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1 Supporting Methods

1.1 Molecular dynamics simulations

1.1.1 Simulation parameters

Coarse-grained molecular dynamics simulations were performed with the GROMACS 2018.61 simula-
tion suite using the Martini 22 force field to represent the lipids and the refined polarizable models for
the Martini water and ions.3,4 The small molecules were modeled with a 5+1 bead type coarse-grained
(CG) model we created based on the 5+0 five-bead-type reduced Martini model published by Kanekal
et al.,5 which is compatible with Martini (Fig. S1). This reduced set of bead types facilitates a more
efficient coverage of chemical space while still accounting for all relevant chemical and physical prop-
erties to a level of accuracy comparable with Martini. We applied the standard force-field parameters
introduced for GPU acceleration6 and commonly found in recent Martini papers, with an integration
time step of δt = 0.02τ , where τ is the natural unit of time for the model. The simulations were kept at
constant temperature (T = 300 K) and pressure (P = 1 bar) using the Langevin thermostat7 and the
Parrinello-Rahman barostat.8,9 both as implemented in GROMACS. Semi-isotropic pressure coupling
was used for membrane simulations and isotropic pressure coupling for simulations in octane and wa-
ter. The corresponding coupling constants were τP = 12τ and τT = τ . Electrostatic interactions were
calculated with particle-mesh Ewald (PME) summation10 in systems containing polarizable water and
ions. A soft-core potential with the parameters set to sc-alpha = 0.5, sc-power = 1, and sc-sigma = 0.3
was applied in the free-energy calculations to ensure convergence around the fully uncoupled state.11–14

The membranes were generated with the CHARMM-GUI Martini maker.15 Phosphatidylglycerol
(PG) membrane simulations contained 118 lipid molecules (59 per layer) solvated in 1754 water beads
and 118 sodium ions; Cardiolipin (CL) membrane simulations contained 98 lipids (49 per layer) in 3287
water beads with 198 sodium ions. The bulk simulations were done in systems containing 336 octane
molecules and 974 water beads, respectively. Additionally, 28 sodium and 28 chloride ions were added
to the water system to adjust it to the same ion concentration as the membrane systems.
†Contributed equally to this work.
¶E-mail: andrewferguson@uchicago.edu, t.bereau@uva.nl
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Figure S1: Coarse grained 5+1 model created by extending the 5+0 five-bead-type reduced Martini
forcefield5 to include a charged bead type Q0± that can carry one positive or negative charge. In the
bottom row, the Martini 2 bead types are shown for reference. The T3 bead adopted from the 5+0
forcefield encodes both hydrogen-bond donor and acceptor properties, thereby relating closest to the
Martini 2 (14+4 ) Nda bead type.

1.1.2 Free-energy calculations

Solvation free energies16 ∆G were calculated by successively coupling the van der Waals (VdW) and
electrostatic interactions between the candidate structures and the environments. The free-energy dif-
ference between a quasi-vacuum state, where no interactions between the solute and the environment
are considered (state 0), and a fully solvated state (state 1) is estimated by transforming the Hamilto-
nian with a coupling parameter λ. This corresponds to the horizontal processes in Fig. S2: state 0 is
represented by the white colored solute, state 1 by the yellow solute. In the case of charged compounds
the systems were not kept at electrostatic equilibrium over all states. The net charges were non-zero
(q 6= 0) at state 0, and successively equilibrated during coupling of the electrostatic interactions until
they reach q = 0 at state 1. Although this increases the emergence of finite-size effects17,18 introducing
errors into our calculations, they are ameliorated by the fact that the errors are comparable between
the positive and negative net charges, whereas the selectivity signal clearly favors positive net charges.
We quantify these errors by performing Gaussian error propagation and verify that our uncertainties
are smaller than 10% of the corresponding free energy difference ∆∆G.

The efficiency of free-energy calculations depends on an optimal choice of intermediate states that
aims at increasing phase-space overlap. The simplest approach is to follow a linear path between
the two end-point Hamiltonians: H(λ) = λH1 + (1 − λ)H0. Here, the spacing of the intermediate
states was linear for the VdW interactions. For the electrostatic interactions a spacing of ∆λ ∝

√
λ

was applied, in addition to two additional steps early on to ensure smooth and small free-energy
contributions (Fig. S3). The absence of electrostatic interactions for neutral compounds and for all
compounds in the octane environment allows us to reduce the computational costs by only considering
vdW interactions. The solutes were constrained to an area of 1 nm around the interface region of the
membranes using two flat-bottom potentials as implemented in Gromacs (Fig. S4),

Vfb(ri) =
1

2
kfb [dg(ri;Ri)− rfb]2H [dg(ri;Ri)− rfb] , (1)

with the reference position Ri being the bilayer midplane (z=0 nm), the distance rfb from Ri the
flat-bottom potential is applied at, the force constant kfb = 1000 kJmol−1nm−2, the Heaviside step
function19 and the distance dg(ri;Ri) of the constrained solute from the reference position. The solute
was constrained in a layer with the layer normal parallel to the membrane normal z, see Fig. S7. The
detailed parameters can be found in the Gromacs simulation parameter files included in the ESI†20.
This was done to prevent the solutes from moving too far towards the bilayer midplane or into the
water phase, while still allowing them to adjust to different positions relative to z along the membrane
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Figure S2: Free energy calculation workflow, with numbers showing the three steps as in Figure S7.
Interactions are turned off in state 0 (white solute) and fully on in state 1 (yellow solute). Horizontal
arrows represent absolute solvation free energies, vertical arrows represent partitioning free energies
between different environments. Environments are (a) bulk water and ions, (b) CL bilayer, a water
phase and ions, (c) PG bilayer, water phase and ions, and (d) bulk octane. In (b) and (c), a section of
the water phase was removed from the images for aesthetic purposes.

interfaces. The position of the interface region for each lipid type was determined by the minima of
potentials of mean force (PMFs) calculated for all bead types making up the 5+1 model (Fig. S5).

The individual simulations for each intermediate state were done in succession to guarantee proper
equilibration of the systems, with the resulting particle configuration of each intermediate state serving
as the initial configuration for the next intermediate state. The free energies ∆G for the transformations
from state 0 to state 1 and their corresponding uncertainties were calculated using MBAR21 with tools
provided by the pymbar22 package.

