Enantioselective crossed intramolecular [2+2]

photocycloaddition reactions mediated by a chiral

chelating Lewis acid

Thomas Rigotti, ${ }^{a}$ Daniel P. Schwinger, ${ }^{a}$ Raphaela Graßl, ${ }^{a}$ Christian Jandl, ${ }^{a}$ and
Thorsten Bach*a
${ }^{a}$ Department Chemie and Catalysis Research Center (CRC), Technische Universität
München, Lichtenbergstr. 4, 85747 Garching, Germany

Corresponding Author
*email: thorsten.bach@ch.tum.de

Table of contents:

1. General Information S3
2. Setup for the Photochemical Reactions S4
3. Emission and Characteristics of the 437, 424, 382 and 368 nm LEDs S4
4. Experimental Procedures and Characterisation S9
5. Characterisation Data for the Enones (4d-f and 4h-l) and their Precursors S9
6. General Procedure for the Enantioselective [2+2] Photocycloaddition S27
7. Characterisation Data for the Enantioenriched Cyclobutanes (5) S27
8. Characterisation Data for the Hydrazone (7) S35
9. Characterisation Data for the Derivatized Cyclobutanes (10-15) S36
10. NMR Spectra S41
11. GC and HPLC Traces S77
12. Absolute Configuration Determination by X-Ray Analysis S88
13. Determination of Quantum Yield S91
14. References S93

1. General Information

All reactions sensitive to air or moisture were carried out in flame-dried glassware under argon pressure using standard Schlenk techniques. Dry tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were obtained from an MBraun MB-SPS 800 solvent purification system. Dry 1,2-dichloroethane (DCE) is commercially available (Merck or Acros Organics) and was employed without further purification. Technical solvents (pentane, diethyl ether, dichloromethane, methanol, hexanes, ethyl acetate, cyclohexane) were distilled prior employing them in column chromatography.

Flash column chromatography was performed on silica gel 60 (Merck, 230-400 mesh), on sfär silica D (Biotage ${ }^{\circledR}, 60 \mu \mathrm{~m}$) or on basic alumina (Merck, aluminium oxide 90 active basic, 70-230 mesh) with the indicated eluent mixtures. Thin layer chromatography (TLC) was performed on silica coated glass plates (silica 60 F254) with detection by UVlight ($\lambda=254 \mathrm{~nm}$) and employing potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ or cerium ammonium molybdate (CAM) stain developer solutions followed by heat treatment.

Nuclear Magnetic Resonance (NMR) spectra were recorded at room temperature either on a Bruker AVHD-300, AVHD-400, AVHD-500 or an AV-500 cryo. NMR spectra were calibrated to the respective residual solvent signals of $\mathrm{CDCl}_{3}\left[\delta\left({ }^{1} \mathrm{H}\right)=7.26 \mathrm{ppm}, \delta\left({ }^{13} \mathrm{C}\right)\right.$ $=77.16 \mathrm{ppm}], \mathrm{CD}_{2} \mathrm{Cl}_{2}\left[\delta\left({ }^{1} \mathrm{H}\right)=5.32 \mathrm{ppm}, \delta\left({ }^{13} \mathrm{C}\right)=53.84 \mathrm{ppm}\right]$ or DMSO-D ${ }_{6}\left[\delta\left({ }^{1} \mathrm{H}\right)=\right.$ $2.50 \mathrm{ppm}]$. Coupling constants are given in Hz . The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; br, broad signal. Apparent multiplets which occur as a result of coupling constant equality between magnetically non-equivalent protons are marked as virtual (virt.).

Mass Spectroscopy (MS) and High-Resolution Mass Spectroscopy (HRMS) was performed on a Thermo Scientific LTQ-FT Ultra (ESI) or a Thermo Scientific DFSHRMS spectrometer (EI).

UV/Vis Spectroscopy was performed on a Perkin Elmer Lambda 35 UV/Vis spectrometer. Spectra were recorded using a Hellma precision cell made of quartz SUPRASIL® with a pathway of 1.0 mm .

Infrared spectra (IR) were recorded on a JASCO IR-4100 or a Perkin Elmer Frontier IRFTR spectrometer by ATR technique.

Chiral Gas Chromatography (GC) was performed on an Agilent 7890 B gas chromatograph using an Agilent CycloSil-B column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, SN :

USF620714H) or a Macherey-Nagel Lipodex E column ($25 \mathrm{~m} x 0.25 \mathrm{~mm}$, SN: 2339392) with a flame ionization detector. The temperature method is given for the corresponding compounds.

High Performance Liquid Chromatography (HPLC) analyses were performed using a chiral stationary phase [Chiralcel OJ-RH ($150 \times 4.6 \mathrm{~mm}$), Chiralpak OD-RH (150×4.6 mm) or Chiralpak AS-H ($250 \times 4.6 \mathrm{~mm}$), Daicel Chemical Industries] with UVD 340 Photodiode Array Detector, P580 Pump and an ASI-100 Automated Sample Injector at $20^{\circ} \mathrm{C}$, while a mixture of n-heptane/isopropanol (normal phase) or water/acetonitrile (reverse phase) was used as mobile phase. The exact conditions for the analyses are specified in each case.

Specific Rotation was determined using a Bellingham+Stanley ADP440+ polarimeter and is reported as follows: $[\alpha]^{T} \mathrm{D}$ (c in g per 100 mL of solvent).

Melting points were determined using a Kofler ("Thermopan", Fs Reichert, Wien) apparatus.

2. Setup for the Photochemical Reactions

Photochemical experiments using a LED $(\lambda=437 \mathrm{~nm})$ operated at a constant current $(700 \mathrm{~mA})$ were carried out in a Schlenk tube (diameter $=1.0 \mathrm{~cm}$) with a polished quartz rod as an optical fibre, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irradiation conditions. ${ }^{1}$

Figure S1: Photoreactor setup.

3. Emission and Characteristics of the 437, 424, 382 and 368 nm LEDs

The characteristics of the specific LED employed for the photochemical reactions can be found in the following datasheet:

Datasheet LED036

Basic Information

Type
Description
Manufacturer / Supplier
Order number / Date of purch.
Internal lot / serial number
Specification Manufacturer

Type / size
Mechanical specification
Electrical specification
Wavelength (range, typ.)
Spectral width (FWHM)
Datasheet
High-Power-LED
Avonec 440-450 nm / 10 W
n/a / Avonec
n/a / 01/2016
2016-01 / LED036

10 emitter / ca. $1 \times 1 \mathrm{~mm}$
module, dye-area ca. $7.5 \times 4 \mathrm{~mm}$
700 mA, UF 16 V
440-450 nm, typ. n/a
n / a
n/a

Characterization
Description of measurement

Measured wavelength
Measured spectral width
Integral Reference intensity

Measured with Ocean-optics USB4000 spectrometer using a calibrated setup (cosine corrector/fibre).

The distance between the emitting surface and the surface of
the cosine corrector was 20 mm . The LED was operated at
700 mA on a passive heat-sink at approx. $20^{\circ} \mathrm{C}$
437 nm
18 nm
$353000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ (380-530 nm @ 20 mm distance, 4 mm cosine corr.)

Spectrum

Datasheet LED068

Basic Information

Type	High-Power-LED
Description	Luxeon Z 420 nm on a Saber Z5 Base-Plate
Manufacturer / Supplier	Philips Lumileds / Luxeonstar
Order number / Date of purch.	n/a / 03/2018
Internal lot / serial number	2018-03 / LED065

Specification Manufacturer

Type / size
Mechanical specification
Electrical specification
Wavelength (range, typ.)
Spectral width (FWHM)
Datasheet
4 emitters / ca. 1×1 mm

700 mA, UF 12.2 V
420-425 nm, typ. n/a
n/a
LuxeonZUV.pdf
Characterization

Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a
	calibrated setup (cosine corrector/fibre).
	The distance between the emitting surface and the surface of
	the cosine corrector was 20 mm . The LED was operated at
	700 mA on a passive heat-sink at approx. $20^{\circ} \mathrm{C}$
Measured dominant wavelength / Int.	424 nm ($13558 \mu \mathrm{~W} / \mathrm{mm}^{2} \mathrm{~nm}$
Measured spectral width (FWHM)	14 nm
Integral Reference intensity / range	236390 WW/cm ${ }^{2} \quad 350-500 \mathrm{~nm}$

Spectrum

Datasheet LED033

Basic Information

Type	High-Power-LED
Description	Avonec 370-380 nm / 3 W
Manufacturer / Supplier	$\underline{n / a ~ / ~ A v o n e c ~}$
Order number / Date of purch.	$\underline{n / a ~ / ~ 07 / 2016 ~}$
Internal lot / serial number	$\underline{2016-07 / L E D 033}$

Specification Manufacturer

Type / size
 Mechanical specification
 Electrical specification
 Wavelength (range, typ.)
 Spectral width (FWHM)
 Datasheet
 Characterization
 Description of measurement

single emitter / ca. $1 \times 1 \mathrm{~mm}$

700 mA , UF 3.8 V
380-390 nm, typ. n/a
n/a
n / a

Measured wavelength
Measured spectral width
Integral Reference intensity

Measured with Ocean-optics USB4000 spectrometer using a calibrated setup (cosine corrector/fibre).

The distance between the emitting surface and the surface of
the cosine corrector was 20 mm . The LED was operated at
700 mA on a passive heat-sink at approx. $20^{\circ} \mathrm{C}$
382 nm
13 nm
$11360 \mu \mathrm{~W} / \mathrm{cm}^{2}$ (350-425 nm @ 20 mm distance, 4 mmcosine corr.)

Spectrum

Datasheet LED040

Basic Information	Ultra-High-Power UV-A-LED
Type	High-Power-LED
Description	
Manufacturer / Supplier	Mouser
Order number / Date of purch.	LZ4-44UV00-0000 / 06/2016
Internal lot / serial number	2016-01 / LED040

Specification Manufacturer

Type / size
Mechanical specification

Electrical specification
Wavelength (range, typ.)
Spectral width (FWHM)
Datasheet
Characterization
Description of measurement
Measured with Ocean-optics USB4000 spectrometer using a calibrated setup (cosine corrector/fibre).

The distance between the emitting surface and the surface of the cosine corrector was 20 mm . The LED was operated at

500 mA on a passive heat-sink at approx. $20^{\circ} \mathrm{C}$
368 nm
12 nm
$18605 \mu \mathrm{~W} / \mathrm{cm}^{2}$ (350-425 nm @ 20 mm distance, 4 mmcosine corr.)

Spectrum

4. Experimental Procedures and Characterisation

Enones $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 c}, \mathbf{4 g}$ and $\mathbf{4 m}$ were obtained following our previously reported procedures. ${ }^{2}$ The enantiopure Λ-catalyst $\mathbf{6}$ employed in the photoreactions was obtained following the procedure reported by Meggers and coworkers. ${ }^{3}$ In all the cases the analytical data of the synthetized compounds and catalyst were in accordance with the data reported in the literature. ${ }^{2,3}$

5. Characterisation Data for the Enones (4d-f and $4 \mathrm{~h}-\mathrm{l}$) and their Precursors

(Z)-4-(Benzyloxy)but-2-en-1-ol (S1)

A stirred suspension of $\mathrm{NaH}(880 \mathrm{mg}, 22.0 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (60 mL) was cooled to $0^{\circ} \mathrm{C}$. Then, cis-2-buten-1,4-diol $(5.29 \mathrm{~g}, 60.0 \mathrm{mmol})$ was dropwise added and the resulting mixture stirred for 30 min at $0^{\circ} \mathrm{C}$, followed by the addition of benzyl bromide ($3.42 \mathrm{~g}, 20.0 \mathrm{mmol}$). The reaction mixture was let warm to rt and stirred for further 14 hours. Then, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with EtOAc. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 20 to 33\% EtOAc in hexanes) to obtain 3.27 g of product $\mathbf{S} \mathbf{1}$ as a yellowish oil (92% yield).
$\mathbf{R}_{f}=0.29$ (33\% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{4}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.80(\mathrm{~m}$, $1 \mathrm{H}), 5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H})$.

