar), 7.84–7.75 (m, 2 H, Ar), 7.68–7.62 (m, 1 H, Ar), 7.48 (d, *J* = 2.2 Hz, 3 H, Ar), 1.37 (d, *J* = 15.2 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.1 (d, *J*_{C-P} = 118.2 Hz, Ar), 150.9 (s, Ar), 146.7 (s, Ar), 146.0 (d, *J*_{C-P} = 18.5 Hz, Ar), 135.8 (s, Ar), 135.6 (d, *J*_{C-P} = 8.3 Hz, Ar) 133.4 (d, *J*_{C-P} = 7.6 Hz, Ar), 131.3 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.0 (d, *J*_{C-P} = 89.4 Hz, Ar), 129.0 (s, Ar), 128.8 (d, *J*_{C-P} = 2.8 Hz, Ar), 128.3 (s, Ar), 127.9 (d, *J*_{C-P} = 10.9 Hz, Ar), 126.5 (d, *J*_{C-P} = 18.6 Hz, Ar), 126.3 (s, Ar), 123.3 (s, Ar), 34.1 (d, *J*_{C-P} = 69.1 Hz, *C*(CH₃)₃), 24.8 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.6 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₂H₂₂N₂OP: 361.1464, found: 361.1463. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 13.272 min (minor) and t_{R2} = 14.252 min (major), ee = 98%. [\alpha]_D²⁰ = +216.0 (c = 1.0 in CHCl₃).

(*R*)-*tert*-butyl(9-chloro-1,10-phenanthrolin-2-yl)(phenyl)phosphine oxide (34): Performed according to the general procedure to afford 108 mg (55%) of **34** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.68–8.58 (m, 2 H, Ar), 8.54–8.48 (m, 1 H, Ar), 8.39–8.32 (m, 1 H, Ar), 8.19 (d, *J* = 8.4 Hz, 1 H, Ar), 7.82 (s, 2 H, Ar), 7.66 (d, *J* = 8.4 Hz, 1 H, Ar), 7.55–7.49 (m, 3 H, Ar), 1.34 (d, *J* = 15.2 Hz, 9 H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 157.6 (d, *J*_{C-P} = 117.4 Hz, Ar), 151.7 (s, Ar), 146.4 (s, Ar), 144.7 (d, *J*_{C-P} = 18.6 Hz, Ar), 138.5 (s, Ar), 135.6 (d, *J*_{C-P} = 8.2 Hz, Ar), 133.7 (d, *J*_{C-P} =

7.5 Hz, Ar), 131.5 (d, $J_{C-P} = 2.7$ Hz, Ar), 129.7 (d, $J_{C-P} = 90.0$ Hz, Ar), 129.0 (d, $J_{C-P} = 2.8$ Hz, Ar), 128.0 (s, Ar), 127.6 (s, Ar), 126.7 (s, Ar), 124.5 (s, Ar), 34.1 (d, $J_{C-P} = 69.0$ Hz, $C(CH_3)_3$), 24.7 (s, $C(CH_3)_3$). ³¹P NMR (162 MHz, CDCl₃): δ 33.8 (s). HRMS (ESI): m/z: [M+H]+ calculated for C22H21CIN2OP: 395.1075, found: 395.1077. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 13.172 min (minor) and t_{R2} = 25.485 min (major), ee = 97%. [α]_D²⁰ = +206.0 (c = 1.0 in CHCl₃).

(*R*)-[2,2':6',2"-terpyridin]-4'-yl(*tert*-butyl)(phenyl)phosphine oxide (35): Performed according to the general procedure to afford 183 mg (89%) of 35 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.06 (d, *J* = 10.3 Hz, 2 H, Ar), 8.74–8.67 (m, 2 H, Ar), 8.60 (d, *J* = 7.9 Hz, 2 H, Ar), 8.10–8.03 (m, 2 H, Ar), 7.88–7.81 (m, 2 H, Ar), 7.57–7.49 (m, 3 H, Ar), 7.36–7.31 (m, 2 H, Ar), 1.36 (d, *J* = 15.3 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 155.6 (d, *J*_{C-P} = 9.3 Hz, Ar), 155.4 (s, Ar), 149.4 (s, Ar), 142.9 (d, *J*_{C-P} = 83.3 Hz, Ar), 136.8 (s, Ar), 132.3 (d, *J*_{C-P} = 8.2 Hz, Ar), 131.9 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.0 (d, *J*_{C-P} = 91.2 Hz, Ar), 128.5 (d, *J*_{C-P} = 11.1 Hz, Ar), 124.1 (s, Ar), 123.4 (d, *J*_{C-P} = 7.8 Hz, Ar), 121.3 (s, Ar), 34.2 (d, *J*_{C-P} = 70.4 Hz, *C*(CH₃)₃), 25.2 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.2 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₅H₂₅N₃OP: 414.1730, found: 414.1727. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 9.919 min (minor) and t_{R2} = 11.079 min (major), ee = 99%. [α]_D²⁰ = +84.0 (c = 1.0 in CHCl₃).

(*R*)-cyclohexyl(phenyl)(quinoxalin-2-yl)phosphine oxide (39): Performed according to the general procedure to afford 106 mg (60%) of 39 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.50 (s, 1 H, Ar), 8.27 – 8.20 (m, 1 H, Ar), 8.19 – 8.12 (m, 1 H, Ar), 8.11 – 8.01 (m, 2 H, Ar), 7.90 – 7.83 (m, 2 H, Ar), 7.50 (t, *J* = 7.4 Hz, 3 H, Ar), 2.77 – 2.65 (m, 1 H, Cy), 1.83 – 1.64 (m, 7 H, Cy), 1.28 (d, *J* = 8.1 Hz, 3 H, Cy). ¹³C NMR (101 MHz, CDCl₃): δ 151.5 (d, *J*_{C-P} = 112.9 Hz, Ar), 145.5 (d, *J*_{C-P} = 19.5 Hz, Ar), 141.6 (d, *J*_{C-P} = 2.2 Hz, Ar), 141.2 (d, *J*_{C-P} = 16.2 Hz, Ar), 130.9 (d, *J*_{C-P} = 2.7 Hz, Ar), 130.6 (s, Ar), 130.5 (s, Ar), 130.4 (s, Ar), 129.7 (s, Ar), 129.6 (s, Ar), 129.0 (s, Ar), 128.8 (s, Ar), 128.7 (d, *J*_{C-P} = 1.6 Hz, Ar), 127.5 (s, Ar), 127.4 (s, Ar), 36.2 (d, *J*_{C-P} = 2.3 Hz, Cy). ³¹P NMR (162 MHz, CDCl₃): δ 31.8 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₂₀H₂₂N₂OP: 337.1464, found: 337.1462. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 12.539 min (major) and t_{R2} = 13.965 min (minor), ee = 98%. [α]_D²⁰ = +73.0 (c = 1.0 in CHCl₃).