We focus on the three environments water (W), interface (I), and bilayer midplane (M) and for
each membrane compute the transfer free energies ∆GM→I and ∆GW→I. These transfer free energies
correspond to the vertical processes in Fig. S2. To speed up the calculations we use bulk octane (O) as
proxy for the midplane environment23. In Fig. S6 we present calculated free energies for the transfer
of each CG bead from water into the midplane of PG and CL membranes versus those for transfer into
octane to demonstrate that this is a very good approximation. The λ multiplication factors are given
in the GROMACS parameter files provided with the ESI†20.

1.2 Free-energy workflow

The free-energy calculations were done in three steps, where the end of each step attempts to terminate
unsuitable compounds to minimize the overall computational cost. We first determine whether a
solute is likely to spontaneously partition at the membrane–water interface. We calculate the water
to interface transfer free energy in PG, ∆GW→I (see Fig. S2 and Fig. S7 (1)). The transfer free
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Figure S3: Free energy changes for every pair of coupling parameters λ for charged molecules. In the
first 40 steps, to the left of the vertical red line, the VdW interactions are coupled incrementally. In the
second 40 steps, to the right of the red line, the Coulomb interactions were coupled. The spacing for
the VdW interactions was linear, for the spacing for the Coulomb interactions a spacing of ∆λ ∝

√
λ

was applied. Additionally, the first two steps in the Coulomb part were inserted manually to keep the
size of the free energy change reasonably consistent over the whole calculation.

Figure S4: Approximate position of the two flat-bottom potentials used to prevent solutes from leaving
the interface region in the direction of the bilayer midplane or the bulk water phase. For the potential
function and parameters, see Eqn. 1.

energy requires an alchemical transformation at the membrane interface, where we loosely restrain the
compound to stay within an interval of z by means of flat-bottom potentials. Significant sampling
outside a narrow region around the interface is interpreted as compounds that are not interfacial. We
monitor the cumulative probability density for the positions of the solute along z over the simulation
trajectory of state 1, as shown by the histogram at step 1 in Fig. S7. The position at which the
inflection point occurs is highlighted in Fig. S8, informing us on the likely position of the compound
relative to the headgroup interface. We require the inflection point to fall within the third and seventh
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Figure S5: Potentials of mean force of individual CG beads. Minima indicate the position of the
interface region of (a) PG and (b) both PG and CL membranes along the membrane normal z. The
PMFs also give a clear indication which bead types will facilitate alignment of a small molecule with
the interface (T3, T4, Q0+), will drive insertion into the bilayer midplane (T5), or will increase the
tendency of the compound to stay in the bulk water phase.
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Figure S6: Transfer free energies of single beads from water to bulk octane and bilayer midplane for
(a) PG and (b) CL bilayers. A simple linear transformation is suitable to relate bulk octane to bilayer
midplane in both membrane environments, in good agreement with Menichetti et al.23 The slight
deviation from the linear relationship when involving charged beads can be attributed to long-range
electrostatic interactions between the charged beads and the lipid headgroups.

histrogram bins, a range optimized from tests on the individual beads of the 5+1 force field to contain
the bead types whose PMFs (Fig. S5) showed a clear minimum around the interface region of the
membranes. This area is represented by the gray area in Fig. S8. If the inflection point falls outside
this cutoff range, the candidate solute is considered non-interfacial and the free-energy workflow is
stopped early.
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Figure S7: PMFs of a solute in a PG and a CL membrane system with the individual free energy
workflow steps indicated at the corresponding sections of the curves. The numbers represent the steps
in the workflow at which the respective free energy calculations are done. The inset shows the position
probability histogram of the solute at the membrane interface region and the curves of the cumulative
probabilities once summed up from the midplane side and once from bulk water. The subscript
"AT" here clarifies that the free-energy changes are calculated using an alchemical transformations
approach, the PMF curves in the illustration are shown to clarify the positions in the system at which
the individual free energies are calculated.
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Figure S8: Cumulative probabilities of the positions of individual beads during the alchemical trans-
formation at the fully coupled state λ = 1. The beads were constrained between two flat-bottom
potentials as illustrated in Fig. S4, to give them sufficient translational freedom to adjust their po-
sition towards the membrane midplane or the bulk water phase. The grey shaded area denotes the
histogram bins containing the positions around the interface region. If the positions fall within the
gray area, we predict that the candidate molecule will preferentially align within the interface region
of the membranes and proceed to the next step of the alchemical free energy calculations to quan-
titatively verify this prediction based on transfer free energies. This approach was used as an early
exit scheme to quickly eliminate candidate molecules unlikely to preferentially partition near to the
membrane interface and therefore unlikely to exhibit selectivity between the PG and CL membrane
environments.

If the solute passed step 1, we ran simulations in bulk water and bulk octane to compute the
transfer free energies ∆GO→I and ∆GW→I for the PG membrane (Fig. S2 and Fig. S7 (2)). We now
quantitatively verify that the solute is indeed interfacial by monitoring the signs of both transfer free
energies. If either ∆GO→I > 0 or ∆GW→I > 0, insertion at the membrane interface is not spontaneous
and we terminate the free-energy workflow. Otherwise, we confirm that the candidate molecule does
indeed partition to the membrane interface and we declare the molecule “interfacial”.
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If steps 1 and 2 both complete without early exit, we then move on to step 3 comprising free-
energy calculations within the CL membrane environment (Fig. S2 and Fig. S7 (3)). The alchemical
transformation in the CL membrane environment allows us to finally compute the desired selectivity
measure ∆∆G = ∆GCL

W→I −∆GPG
W→I. A candidate with ∆∆G < 0 has a higher binding affinity to CL

than to PG, and it is this quantity that we seek to minimize in our molecular discovery active learning
pipeline.

1.3 Chemical-space embedding

The chemical space considered here is composed of a large number of small organic compounds, which
are inherently high-dimensional and discrete objects. Performing optimization within this design space
to identify candidates that display selectivity to CL-based membranes requires establishing a notion
of proximity between different compounds. Gómez-Bombarelli et al.24 proposed a framework for per-
forming optimization in discrete molecular spaces by representing molecules as continuous, real-valued
vectors within a learned low-dimensional embedding. This embedding provides a compact and contin-
uous representation that can be directly exposed to off-the-shelf optimization algorithms.