(Z)-\{[(4-Bromobut-2-en-1-yl)oxy]methyl\}benzene (S2)

$\mathrm{PBr}_{3}(0.63 \mathrm{~mL}, 6.6 \mathrm{mmol})$ was dropwise added to a stirred solution of $\mathbf{S} \mathbf{1}(2.95 \mathrm{~g}, 16.5 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(33 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was let warm to rt and stirred for 12 hours, before being quenched by the addition of a saturated solution of NaHCO_{3}. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($2 \% \mathrm{EtOAc}$ in hexanes) to obtain 3.78 g of product $\mathbf{S} \mathbf{2}$ as a yellowish oil (95% yield).
$\mathbf{R}_{f}=0.12$ (2\% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{4}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.71(\mathrm{~m}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{dd}, J=6.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$.

(Z)-2-\{[4-(Benzyloxy)but-2-en-1-yl]oxy\}cyclohex-2-en-1-one (4d)

S2 $(1.45 \mathrm{~g}, 6.00 \mathrm{mmol})$ was dropwise added to a stirred suspension of 1,2-cyclohexanedione ($561 \mathrm{mg}, 5.00 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(830 \mathrm{mg}, 6.00 \mathrm{mmol})$ in dry DMF (20 mL). The reaction mixture was stirred at rt until full conversion was achieved, as judged by TLC analysis (36 hours). Then the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and brine was added. After separation of the organic phase, the latter was washed three times with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($20 \% \mathrm{EtOAc}$ in hexanes) to obtain 300 mg of product $\mathbf{4 d}$ as a pale-yellow oil (22% yield).
$\mathbf{R}_{f}=0.16$ ($20 \% \mathrm{EtOAc}$ in hexanes) .
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2928,1726,1454,1275,1099,1073,749,700$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.84(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.77$ $(\mathrm{m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (td, $J=6.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.5,150.3,138.1,129.6,128.6$ (2C), 128.3, 128.0 (2C), 127.9, 118.5, 72.5, 66.0, 63.9, 39.0, 24.6, 23.0.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=295.1305$; found $=295.1304$.

(Z)-4-methoxybut-2-en-1-ol (S3)

A stirred suspension of $\mathrm{NaH}(1.00 \mathrm{~g}, 25.0 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (20 mL) was cooled to $0^{\circ} \mathrm{C}$. Then, cis-2-buten-1,4-diol $(6.61 \mathrm{~g}, 75.0 \mathrm{mmol})$ was dropwise added and the resulting mixture stirred for 30 min at $0^{\circ} \mathrm{C}$, followed by the addition of 1.56 mL of methyl iodide (25.0 mmol). The reaction mixture was let warm to rt and stirred for further 16 hours. Then, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with EtOAc. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 50% to 66% of EtOAc in n pentane) to obtain 1.12 g of product $\mathbf{S 3}$ as a colourless oil (44% yield).
$\mathbf{R}_{f}=0.29$ (50\% EtOAc in n-pentane).
The NMR data were in accordance with the data reported in the literature. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.87-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$.

(Z)-1-Bromo-4-methoxybut-2-ene (S4)

$\mathrm{PBr}_{3}(0.42 \mathrm{~mL}, 4.4 \mathrm{mmol})$ was dropwise added to a stirred solution of $\mathbf{S 3}(1.12 \mathrm{~g}, 11.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was let warm to rt and stirred for 16 hours, before being quenched by the addition of a saturated solution of NaHCO_{3}. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in n pentane) to obtain 1.11 g of product $\mathbf{S 4}$ as a colourless oil (61% yield).
$\mathbf{R}_{f}=0.28$ (3\% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.96-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=$ $6.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01$ (dd, $J=8.3,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$.

(Z)-2-[(4-methoxybut-2-en-1-yl)oxy]cyclohex-2-en-1-one (4e)

 S4 ($990 \mathrm{mg}, 6.00 \mathrm{mmol}$) was dropwise added to a stirred suspension of 1,2 -cyclohexanedione ($561 \mathrm{mg}, 5.00 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(830 \mathrm{mg}, 6.00 \mathrm{mmol})$ in dry DMF (20 mL). The reaction mixture was stirred at rt until full conversion was achieved, as judged by TLC analysis (40 hours). Then the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and brine was added. After separation of the organic phase, the latter was washed three times with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to obtain 231 mg of product $4 \mathbf{e}$ as a colourless oil (24% yield).
$\mathbf{R}_{f}=0.24$ (33% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2929,1733,1267,1101,737,702$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.90(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.69(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J$ $=5.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=5.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (td, $J=6.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 194.3,150.3,129.6,127.9,118.6,68.4,63.8,58.2,38.9$, 24.5, 22.9.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=219.0992$; found $=219.0993$.
(Z)-1-Bromo-4-\{[(4-bromobut-2-en-1-yl)oxy]methyl\}benzene (S5)

A stirred suspension of $\mathrm{NaH}(880 \mathrm{mg}, 22.0 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (60 mL) was cooled to $0^{\circ} \mathrm{C}$.
Then, cis-2-buten-1,4-diol ($5.29 \mathrm{~g}, 60.0 \mathrm{mmol}$) was dropwise added and the resulting mixture stirred for 30 min at $0^{\circ} \mathrm{C}$, followed by the addition of 4-bromobenzyl bromide ($5.00 \mathrm{~g}, 20.0 \mathrm{mmol}$). The reaction mixture was let warm to rt and stirred for further 24 hours. Then, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with EtOAc. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dissolved in 40 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $0{ }^{\circ} \mathrm{C}$, followed by dropwise addition of PBr_{3} $(8.00 \mathrm{mmol})$. The reaction mixture was let warm to rt and stirred for further 24 hours. Thus, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (2% EtOAc in hexanes) to obtain 4.90 g of product $\mathbf{S 5}$ as a colourless oil (77% yield).
$\mathbf{R}_{f}=0.24$ (2% EtOAc in hexanes) .
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2877,1496,1455,1099$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{dtt}, J=$ $11.0,8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dtt}, J=11.0,6.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=6.3$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.9,131.2$ (2C), 130.7, 129.0 (2C), 128.2, 121.2, 71.2, 64.9, 26.5.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NaO}^{+},[\mathrm{M}+\mathrm{Na}]^{+}=340.9147$; found $=340.9151$.

(Z)-2-\{[4-(Benzyloxy)but-2-en-1-yl]oxy\}cyclohex-2-en-1-one (4f)

$\mathbf{S 5}(1.92 \mathrm{~g}, 6.00 \mathrm{mmol})$ was dropwise added to a stirred suspension of 1,2-cyclohexanedione ($561 \mathrm{mg}, 5.00 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(830 \mathrm{mg}, 6.00 \mathrm{mmol})$ in dry DMF (20 mL). The reaction mixture was stirred at rt until full conversion was achieved, as judged by TLC
analysis (36 hours). Then the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and brine was added. After separation of the organic phase, the latter was washed three times with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 33% to $50 \% \mathrm{EtOAc}$ in hexanes) to obtain 106 mg of product $\mathbf{4 f}$ as a colourless oil (6% yield).
$\mathbf{R}_{f}=0.10$ (33% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2930,1734,1488,1262,1070,1011,804$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.44$ (m, 2H), $7.23-7.18$ (m, 2H), $5.85-5.75$ (m, $3 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (td, $J=6.1,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.2,150.2,137.1,131.5$ (2C), 129.4 (2C), 129.3, 128.1, $121.5,118.5,71.5,65.9,63.7,38.8,24.5,22.9$.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=373.0410$; found $=373.0411$.

Ethyl 2-cyclobutylideneacetate (S6)

A stirred suspension of $\mathrm{NaH}(1.82 \mathrm{~g}, 45.4 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (30 mL) was cooled to $0^{\circ} \mathrm{C}$. Then 9.0 mL of triethyl phosphonoacetate (45 mmol) were dropwise added and the resulting mixture stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. Subsequently a THF solution $(5 \mathrm{~mL})$ of cyclobutanone (2.65 g , 37.8 mmol) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was let warm to rt and stirred for further 18 hours. Water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 0 to 6% EtOAc in hexanes) to obtain 2.61 g of product S6 as a colourless oil (49% yield).
$\mathbf{R}_{f}=0.31$ (4% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{6}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.58$ (virt. p, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.19-3.07$ (m, 2H), $2.89-2.78$ (m, 2H), 2.09 (virt. p, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.26 (t, $J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$.

Spiro[3.5]nonane-6,8-dione (S7)

Diethyl 1,3 -acetonedicarboxylate $(4.51 \mathrm{~g}, 22.3 \mathrm{mmol})$ was dropwise added to a suspension of $\mathrm{NaH}(1.79 \mathrm{~g}, 44.7 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF $(18 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 20 min the $\alpha, \beta-$ unsaturated ester $\mathbf{S 6}(2.61 \mathrm{~g}, 18.6 \mathrm{mmol})$ was dropwise added. The reaction mixture was stirred for 30 min at rt , then stirred at reflux for 20 min . Subsequently, a suspension of sodium ethoxide ($3.81 \mathrm{~g}, 56.0 \mathrm{mmol}$) in 24 mL of ethanol was added and the corresponding reaction mixture was stirred at reflux for 5 hours. Then a solution of KOH ($20.9 \mathrm{~g}, 373 \mathrm{mmol}$) in 83 mL of water was added and stirred at reflux for further 4 hours. After cooling to rt the organic solvents were removed at reduced pressure and the aqueous phase was washed with diethyl ether before being acidified to acid pH with concentrated HCl . After 4 hours of stirring at $80^{\circ} \mathrm{C}$ the mixture was allowed to cool to rt and extracted twice with DCM. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was suspended in 10 mL of MTBE and allowed to stir for 20 min before being filtered over a Büchner funnel to obtain 1.01 g of product $\mathbf{S 7}$ as a white solid (36% yield).

The NMR data (for the keto-enol tautomer) were in accordance with the literature. ${ }^{6}$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, ~ D M S O$): $\delta 11.01$ (br s, 1H), 5.16 (s, 1H), 2.36 (s, 4H), $1.90-1.80$ (m, 2H), $1.80-1.72(\mathrm{~m}, 4 \mathrm{H})$.

8-Ethoxyspiro[3.5]non-7-en-6-one (S8)

The 1,3-diketone $\mathbf{S 7}$ ($1.00 \mathrm{~g}, 6.58 \mathrm{mmol}$) was stirred for 2 hours at reflux conditions in a Dean-Stark apparatus in the presence of p-TsOH ($31.3 \mathrm{mg}, 0.165 \mathrm{mmol}$), 3 mL of ethanol and 20 mL of toluene. After cooling to rt the solvents were removed at reduced pressure and the residue was purified by flash chromatography on silica gel (20\% EtOAc in hexanes) to obtain 1.16 g of $\mathbf{S 8}$ as a colourless oil (98% yield).
$\mathbf{R}_{f}=0.24$ ($20 \% \mathrm{EtOAc}$ in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2934,1651,1601,1377,1357,1214,734$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 2.44$ (s, 2H), $1.97-1.78$ (m, 6H), $1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.1,174.6,101.5,63.3,48.3,40.8,37.7,30.9$ (2C), 14.1, 13.2.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=181.1223$; found $=181.1220$.