(*R*)-cyclohexyl(phenyl)(pyrimidin-2-yl)phosphine oxide (40): Performed according to the general procedure to afford 76 mg (50%) of 40 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (s, 2 H, Ar), 8.11 – 7.90 (m, 2 H, Ar), 7.54

-7.43 (m, 3 H, Ar), 7.37 (s, 1 H, Ar), 2.64 (d, *J* = 14.5 Hz, 1 H, Cy), 1.70 (t, *J* = 39.3 Hz, 7 H, Cy), 1.27 (s, 3 H, Cy). ¹³C NMR (101 MHz, CDCl₃): δ 168.8 (s, Ar), 167.3 (s, Ar), 157.0 (d, *J*_{C-P} = 12.8 Hz, Ar), 131.8 (d, *J*_{C-P} = 2.7 Hz, Ar), 131.7 (s, Ar), 131.6 (s, Ar), 130.4 (s, Ar), 129.4 (s, Ar), 128.5 (s, Ar), 128.4 (s, Ar), 121.8 (s, Ar), 36.9 (d, *J*_{C-P} = 73.5 Hz, Cy), 26.3 (d, *J*_{C-P} = 23.8 Hz, Cy), 26.3 (d, *J*_{C-P} = 4.1 Hz, Cy), 25.8 (d, *J*_{C-P} = 1.0 Hz, Cy), 25.8 (d, *J*_{C-P} = 1.0 Hz, Cy), 24.7 (d, *J*_{C-P} = 3.4 Hz, Cy), 24.1 (d, *J*_{C-P} = 2.3 Hz, Cy). ³¹P NMR (162 MHz, CDCl₃): δ 30.8 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₁₆H₂₀N₂OP: 287.1308, found: 287.1306. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 13.992 min (major) and t_{R2} = 17.232 min (minor), ee = 97%. [α]_D²⁰ = -4.0 (c = 1.0 in CHCl₃).

(*1R,1'R*)-(1,10-phenanthroline-2,9-diyl)bis(*tert*-butyl(phenyl)phosphine oxide (41): Performed according to the general procedure to afford 221 mg (82%) of 41 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.79–8.70 (m, 2 H, Ar), 8.45 (t, *J* = 8.9 Hz, 6 H, Ar), 7.94 (s, 2 H, Ar), 7.48 (d, *J* = 7.0 Hz, 2 H, Ar), 7.42 (d, *J* = 5.4 Hz, 4 H, Ar), 1.46 (d, *J* = 15.3 Hz, 18 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 158.0 (d, *J*_{C-P} = 115.1 Hz, Ar), 146.3 (d, *J*_{C-P} = 18.3 Hz, Ar), 136.3 (d, *J*_{C-P} = 8.3 Hz, Ar), 132.8 (d, *J*_{C-P} = 7.8 Hz, Ar), 131.6 (d, *J*_{C-P} = 2.6 Hz, Ar), 130.2 (s, Ar), 129.7 (d, *J*_{C-P} = 2.5 Hz, Ar), 129.3 (s, Ar), 128.4 (s, Ar), 128.0 (s, Ar), 127.9 (s, Ar), 127.8 (s, Ar), 127.6 (s, Ar), 34.1 (d, *J*_{C-P} = 69.2 Hz, *C*(CH₃)₃), 24.9 (s, C(CH₃)₃). ³¹P NMR (162 MHz, CDCl₃): δ 33.5 (s). HRMS (ESI): m/z: [M+H]⁺ calculated for C₃₂H₃₅N₂O₂P₂: 541.2168, found: 541.2171. HPLC analysis of the product: Daicel Chiralpak AD-H column; *n*-hexane/*i*-PrOH = 85/15, flow rate = 1 mL/min, UV = 254 nm, t_{R1} = 15.545 min (major) and t_{R2} = 18.132 min (minor), ee = 99%. [α]_D²⁰ = +130.0 (c = 1.0 in CHCl₃).

3. X-ray structural determination

The X-ray date was collected on a Rigaku Saturn CCDC diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXS-97)² and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97).³ The crystal data and structural refinements details are listed in Table S1. CCDC 2121510 (**23**) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	23
formula	C ₁₄ H ₁₇ N ₂ OP
fw	260.26
<i>Т</i> (К)	296
space group	P 21 21 21
crystal system	orthorhombic
<i>a</i> (Å)	7.2488(9)
b (Å)	10.7508(14)
<i>c</i> (Å)	17.638(2)
lpha (deg.)	90
<i>θ</i> (deg.)	90
γ (deg.)	90
V (Å3)	1374.5(3)
Ζ	4
dcalcd. (mg/cm3)	1.258
F(000)	552.0
GOF	1.094
R1 ($l > 2\sigma(l)$)	0.0339
wR2 (all data)	0.0887

Table S1. Crystal Data and Summary of X-ray Data Collection for compound 23

4. Computational Methods

All the calculations were carried out via density functional theory (DFT) calculation using Gaussian 16⁴ with the ω B97XD ⁵ functional. Geometric structures of all species in this work were optimized in gas phase. In addition, free energy corrections were considered at a concentration of 1 M and a temperature of 298.15 K. Frequency calculation were performed to determine all the stationary points (no imaginary frequency) and transition state structures (only one imaginary frequency). The 6-31+G(d) ⁶ basis set was used for all atoms. In addition, the intrinsic reaction coordinate (IRC) calculation ⁷ were applied to confirm the connection of each transition state to its corresponding appropriate intermediates, reactants, or products. Base on the gas phase optimized geometries, solvent effects were computed by using the SMD ⁸ model at the same level of theory while 6-311++G(d,p) basis set for all atoms. Dimethylsulfoxide (ϵ = 46.826) was used as the solvent, and Bondi atomic radii ⁹ was used for the SMD calculation. All 3D molecular structures were drawn by using the CYLview (Version) program ¹⁰. The Mulliken charge distribution were calculated by Gaussian 16 with the level of ω B97XD/6-31+G(d). The spin-orbit crossing (SOC) values were calculated by ORCA package.¹¹

Figure S2. The spin-orbit coupling (SOC) values of ³[INT-C] and ³[4]. The data were obtained by ORCA package.

corrected relative electronic energies (ΔE_{sol}) calculated for species involved in Figure 1 and 54.			
ΔGgas	ΔEgas	ΔEsol	
0	0	0	
-0.1	0.9	1.7	
-10.8	-12.7	-13.2	
-10.2	2.5	-7.8	
41.2	56.2	45.1	
47.7	62.1	48.8	
27.1	42.2	26.5	
47.5	60.6	42.2	
	ΔGgas 0 -0.1 -10.8 -10.2 41.2 47.7 27.1 47.5	ΔGgas ΔEgas 0 0 -0.1 0.9 -10.8 -12.7 -10.2 2.5 41.2 56.2 47.7 62.1 27.1 42.2 47.5 60.6	

Table S2. The gas phase relative free energies (ΔG_{gas}), gas phase relative electronic energies (ΔE_{gas}) and solvation corrected relative electronic energies (ΔE_{sol}) calculated for species involved in Figure 1 and S4.

[INT-C]*	43.7	30.8	21.8
³ [4]	69.0	113.1	72.2
4	-9.5	30.0	-9.6

INT-B

³[INT-D]

4

Table S3. Absolute Calculation Energies and imaginary frequencies.

Species	E(gas-wB97XD) ¹	G(_{corr-wB97XD}) ²	H(_{corr-ωB97XD}) ³	E(_{solv-ωB97XD}) ⁴	IF ⁵
INT-A	-2858.779859	0.415255	0.528451	-2859.204566	-
TS1	-2858.778420	0.413667	0.525253	-2859.201785	-625.80
INT-B	-2858.800083	0.418200	0.530840	-2859.225637	-
INT-C	-2782.379064	0.392087	0.502670	-2782.776262	-
³ [INT-C]	-2782.293526	0.388416	0.500064	-2782.692023	-
³ [TS ₂]	-2782.284071	0.389322	0.499403	-2782.686064	-251.86
³ [INT-D]	-2782.315831	0.388290	0.502282	-2782.721631	-
³ [TS ₃]	-2782.286418	0.391374	0.500490	-2782.696614	-451.09
[INT-C]*	-2782.295863	0.394726	0.502652	-2782.673437	-
³ [4]	-1053.430809	0.249699	0.315773	-1053.638198	-
4	-1053.563191	0.256958	0.320239	-1053.768480	-

¹The electronic energy calculated by ω B97XD in gas phase. ²The thermal correction to Gibbs free energy calculated by ω B97XD in gas phase. ³The thermal correction to enthalpy calculated by ω B97XD in gas phase. ⁴The electronic energy calculated by ω B97XD in dimethylsulfoxide solvent. ⁵The ω B97XD calculated imaginary frequencies for the transition states.