Here we generate a low-dimensional representation of our design space of small coarse-grained
compounds using regularized autoencoders (RAEs)25, a deterministic adaptation of the variational
autoencoder (VAE)26 encoder–decoder architecture capable of generative modeling and interpolation.
Active learning using Bayesian optimization is subsequently performed to navigate this embedded
chemical space with the objective of discovering structures that preferentially permeate into CL mem-
branes. The following sections outline the data processing, neural network architecture, and training
procedures that are used to generate the continuous representation of our discrete chemical space and
deployed within our active learning workflow.

1.3.1 Permutation-invariant graph RAEs

Coarse-grained compounds may be represented as graph-structured data, similar to atomic graphs,
where node features correspond to the identity of CG beads and the collection of edges connecting the
nodes reflect information on the coarse-grained topology. While graph neural networks27 have proven
to be powerful tools in processing graph-structured data while respecting permutational symmetries,
graph reconstruction from latent codes in encoder–decoder architectures stymies training due to no
efficient way to account for permutational invariance of the output in the reconstruction loss. Similar
in motivation to Simonovsky et al.28, where they evaluate reconstructions using approximate graph
matching with soft discretization, we perform exact graph-matching by explicitly considering all per-
mutations of the reconstructed graph to minimize the loss with respect to the input. While full graph
matching is certainly not scalable to large atomistic molecular graphs, this approach is tractable when
dealing with coarse-grained representations where relatively small five bead structures cover a large
fraction of the space of small drug-like molecules. Henceforth, we proceed to exhaustively consider
and embed within a unified latent space all possible coarse-grained topologies containing five or fewer
beads.

1.3.2 Representing coarse-grained compounds as graph-structured objects

Each coarse-grained structure k in our design space is represented as a graphG(k) = G(N (k), A(k), E(k)),
where N (k) is a matrix of bead type identities, A(k) is a binary adjacency matrix, and E(k) is a tensor of
edge features. In our application we use the 5+1 CG model with five non-charged unique bead types
and a charged bead representing two charge states adapted from Kanekal et al.5, where each node
feature N (k)

i ∈ {T1, T2, T3, T4, T5, Q0±} with {T1, T2, T3, T4, T5} carrying a charge of Q(k)
i = 0

and Q0± being the same bead type of Q0 but carrying a charge of Q(k)
i ∈{+1, -1}, respectively.

These node features N (k)
i can then be represented as the concatenation of a six-dimensional one-hot

vector {0, 1}6 for the six unique bead types (one of {T1, T2, T3, T4, T5, Q0}) along with a scalar
value Q(k)

i ∈ {-1, 0, +1} for the associated bead charge such that N (k)
i = [{0, 1}6||Q(k)

i ], where the ||
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operator represents concatenation. As we consider coarse-grained compounds with up to n = 5 beads
the adjacency matrix A(k) ∈ IR5×5 defines the connectivity of the beads within a graph. Self-loops are
also included corresponding to each node also being connected to itself. In the case where a molecule
has fewer than n = 5 nodes the additional rows and columns are padded with zeroes in A(k). Lastly, the
edges connecting the nodes E(k)

i,j are featurized according to the scalar parameter εi,j defining the depth
of the potential well describing the Lennard-Jones 6-12 interaction between each pair of associated bead
types N (k)

i , N
(k)
j . Fig. S9 illustrates the data processing procedure of how coarse-grained structures

are converted into these graph-structured representations that comprise our training dataset.

Figure S9: Schematic illustration of how each coarse-grained compound is represented as a graph-
structured object. A binary adjacency matrix A captures the connectivity of the beads reflected in the
coarse-grained topology. Features for each node Ni encode the identity of each coarse-grained bead
one of {T1, T2, T3, T4, T5, Q0+, Q0-}, where {T1, T2, T3, T4, T5} carry a charge of Qi = 0 and
{Q0+, Q0-} carry a charge of Qi = {+1,−1}, respectively. These node features Ni are represented
mathematically as the concatenation of a one-hot vector {0, 1}6 corresponding to the six unique bead
types (one of {T1, T2, T3, T4, T5, Q0}) and a scalar value corresponding to the associated bead charge
Qi ∈ {−1, 0,+1} such that Ni ∈ [{0, 1}6||Qi]. Finally, the edge features Ei,j encode the well-depth of
the Lennard-Jones 6-12 interaction εi,j between beads Ni and Nj .
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1.3.3 Encoder

To encode a coarse-grained molecular graph G(k) into a fixed-size latent code Encoder(G(k)) = z(k) ∈
IRd we use a message passing neural network (MPNN) architecture similar to that originally employed
by Glimer et al.29 to predict quantum mechanical properties of small organic molecules. First, a
learned embedding layer Ξθ : {0, 1}6 7→ IRde transforms the one-hot identity of each bead type (one
of {T1, T2, T3, T4, T5, Q0}) into a de-dimensional dense vector. Embedding layers are frequently
used in the context of natural language processing and word embeddings as they offer the ability to
derive more complex relations between categorical data. The embedding layer representation Ξθ(Ni)
for each node i is then concatenated with a Qi ∈ {+1, 0,-1} scalar specifying the bead charge on node
i and is then processed with a fully connected layer Ωθ : IRde+1 7→ IRdh that assigns an initial hidden
state Ωθ([Ξθ(Ni)||Qi]) = ht=0

i ∈ IRdh to each node i. We then perform message passing by successively
updating the hidden states h(t+1)

i for each node using information accumulated from neighboring nodes
in the form of messages m(t+1)

i :

m
(t+1)
i =

1

|N (i)|
∑

j∈N (i)