Spiro[3.5]non-7-en-6-one (S9)

A solution of enone $\mathbf{S 8}(1.16 \mathrm{~g}, 6.43 \mathrm{mmol})$ in 10 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was dropwise added to a suspension of $\mathrm{LiAlH}_{4}(122 \mathrm{mg}, 3.21 \mathrm{mmol})$ in 20 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. After stirring for 13 hours at rt the reaction mixture was quenched with water and stirred for 1 hour at rt in the presence of 20 mL of a $10 \% \mathrm{aq}$. solution of sulfuric acid. After extraction with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to obtain 754 mg of $\mathbf{S 9}$ as a colourless oil (86% yield).
$\mathbf{R}_{f}=0.26$ (10% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2920,2859,1672,1441,1359,1227$.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.87(\mathrm{dt}, J=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=10.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=4.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.5,147.6,129.3,49.6,39.6,38.1,31.6$ (2C), 14.5.
HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=137.0961$; found $=137.0956$.

7-(Allyloxy)spiro[3.5]non-7-en-6-one (4h)

To a methanol solution (12 mL) of enone $\mathbf{S 9}(754 \mathrm{mg}, 5.54 \mathrm{mmol})$ 2.0 mL of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ were dropwise added at $0^{\circ} \mathrm{C}$, followed by 0.2 mL of 1 M NaOH solution. After stirring for 5 hours at $0^{\circ} \mathrm{C}$, the reaction mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dropwise added (as an allylic alcohol solution - 10 equiv. of allyl alcohol) to a cooled suspension of $\mathrm{NaH}(266 \mathrm{mg}, 6.64 \mathrm{mmol}, 60 \%$ mineral oil) in allyl alcohol (20 equiv.) at $0^{\circ} \mathrm{C}$. After 34 hours stirring at rt the reaction mixture was diluted with diethyl ether and water. After extraction of the aqueous phase with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to obtain 382 mg of $\mathbf{4 h}$ as a colourless oil which solidified as a white solid upon standing (36% yield).
$\mathbf{R}_{f}=0.25$ ($10 \% \mathrm{EtOAc}$ in hexanes) .
$\mathbf{m p}=50-55^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2929,1690,1624,1164,1083,989,924$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97$ (ddt, $\left.J=17.3,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74(\mathrm{t}, J=4.6 \mathrm{~Hz}$, 1 H), 5.32 (virt. dq, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (virt. dq, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (virt. $\mathrm{dt}, J=5.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.0,150.5,132.8,117.9,115.8,68.7,50.6,40.1,37.2$, 31.9 (2C), 15.2.

HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=193.1223$; found $=193.1217$.

1-Cyclohexylidenepropan-2-one (S10)

Abstract

O A stirred solution of $\mathrm{KOH}(2.02 \mathrm{~g}, 36.0 \mathrm{mmol})$ in a $4: 1$ mixture of ethanol:water (72 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. Then $5.98 \mathrm{~g}(36.0 \mathrm{mmol})$ of dimethylacetylmethylphosphonate were dropwise added at the same temperature, followed by the addition of cyclohexanone ($2.36 \mathrm{~g}, 24.0 \mathrm{mmol}$)

 at rt. The resulting reaction mixture was stirred for 36 hours. Then water and diethyl ether were added and the aqueous phase was extracted with diethyl ether. The combined organic phases were washed with brine and the solvents removed at reduced pressure. The residue was taken up in diethyl ether, washed with brine once again and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 0 to 4% EtOAc in hexanes) to obtain 2.28 g of product $\mathbf{S 1 0}$ as a pale pink oil (69% yield).$\mathbf{R}_{f}=0.33$ (4% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.98(\mathrm{~s}, 1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 5 \mathrm{H})$, $1.71-1.55(\mathrm{~m}, 6 \mathrm{H})$.

Spiro[5.5]undecane-2,4-dione (S11)

Sodium metal ($547 \mathrm{mg}, 23.8 \mathrm{mmol}$) was added to 30 mL of dry ethanol. The suspension was stirred until the sodium completely dissolved and, once back to rt, diethyl malonate ($1.90 \mathrm{~g}, 11.9 \mathrm{mmol}$) was added to the resulting colourless solution, followed by the addition of enone $\mathbf{S 1 0}$ $(1.64 \mathrm{~g}, 11.9 \mathrm{mmol})$ in 6.0 mL of dry ethanol. The reaction mixture was stirred at reflux for 24 hours and then cooled to rt . Subsequently, a solution of $\mathrm{KOH}(6.67 \mathrm{~g}, 119 \mathrm{mmol})$ in 24 mL of water was added and stirred at reflux for further 36 hours. After cooling to rt the organic solvents were removed at reduced pressure and the aqueous phase was washed with diethyl ether before being acidified to acid pH with concentrated HCl . Thus, EtOAc
was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. In the end, after evaporation of the solvents at reduced pressure, the resulting residue was purified by flash chromatography on silica gel (50% EtOAc in hexanes) to obtain 1.59 g of product $\mathbf{S 1 1}$ as a pale yellow solid (74% yield).
$\mathbf{R}_{f}=0.17$ ($50 \% \mathrm{EtOAc}$ in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.34$ ($\mathrm{s}, 2 \mathrm{H}$), $2.59(\mathrm{~s}, 4 \mathrm{H}), 1.54-1.30(\mathrm{~m}, 10 \mathrm{H})$.

4-Ethoxyspiro[5.5]undec-3-en-2-one (S12)

The 1,3-diketone $\mathbf{S 1 1}$ ($1.94 \mathrm{~g}, 10.75 \mathrm{mmol}$) was stirred for 14 hours at reflux conditions in a Dean-Stark apparatus in the presence of $p-\mathrm{TsOH}$ $(51.0 \mathrm{mg}, 0.268 \mathrm{mmol}$), 4.0 mL of ethanol and 20 mL of toluene. After cooling to rt the solvents were removed at reduced pressure and the residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to obtain 2.00 g of $\mathbf{S 1 2}$ as a yellowish oil (89% yield).
$\mathbf{R}_{f}=0.37$ (20% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2927,1655,1607,1377,1210$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.32(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 2 \mathrm{H}), 2.28$ $(\mathrm{s}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.4,175.2,100.9,63.7,48.1,40.1,36.0$ (2C), 34.7, 25.7, 21.2 (2C), 13.7.

HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2}^{+},[\mathrm{M}+\mathrm{H}]^{+}=209.1536$; found $=209.1532$.

Spiro[5.5]undec-3-en-2-one (S13)

A solution of enone $\mathbf{S 1 2}(2.00 \mathrm{~g}, 9.62 \mathrm{mmol})$ in 8.0 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was dropwise added to a suspension of $\mathrm{LiAlH}_{4}(183 \mathrm{mg}, 4.82 \mathrm{mmol})$ in 30 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. After stirring for 14 hours at rt the reaction mixture was quenched with water and stirred for 1 hour at rt in the presence of 50 mL of a 10% aq. solution of sulfuric acid. After extraction with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to obtain 678 mg of $\mathbf{S 1 3}$ as a colourless oil (43% yield).
$\mathbf{R}_{f}=0.21$ (10\% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,2857,1678,1452,1388,1247$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{dt}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=10.1,2.1 \mathrm{~Hz}$, 1 H), 2.35 (s, 2H), 2.30 (dd, $J=4.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.62-1.35$ (m, 10H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5,147.8,128.8,49.4,37.3,36.4,36.3$ (2C), 26.0, 21.3 (2C).

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=165.1274$; found $=165.1270$.

3-(Allyloxy)spiro[5.5]undec-3-en-2-one (4i)

To a methanol solution (8 mL) of enone $\mathbf{S 1 3}$ (678 mg , $4.13 \mathrm{mmol}) 1.5 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ were dropwise added at $0^{\circ} \mathrm{C}$, followed by 0.15 mL of 1 M NaOH solution. After stirring for 5 hours at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was extracted twice with DCM and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dropwise added (as an allylic alcohol solution - 10 equiv. of allyl alcohol) to a cooled suspension of NaH ($242 \mathrm{mg}, 6.05 \mathrm{mmol}, 60 \%$ mineral oil) in allyl alcohol (20 equiv.) at $0^{\circ} \mathrm{C}$. After 36 hours stirring at rt the reaction mixture was diluted with diethyl ether and water. After extraction of the aqueous phase with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in hexanes) to obtain 352 mg of 4 i as a colourless oil (39% yield).
$\mathbf{R}_{f}=0.26$ (10% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2926,2856,1731,1453,1173,1121,735$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.98$ (ddt, $J=17.3,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71(\mathrm{t}, J=4.7 \mathrm{~Hz}$, 1 H), 5.32 (virt. dq, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (virt. dq, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (virt. $\mathrm{dt}, J=5.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 10 \mathrm{H})$. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.4,149.9,133.1,118.1,115.6,68.8,50.1,36.8,36.4$ (2C), 36.1, 26.4, 21.7 (2C).
HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=221.1536$; found $=221.1533$.

Ethyl 3-propylhex-2-enoate (S14)

A stirred suspension of $\mathrm{NaH}(1.60 \mathrm{~g}, 40.0 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (40 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. Then 7.94 mL of triethyl phosphonoacetate (40.0 mmol) were dropwise added and the resulting mixture stirred for 30 min at $0^{\circ} \mathrm{C}$. Subsequently a THF solution (20 mL) of 4-heptanone $(2.28 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was let warm to rt and stirred at reflux for 14 hours. After cooling to rt, water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 1 to 4% EtOAc in hexanes) to obtain 3.69 g of product $\mathbf{S} 14$ as a colourless oil (100% yield).
$\mathbf{R}_{f}=0.36$ (2% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.51(\mathrm{~m}$, 2H), $2.15-2.06$ (m, 2H), $1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.88(\mathrm{~m}$, 6 H).

4-Propylhept-3-en-2-one (S15)

O 40.0 mL of a 2 M solution of $i-\mathrm{PrMgCl}$ (4 equiv.) in THF were dropwise added to a stirred solution of ester $\mathbf{S 1 4}(3.69 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride ($3.90 \mathrm{~g}, 40.0 \mathrm{mmol}$) in 40 mL of dry THF at $-10^{\circ} \mathrm{C}$. The resulting reaction mixture was let warm to rt and stirred for 4 hours before being quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The obtained residue was dissolved in 40 mL of dry THF and 7.95 mL of a 3 M solution of MeMgBr (1.2 equiv.) in diethyl ether were dropwise added at $0^{\circ} \mathrm{C}$. The resulting mixture was let warm until rt and stirred overnight before being quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($5 \% \mathrm{EtOAc}$ in hexanes) to obtain 2.21 g of product $\mathbf{S 1 5}$ as a colourless oil (72% yield).
$\mathbf{R}_{f}=0.56$ (10% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2936,1710,1481,1355,1099$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.02(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12-$ $2.06(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.8,161.8,122.7,40.2,33.6,31.0,21.4,20.4,13.7$, 13.2.

HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=155.1430$; found $=155.1426$.

5,5-Dipropylcyclohexane-1,3-dione (S16)

xSodium metal ($659 \mathrm{mg}, 28.7 \mathrm{mmol}$) was added to 38 mL of dry ethanol. The suspension was stirred until the sodium completely dissolved and, once back to rt, diethyl malonate ($4.59 \mathrm{~g}, 28.7 \mathrm{mmol}$) was added to the resulting colourless solution, followed by the addition of enone $\mathbf{S 1 5}(2.21 \mathrm{~g}, 14.3 \mathrm{mmol})$ in 5.0 mL of dry ethanol. The reaction mixture was stirred at reflux for 24 hours and then cooled to rt. Subsequently, a solution of $\mathrm{KOH}(8.04 \mathrm{~g}, 143 \mathrm{mmol})$ in 29 mL of water was added and stirred at reflux for further 36 hours. After cooling to rt the organic solvents were removed at reduced pressure and the aqueous phase was washed with diethyl ether before being acidified to acid pH with concentrated HCl . Thus, EtOAc was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. In the end, after evaporation of the solvents at reduced pressure, the resulting residue was purified by flash chromatography on silica gel (50% EtOAc in hexanes) to obtain 2.05 g of product $\mathbf{S 1 6}$ as a pale yellow solid (73% yield). $\mathbf{R}_{f}=0.30$ (50% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2958,1570,1406,1223,1143,751$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.2$ (2C), 57.8, 51.1 (2C), 40.2 (2C), 36.5, 16.6 (2C), 14.6 (2C).