Cartesian coordinates for the complexes calculated in this study: [gas phase results optimized at the level of ω B97XD/6-31+G(d)]

INT-A			
Р	-0.92873500	0.35301500	1.15641700
Н	0.40977300	0.03456900	1.57249700
0	-1.21230400	-0.06608900	-0.27565300
С	-1.13974300	2.15054200	1.37820900
С	-1.94012900	2.85865100	0.47802500
С	-0.47588700	2.84204000	2.39658800
С	-2.08458400	4.23925500	0.59919100

Н	-2.43508500	2.31912700	-0.32524000
С	-0.62051000	4.22237100	2.52032400
н	0.17296500	2.30303900	3.08283700
С	-1.42539500	4.92212300	1.62110300
н	-2.70867700	4.78334700	-0.10459700
н	-0.10043900	4.75277700	3.31347500
н	-1.53570800	5.99910000	1.71521800
С	-2.04241600	-0.49199100	2.36530900
С	-3.50376900	-0.14105200	2.06184000
н	-4.16835300	-0.70732600	2.72755200
Н	-3.70284300	0.92613300	2.21673000
н	-3.76168100	-0.39353700	1.02736500
С	-1.67081300	-0.08821500	3.79777600
н	-2.26563400	-0.67469900	4.50977900
н	-0.61217800	-0.28120700	4.01137300
н	-1.87586200	0.97118800	3.98887800
С	-1.80375500	-1.99811400	2.16151800
Н	-0.75363700	-2.26710900	2.32966300
н	-2.41973400	-2.56943300	2.86838800
н	-2.07368000	-2.30335100	1.14565100
Na	1.16172200	-0.76863400	-0.88515500
S	0.29204500	0.69387100	-3.92919100
С	1.78909700	1.71195800	-3.96054900
н	1.55451100	2.68491500	-4.40401600
н	2.15036700	1.82102800	-2.93204000
Н	2.52158400	1.18958000	-4.58048000
С	-0.66435500	1.72254900	-2.78863400
н	-0.07488500	1.90785500	-1.88577400
н	-0.93129300	2.65308000	-3.30107800
н	-1.55910900	1.15678100	-2.52146000
0	0.66783000	-0.57296600	-3.17424300
S	2.39075600	2.07270200	0.57665000
С	2.76631400	3.82538700	0.29614700
н	3.32791700	4.22316300	1.14748700
н	3.33656000	3.93944000	-0.63066100
н	1.80855000	4.34619300	0.21409400
С	4.07383600	1.43464500	0.58019700
н	4.56369100	1.69301900	-0.36365100
н	4.61735600	1.84930400	1.43518200
н	3.92325800	0.35509900	0.69982100
0	1.77745800	1.62588000	-0.75171400
0	2.06404200	-0.68385500	1.13772000
н	2.29724600	-1.43173700	1.69833700
С	0.01060600	-4.08567200	-0.15551500
			519

С	-1.05826000	-4.95871000	0.04114400
С	-2.22353600	-4.70482100	-0.67207100
С	-2.26998000	-3.61094400	-1.53362400
С	-1.14030200	-2.80943900	-1.64666600
Ν	-0.01033100	-3.04545600	-0.96559600
Н	-3.08551500	-5.35491400	-0.55194200
Н	-0.97180100	-5.79464000	0.72543900
Н	-3.16282700	-3.37737700	-2.10358000
Н	-1.11173600	-1.93921700	-2.29436500
Cl	1.49680300	-4.36845600	0.71960800
TS1			
Р	0.50869700	-1.17968200	-2.29110300
Н	1.95092900	-1.63178200	-1.97017400
0	0.18939600	-1.50729400	-3.75436800
С	0.33073500	0.62490900	-2.01605900
С	-0.36949200	1.39154400	-2.95118800
С	0.95252900	1.26779500	-0.94001700
С	-0.45957200	2.77574000	-2.80840400
Н	-0.83074600	0.88980600	-3.79794100
С	0.86104300	2.64991900	-0.79136200
Н	1.53387200	0.68610400	-0.22792800
С	0.15402400	3.40684300	-1.72685600
Н	-1.00856600	3.36229700	-3.54058400
Н	1.34729300	3.13851400	0.04904900
Н	0.08542300	4.48563000	-1.61407000
С	-0.71984700	-1.98550700	-1.15056600
С	-2.14203500	-1.54693700	-1.51746200
Н	-2.87365900	-2.09356700	-0.90683200
Н	-2.29007600	-0.47498900	-1.34048900
Н	-2.35378500	-1.75304600	-2.57254300
С	-0.40442500	-1.63835200	0.30928800
Н	-1.06144400	-2.21215100	0.97621700
Н	0.63225800	-1.88641400	0.57018800
Н	-0.56776900	-0.57523500	0.51858500
С	-0.56203300	-3.49816300	-1.37558500
Н	0.45469400	-3.83725400	-1.14019200
Н	-1.25962300	-4.04782300	-0.72936600
Н	-0.77686100	-3.76357300	-2.41568300
Na	2.48245400	-2.20049300	-4.43871300
S	1.56366800	-0.85671600	-7.48840800
С	3.05546000	0.15699700	-7.64729300
Н	2.79012500	1.12127000	-8.09237000
Н	3.49151600	0.28690200	-6.65101500

Н	3.74203700	-0.37854900	-8.30717300
С	0.68604100	0.20031500	-6.31213100
Н	1.34692300	0.42921500	-5.47091200
Н	0.35757100	1.10531800	-6.83424900
н	-0.16814500	-0.37075300	-5.94174000
0	1.99068100	-2.10347400	-6.72520000
S	3.69025700	0.62557200	-3.05066800
С	3.97763300	2.39632000	-3.29934200
Н	4.40338600	2.82979500	-2.38909800
н	4.64409400	2.54914200	-4.15345100
Н	3.00198900	2.84973100	-3.49335000
С	5.39631900	0.10128300	-2.81254500
н	5.98543700	0.36233400	-3.69670800
Н	5.80070400	0.57496700	-1.91258100
Н	5.32048600	-0.98047100	-2.67095200
0	3.29456500	0.11740700	-4.43851100
0	3.31043900	-2.10508100	-2.30908900
Н	3.50819200	-2.91068300	-1.81691600
С	1.42401700	-5.53754400	-3.59599400
С	0.38048000	-6.43917100	-3.39593700
С	-0.78461800	-6.22962000	-4.12357500
С	-0.85458700	-5.14934200	-5.00035600
С	0.25128900	-4.31573500	-5.11411700
Ν	1.38193900	-4.50952300	-4.41988500
Н	-1.62854800	-6.90255800	-4.00191800
Н	0.48479000	-7.26200200	-2.69846700
Н	-1.74850100	-4.94955700	-5.58125400
н	0.25976900	-3.45518100	-5.77501500
Cl	2.91154100	-5.76679300	-2.70279300