ΨΘ(Ei,j) · htj (2)

h
(t+1)
i = GRU(m

(t+1)
i , hti), (3)

where · represents matrix multiplication, N (i) is the set of nodes connected to node i, GRU is a Gated
Recurrent Unit30 cell as used in the gated graph neural network variant of message passing31, and
ΨΘ : IR1 7→ IRdh×dh is a multi-layer perceptron (MLP) that maps each edge feature Ei,j into a dh× dh
dimensional matrix. After total of T = 5 rounds of message passing is performed where Eqn. 2 and
Eqn. 3 are successively applied. Following this message passing phase, we use the set2set model of
Vinyals et al.32 as a global pooling operator to aggregate the terminal hidden states {hTi }i∈G(k) to yield
a permutationally invariant graph-level output:

hG(k) = set2set({hTi }i∈G(k)). (4)

Finally, another MLP ΦΘ processes this representation hG(k) to finally yield the latent representation
z(k) ∈ IRd of the coarse-grained structure within our embedded chemical space.

z(k) = ΦΘ(hG(k)). (5)

1.3.4 Decoder

The purpose of the decoder is to reconstruct the composition matrix N̂ (k) and adjacency matrix
Â(k) of compound k from the latent code z(k) = Encoder(G(k)) derived from the encoder such that
(N̂ (k), Â(k)) = Decoder(z(k)). We use a partially auto-regressive model for the decoder where first
the bead compositions N̂ (k) are reconstructed directly from the latent code z(k) and subsequently the
adjacency matrix Â(k), and optionally the edge features Ê(k), are reconstructed conditioned on both the
latent code z(k) and the reconstructed composition N̂ (k). For our purposes we elect not to reconstruct
the edge features Ê(k) because the identity of each compound is fully specified by the collection of
bead identities and their connectivity alone.

Two MLPs φB and φC are used to recover the reconstructed composition N̂ (k) from the latent
code z(k). The MLP φB : IRd 7→ IR5×6 maps the latent code z(k) ∈ IRd to a matrix where each row
represents softmax probabilities for each of the bead types (one of {T1, T2, T3, T4, T5, Q0}). The
MLP φC : IRd 7→ IR5 predicts a vector of bead charges Q̂(k) = φC(z(k)) such that Q̂(k)

i ∈ [−1,+1] is the
predicted charge of node i in molecule k. The concatenation of φB and φC defines the reconstructed
composition matrix N̂ (k) sufficient for predicting the identity of each input bead (bead type and charge):

N̂ (k) = [φB(z(k))||φC(z(k))]. (6)

9



A function φA uses the i, j rows of the reconstructed composition matrix N̂ (k)
i , N̂

(k)
j , and the latent

code z(k) to assign entries for each component of the reconstructed adjacency matrix Â(k)
i,j ,

Â
(k)
i,j = φA({N̂ (k)

i , N̂
(k)
j }, z(k)). (7)

As we know that the output adjacency matrix must be symmetric, we can construct φA such that the
function is invariant to the order the N̂ (k)

i , N̂
(k)
j to explicitly enforce that Â(k)

i,j = Â
(k)
j,i . Three separate

MLPs φ(i)
A , φ(ii)

A , and φ
(iii)
A are used to compose the function φA. First, φ(i)

A : IR7 7→ IRdn is used
to transform the reconstructed node features N̂ (k)

i into a dn-dimensional intermediate representation
while the MLP φ

(ii)
A : IRd 7→ IRdz similarly transforms the latent code z(k) into a dz-dimensional

intermediate representational. The MLP φ
(iii)
A : IRdn+dz 7→ IR1 then combines the concatenation of

the outputs of φ(i)
A and φ

(ii)
A to predict a single scalar value for each adjacency matrix entry Â(k)

i,j =

φ
(iii)
A ([

φ
(i)
A (N̂

(k)
i )+φ

(i)
A (N̂

(k)
j )

2 ||φ(ii)
A (z(k))]). By additive construction of φ(i)

A (N̂
(k)
i ) + φ

(i)
A (N̂

(k)
j ) as an input

we ensure that φA remains invariant to the order of N̂ (k)
i and N̂ (k)

j , therefore explicitly enforcing the

reconstructed adjacency matrix is symmetric such that Â(k)
i,j = Â

(k)
j,i . Although not done here, the edge

features Ê(k)
i,j can analogously be predicting by specifying another function Ê(k)

i,j = φE(N̂
(k)
i , N̂

(k)
j , z(k)).

The overall action of the decoder is therefore to reconstruct the composition matrix and adjacency
matrix from the latent code (N̂ (k), Â(k)) = Decoder(z(k)) such that the reconstructions fully specify
the identity of the coarse-grained molecule used to originally derive the latent code from the input
graph structured representation z(k) = Encoder(G(k)). The next section describes the procedures used
to train the RAE neural network from these reconstructions and inputs.

1.3.5 Training

The training objective L consists of three terms: the reconstruction loss LREC , the RAE loss LRAE ,
and the regularization LREG. In some cases of graph reconstruction information contained in the edge
attributes E(k) may be necessary for complete reconstruction, for example in defining the bond order
in atomic graphs. In our case, however, only the composition N̂ (k) and adjacency matrix Â(k) are alone
sufficient to reconstruct the identity of the input compound and thus we only consider contributions
from those terms in the loss as we find empirically this yields higher fidelity reconstructions. The
reconstruction loss LREC for a single training sample is given by:

LREC = argmin
π

[ 5∑
i=1

[
− log(

exp((PπN̂
(k))i,j∗)∑6

j=1 exp((PπN̂ (k))i,j)
) + ((PπN̂

(k))i,7 −Q(k)
i )2−

5∑
j=1

(A
(k)
i,j log((PπÂ

(k)P Tπ )i,j) + (1−A(k)
i,j ) log(1− (PπÂ

(k)P Tπ )i,j)
]]

(8)

Where Pπ are all valid permutation matrices of size five indexed by π and j∗ indicates the correct class
label for the bead identity (one of {T1, T2, T3, T4, T5, Q0}) for the given node i determined from
the ground truth input N (k)

i . The first term in Eqn. 8 is a categorical cross entropy for predicting
the correct bead type from the first six columns of N̂ (k) to match the one-hot representation of the
ground truth bead type (one of {T1, T2, T3, T4, T5, Q0}), the second term is a mean squared
error between the ground truth charge Q(k)

i and the predicted bead charge N̂ (k)
i,7 = Q̂

(k)
i ∈ [−1,+1]

given by the final column of each N̂i row, and the third term is a binary cross entropy between the
reconstructed adjacency matrix Â(k) and the ground truth A(k). By explicitly enumerating all valid
node permutations π for each reconstruction and selecting the argmin we can ensure that our decoder,
and hence our entire network, remains permutationally invariant to the ordering of the nodes. Also,
while in this framework the edge attributes are not explicitly learned, the network can nonetheless use
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information encoded in the edge attributes to help shape the embedding and improve accuracy. The
RAE loss LRAE takes the form,