A 2:1 mixture of tautomers was observed in CDCl_{3} (the reported NMR signals are the data of the major 1,3-diketone tautomer).
HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=197.1536$; found $=197.1533$.

5,5-Dipropylcyclohex-2-en-1-one (S17)

The 1,3-diketone $\mathbf{S 1 6}$ ($2.04 \mathrm{~g}, 10.4 \mathrm{mmol}$) was stirred for 14 hours at reflux conditions in a Dean-Stark apparatus in the presence of $p-\mathrm{TsOH}(50.0 \mathrm{mg}$, $0.263 \mathrm{mmol}), 4.0 \mathrm{~mL}$ of ethanol and 30 mL of toluene. After cooling to rt the solvents were removed at reduced pressure and a solution of the residue in 12 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was dropwise added to a suspension of $\mathrm{LiAlH}_{4}(197 \mathrm{mg}$, $5.19 \mathrm{mmol})$ in 30 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. After stirring for 16 hours at rt the reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 2 hours at rt in the presence of 50 mL of a $10 \% \mathrm{aq}$. solution of sulfuric acid. After extraction with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel (3% EtOAc in hexanes) to obtain 1.55 g of $\mathbf{S 1 7}$ as a colourless oil (83% yield).
$\mathbf{R}_{f}=0.34$ (4\% EtOAc in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2923,2844,1676,1471,1390,1239$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.87-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.96(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 2 \mathrm{H})$, $2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.13(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta 200.4,148.4,129.3,48.9,40.0$ (2C), 39.4, 36.7, 16.8 (2C), 14.9 (2C).

HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=181.1587$; found $=181.1585$.

2-(Allyloxy)-5,5-dipropylcyclohex-2-en-1-one (4j)

To a methanol solution (9 mL) of enone $\mathbf{S 1 7}(1.55 \mathrm{~g}, 8.57$ $\mathrm{mmol}) 3.0 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ were dropwise added at $0^{\circ} \mathrm{C}$, followed by 0.30 mL of 1 M NaOH solution. After stirring for 7 hours at $0^{\circ} \mathrm{C}$, the reaction mixture was extracted twice with EtOAc and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dropwise added (as an allylic alcohol solution - 10 equiv. of allyl alcohol) to a cooled suspension of NaH ($514 \mathrm{mg}, 22.4 \mathrm{mmol}, 60 \%$ mineral oil) in allyl alcohol (20 equiv.) at $0{ }^{\circ} \mathrm{C}$. After 36 hours stirring at rt the reaction mixture was diluted with diethyl ether and water. After extraction of the aqueous phase with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the
residue was purified by flash chromatography on silica gel ($5 \% \mathrm{EtOAc}$ in n-pentane) to obtain 406 mg of $\mathbf{4 j}$ as a pale-yellow oil (20% yield).
$\mathbf{R}_{f}=0.24$ (5% EtOAc in cyclohexane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2958,2930,1688,1630,1167,734$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97$ (ddt, $J=17.3,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.69(\mathrm{t}, J=4.7 \mathrm{~Hz}$, 1 H), 5.31 (virt. dq, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (virt. dq, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (virt. $\mathrm{dt}, J=5.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.11(\mathrm{~m}, 8 \mathrm{H}), 0.85$ (t, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.6,149.9,133.0,118.0,115.8,68.8,49.4,39.6$ (2C), 39.4, 35.1, 16.8 (2C), 14.8 (2C).

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=259.1669$; found $=259.1668$.

Ethyl 3,3-dicyclopropylacrylate (S18)

A stirred suspension of $\mathrm{NaH}(1.60 \mathrm{~g}, 40.0 \mathrm{mmol}, 60 \%$ mineral oil) in dry THF (40 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. Then 7.94 mL of triethyl phosphonoacetate $(40.0 \mathrm{mmol})$ were dropwise added and the resulting mixture stirred for 30 min at $0^{\circ} \mathrm{C}$. Subsequently a THF solution (20 mL) of dicyclopropylketone $(2.20 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was let warm to rt and stirred at reflux for 36 hours. After cooling to rt, water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (from 1 to 4% EtOAc in hexanes) to obtain 1.99 g of product $\mathbf{S 1 8}$ as a pale-yellow oil (55% yield).
$\mathbf{R}_{f}=0.33$ (2% EtOAc in hexanes) .
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2981,1709,1620,1248,1193,1151,1039,926$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{tt}, J=8.4$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.83(\mathrm{~m}, 5 \mathrm{H}), 0.76-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.58-$ 0.49 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.8,166.1,111.2,59.5,14.5,14.3,11.8,7.8$ (2C), 7.4 (2C).
HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=181.1223$; found $=181.1222$.

4,4-Dicyclopropylbut-3-en-2-one (S19)

22.0 mL of a 2 M solution of $i-\mathrm{PrMgCl}$ (4 equiv.) in THF were dropwise added to a stirred solution of ester $\mathbf{S 1 8}(1.98 \mathrm{~g}, 11.0 \mathrm{mmol})$ and N, O dimethylhydroxylamine hydrochloride ($2.15 \mathrm{~g}, 22.0 \mathrm{mmol}$) in 33 mL of dry THF at $-10^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 1 hour until $5^{\circ} \mathrm{C}$, then 3 hours at rt , before being quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The obtained residue was dissolved in 22 mL of dry THF and 4.4 mL of a 3 M solution of MeMgBr (1.2 equiv.) in diethyl ether were dropwise added at $0^{\circ} \mathrm{C}$. The resulting mixture was let warm to rt and stirred overnight before being quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to obtain 1.40 g of product $\mathbf{S 1 9}$ as a colourless oil (85% yield). $\mathbf{R}_{f}=0.37$ (10% EtOAc in hexanes).

IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,2855,1726,1461,1378,1108$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.00-$ $0.84(\mathrm{~m}, 5 \mathrm{H}), 0.78-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.50(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1,165.7,118.8,32.3,14.6,11.7,8.2$ (2C), 7.9 (2C). HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=151.1117$; found $=151.1111$.

5,5-Dicyclopropylcyclohexane-1,3-dione (S20)

Sodium metal ($429 \mathrm{mg}, 18.7 \mathrm{mmol}$) was added to 24 mL of dry ethanol. The suspension was stirred until the sodium completely dissolved and, once back to rt, diethyl malonate ($2.99 \mathrm{~g}, 18.7 \mathrm{mmol}$) was added to the resulting colourless solution, followed by the addition of enone $\mathbf{S 1 9}$ $(1.40 \mathrm{~g}, 9.34 \mathrm{mmol})$ in 4.0 mL of dry ethanol. The reaction mixture was stirred at reflux for 24 hours and then cooled to rt. Subsequently, a solution of $\mathrm{KOH}(5.24 \mathrm{~g}, 93.4 \mathrm{mmol})$ in 19 mL of water was added and stirred at reflux for further 36 hours. After cooling to rt the organic solvents were removed at reduced pressure and the aqueous phase was washed with diethyl ether before being acidified to acid pH with concentrated HCl . Thus, EtOAc was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. In the end, after evaporation of the solvents at reduced pressure, the resulting residue was purified by flash
chromatography on silica gel (50% EtOAc in hexanes) to obtain 1.52 g of product $\mathbf{S 2 0}$ as a pale yellow solid (85% yield).
$\mathbf{R}_{f}=0.26$ ($50 \% \mathrm{EtOAc}$ in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{10}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.35(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 4 \mathrm{H}), 0.70-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.45-$ 0.27 ($\mathrm{m}, 8 \mathrm{H}$).

5,5-Dicyclopropylcyclohex-2-en-1-one (S21)

The 1,3-diketone $\mathbf{S 2 0}$ ($1.52 \mathrm{~g}, 7.92 \mathrm{mmol}$) was stirred for 14 hours at reflux conditions in a Dean-Stark apparatus in the presence of $p-\mathrm{TsOH}(38.0 \mathrm{mg}$, $0.200 \mathrm{mmol}), 3.0 \mathrm{~mL}$ of ethanol and 20 mL of toluene. After cooling to rt the solvents were removed at reduced pressure and a solution of the residue in 12 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was dropwise added to a suspension of $\mathrm{LiAlH}_{4}(152 \mathrm{mg}, 4.00 \mathrm{mmol})$ in 20 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. After stirring for 16 hours at rt the reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 2 hours at rt in the presence of 50 mL of a 10% aq. solution of sulfuric acid. After extraction with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel (4\% EtOAc in n-pentane) to obtain 977 mg of $\mathbf{S} 21$ as a colourless oil (70\% yield).
$\mathbf{R}_{f}=0.19$ (4\% EtOAc in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=3007,1677,1389,1251,1019,733$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{dt}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=10.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=4.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.81-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.37-0.25(\mathrm{~m}$, 8 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 199.9,148.4,129.3,46.4,37.2,34.6,18.1$ (2C), 0.8 (2C), 0.5 (2C).

HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=177.1274$; found $=177.1272$.

2-(Allyloxy)-5,5-dicyclopropylcyclohex-2-en-1-one (4k)

To a methanol solution (12 mL) of enone $\mathbf{S} 21(972 \mathrm{mg}, 5.52$ $\mathrm{mmol}) 2.25 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ were dropwise added at $0{ }^{\circ} \mathrm{C}$, followed by 0.23 mL of 1 M NaOH solution. After stirring for 7 hours at $0^{\circ} \mathrm{C}$, the reaction mixture was extracted twice with

EtOAc and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dropwise added (as an allylic alcohol solution - 10 equiv. of allyl alcohol) to a cooled suspension of NaH ($331 \mathrm{mg}, 8.28 \mathrm{mmol}, 60 \%$ mineral oil) in allyl alcohol (20 equiv.) at $0^{\circ} \mathrm{C}$. After 36 hours stirring at rt the reaction mixture was diluted with diethyl ether and water. After extraction of the aqueous phase with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($5 \% \mathrm{EtOAc}$ in n-pentane) to obtain 207 mg of $\mathbf{4 k}$ as a pale yellow solid (16% yield).
$\mathbf{R}_{f}=0.19$ (5% EtOAc in cyclohexane).
$\mathbf{m p}=30-35^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2924,2855,1717,1466,1119,973,922$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97$ (ddt, $J=17.4,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.70(\mathrm{t}, J=4.6 \mathrm{~Hz}$, 1 H), 5.31 (virt. dq, $J=17.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.26-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.31$ (virt. dt, $J=5.5,1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.25 ($\mathrm{s}, 2 \mathrm{H}$), 2.19 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.82-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.39-0.23(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.2,149.9,133.0,118.0,115.9,68.8,47.0,37.1,33.0$, 18.1 (2C), 0.9 (2C), 0.6 (2C).

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=255.1356$; found $=255.1355$.