INT-B

Р	-0.62063200	0.20054600	1.43763200
н	1.51499600	-0.62995400	1.49689700
0	-0.84278800	-0.03205600	-0.09759900
С	-0.82531500	2.03803100	1.67119000
С	-1.43961200	2.81042000	0.67918800
С	-0.30027900	2.69527300	2.78991600
С	-1.54888200	4.19490900	0.80823700
н	-1.83375800	2.30090100	-0.19644800
С	-0.40575300	4.07940400	2.92810000
н	0.20453700	2.11400900	3.56048200
С	-1.03189400	4.83479500	1.93574000
н	-2.04099600	4.77670100	0.03192400
н	0.00227000	4.57024900	3.80866100

Н	-1.11469000	5.91363000	2.03990700	
С	-2.19127400	-0.42418000	2.29287800	
С	-3.44926500	0.16089800	1.64522600	
н	-4.35024700	-0.32892300	2.04303600	
н	-3.53968000	1.23578900	1.84030400	
н	-3.42656600	0.01064400	0.55932700	
С	-2.15145000	-0.09776800	3.78850000	
н	-3.00161800	-0.56776400	4.30299800	
н	-1.23097800	-0.47079500	4.25700700	
н	-2.21151400	0.98198300	3.96868800	
С	-2.17964700	-1.94684900	2.09360600	
н	-1.28656300	-2.40451800	2.53993300	
н	-3.06285000	-2.40363300	2.56310300	
н	-2.19299000	-2.19558900	1.02701600	
Na	1.09280100	-0.67684100	-1.08638300	
S	0.00911600	0.61478800	-4.01923000	
С	1.47481200	1.62827400	-4.33722600	
н	1.16076000	2.60539400	-4.71766200	
н	2.03455800	1.73098700	-3.40176400	
н	2.07173700	1.11150300	-5.09220800	
С	-0.71200000	1.64135600	-2.71781100	
н	0.06354300	1.90893400	-1.99464000	
н	-1.16617300	2.52561900	-3.17667000	
н	-1.46021200	1.03225800	-2.20323300	
0	0.52477300	-0.64807700	-3.33657100	
S	2.39548600	1.98724900	0.30072700	
С	2.21375000	3.78119100	0.23543500	
н	2.51872100	4.21018800	1.19413900	
н	2.81268000	4.18144400	-0.58806200	
н	1.15150700	3.98567100	0.07907400	
С	4.18197500	1.90223300	0.54371900	
н	4.68847200	2.39366500	-0.29202400	
н	4.44347100	2.37314500	1.49600900	
н	4.43178200	0.83970500	0.57694700	
0	2.16324200	1.50330400	-1.13128400	
0	2.32349600	-0.94230600	1.01323100	
н	2.36787900	-1.89072500	1.19325700	
С	0.10390900	-4.06990500	0.02464800	
С	-0.97072500	-4.92493900	0.25227500	
С	-2.11153400	-4.71812600	-0.51340800	
С	-2.12435500	-3.68583200	-1.44788700	
С	-0.99068200	-2.89389300	-1.57910400	
Ν	0.12025100	-3.08641000	-0.85059800	
н	-2.98112600	-5.35340300	-0.37369200	
			~~~	

	Н	-0.91008100	-5.70849100	0.99818700
	Н	-2.99796000	-3.48797900	-2.05925100
	Н	-0.94342600	-2.07321800	-2.28877800
	Cl	1.57017700	-4.31633800	0.96341600
I	INT-C			
	Р	-0.72865300	-1.12752100	0.37990600
	С	-1.33145200	-1.39396800	2.12508700
	С	-1.90201200	-0.34950600	2.86129200
	С	-1.14628100	-2.62567700	2.76342200
	С	-2.29493300	-0.53156600	4.18621800
	Н	-2.02635100	0.61652200	2.37560600
	С	-1.54415800	-2.81998000	4.08624100
	Н	-0.67675000	-3.44285300	2.21741300
	С	-2.11973300	-1.77103100	4.80317800
	Н	-2.73976800	0.29227500	4.74008900
	Н	-1.39654100	-3.78693400	4.56144000
	Н	-2.42385800	-1.91647900	5.83662200
	С	-2.30601800	-1.64317500	-0.55957000
	С	-3.52400100	-0.81160500	-0.15178900
	н	-4.38313000	-1.03986700	-0.80039900
	Н	-3.82146700	-1.01343800	0.88347800
	Н	-3.30649600	0.25934700	-0.23926500
	С	-2.58335800	-3.13409800	-0.34281400
	Н	-3.40338900	-3.46861500	-0.99466100
	Н	-1.70040600	-3.74358100	-0.57738900
	н	-2.87548100	-3.34521600	0.69222300
	С	-1.99372100	-1.39643500	-2.04180500
	Н	-1.12557400	-1.98437300	-2.36645600
	Н	-2.84997400	-1.68003300	-2.67162000
	Н	-1.77287300	-0.33870300	-2.22632100
	0	-0.69117200	0.45071600	0.24193700
	Na	1.02685100	1.52814300	-0.64195100
	S	2.78328100	1.69984500	2.36063700
	С	4.32159400	0.74856500	2.29179100
	н	4.49240000	0.25893200	3.25511400
	н	4.24709500	0.01238400	1.48693600
	Н	5.13251200	1.44907900	2.08096200
	С	1.65493100	0.31874700	2.63744800
	Н	1.79949500	-0.44836200	1.86996100
	Н	1.81686500	-0.09006300	3.63950600
	Н	0.63849000	0.70832600	2.55230600
	0	2.53940600	2.18190200	0.93784500
	С	2.12499100	-1.24526900	-2.33082700

С	1.92897300	-2.30298200	-3.21540300
С	1.14863100	-2.05434800	-4.33773800
С	0.60149400	-0.78636300	-4.52114200
С	0.85067100	0.18519300	-3.56102700
Ν	1.60933600	-0.03963300	-2.47821700
Н	0.96535000	-2.84731200	-5.05673500
Н	2.37000800	-3.27384600	-3.02360300
Н	-0.02061700	-0.55843000	-5.37974200
Н	0.42616600	1.18384400	-3.62454100
Cl	3.13991400	-1.49549300	-0.93057600
S	-1.81053000	2.76392900	-1.91150900
С	-2.40941700	4.35535600	-2.53456500
Н	-3.48841800	4.42962900	-2.36913400
Н	-1.87917800	5.16304400	-2.02208400
Н	-2.19483600	4.39308700	-3.60486600
С	-2.18536900	3.01398300	-0.16643200
Н	-1.69270200	3.92841600	0.17872000
Н	-3.27048500	3.07812600	-0.03767600
Н	-1.78630100	2.11956800	0.33504800
0	-0.29148500	2.84763900	-2.04507700

³[INT-C]

С	-2.29975700	1.82088900	0.03506100
С	-0.88377400	2.41340300	1.74520100
С	-1.94542100	2.56050100	2.60932500
С	-3.26243800	2.29016600	2.18452200
С	-3.42433300	1.95014500	0.79728800
Н	0.12612500	2.67921500	2.04872900
Н	-1.75092200	2.90540500	3.62285300
Н	-4.11931600	2.41888500	2.83569800
Н	-4.40492200	1.80778700	0.35652100
Ν	-1.00991900	1.97791400	0.41674200
Cl	-2.48861700	1.42707300	-1.69460000
Na	0.79097000	1.50161000	-1.01244300
Ρ	0.39621700	-0.40995700	1.55105600
0	1.37837400	-0.60382100	0.39547800
С	-0.99894100	-1.57118400	1.45650400
С	-0.80497300	-2.87435900	0.97877900
С	-2.28115300	-1.14709900	1.81586900
С	-1.88398600	-3.74476800	0.86311800
Н	0.19377700	-3.20279000	0.70232800
С	-3.36055500	-2.02110400	1.69309000
Н	-2.44660700	-0.13455000	2.17552100

С	-3.16568200	-3.31543200	1.21656700
Н	-1.72867100	-4.75907400	0.50365200
Н	-4.35600000	-1.67982300	1.96215200
н	-4.00995000	-3.99271700	1.12017500
С	1.22679100	-0.65046000	3.20943700
C	1.83994200	-2.05803700	3.26713300
Н	2.36588600	-2.18629900	4.22287000
Н	1.07121200	-2.83629700	3.20359000
Н	2.56199000	-2.21146000	2.45766700