LRAE =
1

2
||z(k)||22 =

1

2

d∑
i=1

(z
(k)
i )2, (9)

where z(k) ∈ IRd is the latent code produced by the encoder z(k) = Encoder(G(k)). Intuitively, this
term serves to restrict the size of the latent space helping to prevent unbounded optimization. Lastly,
the LREG term regularizes the decoder to promote a “smooth” embedding. Comparatively, this reg-
ularization is implicitly done when training variational autoencoders (VAE)26 through the injection
of noise into the decoder via the reparameterization trick, but ultimately the purpose of this regu-
larization is to enforce that points near one another in the latent space should be decoded to similar
structures in the output data space. A number of regularization techniques such as weight decay,
spectral normalization, or gradient penalty have shown to be effective regularizes in RAE training by
enforcing the decoder have a bounded Lipschitz constant.25 In this work we opt to use an L2 norm
weight decay on the parameters of the decoder as our regularizer of choice,

LREG = LL2 = ||WDecoder||2. (10)

The complete loss L which is minimized during training takes the final form,

L = LREC + λRAELRAE + λREGLREG. (11)

The RAE is trained end-to-end with mini-batch gradient descent using the Adam optimizer.33 Table 1
provides a full list of hyperparameters and specifications for the different neural network components.
The PyTorch framework was used to develop, train, and build the RAE model.34 A high-level illustra-
tion of the neural network architecture and data flow for our RAE is shown in Fig. S10.

We qualitatively validate our latent space embedding represents a smooth encoding of our coarse-
grained topology space by performing latent space interpolation in Fig. S11 and confirming that chemi-
cally similar structures are encoded as proximate points within the latent space. Further investigations
into the latent space are shown in Fig. S12 displaying the latent space locations of various coarse-
grained typologies and in Fig. S13, Fig. S14, Fig. S15, Fig. S16 and Fig. S17 showing the latent space
color-coded by different graph-related properties.

Table 1: Regularized autoencoder neural network hyperparame-
ters and specifications. Specifications for MLP structure is defined
by a sequence of operations performed on an input. For example,
[Linear(10, 50), Leaky_ReLU, Linear(50, 100)] signifies a linear
layer transforms a 10-dimensional input into a 50-dimensional out-
put that is then acted upon by a Leaky_ReLU non-linearity and
lastly a linear layer transforms these activations into the final 100-
dimensional output.

Parameter Description Value/Specification
d Latent space dimension 16
de Intermediate dimension of the bead-type em-

bedding layer within the encoder
16

dh Intermediate hidden dimension in the en-
coder layers

64

dn Intermediate hidden dimension of trans-
formed reconstructed node features in the de-
coder layers

256

dz Intermediate hidden dimension of trans-
formed latent space representation in the de-
coder layers

256

11



ΩΘ Layer within the encoder that transforms
embedded node features concatenated with
a scalar bead charge [ΞΘ(Ni)||Qi] into the
initial hidden states ht=0

i

[Linear(de+1,dh), Leaky_ReLU)]

ΨΘ MLP within the encoder that transforms
edge features Ei,j into a dh × dh represen-
tation

[Linear(1,128), Leaky_ReLU,
Linear(128,dh × dh)]

ΦΘ MLP within the encoder that transforms
output of set2set global pooling operator
hG(k) into latent space representation z(k)

[Linear(2dh,dh), Leaky_ReLU,
Linear(dh,d)]

φB MLP within the decoder that transforms
the latent space representation z(k) into re-
constructed bead-types defining the first six
columns in the reconstructed node features
N̂ (k)

[Linear(d,128), Leaky_ReLU,
Linear(128,256), Leaky_ReLU,
Linear(256,5×6), Sigmoid]

φC MLP within the decoder that transforms the
latent space representation z(k) into recon-
structed bead charges Qi defining the last
column in the reconstructed node features
N̂ (k)

[Linear(d,128), Leaky_ReLU, Lin-
ear(128,256), Leaky_ReLU, Linear(256,5),
Tanh]

φ
(i)
A MLP within the decoder that transforms

reconstructed node features N̂i into a dn-
dimensional intermediate representation

[Linear(7,128), Leaky_ReLU,
Linear(128,dn), Leaky_ReLU]

φ
(ii)
A MLP within the decoder that transforms the

latent space representation z(k) into a dz-
dimensional intermediate representation

[Linear(d,128), Leaky_ReLU,
Linear(128,dz), Leaky_ReLU]

φ
(iii)
A MLP within the decoder that

transforms the concatenation
[
φ
(i)
A (N̂

(k)
i )+φ

(i)
A (N̂

(k)
j )

2 ||φ(ii)
A (z(k))] into scalar-

valued entries of the reconstructed adjacency
matrix Âi,j

[Linear(dn+dz,128), Leaky_ReLU,
Linear(128,256), Leaky_ReLU, Lin-
ear(256,128), Leaky_ReLU, Linear(128,1),
Sigmoid]

Learning rate Learning rate used by the Adam optimizer 3.5 × 10−4

β1,β2 Coefficients used by the Adam optimizer for
computing running averages of gradient and
its square