3-Ethoxy-4,4-dimethylcyclohex-2-en-1-one (S22)

4,4-Dimethyl-1,3-cyclohexandione ($5.03 \mathrm{~g}, 35.9 \mathrm{mmol}$) was stirred for 18 hours at reflux conditions in a Dean-Stark apparatus in the presence of $p-\mathrm{TsOH}(171 \mathrm{mg}, 0.899 \mathrm{mmol}), 6.8 \mathrm{~mL}$ of ethanol and 54 mL of toluene. After cooling to rt the solvents were removed at reduced pressure and the residue was purified by flash chromatography on silica gel (from 5\% to 20\% EtOAc in hexanes) to obtain 1.32 g of $\mathbf{S} \mathbf{2 2}$ as a colourless oil (22% yield).
$\mathbf{R}_{f}=0.18$ (20% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{11}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$.

6,6-Dimethylcyclohex-2-en-1-one (S23)

A solution of enone $\mathbf{S 2 2}(1.32 \mathrm{~g}, 7.85 \mathrm{mmol})$ in 8.0 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was dropwise added to a suspension of $\mathrm{LiAlH}_{4}(99.3 \mathrm{mg}, 2.62 \mathrm{mmol})$ in 26 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 12 hours at rt the reaction mixture was quenched with water and stirred for 1 hour at rt in the presence of 50 mL of a 10% aq. solution of sulfuric acid. After extraction with diethyl ether, the combined organic phases were washed with a saturated solution of NaHCO_{3}, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in hexanes) to obtain 550 mg of $\mathbf{S 2 3}$ as a colourless oil (56% yield).
$\mathbf{R}_{f}=0.44$ (10% EtOAc in hexanes).
The NMR data were in accordance with the data reported in the literature. ${ }^{11}$
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{dt}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=10.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{tdd}, J=6.1,4.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H})$.

2-(Allyloxy)-6,6-dimethylcyclohex-2-en-1-one (41)

 To a methanol solution (8.8 mL) of enone $\mathbf{S 2 3}$ (550 mg , $4.43 \mathrm{mmol}) 1.3 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ were dropwise added at $0{ }^{\circ} \mathrm{C}$, followed by 0.14 mL of 1 M NaOH solution. After stirring for 22 hours at rt the reaction mixture was extracted twice with DCM and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was dropwise added (as an allylic alcohol solution - 10 equiv. of allyl alcohol) to a cooled suspension of $\mathrm{NaH}(354 \mathrm{mg}, 8.86 \mathrm{mmol}, 60 \%$ mineral oil) in allyl alcohol (20 equiv.) at $0^{\circ} \mathrm{C}$. After 34 hours stirring at rt the reaction mixture was diluted with diethyl ether and water. After extraction of the aqueous phase with diethyl ether, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel (6% EtOAc in hexanes) to obtain 480 mg of $\mathbf{4 1}$ as a pale-yellow oil (60% yield).
$\mathbf{R}_{f}=0.12$ (5% EtOAc in hexanes).
IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2922,2851,1686,1628,1232,1210,1091,1062,923,826$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.98$ (ddt, $J=17.3,10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.79(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33$ (virt. dq, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (virt. dq, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (virt.
$\mathrm{dt}, J=5.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{td}, J=6.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~s}$, 6 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 199.3,149.0,133.7,117.9,117.2,69.0,42.6,36.5,24.3$ (2C), 21.4.
HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=203.1043$; found $=203.1039$.

6. General Procedure for the Enantioselective [2+2] Photocycloaddition

An oven-dried Schlenk tube, equipped with a magnetic stir bar, was charged with catalyst $\mathbf{6}(1.73 \mathrm{mg}, 2.00 \mu \mathrm{~mol})$, the corresponding enone $\mathbf{4}(0.100 \mathrm{mmol})$ and 10 mL of dry DCE. The reaction mixture was deoxygenated by three cycles of "freeze-pump-thaw" and stirred at room temperature under blue LED irradiation ($\lambda=437 \mathrm{~nm}$), as illustrated in the reaction setup, for the indicated time. The solvent was removed under reduced pressure and the crude mixture was purified by flash chromatography to afford the corresponding cyclobutane 5 in stated yield and enantiomeric purity.

7. Characterisation Data for the Enantioenriched Cyclobutanes (5)

(3S,3aR,7aR)-Hexahydro-7H-3,7a-methanobenzofuran-7-one. (5a)

5a was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to 50% EtOAc in hexanes) to obtain 13.0 mg of product as a white solid (86% yield). The enantiomeric excess ($92 \% e e$) was determined by GC on a Macherey-Nagel Lipodex E column [$\tau_{\text {major }}=14.8 \mathrm{~min}, \tau_{\text {minor }}=13.4 \mathrm{~min} ; 60^{\circ} \mathrm{C}(1 \mathrm{~min})$, $\left.170^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$.
$\mathbf{R}_{f}=0.28$ ($50 \% \mathrm{EtOAc}$ in hexanes).
$[\boldsymbol{\alpha}]^{24} \mathbf{D}=+60\left(c=0.94, \mathrm{CHCl}_{3}\right)$.
The NMR data were in accordance with the data reported in the literature. ${ }^{2}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.29(v i r t . \mathrm{dt}, J=$ $11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1 \mathrm{H})$.

5b was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to $50 \% \mathrm{EtOAc}$ in hexanes) to obtain 6.8 mg of product as a white solid (41% yield). The enantiomeric excess ($84 \% e e$) was determined by GC on a Macherey-Nagel Lipodex E column $\left[\tau_{\text {major }}=14.3 \mathrm{~min}, \tau_{\text {minor }}=13.0 \mathrm{~min} ; 60^{\circ} \mathrm{C}(1 \mathrm{~min})\right.$, $\left.170^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$.
$\mathbf{R}_{f}=0.37$ ($50 \% \mathrm{EtOAc}$ in hexanes).
$[\alpha]^{24} \mathbf{D}=+53\left(c=0.86, \mathrm{CHCl}_{3}\right)$.
The NMR data were in accordance with the data reported in the literature. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.74(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (virt. ddt, $J=$ 11.1, 6.2, 2.9 Hz, 1H), $2.02-1.95$ (m, 1H), 1.87 (virt. t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.82-1.64$ (m, $2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.
($3 S, 3 \mathrm{a} R, 7 \mathrm{aR}, 8 R$)-8-Methylhexahydro-7H-3,7a-methanobenzofuran-7-one (5c)

$\mathbf{5 c}$ was prepared according to the general procedure after 24 hours of irradiation and purified by flash chromatography on silica gel (from 10 to 40% EtOAc in hexanes) to obtain 11.4 mg of product as a white solid (69% yield). The enantiomeric excess ($81 \% ~ e e$) was determined by GC on a Macherey-Nagel Lipodex E column [$\tau_{\text {major }}=25.3 \mathrm{~min}, \tau_{\text {minor }}=22.0 \mathrm{~min} ; 100^{\circ} \mathrm{C}(1$ $\left.\min), 150^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 150^{\circ} \mathrm{C}(30 \mathrm{~min}), 200^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right)\right]$.
$\mathbf{R}_{f}=0.23$ (33% EtOAc in hexanes).
$[\alpha]^{24} \mathrm{D}=+54\left(c=0.82, \mathrm{CHCl}_{3}\right)$.
The NMR data were in accordance with the data reported in the literature. ${ }^{2}$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (qd, $J=6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dd}, J=11.0$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91$ (virt. tdd, $J=14.1,11.0$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
(3R,3aR,7aS,8S)-8-[(Benzyloxy)methyl]hexahydro-7H-3,7a-methanobenzofuran-7one (5d)
 5d was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (25\% EtOAc in cyclohexane) to obtain 12.6 mg of product as a yellow oil (46% yield). The enantiomeric excess ($90 \% e e$) was determined by reverse phase HPLC on a Daicel Chiralcel OJ-RH column [$\tau_{\text {major }}=11.9 \mathrm{~min}, \tau_{\text {minor }}=12.7$ min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; acetonitrile:water $=$ gradient from 20:80 to 100:0 in 30 min ; $\left.\mathrm{T}=5^{\circ} \mathrm{C}, \lambda=215 \mathrm{~nm}\right]$.
$\mathbf{R}_{f}=0.17$ (25% EtOAc in cyclohexane) .
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,1717,1452,1274,1114,714$.
$[\alpha]^{24} \mathbf{D}=+31\left(c=1.26, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=7.2,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=10.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (virt. ddq, $J=14.0,5.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (virt. tdd, $J=14.2,10.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (virt. $\mathrm{qt}, J=13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.2,138.2,128.5$ (2C), 127.8 (3C), 88.4, 73.6, 67.9, 65.4, 53.4, 49.7, 43.3, 40.0, 27.2, 24.3.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=295.1305$; found $=295.1305$.
(3R,3aR,7aS,8S)-8-(Methoxymethyl)hexahydro-7H-3,7a-methanobenzofuran-7-one (5e)

5e was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to 50% EtOAc in hexanes) to obtain 8.5 mg of product as a colorless oil (43% yield). The enantiomeric excess ($94 \% e e$) was determined by GC on a Macherey-Nagel Lipodex E column [$\tau_{\text {major }}=28.7 \mathrm{~min}, \tau_{\text {minor }}=$ $\left.32.3 \mathrm{~min} ; 100^{\circ} \mathrm{C}(1 \mathrm{~min}), 150^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 150^{\circ} \mathrm{C}(30 \mathrm{~min}), 200^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right)\right]$.
$\mathbf{R}_{f}=0.18$ (50% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,17161460,1109,848,750$.
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=+37\left(c=0.92, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, $J=10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (dd, $J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (s, 3 H), 3.16 (ddd, $J=$ $7.2,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{dd}, J=11.0$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (virt. tdd, $J=14.2,11.0$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (virt. qt, $J=13.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.3,88.4,68.0,67.8,59.3,53.4,49.6,43.2,40.0$, 27.2, 24.3.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=219.0992$; found $=219.0993$.

(3R,3aR,7aS,8S)-8-\{[(4-Bromobenzyl)oxy]methyl\}hexahydro-7H-3,7a-methanobenzofuran-7-one (5f)

5f was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel ($30 \% \mathrm{EtOAc}$ in hexanes) to obtain 12.9 mg of product as a pale yellow solid (37% yield). The enantiomeric excess ($92 \% e e$) was determined by normal phase HPLC on a Daicel Chiralpak AS-H column $\left[\tau_{\text {major }}=24.0 \mathrm{~min}, \tau_{\text {minor }}=28.8 \mathrm{~min}\right.$; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; i$-PrOH: n-heptane $=10: 90 ; \lambda=210 \mathrm{~nm}]$.
$\mathbf{R}_{f}=0.15$ (30% EtOAc in hexanes) .
$\mathbf{m p}=130^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2941,1715,1488,1091,1011,845,804$.
$[\boldsymbol{\alpha}]^{24} \mathbf{D}=+35\left(c=1.17, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 1 H), 3.46 (dd, $J=9.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (dd, $J=9.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (ddd, $J=7.7,5.2$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=10.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (virt. tdd, $J=14.3,10.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76-1.65(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.1,137.3,131.7$ (2C), 129.4 (2C), 121.7, 88.4, 72.8, 67.9, 65.5, 53.3, 49.7, 43.3, 40.0, 27.2, 24.3.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=373.0410$; found $=373.0412$.