С	0.18602700	-0.46559900	4.32021300
Н	0.68175900	-0.53445900	5.29709000
Н	-0.30464300	0.51213700	4.25267100
Н	-0.58953400	-1.23833200	4.28207000
С	2.32743000	0.41333600	3.32212200
Н	1.90851700	1.42584900	3.30957500
Н	2.86641900	0.28430300	4.26945000
Н	3.05057200	0.32983200	2.50374600
S	3.94423100	1.63084900	-2.26523200
С	3.33413200	1.30010700	-3.93842800
Н	4.06474500	0.68655600	-4.47491100
Н	2.36606900	0.79323600	-3.86842700
Н	3.22805400	2.26609200	-4.43748500
С	3.87927000	-0.07374000	-1.65990100
Н	2.86941000	-0.46305300	-1.81473800
Н	4.62855600	-0.67136900	-2.18885500
Н	4.10032800	-0.04963100	-0.59092000
0	2.82345400	2.37304300	-1.55320700
S	-0.24973500	-1.25705800	-2.17371600
C	0.79434800	-2.73022200	-2.12278600
Н	0.18117100	-3.60933800	-1.90429200
Н	1.31162500	-2.83968400	-3.08067500
Н	1.50896700	-2.56241300	-1.31342500
C	-1.27566100	-1.72327200	-3.58547400
Н	-0.64020500	-1.92974500	-4.45132700
Н	-1.87807400	-2.59672200	-3.31839500
Н	-1.93201300	-0.87566100	-3.79265700
0	0.66882000	-0.15040900	-2.69589900
3[TS	2]		
C	-1.83969100	2.38835400	0.35059900
C	-0.10098500	3.14037700	1.67306200
C	-0.88254000	3.16877200	2.80849000
C	-2.24005400	2.70661500	2.70279700
C	-2.68283600	2.26131700	1.47890200
			323

н	0.94442700	3.44942100	1.72576300
н	-0.47518400	3.52646800	3.74909000
н	-2.91167800	2.74873800	3.55674500
н	-3.69409400	1.88440800	1.34511800
Ν	-0.51394200	2.75515000	0.44484700
Cl	-2.15853400	1.16355900	-1.02312800
Na	1.01832400	1.74386700	-1.02632200
Р	0.37396800	-0.17897900	1.63185700
0	1.43152500	-0.21859600	0.53566000
С	-0.82671200	-1.53698100	1.45284000
С	-0.41297600	-2.77923800	0.95687800
С	-2.17022800	-1.33087800	1.77473100
С	-1.33469000	-3.80907200	0.79506900
н	0.63257600	-2.93508100	0.70279900
С	-3.09164700	-2.36339700	1.60981900
Н	-2.49594300	-0.35583100	2.12977700
С	-2.67624700	-3.60011700	1.12054000
Н	-1.00891700	-4.77656700	0.42138700
Н	-4.13698700	-2.19604100	1.85217100
Н	-3.39704400	-4.40271100	0.99074700
С	1.11772500	-0.30602400	3.34123000
С	1.83291400	-1.66186600	3.46269200
Н	2.31084100	-1.72641000	4.44915900
Н	1.13425100	-2.50112100	3.37577700
Н	2.61230100	-1.77275600	2.70058300
С	-0.00022300	-0.18544900	4.38422400
Н	0.44104400	-0.21299900	5.38869200
Н	-0.54594500	0.75818100	4.27492500
Н	-0.71540400	-1.01252100	4.31183400
С	2.12691700	0.83887400	3.49858100
Н	1.62867900	1.81201900	3.45818800
Н	2.62461900	0.74897600	4.47254400
Н	2.89444600	0.80796900	2.71790400
S	4.28213700	1.67615800	-2.04577500
С	3.80857200	1.19406400	-3.72648100
Н	4.56357100	0.51436500	-4.13413100
Н	2.82183100	0.72012500	-3.69302600
Н	3.77595200	2.10782100	-4.32437200
С	4.12544000	0.03905200	-1.28901400
Н	3.11476600	-0.33452800	-1.47364300
н	4.88748500	-0.62649900	-1.70702600
Н	4.27763700	0.16015500	-0.21460000
0	3.12490600	2.50004700	-1.50561700
S	0.07846500	-1.15253300	-2.15314300

С	1.06683500	-2.65600700	-2.34139500
Н	0.43769100	-3.53206900	-2.15784400
Н	1.50391300	-2.68821800	-3.34377800
Н	1.85578200	-2.60642500	-1.58708600
С	-1.05929500	-1.42755300	-3.52854900
Н	-0.49505000	-1.55840800	-4.45632700
Н	-1.67922200	-2.30284900	-3.31267100
Н	-1.69104400	-0.53876600	-3.59207100
0	1.00015100	-0.02384500	-2.61505000
³ [INT-D]			
С	-3.16776200	1.28758700	-0.73922700
С	-1.63194100	2.49063100	0.41445900
С	-2.58394800	2.83998200	1.36223600
С	-3.89290300	2.37009400	1.21566100
С	-4.21864500	1.56805300	0.12410200
Н	-0.59851300	2.81725700	0.46855000
Н	-2.30635000	3.46351000	2.20584200
Н	-4.65157700	2.62414200	1.95176600
Н	-5.21831600	1.17954400	-0.03362000
Ν	-1.94977400	1.69843800	-0.62990800
Cl	-1.04949100	-1.93223400	-1.42163000
Na	0.15123000	0.43992800	-1.29279800
Р	0.63762300	-0.09845100	2.33950000
0	0.78465400	0.51378800	0.96184000
С	-1.09173000	-0.37987000	2.81874100
С	-2.01066700	-0.82875600	1.86175400
С	-1.50072800	-0.15275200	4.13791400
С	-3.33042500	-1.05983600	2.23988000
Н	-1.70257900	-1.02286600	0.83400300
С	-2.82525300	-0.37903900	4.50427300
Н	-0.78873700	0.20725400	4.87768800
С	-3.73897700	-0.83422300	3.55352300
Н	-4.03609400	-1.41787900	1.49608900
Н	-3.14318300	-0.20070000	5.52776000
Н	-4.77188200	-1.01455300	3.83961300
С	1.57987400	-1.70596800	2.49803400
С	0.81478200	-2.80713100	1.74538400
Н	1.42784400	-3.71895100	1.74070200
Н	-0.13443500	-3.04464800	2.23638900
Н	0.59235100	-2.53592500	0.70716400
С	1.71994000	-2.06571100	3.98228200
н	2.25238200	-3.02066100	4.07485700
н	2.28693600	-1.30837200	4.53676000

Н	0.74165300	-2.18711400	4.46186300
С	2.95447400	-1.47700900	1.85538800
Н	3.51848400	-0.68554000	2.36415500
Н	3.53986500	-2.40320200	1.91869600
Н	2.85135700	-1.20057400	0.80121600
S	2.51818400	2.98303500	-1.57930500
С	3.24866900	2.27524000	-3.07881700
Н	4.33044800	2.44260000	-3.07060800
н	3.01019600	1.20654600	-3.10676100
н	2.80107700	2.79442600	-3.92950100
С	3.34148400	1.89112800	-0.39183700
н	3.13862700	0.85256800	-0.67000000
н	4.41420900	2.11109900	-0.39466900
Н	2.91133600	2.09975700	0.58946300
0	1.05415500	2.58004600	-1.60209900
S	2.24728200	-2.15112200	-2.06844900
С	3.96364000	-2.54120900	-2.50875300
Н	4.07131800	-3.62119100	-2.64828600
Н	4.24015300	-2.00308400	-3.42017300
Н	4.59449000	-2.21389800	-1.67872300
С	1.48282000	-2.67313300	-3.61704400
Н	1.92742900	-2.10980800	-4.44275700
Н	1.63391000	-3.74942200	-3.74421500
Н	0.41623700	-2.45933600	-3.50760800
0	2.21160000	-0.62171000	-2.07040000
³ [TS ₃ ]			
C	-0.66540500	-0.07682100	1.00504000
C	0.47660300	1.86947300	0.69761200
C	0.09549800	2.30978600	1.96685600
C	-0.85540200	1.56544200	2.69851600
С	-1.29469300	0.35112900	2.21014500
Н	1.11946800	2.44946300	0.04113800
Н	0.44651600	3.26978100	2.33085000