β1=0.9, β2=0.999

Batch size Mini-batch size used when performing mini-
batch gradient descent

64

λRAE Weight of the RAE loss term LRAE 2.0
λREG Weight of the L2 weight decay weight in the

regularization loss term LREG applied to the
parameters of the decoder WDecoder

0.1

Epochs Number of training epochs performed 5000
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Figure S10: Schematic illustration of data flow in the Regularized AutoEncoder (RAE) neural network
architecture used to generate our latent space embedding. Each compound k within our molecular
design space is exposed to the RAE as a graph G represented jointly using a node-identity matrix N
encoding the identity and charge of each coarse-grained bead, an adjacency matrix A capturing the
connectivity of the beads in the graph, and an edge tensor E encoding edge features related to the
Lennard-Jones 6-12 parameter in the coarse-grained force field. A message passing neural network
(MPNN) encoder is used to process this graph-structured object G = G(A,N,E) yielding the latent
code z = MPNN(G). This latent code z is then first used to reconstruct the node features by
using two MLPs to separately reconstruct the bead identity and bead charge N̂ = [φB(z)||φC(z)].
The reconstructed adjacency matrix Â, and optionally the reconstructed edge features Ê, are then
predicted autoregressively using together the reconstructed node features N̂ and the latent code z:
Â = φA(N̂ , z), Ê = φE(N̂ , z). We can further enforce that the reconstructed adjacency matrix be
symmetric (Âi,j = Âj,i) by ensuring the function φA remain invariant to the order of the rows Ni and
Nj : Âi,j = φA({N̂i, N̂j}, z).
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Figure S11: Latent space interpolation between embedded molecules. Two molecular latent space
representations are chosen at random and a linear interpolation is performed within the full-dimensional
latent space. The embedded molecular representation nearest to each interpolate is displayed alongside
the Euclidean latent space distance to the starting molecule on the right. A three-dimensional PCA
projection and the corresponding interpolation points is shown on the left. Proximate latent space
embeddings are encoded as topologically similar coarse-grained compounds, a property illustrative of
a smooth latent space embedding.
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Figure S12: Locations within the latent space of different molecular topologies.
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Figure S13: 3D PCA of latent space colored according to the number of beads within each graph.

Figure S14: 3D PCA of latent space colored according to the number of edges within each graph.

Figure S15: 3D PCA of latent space colored according to the average clustering coefficient of each
graph.
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Figure S16: 3D PCA of latent space colored according to the degree assortavity of each graph.

Figure S17: 3D PCA of latent space colored according to the S metric of each graph.
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1.4 Active learning

Having defined a low-dimensional embedding of the available coarse-grained candidates and an objec-
tive function that solves the forward problem of evaluating the preferential selectivity of a permeant
into CL-based membranes using alchemical free-energy calculations, we set out to navigate our chem-
ical space to identify compounds with exceptionally high CL selectivity. As the evaluation for each
molecule involves performing an expensive series of molecular dynamics simulations, it behooves us to
minimize the number of such evaluations in the interest of time and computational cost. We choose to
tackle this problem with active learning using Bayesian optimization, which has found popular use in
molecular and drug design where it has been used, for example, to design self-assembling π-conjugated
peptides35 and optimize potency of cyclin-dependent kinase 2 inhibitors.36

Active learning37 is an adaptive framework wherein a Gaussian Process Regression (GPR) surro-
gate model is fit on a labeled subset of the design space to predict the fitness of the pool of untested
candidates. These surrogate model predictions are then purposed to select the next most promising
unsampled candidates to query using Bayesian optimization. Newly selected candidates are then eval-
uated for fitness, using a black-box non-differentiable forward model involving molecular simulations
in this application, and incorporated back into the set of labeled data where the surrogate model is
refit and new candidates are selected again. This process iteratively proceeds until a time/cost budget
is reached, the pool of available candidates is exhausted, or some convergence criterion is met.

1.4.1 Selecting round 0 molecules

Each coarse-grained compound k in our design space is represented as a d-dimensional real-valued
vector z(k) ∈ IRd embedded in the learned RAE latent space. Prior to beginning iterations in the
active learning cycle we select a subset of molecules that are evaluated using our forward model to
comprise our initial labeled data set. We call this initial set of molecules round 0.

The surrogate model used to suggest candidates in future rounds is conditioned on all the molecules
for which the forward problem has been evaluated to date. Hence, our initial set of molecules should
represent a broad and representative sampling of our design space to allow the GPR surrogate model
to fit a better estimate of the property landscape. Randomly selecting these round 0 molecules from
the pool of available candidates fails to take into account the data distribution in the embedded latent
space, which can potentially lead to high density regions being under-sampled resulting in poor model
performance and poor initial latent space coverage.

To ensure our round 0 compounds provide this broad and representative coverage of our embedded
latent space we perform k-mean clustering to identify 100 centroids, using the k-means++ initialization
scheme38. Clustering is performed on the latent space embedding of all N molecules, each of dimension
d, defining the data matrix X ∈ IRN×d passed to the k-means algorithm. From the 100 identified
centroids {ci ∈ IRd}100

i=1 the molecule closest to each centroid ci is selected as part of the round 0
dataset: {argmink||z(k) − ci||2}100

i=1. Free-energy calculations are performed on these 100 molecules to
furnish our initial round 0 dataset.

1.4.2 Gaussian process regression

Compounds that have undergone alchemical free energy calculations to evaluate their fitness y(k) =
f(z(k))∀k ∈ {sampled molecules} comprise a labeled subset of the full chemical space. In our present
application y(k) = −∆∆G(k) and we seek to maximize y(k) and (i.e., minimize ∆∆G(k)) in order to
discover the most thermodynamically selective molecules for CL membranes. The remaining molecules
z(k)∀k /∈ {sampled molecules} are all potential candidates for future sampling. By training a surrogate
model to predict the fitness of these not simulated candidates, along with an uncertainty to reflect
the confidence in our predictions, we can direct sampling to profitable regions of chemical space by
balancing selecting points with high predicted fitness (exploitation) and high uncertainty (exploration).
We choose Gaussian Process Regression (GPR) as our surrogate model of choice for this supervised
regression task, as it represents a non-parametric Bayesian regression technique that comes with built-
in uncertainty estimates37,39–41. The quality of these predictions will depend on both the quantity
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of training data and “smoothness” of the latent space; the predictions will become more accurate
as training data is accumulated round-by-round throughout active learning, while chemically similar
molecules embedded near one another in the latent space helps promote a smooth property landscape
with respect to the embedding amenable for optimization.