$\mathbf{5 g}$ was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to $50 \% \mathrm{EtOAc}$ in hexanes) to obtain 11.7 mg of product as a white solid (65% yield). The enantiomeric excess (84% ee) was determined by GC on a Macherey-Nagel Lipodex E column [$\tau_{\text {major }}=12.9 \mathrm{~min}$, $\tau_{\text {minor }}=12.5 \mathrm{~min} ; 60^{\circ} \mathrm{C}(1$ $\left.\min), 170^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$.
$\mathbf{R}_{f}=0.36$ ($50 \% \mathrm{EtOAc}$ in hexanes).
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=+17\left(c=0.96, \mathrm{CHCl}_{3}\right)$.
The NMR data were in accordance with the data reported in the literature. ${ }^{2}$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.96(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=8.0,3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.05$ (dd, J $=14.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{ddd}, J=14.2,6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.
(3'S,3a'R,7a'R)-Tetrahydrospiro\{cyclobutane-1,5'-[3,7a]methanobenzofuran\}$7^{\prime}\left(6{ }^{\prime} H\right)$-one (5h)

$\mathbf{5 h}$ was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to 50% EtOAc in hexanes) to obtain 11.4 mg of product as a white solid (59% yield). The enantiomeric excess (80% ee) was determined by GC on a Macherey-Nagel Lipodex E column $\left[\tau_{\text {major }}=16.0 \mathrm{~min}, \tau_{\text {minor }}=14.9 \mathrm{~min} ; 60^{\circ} \mathrm{C}(1\right.$ $\left.\min), 170^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$.
$\mathbf{R}_{f}=0.43$ ($50 \% \mathrm{EtOAc}$ in hexanes).
$\mathbf{m p}=58-62^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2929,1715,1469,1422,1127,983,899,750$.
$[\alpha]^{24} \mathbf{D}=+22\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=7.9,3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=14.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (ddd, $J=11.2,7.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=13.9,6.4$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta 202.9,88.6,71.3,52.4,51.5,45.8,41.3,41.2,36.9$, 33.2, 30.7, 15.5 .

HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=193.1223$; found $=193.1223$.
(3'S,3a'R,7a'R)-Tetrahydrospiro\{cyclohexane-1,5'-[3,7a]methanobenzofuran\}-7'(6'H)-one (5i)
 $5 \mathbf{i}$ was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 20 to 50% EtOAc in hexanes) to obtain 10.3 mg of product as a white solid (47% yield). The enantiomeric excess ($80 \% e e$) was determined by GC on a Macherey-Nagel Lipodex E column [$\tau_{\text {major }}=21.3 \mathrm{~min}, \tau_{\text {minor }}=20.6 \mathrm{~min} ; 60$ $\left.{ }^{\circ} \mathrm{C}(1 \mathrm{~min}), 170^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}\right), 200^{\circ} \mathrm{C}(25 \mathrm{~min})\right]$.
$\mathbf{R}_{f}=0.52$ ($50 \% \mathrm{EtOAc}$ in hexanes) .
$\mathbf{m p}=55-60^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,2854,1715,1453,1120,966,927$.
$[\alpha]^{24} \mathbf{D}=+7\left(c=0.75, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=7.9,3.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=14.2,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (virt. $\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (dd, $J=14.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.4,88.8,71.6,52.0,50.8,42.7,41.2,41.1,39.7,35.2$, 33.1, 26.0, 22.0, 21.1.

HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=243.1356$; found $=243.1353$.
(3S,3aR,7aR)-5,5-Dipropylhexahydro-7H-3,7a-methanobenzofuran-7-one (5j)

$\mathbf{5 j}$ was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 10 to 40% EtOAc in hexanes) to obtain 17.2 mg of product as a pale yellow solid (73% yield). The enantiomeric excess ($83 \% e e$) was determined by GC on an Agilent CycloSil-B column [$\tau_{\text {major }}=43.7 \mathrm{~min}, \tau_{\text {minor }}=43.2 \mathrm{~min}$; $\left.60^{\circ} \mathrm{C}(1 \mathrm{~min}), 220^{\circ} \mathrm{C}\left(3^{\circ} \mathrm{C} / \mathrm{min}\right), 220^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$ after diastereoselective reduction to the corresponding alcohol (10a).
$\mathbf{R}_{f}=0.24$ (25% EtOAc in cyclohexane) .
$\mathbf{m p}=75-80^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2957,2927,1717,1466,974,923$.
$[\boldsymbol{\alpha}]^{24} \mathbf{D}=+9.82\left(c=1.72, \mathrm{CHCl}_{3}\right)$.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 279$ (ddd, $J=8.1,3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.26$ (m, 2H), 2.15 (dd, J
$=14.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.2,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (virt. t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74(\mathrm{dd}, J=14.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.7,88.7,71.6,52.2,50.1,45.3,42.3,41.3,41.1,36.9$, 33.9, 16.7, 16.1, 14.9, 14.7.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=259.1669$; found $=259.1643$.

(3S,3aR,7aR)-5,5-Dicyclopropylhexahydro-7H-3,7a-methanobenzofuran-7-one (5k)

$\mathbf{5 k}$ was prepared according to the general procedure after 14 hours of irradiation and purified by flash chromatography on silica gel (from 10 to 40% EtOAc in hexanes) to obtain 19.0 mg of product as a pale yellow solid (82% yield). The enantiomeric excess ($81 \% e e$) was determined by GC on an Agilent CycloSil-B column [$\tau_{\text {major }}=201.6 \mathrm{~min}, \tau_{\text {minor }}=200.3$ $\left.\min ; 60^{\circ} \mathrm{C}(1 \mathrm{~min}), 170^{\circ} \mathrm{C}\left(0.5^{\circ} \mathrm{C} / \mathrm{min}\right), 170^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$ after diastereoselective reduction to the corresponding alcohol (10b).
$\mathbf{R}_{f}=0.27$ (25% EtOAc in cyclohexane).
$\mathbf{m p}=40^{\circ} \mathrm{C}$
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2925,2855,1717,1466,1275,1119,973,922$.
$[\alpha]^{24} \mathbf{D}=+23\left(c=1.57, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.97(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (ddd, $J=8.1,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (virt. dt, $J=11.3,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (dd, $J=14.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75$ (dd, $J=13.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.66(\mathrm{tt}, J=8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.53-0.42(\mathrm{~m}, 2 \mathrm{H}), 0.42-0.23$ ($\mathrm{m}, 7 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.8,88.5,71.5,51.6,47.3,42.8,41.5,41.3,33.9,18.3$, $17.5,1.4,0.2,0.1$ (2C).

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=255.1356$; found $=255.1355$.

(3S,3aR,7aR)-6,6-Dimethylhexahydro-7H-3,7a-methanobenzofuran-7-one (51)

51 was prepared according to the general procedure after 24 hours of irradiation and purified by flash chromatography on silica gel (20% EtOAc in n-pentane) to obtain 6.8 mg of product as a yellow oil (38% yield). The enantiomeric excess ($90 \% \mathrm{ee}$) was determined by GC on a

Macherey-Nagel Lipodex E column $\left[\tau_{\text {major }}=24.3 \mathrm{~min}, \tau_{\text {minor }}=26.3 \mathrm{~min} ; 100^{\circ} \mathrm{C}(1 \mathrm{~min})\right.$, $\left.135^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 135^{\circ} \mathrm{C}(30 \mathrm{~min}), 200^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right)\right]$.
$\mathbf{R}_{f}=0.15$ (20% EtOAc in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2926,1706,1466,1019,968,945,935,865$.
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=-39\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.92(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=8.2,3.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (virt. dt, $J=9.9,7.8 \mathrm{~Hz}$, 1 H), $2.05-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.78$ (virt. dt, $J=14.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.67 (ddd, $J=14.2,11.5$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.2,87.3,70.4,54.5,45.0,44.0,41.9,40.1,26.1$, 25.7, 21.4.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=203.1043$; found $=203.1041$.

($3 S, 3 \mathrm{a} R, 7 \mathrm{aR}, 8 R$)-8-Ethylhexahydro-7H-3,7a-methanobenzofuran-7-one (5m)

$\mathbf{5 m}$ was prepared according to the general procedure starting from $(Z)-\mathbf{4 m}$ after 14 hours of irradiation and purified by flash chromatography on silica gel (from 0 to 40% EtOAc in hexanes) to obtain 9.2 mg of a mixture of the desired cyclobutane and an olefinic impurity. This by-product was removed by oxidation as reported in our precedent work. ${ }^{2}$ The product mixture (51.0 $\mu \mathrm{mol}$) was dissolved in $400 \mu \mathrm{~L}$ of DCE. Subsequently, $300 \mu \mathrm{~L}$ of water, $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ (1 small crystal) and 6.3 mg of $\mathrm{NaIO}_{4}(29.6 \mu \mathrm{~mol})$ were added and the reaction mixture was stirred at room temperature for 17 h . The reaction was quenched by addition of water and diluted with diethyl ether. The aqueous layer was extracted with diethyl ether and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thus, after evaporation of the solvents at reduced pressure, the residue was purified by flash chromatography on silica gel (from 0 to 40% EtOAc in hexanes) to obtain 8.2 mg of product as a white solid (47% yield). The enantiomeric excess (94% ee) was determined by GC on a Macherey-Nagel Lipodex E column $\left[\tau_{\text {major }}=25.1 \mathrm{~min}, \tau_{\text {minor }}=23.8 \mathrm{~min} ; 100\right.$ $\left.{ }^{\circ} \mathrm{C}(1 \mathrm{~min}), 150^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right), 150^{\circ} \mathrm{C}(30 \mathrm{~min}), 200^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C} / \mathrm{min}\right)\right]$. When $(E)-4 \mathrm{~m}$ was employed as substrate, the same product was obtained in 47% yield and 86% ee.
$\mathbf{R}_{f}=0.22$ (25% EtOAc in hexanes).
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=+39\left(c=0.70, \mathrm{CHCl}_{3}\right)$.
The NMR data were in accordance with the data reported in the literature. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (ddd, $J=8.6,6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41-2.34$ (m, 2H), 2.20 (dd, J $=11.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92($ virt. tdd, $J=14.2$, $11.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

8. Characterisation Data for the Hydrazone (7)

N^{\prime}-[(3S,3aR,7aR,Z)-Hexahydro-7H-3,7a-methanobenzofuran-7-ylidene]-4nitrobenzenesulfonohydrazide (7)

$11.2 \mathrm{mg}(73.6 \mu \mathrm{~mol})$ of $\mathbf{5 a}(e e$ of the sample $=92 \%)$ were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and 4nitrobenzenesulfonohydrazide ($16.0 \mathrm{mg}, 1.0$ equiv.) were added. The reaction mixture was stirred overnight at room temperature and, after solvent removal, purified by flash chromatography on silica gel (20% EtOAc in hexanes) to obtain 19.0 mg of the desired product 7 as a pale yellow solid (73% yield).
$\mathbf{R}_{f}=0.30$ (33% EtOAc in hexanes).
$\mathbf{m p}=145-150^{\circ} \mathrm{C}$
IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3189,2957,2893,1534,1349,1308,1172,1054,922,898,851,736,681$. $[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=+80\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 2 \mathrm{H})$, $3.97(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$ $8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (virt. dt, $J=15.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.09-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.79$ (virt. t, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,150.3,145.0,129.2$ (2C), 124.2 (2C), 87.7, 71.6, 53.7, 40.2, 40.0, 32.8, 25.3, 25.0.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+},[\mathrm{M}+\mathrm{H}]^{+}=352.0962$; found $=352.0964$.