Н	-1.25657900	1.95855400	3.62945200
Н	-2.00430100	-0.27896300	2.73574000
Ν	-0.01800000	0.73406300	0.19354600
Cl	-0.79698000	-1.98704900	-2.95299800
Na	1.05601100	-0.52881900	-1.76614100
Р	0.86354200	-1.70560500	1.49565700
0	1.71454600	-1.75129900	0.24762800
С	-0.37213700	-3.02960000	1.54480600
С	-0.89720000	-3.39682400	0.29687900
С	-0.89849000	-3.60298400	2.71134100

С	-1.91861000	-4.34042600	0.22184800
н	-0.54010600	-2.94047900	-0.62566600
С	-1.91097400	-4.55368800	2.62685600
н	-0.52043800	-3.33034800	3.69065800
С	-2.42310000	-4.92308500	1.38177500
н	-2.31990000	-4.59782900	-0.75380700
н	-2.30238200	-5.00428500	3.53475200
н	-3.22097600	-5.65821900	1.32135900
С	1.94024100	-1.64320800	3.02742300
С	2.52446200	-3.04278200	3.28687300
Н	3.25763400	-2.98051200	4.10230200
Н	1.75919800	-3.76823700	3.57832700
Н	3.03749800	-3.42756100	2.39906100
С	1.19175400	-1.11513200	4.25932900
н	1.86990900	-1.13320200	5.12213600
н	0.86500800	-0.08182700	4.11110100
н	0.31253800	-1.70950300	4.52283000
С	3.08062000	-0.66965600	2.68466600
н	2.69876700	0.32671200	2.43154500
н	3.74011500	-0.57018400	3.55619300
Н	3.66930600	-1.03542000	1.83928500
S	3.90792900	1.39616600	-2.02107300
С	4.14894100	0.62922200	-3.64250200
Н	5.22215400	0.53615700	-3.83672600
Н	3.65975800	-0.35034100	-3.65453400
Н	3.69810700	1.29847900	-4.37902400
С	4.56242000	0.04602600	-1.00867400
Н	3.98934100	-0.86349800	-1.22055100
Н	5.62557300	-0.08934400	-1.23211800
Н	4.43692200	0.34598800	0.03404500
0	2.40494900	1.40596800	-1.77568700
S	2.19074000	-3.42993800	-2.42252700
С	3.65160000	-4.45669900	-2.10961600
Н	3.36006300	-5.51079400	-2.07093300
Н	4.39589500	-4.28681700	-2.89326600
н	4.05210600	-4.15043800	-1.14034800
С	1.80516300	-4.04334200	-4.07447700
Н	2.67037500	-3.89517300	-4.72735000
н	1.53150000	-5.10107400	-4.01116500
н	0.94460600	-3.45702600	-4.40770900
0	2.77019300	-2.02986500	-2.63549700
[INT-C]*			

[]

Ľ	
-	

-2.01810800 2.10295500 0.03203900 S29

С	-0.53444000	2.99474200	1.52843400
С	-1.39602000	2.76018300	2.56922100
С	-2.61954700	2.07254900	2.35568100
С	-2.95802500	1.82814500	0.98244700
н	0.39621200	3.53566100	1.68224500
н	-1.13194700	3.12099600	3.56126800
н	-3.35595400	1.95324100	3.14167500
н	-3.93984600	1.46893200	0.69217800
N	-0.76504600	2.58351200	0.21527400
Cl	-2.45187500	1.85529500	-1.68604300
Na	0.98263300	1.66287300	-1.01100400
Р	0.07790800	-0.38014200	1.55317400
0	1.08232900	-0.34498800	0.40678400
С	-1.02669200	-1.83033000	1.42630200
С	-0.52698900	-3.08455200	1.05944400
С	-2.39087200	-1.67699700	1.68647200
С	-1.38368900	-4.17794300	0.95665300
н	0.53399600	-3.20480200	0.85736000
С	-3.24734600	-2.77193300	1.57934600
н	-2.77670600	-0.69942100	1.96165500
С	-2.74548300	-4.01998300	1.21544700
н	-0.98991700	-5.15238600	0.68022900
н	-4.30799100	-2.64780900	1.77662900
н	-3.41461700	-4.87228700	1.13566300
С	0.91075800	-0.44778500	3.21957300
С	1.74622500	-1.73358000	3.32448200
Н	2.28195700	-1.73381700	4.28258200
н	1.11965000	-2.63149100	3.29533400
Н	2.48887000	-1.79580200	2.52128200
С	-0.16668500	-0.41434100	4.31088700
Н	0.31671100	-0.39659400	5.29573600
Н	-0.79990600	0.47352700	4.22168900
н	-0.81060900	-1.30042800	4.27197000
С	1.82600900	0.78035000	3.32305200
Н	1.25147500	1.70852800	3.26691400
н	2.35407500	0.75697600	4.28464700
Н	2.57447100	0.79023800	2.52344200
S	4.14194100	1.21596800	-2.19671600
С	3.52419600	0.95236900	-3.87894800
н	4.14627100	0.20336700	-4.37906600
н	2.47903500	0.62965400	-3.82689700
н	3.60616500	1.90722600	-4.40325600
С	3.76059600	-0.43379100	-1.55591000
н	2.69983700	-0.63627900	-1.72651700

Н	4.39793100	-1.17094800	-2.05457500
н	3.96513200	-0.42146900	-0.48340900
0	3.15416200	2.16119900	-1.53204900
S	-0.47223700	-0.94476300	-2.23419000
С	0.31990200	-2.56858500	-2.24811200
Н	-0.42130700	-3.34231700	-2.02851000
Н	0.79261600	-2.73501500	-3.22071900
Н	1.07183900	-2.54680100	-1.45725600
С	-1.53833900	-1.18144700	-3.67254200
Н	-0.92891000	-1.44689000	-4.54094700
Н	-2.27350500	-1.96094800	-3.45138100
Н	-2.05010400	-0.23308400	-3.84543200
0	0.61919700	0.01966000	-2.69766400

³[4]

С	-3.75707800	-0.65556400	-0.01282400
С	-3.40624600	0.14130700	1.06496700
С	-3.39961300	1.53700200	0.89392800
С	-3.95398100	2.08904000	-0.31667600
С	-4.24961800	1.25745100	-1.35326400
Ν	-3.70479700	-0.01903500	-1.24966100
Н	-3.19529700	2.18753800	1.73699000
н	-3.28076800	-0.32039700	2.04024200
Н	-4.18516900	3.14731500	-0.38796400
Н	-4.71047000	1.55510700	-2.28869200
Р	-4.28599000	-2.37541300	0.22476400
0	-4.29510700	-2.74268700	1.67911700
С	-3.14247300	-3.41433600	-0.74019100
С	-2.84201600	-4.67691100	-0.21769300
С	-2.58304600	-3.01845100	-1.95959300
С	-2.00543000	-5.54237100	-0.91877500
Н	-3.25613800	-4.96596600	0.74436600
С	-1.74687500	-3.88646900	-2.65761400
Н	-2.78384000	-2.02772900	-2.35902500
С	-1.46097800	-5.14941700	-2.14029000
Н	-1.77408800	-6.52088400	-0.50772800
Н	-1.31128600	-3.57245400	-3.60189900
Н	-0.80595600	-5.82337300	-2.68545700
С	-5.95773300	-2.51460300	-0.57043700
С	-6.45574600	-3.94679600	-0.31475900
Н	-7.47093400	-4.05450200	-0.71703200
Н	-5.81979200	-4.69024000	-0.80940100
Н	-6.48302600	-4.17222200	0.75588000
С	-5.91848500	-2.23912400	-2.07901900

Н	-6.93822300	-2.29798300	-2.48026200
Н	-5.53408200	-1.23814100	-2.31042300
Н	-5.30560400	-2.97199900	-2.61369800
С	-6.87980100	-1.50415500	0.13148500
Н	-6.56876800	-0.47030300	-0.06116100
Н	-7.90378900	-1.62383900	-0.24415500
Н	-6.89057600	-1.66164600	1.21481700
4			
С	-3.98941500	-0.58728300	-0.01814200
С	-3.71660800	0.14431200	1.13747100
С	-3.40315900	1.49459100	1.00654900
С	-3.37705200	2.05530200	-0.26598500
С	-3.66631500	1.23911900	-1.35855000
Ν	-3.96876800	-0.05558300	-1.24844700