Given a set of n training data points X = {(z(k), y(k))}nk=1 representing the collection of learned
RAE latent space molecular representations {z(k)}nk=1 and their corresponding evaluated fitness mea-
surements {y(k) = f(z(k))}nk=1, we build a GPR to predict the fitness of allN molecules in our molecular
design space {z(1), z(2), . . . , z(N)}. We adopt the squared exponential kernel as our covariance function
for the GPR

k(z, z′) = ν2 exp

(−||z− z′||2
2γ

)
(12)

where the hyperparameter γ is the characteristic length scale of the kernel and ν2 the marginal func-
tion variance. Fitting the GPR involves learning the parameters γ and ν2 determined via maximum
likelihood estimation optimizing the log marginal likelihood of the data with respect to the kernel
hyperparameters41, making use of the scikit-learn42 GPR implementation.

Uncertainties inherent to each measurement σ(k) are incorporated through Tikhonov regulariza-
tion43 where σ = [σ(1), σ(2), . . . , σ(n)]T is added to the diagonal of the n-by-n covariance matrix K
when calculating the predicted mean µ(z∗) and uncertainty σ(z∗) of a point z∗ in our design space
used to model each prediction as a Gaussian distributed variable y∗ = N (µ(z∗), σ(z∗))

µ(z∗) = K(z∗, ·)[K + σT I]−1y (13)

σ2(z∗) = k(z∗, z∗)−K(z∗, ·)[K + σT I]−1K(z∗, ·)T (14)

where y = [y(0), y(1), . . . , y(n)]T , Ki,j = k(z(i), z(j)), K∗,· = [k(z∗, z
(1)), k(x∗, z

(2)), . . . , k(z∗, z
(n))],

K∗,∗ = k(z∗, z∗), I is a n-by-n identity matrix, and ∗ denotes a test point (i.e., not part of the training
set). Ultimately, this surrogate model serves to bypass expensive direct calculation in favor of cheaply
available predictions, eliminating the need to exhaustively simulate all molecules in our design space.

To help provide some intuition into the GPR we show in Fig. S18 and Fig. 1.4.2 the terminal GPR
posterior mean µ and standard deviation σ projected onto the leading PCA coordinates of our latent
space. A correlation plot between the terminal GPR predicted and ground truth calculated ∆∆G
values for all inter-facial molecules is also presented in Fig. S20.
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Figure S18: Predicted posterior mean µ (top) and uncertainty σ (bottom) from the terminal GPR
projected onto the top 3 PCA coordinates.
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Figure S19: Predicted posterior mean µ and uncertainty σ from the terminal GPR projected onto
the top 8 PCA coordinates (∼81% variance retained). The lower triangular half shows the predicted
posterior mean µ, while the upper triangular half shows the predicted posterior standard deviations
σ. The main diagonal shows the distribution of values for all embedded molecules within each PCA
coordinate.
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Figure S20: Correlation plot between calculated and predicted ∆∆G for all 439 interfacial molecules
for which alchemical free energy calculations were conducted using leave-one-out cross-validation of the
trained terminal GPT model. Error bars in the predicted ∆∆G correspond to uncertainties predicted
by the GPR model, whereas those in the calculated ∆∆G denote the uncertainties in our free energies
estimated by singular value decomposition included in the MBAR method.21
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1.4.3 Bayesian optimization

Once we have fit a GPR surrogate model to predict the preferential insertion into CL-based membranes
for each compound, we set out to navigate the design space by iteratively querying new coarse-grained
compounds to simulate balancing both selecting candidates with high predicted performance (so called,
exploitation) and potentially good candidates with high predicted uncertainty (exploration). Bayesian
optimization (BO) provides a robust black-box optimization framework that purposes the posterior
mean and uncertainties provided by the GPR predictions to suggest candidates that are most effective
to test next which strike this explore-exploit balance.

1.4.4 Acquisition function

Bayesian optimization is capable of performing optimization of expensive black-box functions by opti-
mizing the surrogate objective defined by the GPR through an acquisition function which determines
the next best candidates based on their predicted fitness. Of the various acquisition functions avail-
able37, we elect to use the popular Expected Improvement (EI) acquisition function that balances
exploitation and exploration to guide sampling towards candidates predicted to possess the maximum
expected gains in fitness. Mathematically, the EI acquisition function takes the form,

EI(z∗) =

{
(µ(z∗)− f(z+)− ξ)Φ(Z) + σ(z∗)φ(Z) σ(z∗) > 0

0 σ(z∗) = 0
, (15)

Z =

{
µ(z∗)−f(z+)−ξ

σ(z∗)
σ(z∗) > 0

0 σ(z∗) = 0
, (16)

where f(z+), z+ ∈ {z(1), z(1), . . . , z(n)} is the highest fitness value of all candidate molecules sampled
to date, Φ and φ are the standard normal distribution cumulative distribution function and probability
density function, and ξ is a parameter that controls the trade-off between exploration and exploita-
tion. Exploitation and exploration are controlled by the first and second terms of Eqn. 15, respectively:
small values of ξ will encourage exploitation by selecting candidates with higher predicted mean, while
exploration is driven by large values of ξ promoting selection of candidates with high posterior uncer-
tainty37. The candidate point z† that maximizes the acquisition function z† = argmaxk EI(z(k); z(k) /∈
{z(1), z(1), . . . , z(n)}) is selected as the next best candidate to sample in the available design space.
Throughout this work we adopt the fixed value of ξ = 0.01 as suggested in the literature.37,44

1.4.5 Batched sampling

In typical sequential sampling at each BO iteration the EI acquisition function is evaluated on all
untested candidates and the compound that maximizes the EI acquisition is selected for evaluation for
the next round. A limitation of this strategy lies in only being able to evaluate one candidate each
round. Batched sampling techniques enable us to utilize parallel compute resources by selecting mul-
tiple candidates in each round. From an information theoretic perspective this introduces inefficiency,
since the model does not get the benefit of reincorporating new measurements on each newly sampled
point in a sequential fashion. From a temporal perspective, however, we expedite sampling of the
design space by considering multiple candidates per round. In this work, we elect to use the Kringing
Believer45 method as our batched sampling strategy.