9. Characterisation Data for the Derivatized Cyclobutanes (10-15)

(3S,3aR,7S,7aR)-5,5-Dipropylhexahydro-2H-3,7a-methanobenzofuran-7-ol (10a)

The diastereoselective reduction was achieved upon dropwise addition of DIBAL-H ($0.364 \mathrm{mmol}, 364 \mu \mathrm{~L}$ of a 1 M solution in hexanes, 5.0 equiv.) to a solution of ketone $\mathbf{5 j}(17.2 \mathrm{mg}, 72.8 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 90 min the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. After removal of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in n-pentane) to obtain 17.1 mg of product as a colourless oil (99% yield).
$\mathbf{R}_{f}=0.25$ (10% EtOAc in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2924,2855,1731,1464,1288,965$.
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=-54\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.04(\mathrm{dd}, J=3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 2 \mathrm{H}), 2.67$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (dd, $J=8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.06-1.92$ (m, 2H), 1.84 (virt. dt, $J=$ $15.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (ddd, $J=13.8,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.55 (ddd, $J=13.8,12.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 88.8,71.2,66.4,44.1,43.3,40.0,39.0,37.3,37.2,35.6$, 35.3, 16.7, 16.3, 15.2, 15.1.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=261.1825$; found $=261.1828$.
(3S,3aR,7S,7aR)-5,5-Dicyclopropylhexahydro-2H-3,7a-methanobenzofuran-7-ol (10b)

The diastereoselective reduction was achieved upon dropwise addition of DIBAL-H ($0.323 \mathrm{mmol}, 323 \mu \mathrm{~L}$ of a 1.0 M solution in hexanes, 5.0 equiv.) to a solution of ketone $\mathbf{5 k}(15.0 \mathrm{mg}, 64.6 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 90 min the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. After removal of the solvents at reduced pressure the residue was purified by flash chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in n-pentane) to obtain 10.6 mg of product as a colourless oil (70\% yield).
$\mathbf{R}_{f}=0.12$ (10% EtOAc in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2923,2856,1733,1465,1289,765$.
$[\alpha]^{\mathbf{2 4}} \mathbf{D}=-32\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.11(\mathrm{dd}, J=3.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.73$ (virt. dt, $J=14.9,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.64-1.54$ (m, 2H), 1.46 (virt. t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.32 (dd, $J=14.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (dd, $J=13.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.56-0.44(\mathrm{~m}, 2 \mathrm{H}), 0.41-0.29(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.10(\mathrm{~m}$, 5 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 88.7,71.1,66.3,42.8,40.3,38.6,37.1,33.0,32.0,19.2$, 16.3, 1.4, 1.3, 0.2, -0.5.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=257.1512$; found $=257.1511$.

(3S,3aR,7aR)-3,3a,4,5-tetrahydro-2H-3,7a-methanobenzofuran-7-yl

trifluoromethanesulfonate (11)

$152 \mathrm{mg}(1.00 \mathrm{mmol})$ of $\mathbf{5 a}(e e$ of the sample $=92 \%)$ were dissolved in 3.5 mL of anhydrous THF and cooled to $-78^{\circ} \mathrm{C}$. Then, $1.50 \mathrm{~mL}(1.50$ mmol) of a 1 M solution in THF of LHMDS was dropwise added and stirred at the same temperature for 2 hours. 1.43 g (4.00 equiv.) of PhNTf_{2} in 3.0 mL of anhydrous THF were dropwise added and stirred at $-78^{\circ} \mathrm{C}$ for 30 min before removing the cooling bath and allowing the reaction mixture to stir for 12 hours at room temperature. The excess of LHMDS was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents at reduced pressure the residue was purified by flash chromatography on basic alumina ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in n-pentane) to obtain 225 mg of product 11 as a colourless oil (79\% yield).
$\mathbf{R}_{f}=0.23\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in n-pentane $)$.
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2894,1416,1204,1142,1039,993,898,860,811$.
$[\boldsymbol{\alpha}]^{\mathbf{2 4}} \mathbf{D}=-61\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{ddd}, J=8.2,3.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=12.7,7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,123.5,118.7$ (q, $J=320.3 \mathrm{~Hz}$), 82.4, 72.1, 53.1, 42.6, 39.9, 25.7, 22.8.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-73.8$.
HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}^{+},[\mathrm{M}+\mathrm{H}]^{+}=285.0403$; found $=285.0403$.

In an oven dried vial were placed $28.4 \mathrm{mg}(0.100 \mathrm{mmol})$ of $\mathbf{1 1}, 16.3 \mathrm{mg}$ (1.20 equiv.) of p-tolylboronic acid, 2.2 mg (0.10 equiv.) of $\mathrm{Pd}(\mathrm{OAc})_{2}$, 7.9 mg (0.30 equiv.) of PPh_{3} and dissolved in 2.0 mL of 1,4 -dioxane before adding $200 \mu \mathrm{~L}$ (2.00 equiv.) of a 1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. After purging the system with argon by bubbling for 5 min , the reaction mixture was stirred at rt until consumption of the starting material as judged by TLC (7 hours). Water was added to the reaction mixture, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents at reduced pressure the residue was purified by preparative thin layer chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in n-pentane) to obtain 16.5 mg of product $\mathbf{1 2}$ as a colourless oil (73% yield).
$\mathbf{R}_{f}=0.20$ ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2927,2850,1514,1436,1342,1137,920,797$.
$[\alpha]^{24} \mathbf{D}=+9\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{dd}, J$ $=5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41$ (ddd, $J=7.9,3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.95$ $-1.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 136.7,135.9,135.2,129.0$ (2C), 128.7, 126.1 (2C), 86.7, 71.5, 50.9, 44.0, 39.7, 25.5, 23.5, 21.2.

HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}=227.1430$; found $=227.1432$.

3-\{(1R,4S,5R)-1-(4-methylbenzoyl)-2-oxabicyclo[2.1.1]hexan-5-yl\}propanal (13)

$16.5 \mathrm{mg}(72.9 \mu \mathrm{~mol})$ of $\mathbf{1 2}$ were dissolved in 6.0 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-78^{\circ} \mathrm{C}$. The solution was purged with argon and oxygen before switching on the ozone generator. Ozone was bubbled into the solution until the latter turned to blue. Thus, any excess of ozone was removed by subsequent purging by oxygen and argon and 38.2 mg (2.00 equiv.) of PPh_{3} in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The reaction mixture was allowed to slowly warm to rt overnight and, after removal of the solvents under reduced pressure, the residue was purified by preparative thin layer chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in n-pentane) to obtain 14.8 mg of product $\mathbf{1 3}$ as a colourless oil (79% yield). The enantiomeric excess ($92 \% \mathrm{ee}$) was determined by reverse phase HPLC on a Daicel Chiralcel OD-RH column $\left[\tau_{\text {major }}=15.3 \mathrm{~min}, \tau_{\text {minor }}=14.8 \mathrm{~min}\right.$;
flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; acetonitrile:water = gradient from 20:80 to 100:0 in $30 \mathrm{~min} ; \lambda=$ 215 nm].
$\mathbf{R}_{f}=0.17$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in n-pentane).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2956,2922,2890,1723,1668,1605,1345,1167,927,740$.
$[\alpha]^{24} \mathbf{D}=-15\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.67$ (virt. t, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (ddd, J $=8.4,3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.31(\mathrm{~m}, 6 \mathrm{H}), 2.02-1.89(\mathrm{~m}$, 2 H), 1.85 (virt. $\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.6,195.3,144.6,133.1,129.7$ (2C), 129.3 (2C), 93.1, 71.2, 58.6, 42.8, 40.2, 38.6, 21.9, 19.3.

HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=259.1329$; found $=259.1331$.

(3S,3aR,8aS)-hexahydro-7H-3,8a-methanofuro[2,3-b]oxepin-7-one (14)

To a stirring solution of $45.7 \mathrm{mg}(0.300 \mathrm{mmol})$ of $\mathbf{5 a}(e e$ of the sample
 $=92 \%)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}) 202 \mathrm{mg}$ of m-CPBA $(77 \%, 3.00$ equiv.) were added. The reaction mixture was stirred overnight at room temperature until full conversion as judged by TLC ($10 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction mixture was subsequently washed with a 10% solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, a saturated solution of NaHCO_{3} and brine, before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent at reduced pressure the residue was purified by flash chromatography on silica gel (50% EtOAc in hexanes) to obtain 13.1 mg of the desired product $\mathbf{1 4}$ as a white solid (26% yield).
$\mathbf{R}_{f}=0.45\left(10 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=2920,1775,1736,1238,1170,1044,911$.
$\mathbf{m p}=70-80^{\circ} \mathrm{C}$
$[\alpha]^{24} \mathbf{D}=+26\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{dddd}, J=14.8,9.2,2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{dd}, J=7.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.05($ virt. $\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,105.7,69.8,55.3,40.5,36.4,36.1,25.6,21.9$.
HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}_{3}{ }^{+},[\mathrm{M}+\mathrm{Na}]^{+}=191.0679$; found $=191.0678$.

4-Bromobenzyl 4-[(1R,2S)-2-(hydroxymethyl)-4-oxocyclobutyl]butanoate (15)

$12.2 \mathrm{mg}(72.6 \mu \mathrm{~mol})$ of $\mathbf{1 4}$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.73 \mathrm{~mL})$, then 1.8 mg (0.20 equiv.) of DMAP, 67.8 mg (5.00 equiv.) of 4 bromobenzyl alcohol and $30.0 \mu \mathrm{~L}$ (3.00 equiv.) of triethylamine were added. After overnight stirring the solvent was removed and the residue was purified by flash chromatography on silica gel (from 10 to $50 \% \mathrm{EtOAc}$ in hexanes) to obtain 15.6 mg of the desired product 15 as a colourless oil (60% yield). The enantiomeric excess (92% ee) was determined by normal phase HPLC on a Daicel Chiralpak AS-H column $\left[\tau_{\text {major }}=34.8 \mathrm{~min}, \tau_{\text {minor }}=39.2 \mathrm{~min}\right.$; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; i-\mathrm{PrOH}: n$-heptane $=10: 90 ; \lambda=210 \mathrm{~nm}]$.
$\mathbf{R}_{f}=0.22$ (50% EtOAc in hexanes).
IR: $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=3456,2925,2856,1773,1734,1490,1352,1071,1013,802$.
$[\alpha]^{24} \mathbf{D}=+18\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, $3.87-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.96$ (ddd, $J=17.3,8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (ddd, $J=17.3,7.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.81$ - 1.64 (m, 3H), 1.63 - 1.47 (m, 1H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.2,173.3,135.1,131.9$ (2C), 130.1 (2C), 122.4, 65.6, 65.5, 62.0, 46.8, 34.0, 33.2, 28.4, 22.6.

HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrO}_{4}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}=355.0539$; found $=355.0540$.

10. NMR Spectra

Figure S2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 d}$ (500 and $126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 e}\left(500\right.$ and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 5}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 f}\left(500\right.$ and $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 8}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 9}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 h}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 2}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 3}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 i}\left(500\right.$ and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 5}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 6}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 7}$ (400 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 j}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 8}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 1 9}$ (400 and $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{S 2 1}$ (400 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 k}$ (300 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{4 I}\left(500\right.$ and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

Figure S21: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 d}\left(500\right.$ and $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S22: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $5 \mathrm{e}\left(500\right.$ and $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S23: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 f}\left(500\right.$ and $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S24: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 h}\left(400\right.$ and $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S25: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 i}\left(500\right.$ and $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S26: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 j}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S27: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 k}$ (500 and $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S28: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{5 l}\left(500\right.$ and $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S29: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 7 (500 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S30: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{1 0 a}\left(500\right.$ and $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S31: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{1 0 b}\left(500\right.$ and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S32: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra for compound $11\left(500,101\right.$ and $\left.376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S33: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 12 (400 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S34: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 13 (500 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S35: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $\mathbf{1 4}$ (400 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

Figure S36: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 15 (400 and $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$).

11. GC and HPLC Traces

Figure S37: GC chromatograms for compound 5a (enantioenriched and racemic samples).

Figure S38: GC chromatograms for compound $\mathbf{5 b}$ (enantioenriched and racemic samples).

Figure S39: GC chromatograms for compound $\mathbf{5 c}$ (enantioenriched and racemic samples).

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11,94	n.a.	305,963	70,690	94,81	n.a.	BMB
2	12,68	n.a.	18,339	3,867	5,19	n.a.	BMB*
Total:			324,302	74,557	100,00	0,000	

No.	Ret.Time min	n.a.	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	12,04	n.	174,902	40,644	49,93	n.a.	BM
2	12,77	n.a.	181,689	40,763	50,07	n.a.	MB
Total:			356,590	81,407	100,00	0,000	

Figure S40: HPLC chromatograms for compound 5d (enantioenriched and racemic samples).