н	-3.18352000	2.09737000	1.88309000
Н	-3.75426800	-0.35285300	2.10168400
Н	-3.13799800	3.10331500	-0.41688700
н	-3.65611500	1.64155400	-2.36899200
Р	-4.41923600	-2.36348700	0.18490500
0	-4.39133600	-2.74118400	1.63997300
С	-3.21181500	-3.31345200	-0.79294300
С	-2.70221500	-4.47178200	-0.19716900
С	-2.79629900	-2.95532100	-2.08108100
С	-1.79409000	-5.27205400	-0.88764100
Н	-3.01425800	-4.72893700	0.81143600
С	-1.88579900	-3.75638000	-2.76545900
Н	-3.17494800	-2.04666400	-2.53929700
С	-1.38740000	-4.91617900	-2.17208500
Н	-1.40099200	-6.17013800	-0.41964000
Н	-1.56292300	-3.47307600	-3.76335900
н	-0.67768200	-5.53898900	-2.70978400
С	-6.09630700	-2.61491000	-0.57290100
С	-6.51241600	-4.05318500	-0.21911700
Н	-7.52068100	-4.24139100	-0.60920400
Н	-5.83713700	-4.78992600	-0.67043400
Н	-6.52222900	-4.21264700	0.86320700
С	-6.11770900	-2.42765700	-2.09563700
Н	-7.14948700	-2.54769200	-2.45065500
Н	-5.76568800	-1.43504400	-2.39158200
Н	-5.50350100	-3.17892100	-2.60307300
С	-7.05229400	-1.61419300	0.09788900
Н	-6.81813700	-0.58140700	-0.18477000
н	-8.08012200	-1.82341400	-0.22409700

## 5. References

- (a) F. A. Kortmann, M.-C. Chang, E. Otten, E. P. A. Couzijn, M. Lutzc and A. J. Minnaard, *Chem. Sci.*, 2014, 5, 1322; (b) G. Tran, D. G. Pardo, T. Tsuchiya, S. Hillebrand, J.-P. Vors and J. Cossy, *Org. Lett.*, 2013, 15, 21, 5550; (c) Y. Niu, P.-B. Bai, Q.-X. Lou and S.-D. Yang, *ChemCatChem*, 2020, 12, 3644. (d) B. Varga, P. Szemesi, P. Nagy, R. Herbay, T. Holczbauer, E. Fogassy, G. Keglevich and P. Bagi, *J. Org. Chem.*, 2021, 86, 14493.
- 2 G. M. Sheldrick, SHELXS-90/96, Program for Structure Solution, Acta Crystallogr. Sect A, 1990, 46, 467.
- 3 G. M. Sheldrick, SHELXL 97, Program for Crystal structure Refinement, University of Goettingen: Geottingen, Germany, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (a) S.-Y. Song, Y. Li, Z. Ke, S. Xu, Iridium-Catalyzed Enantioselective C–H Borylation of Diarylphosphinates. *ACS Catal.* 2021, 11, 13445–13451. (b) A. Maiti, F. Zhang, I. Krummenacher, M. Bhattacharyya, S. Mehta, M. Moos, C. Lambert, B. Engels, A. Mondal, H. Braunschweig, P. Ravat, A. Jana, Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a p-Phenylene Bridge. *J. Am. Chem. Soc.* 2021, 143, 3687.
- 6 P. C. Hariharan, J. A. Pople, The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theoret. Chim. Acta.* **1973**, 28, 213.
- 7 K. Fukui, The Path of Chemical Reactions the IRC Approach. Acc. Chem. Res. 1981, 14, 363.
- A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113, 6378.
- 9 A. Bondi, van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441.

- 10 C. Y. Legault, CYLview, 1.0b; Universitéde Sherbrooke: Quebec, Canada, 2009 (http://www.cylview.org).
- 11 (a) F. Neese, The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73. (b) F. Neese, Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 8, e1327.

6. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra for all products.



Figure S3. ¹H NMR spectrum of 4 in CDCl₃



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

Figure S5. ³¹P NMR spectrum of 4 in CDCl₃



Figure S7. ¹³C NMR spectrum of 5 in CDCl₃


Figure S9. ¹H NMR spectrum of 6 in CDCl₃







Figure S11.  $^{\rm 31}P$  NMR spectrum of 6 in CDCl_3



Figure S12. ¹H NMR spectrum of 7 in  $CDCI_3$ 



Figure S13. ¹³C NMR spectrum of 7 in CDCl₃



Figure S15. ¹H NMR spectrum of 8 in CDCl₃









Figure S17. ³¹P NMR spectrum of 8 in CDCl₃



Figure S19. ¹³C NMR spectrum of 9 in CDCl₃



Figure S20.  $^{\rm 31}P$  NMR spectrum of 9 in CDCl3



Figure S21. ¹H NMR spectrum of **12** in CDCl₃









Figure S23. ³¹P NMR spectrum of 12 in CDCl₃







Figure S25. ¹³C NMR spectrum of 13 in CDCl₃



Figure S27.  $^{19}\mathsf{F}$  NMR spectrum of 13 in  $\mathsf{CDCI}_3$ 



Figure S28. ¹H NMR spectrum of 14 in CDCl₃



Figure S29. ¹³C NMR spectrum of **14** in CDCl₃



Figure S30. ³¹P NMR spectrum of 14 in CDCl₃







Figure S32.  $^{\rm 13}C$  NMR spectrum of 15 in CDCl_3



Figure S33. ³¹P NMR spectrum of 15 in CDCl₃



Figure S34. ¹⁹F NMR spectrum of **15** in CDCl₃



Figure S35.  $^1\!\text{H}$  NMR spectrum of 16 in  $\text{CDCl}_3$ 



Figure S36.  $^{\rm 13}C$  NMR spectrum of 16 in  ${\rm CDCI}_{\rm 3}$ 

-37.27





Figure S37. ³¹P NMR spectrum of **16** in CDCl₃









Figure S41. ¹H NMR spectrum of 18 in CDCl₃





Figure S43. ³¹P NMR spectrum of 18 in CDCl₃



















130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

Figure S49. ³¹P NMR spectrum of 20 in CDCl₃



Figure S50. ¹H NMR spectrum of 21 in CDCl₃



Figure S51. ¹³C NMR spectrum of 21 in CDCl₃



Figure S52.  $^{\rm 31}P$  NMR spectrum of 21 in CDCl_3



Figure S53. ¹H NMR spectrum of 22 in CDCl₃









Figure S55.  $^{\rm 31}P$  NMR spectrum of 22 in CDCl_3





Figure S57. ¹³C NMR spectrum of 23 in CDCl₃



Figure S58.  $^{\rm 31}P$  NMR spectrum of 23 in CDCl_3



Figure S59.  $^1\text{H}$  NMR spectrum of 24 in CDCl_3

*t*Bu



Figure S60.  $^{\rm 13}C$  NMR spectrum of 24 in CDCl_3



Figure S61. ³¹P NMR spectrum of 24 in CDCl₃



Figure S62.  $^1\!H$  NMR spectrum of 25 in CDCl_3



Figure S63. ¹³C NMR spectrum of 25 in CDCl₃











Figure S66.  $^{\rm 13}{\rm C}$  NMR spectrum of 26 in  ${\rm CDCI}_{\rm 3}$ 



Figure S67. ³¹P NMR spectrum of 26 in CDCl₃



Figure S68.  $^1\text{H}$  NMR spectrum of 27 in CDCl_3



Figure S69. ¹³C NMR spectrum of 27 in CDCl₃











Figure S72. ¹³C NMR spectrum of 28 in CDCl₃



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

Figure S73. ³¹P NMR spectrum of 28 in CDCl₃