Figure S41: GC chromatograms for compound 5e (enantioenriched and racemic samples).

Figure S42: HPLC chromatograms for compound $\mathbf{5 f}$ (enantioenriched and racemic samples).

Figure S43: GC chromatograms for compound $\mathbf{5 g}$ (enantioenriched and racemic samples).

Figure S44: GC chromatograms for compound $\mathbf{5 h}$ (enantioenriched and racemic samples).

Figure S45: GC chromatograms for compound $\mathbf{5 i}$ (enantioenriched and racemic samples).

Figure S46: GC chromatograms for compound 51 (enantioenriched and racemic samples).

Figure S47: GC chromatograms for compound $\mathbf{5 m}$ (enantioenriched and racemic samples).

Figure S48: GC chromatograms for compound 10a (enantioenriched and racemic samples).

Figure S49: GC chromatograms for compound 10b (enantioenriched and racemic samples).

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	14,80	n.a.	9,310	1,499	2,26	n.a.	BMB *
2	15,34	n.a.	356,240	64,875	97,74	n.a.	BMB *
Total:			365,550	66,374	100,00	0,000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	13,03	n.a.	125,305	22,512	49,65	n.a.	BM
2	13,28	n.a.	125,725	22,827	50,35	n.a.	MB
Total:				251,031	45,339	100,00	0,000

Figure S50: HPLC chromatograms for compound $\mathbf{1 3}$ (enantioenriched and racemic samples).

Figure S51: HPLC chromatograms for compound 15 (enantioenriched and racemic samples).

12. Absolute Configuration Determination by X-ray Analysis

Data were collected on a Bruker D8 Venture single crystal X-ray diffractometer equipped with a CMOS detector (Bruker Photon-100), a TXS rotating anode with MoK_{α} radiation $(\lambda=0.71073 \AA)$, and a Helios optic using the APEX3 software package. ${ }^{12}$ Measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT. ${ }^{13}$ Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS. ${ }^{13}$ Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. The structures were solved using SHELXT with the aid of successive difference Fourier maps, and were refined against all data using SHELXL in conjunction with SHELXLE. ${ }^{14-16}$ Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of $0.98 \AA$ and $\mathrm{U}_{\text {iso(H) }}=1.5 \cdot \mathrm{U}_{\text {eq(C) }}$. Non-methyl hydrogen atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $0.95 \AA$, respectively, and other $\mathrm{C}-\mathrm{H}$ distances of $1.00 \AA$, all with $\mathrm{U}_{\mathrm{iso}(\mathrm{H})}=1.2 \cdot \mathrm{U}_{\mathrm{eq}(\mathrm{C})}$. Nonhydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$ with the SHELXL weighting scheme. ${ }^{14}$ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. ${ }^{17}$ Images of the crystal structures were generated with Mercury. ${ }^{18}$ CCDC 2130504 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Diffractometer operator C. Jandl scanspeed 2-20 s per frame
dx 50 mm
4392 frames measured in 14 data sets
phi-scans with delta_phi $=0.5$
omega-scans with delta_omega $=0.5$
shutterless mode

Crystal data

$\underline{2\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \text { S }\right)}$
$M_{r}=\underline{351.38}$
Monoclinic, $\underline{P 2_{1}}$
Hall symbol: P 2yb
$a=\underline{6.5937(6)} \AA$
$b=\underline{22.424(2)} \AA$
$c=\underline{10.7128(11)} \AA$
$\beta=\underline{97.951(3)^{\circ}}$
$V=\underline{1568.7(3)} \AA^{3}$
$Z=\underline{4}$
$F(000)=\underline{736}$
Data collection
$D_{\mathrm{x}}=\underline{1.488} \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: ? K
Mo Ka radiation, $\lambda=\underline{0.71073} \AA$
Cell parameters from $\underline{9924}$
reflections
$\theta=\underline{2.6}-27.2^{\circ}$
$\mu=\underline{0.24 \mathrm{~mm}^{-1}}$
$T=\underline{100} \mathrm{~K}$
Fragment, colourless
$\underline{0.21} \times \underline{0.07} \times \underline{0.07} \mathrm{~mm}$

Bruker D8 Venture
diffractometer
Radiation source: TXS rotating anode
Helios optic monochromator
Detector resolution: $\underline{16}$ pixels mm^{-1}
phi- and ω-rotation scans
Absorption correction: multi-scan
SADABS 2016/2, Bruker
$T_{\min }=\underline{0.718}, T_{\max }=\underline{0.746}$
$\underline{54792}$ measured reflections

Refinement

Refinement on $\underline{F^{2}}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=\underline{0.030}$
$w R\left(F^{2}\right)=\underline{0.080}$
$S=\underline{1.06}$
6656 reflections
441 parameters
1 restraint
$\underline{0}$ constraints
Primary atom site location: iterative
Secondary atom site location: difference Fourier map

6656 independent reflections
$\underline{6512}$ reflections with $\underline{I>2 \sigma(I)}$
$R_{\text {int }}=\underline{0.022}$
$\theta_{\text {max }}=\underline{26.7^{\circ}}, \theta_{\text {min }}=\underline{2.6^{\circ}}$
$h=\underline{-8} \quad \underline{8}$
$k=\underline{-28} \quad \underline{28}$
$l=-13 \quad 13$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{W}=1 /\left[\Sigma^{2}\left(F \mathrm{O}^{2}\right)+(0.0417 P)^{2}+0.6965 P\right]$ WHERE $P=\left(F \mathrm{O}^{2}+2 F \mathrm{C}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=\underline{0.001}$
$\Delta \rho_{\max }=\underline{0.61} \mathrm{e}^{-3}$
$\Delta \rho_{\min }=\underline{-0.28} \mathrm{e}_{\AA^{-3}}$
Extinction correction: none
Extinction coefficient: =
Absolute structure: Flack, Parsons ${ }^{19,20}$
Absolute structure parameter: $\underline{0.017(7)}$

13. Determination of Quantum Yield

In a heat-gun dried vial, substrate 4a, catalyst (9-thioxanthenone or $\mathbf{6}$) if necessary, and n-undecane as internal standard ($50 \mathrm{~mol} \%$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or DCE (10 mm) under positive argon pressure. 2.5 mL of this solution were transferred to a sealable cuvette with a septum screw cap under argon pressure.

This solution was stirred and irradiated with a LED (for emission data, see data sheets) operated at a constant current $(700 \mathrm{~mA})$ at room temperature in a previously described setup. ${ }^{21}$ The light intensity that was passing the cuvette was continuously measured by a calibrated setup consisting of a cosine-corrector, a $600 \mu \mathrm{~m}$ fiber and an Ocean Optics USB4000 spectrometer. At specific time points, aliquots of $50 \mu \mathrm{~L}$ were taken and diluted with $50 \mu \mathrm{~L} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The samples were analyzed by calibrated achiral GLC (performed on an Agilent 6890 Series gas chromatograph using a HP-5 column; poly-dimethyl/diphenyl-siloxane, $95 / 5$ with a flame ionization detector) to obtain the concentration of the individual compounds.

The amount of formed product during an interval of irradiation was calculated by its concentration and the sample volume at that time point. From the measured light intensity, the absorbed energy was calculated by subtraction from the reference intensity of the LED, measured with only solvent in the cuvette and without substrate $\mathbf{4 a}$ or catalyst, and integration over time. Based on the maximum emission wavelength of the LED, the amount of absorbed photons during that interval was calculated.

With the quantum yield as the variable, a best fit of obtained and expected amount of product (amount of absorbed photons \times quantum yield) was performed by non-linear regression (least square fit, GRG nonlinear as solving method). Errors are estimated by a Monte Carlo approach at 90% confidence level (assumed standard deviation of concentration error $=5 \%, 1000$ runs). ${ }^{22}$ Figure S52 shows the calculated amount of
formed product of the measured aliquots over time for the four conducted experiments as noted in Table S1. The determined quantum yields are also listed. While the best fit of the uncatalyzed photoreaction is of first order, the catalyzed reactions are of zero order in the considered time frames, as expected.

Figure S52: Calculated amount of product over time in the four experiments (see Table S1) and best fit for quantum yield determination.

Table S1. Conducted quantum yield experiments.

$\#$	$\lambda_{\max }($ LED $)$	Solvent	Catalyst	Quantum Yield
1	368 nm	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	none	0.321 ± 0.034
2	382 nm	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	TXT $(10 \mathrm{~mol} \%)$	0.316 ± 0.011
3	424 nm	DCE	TXT $(2 \mathrm{~mol} \%)$	0.299 ± 0.055
4	424 nm	DCE	$\mathbf{6}(2 \mathrm{~mol} \%)$	0.003 ± 0.001

14. References

1) (a) D. Rackl, V. Kais, P. Kreitmeier and O. Reiser, Beilstein J. Org. Chem., 2014, 10, 2157-2165; (b)
D. Lenhart, A. Bauer, A. Pöthig and T. Bach, Chem. Eur. J., 2016, 22, 6519-6523.
2) R. Graßl, C. Jandl and T. Bach, J. Org. Chem., 2020, 85, 11426-11439.
3) J. Ma, X. Zhang, X. Huang, S. Luo and E. Meggers, Nat. Protoc., 2018, 13, 605-632.
4) K. Hirano, A. T. Biju, I. Piel and Frank Glorius, J. Am. Chem. Soc., 2009, 131, 14190-14191.
5) K. J. Emery, T. Tuttle and J. A. Murphy, Org. Biomol. Chem., 2017, 15, 8810-8819.
6) X. Jin, W. Xu, J. Yang, J. Lu, Y. Fu, L. Xie, Q. Zhu and W. Dong, Tetrahedron Lett., 2015, 56, 62876289.
7) L. Lempenauer, E. Duñach and G. Lemière, Org. Lett., 2016, 18, 1326-1329.
8) A. A. Frimer, V. Marks, P. Gilinsky-Sharon, L. Aljadeff and H. E. Gottlieb, J. Org. Chem., 1995, 60, 4510-4520.
9) M. Rodríguez, G. Font, J. Nadal-Moradell, A. Hernán-Gómez, M. Costas, Adv. Synth. \& Catal., 2020, 362, 5116-5123.
10) C. Zhao, D. Guo, K. Munkerup, K.-W. Huang, F. Li and J. Wang, Nat. Commun., 2018, 9, 611.
11) K. Winska, A. Grudniewska, A. Chojnacka, A. Białonska and C. Wawrzenczyk, Tetrahedron Asymmetry, 2010, 21, 670-678.
12) APEX suite of crystallographic software, APEX 3, Version 2019-1.0, Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
13) SAINT, Version 8.40A and SADABS, Version 2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2016/2019.
14) G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
15) G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.
16) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst., 2011, 44, 1281-1284.
17) International Tables for Crystallography, Vol. C (Ed.: A. J. Wilson), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199).
18) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. RodriguezMonge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Cryst., 2008, 41, 466-470.
19) H. D. Flack, Acta Crystallogr. Sect A, 1983, 39, 876-881.
20) S. Parsons, H. D. Flack and T. Wagner, Acta Crystallogr. Sect B, 2013, 69, 249-259.
21) F. M. Hörmann, C. Kerzig, T. S. Chung, A. Bauer, O. S. Wenger and T. Bach, Angew. Chem. Int. Ed., 2020, 59, 9659-9668.
22) This method was also applied in: A. Hölzl-Hobmeier, A. Bauer, A. Vieira Silva, S. M. Huber, C. Bannwarth and T. Bach, Nature, 2018, 564, 240-243.