Figure S74. ¹H NMR spectrum of 29 in CDCl₃



Figure S75. ¹³C NMR spectrum of 29 in CDCl₃



Figure S76.  $^{\rm 31}P$  NMR spectrum of 29 in CDCl_3



Figure S77. ¹H NMR spectrum of (*R*)-30 in CDCl₃









130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

Figure S79. ³¹P NMR spectrum of 30 in CDCl₃












Figure S83. ¹H NMR spectrum of 32 in CDCl₃



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

Figure S85. ³¹P NMR spectrum of 32 in CDCl₃



Figure S87. ¹³C NMR spectrum of 33 in CDCl₃







Figure S89. ¹H NMR spectrum of 34 in CDCl₃



Figure S90.  $^{\rm 13}C$  NMR spectrum of 34 in  $\rm CDCI_3$ 



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

Figure S91.  $^{31}\text{P}$  NMR spectrum of 34 in CDCl_3





















0.02010.02010.02

Figure S97. ³¹P NMR spectrum of **39** in CDCl₃









Figure S100. ³¹P NMR spectrum of 40 in CDCl₃



Figure S101. ¹H NMR spectrum of 41 in CDCl₃

### -138.52 -157.37 -157.37 -157.57 -157.57 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -131.54 -13



Figure S102.  $^{\rm 13}C$  NMR spectrum of 41 in CDCl_3



Figure S103. ³¹P NMR spectrum of 41 in CDCl₃

# 7. HPLC spectra for all products.

Chiral HPLC chromatographic analysis of **4** 

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =12.392 min, t (major) = 13.512 min, ee = 98%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =5.965 min, t (minor) = 6.979 min, ee = 97%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =11.099 min, t (minor) = 22.752 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =42.386 min, t (major) = 45.219 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =4.832 min, t (minor) = 5.279 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =5.652 min, t (minor) = 6.192 min, ee = 99%.



Chiral HPLC chromatographic analysis of  ${\bf 12}$ 

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =9.312 min, t (major) = 19.099 min, ee = 98%.



## Chiral HPLC chromatographic analysis of ${\bf 13}$

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =7.739 min, t (minor) = 8.505 min, ee = 99%.



## Chiral HPLC chromatographic analysis of ${\bf 14}$

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =5.925 min, t (minor) = 6.412 min, ee = 99%.



## Chiral HPLC chromatographic analysis of ${\bf 15}$

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =7.925 min, t (minor) = 22.659 min, ee = 97%.



## Chiral HPLC chromatographic analysis of ${\bf 16}$

Condition: Daicel Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =11.859 min, t (major) = 13.179 min, ee = 98%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =17.125 min, t (major) = 17.919 min, ee = 99%.



## Chiral HPLC chromatographic analysis of ${\bf 18}$

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =5.639 min, t (minor) = 7.379 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 80/20, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =6.879 min, t (minor) = 22.645 min, ee = 98%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =5.285 min, t (minor) = 9.705 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =8.792 min, t (major) = 10.739 min, ee = 98%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 95/05, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =26.065 min, t (major) = 28.952 min, ee = 97%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =9.185 min, t (major) = 16.112 min, ee = 97%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =7.519 min, t (minor) = 8.092 min, ee = 97%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =11.279 min, t (minor) = 13.519 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 98/02, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =38.425 min, t (major) = 42.452 min, ee = 97%.





Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =13.772 min, t (minor) = 21.719 min, ee = 98%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =11.839 min, t (major) = 12.679 min, ee = 98%.


Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =12.525 min, t (minor) = 22.972 min, ee = 99%.



Chiral HPLC chromatographic analysis of  ${\bf 30}$ 

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =7.879 min, t (minor) = 11.565 min, ee = 99%.



Chiral HPLC chromatographic analysis of  ${\bf 31}$ 

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 80/20, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =6.365 min, t (minor) = 6.739 min, ee = 99%.



Chiral HPLC chromatographic analysis of  ${\bf 32}$ 

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =9.899 min, t (major) = 11.185 min, ee = 99%.



S112

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =13.272 min, t (major) = 14.252 min, ee = 98%.



Chiral HPLC chromatographic analysis of  ${\bf 34}$ 

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =13.172 min, t (major) = 25.485 min, ee = 97%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =9.919 min, t (major) = 11.079 min, ee = 99%.



Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =12.399 min, t (minor) = 13.739 min, ee = 98%.





Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =13.992 min, t (minor) = 17.232 min, ee = 97%.



## Chiral HPLC chromatographic analysis of ${\bf 41}$

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) =15.545 min, t (minor) = 18.132 min, ee = 99%.



Chiral HPLC chromatographic analysis of cyclohexyl(phenyl)phosphine oxide:

Condition: Daicel Chiralcel AD-H, *n*-hexane/*i*-PrOH = 85/15, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) =9.605 min, t (major) = 10.992 min, ee = 98%.



S119