Given the set of labeled data at any particular instant in the active learning process {z(1), z(2), ..., z(n)},
the Kringing Believer algorithm selects a batch of q candidates by first selecting the candidate z(n+1) =
argmaxk EI(z(k); z(k) /∈ {z(1), z(2), ..., z(n)}) that maximizes the EI acquisition function. The pre-
dicted posterior mean µ(z(n+1)) and uncertainty σ(z(n+1)) of the selected point z(n+1) is then ap-
pended to the training dataset and the surrogate model is refit to the now extended training dataset
{z(1), z(1), . . . , z(n), z(n+1)}. The next molecule is then selected as z(n+2) = argmaxk EI(z(k); z(k) /∈
{z(1), z(2), ..., z(n+1)}). This process iteratively continues until all q compounds have been selected. All
q candidates are then subjected to parallel screening as a batch by performing alchemical free energy
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calculations. Once these calculations are complete, the labeled data set is augmented with the latent
space representations and calculated fitness values {(z(k), y(k))}qk=1 of these q newly screened molecules.
Based on our available parallel compute resources, we selected a batch size of q = 60.

1.4.6 Non-interfacial molecules

Each batch of compounds selected within each active learning cycle are passed onto testing through
a series of molecular dynamics simulations and free-energy calculations. In an effort to expedite
sampling, the free-energy workflow is terminated early for some compounds after the first stage if
they are deemed unlikely to spontaneously insert into the lipid bilayer. Hence ∆∆G measurements
for the preferential partitioning for these compounds are not available, however these compounds
nevertheless are informative of which regions of latent space may be less profitable to explore. By
assigning artificially unfavorable ∆∆G values to these non-interfacial compounds we can encourage the
GPR to avoid assigning favorable posterior means and uncertainties predictions to these compounds and
therefore better enable the EI acquisition function to select compounds in the vicinity of more profitable
latent space regions. An artificially poor ∆∆G mean µ̃ and uncertainty σ̃ are assigned to these non-
interfacial compounds which are treated as hyperparameters during each active learning cycle. The
non-interfacial uncertainty is fixed at σ̃ = 0.01, chosen to be smaller than the smallest observed
uncertainty of σmin ∼ 0.012. The assigned mean value µ̃ is motivated by selecting a value larger than
the largest observed ∆∆G value µmax ∼ 0.5. By assigning artificially poor mean values µ̃ > µmax we
can discourage the acquisition function from selecting candidates near these non-interfacial compounds
when operating in the exploitative regime, and correspondingly assigning artificially small uncertainties
σ̃ < σmin discourages selecting compounds due to exploration.

We show in Fig. S21 and Fig. S22 the latent space locations of all sampled interfacial and non-
interfacial molecules simulated throughout our active learning screen projected into the leading PCA
coordinates of the latent space embedding. Our active learning procedure effectively guides selection
to regions of latent space dense with high-performing (low ∆∆G) candidates, while deterring selection
in regions of latent space consisting primarily of non-interfacial molecules.
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Figure S21: Locations of latent space representations of all sampled molecules projected into 4 di-
mensions using PCA and colored according to the measured ∆∆G values. Dark blue colored points
represent molecules identified as non-interfacial. Select regions of latent space are more densely popu-
lated with high performing (i.e., low ∆∆G) molecules.
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Figure S22: Locations of latent space representations of all sampled molecules projected into the
top 8 PCA coordinates (∼81% variance retained). Dark blue points represent molecules identified as
non-interfacial. The lower triangular half shows the individual latent space locations of all simulated
candidate molecules, while the upper triangular half shows the density of all interfacial and non-
interfacial molecules within the latent space. The main diagonal shows the distribution of values for
only the interfacial and non-interfacial molecules along each latent space PCA coordinate.
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1.5 Inference of design rules using LASSO regression

Having performed seven rounds of active learning we can proceed to interrogate our accumulated data
to discover chemical motifs most predictive of ∆∆G using interpretable linear models employing graph
representational learning. This technique was recently employed by Bhattacharjee et al.46 to learn
linear maps between small molecule thermochemical properties calculated at various levels of theory.
Given our dataset of N = 439 interfacial compounds selected throughout our active learning procedure,
we enumerate k = 1608 topologically unique subgraphs with 1 to 5 coarse-grained beads, which we
find to be contained within these N compounds. Each coarse-grained structure n is then featurized
according to the representation of different subgraphs Xn ∈ IRk=1608, normalized to yield a per-
compound subgraph frequency

∑k=1608
k=1 Xn,k = 1. However, because smaller subgraphs are contained

within larger subgraphs the presence of larger subgraph motifs is correlated to the presence of smaller
subgraphs. To account for these subgraph dependencies we borrow from Graphlet literature47–50 and
reweight each subgraph frequency Xn,k according to the weight wk = 1 − log ok

log 1608 where ok is the
number of subgraphs affected by subgraph k.47 This re-weighted subgraph frequency Fn,k = wkXn,k is
finally once again normalized to unit length yielding a relative subgraph frequency

∑k=1608
k=1 wkXn,k =∑k=1608

k=1 Fn,k = 1. These Fn features effectively capture the fundamental make-up of these coarse-
grained topologies and provide a compact representation for downstream analysis and machine learning
tasks.46 Namely, we can use the features contained in the matrix F ∈ IRn=439,k=1608 to train LASSO
regression model on all our collected simulation data by minimizing the L1 regularized loss

L(∆∆Gpredicted ,∆∆Gtrue;θ, α) =
1

2
(∆∆Gpredicted −∆∆Gtrue)

2 + α‖θ‖1, (17)

∆∆G
(n)
predicted =

k=1608∑
k=1

θkFn,k + θintercept. (18)

where θintercept is the mean of all N = 439 ∆∆G values, α is the L1 regularization weight, and
θ ∈ IRk=1608 are the learned model parameters used to predict the transfer free energy for compound
n. The L1 regularization parameter α controls the participation of nonzero elements in the weight
vector θ. When α → ∞ the null model is returned where θ = 0 due to the predominance of the L1
regularization penalty in Eqn. 17. As α decreases in magnitude nonzero elements are progressively
incorporated into the weight vector θ, meaning the participation of more features in Fn contributing
to the regression task. The L1 loss in the LASSO regression algorithm prevents overfitting by retaining
only a small number of the most generalizable features represented in our training dataset. Due to the
linear structure of Eqn. 18 the sign of each nonzero weight θk can be interpreted as follows: for a learned
weight θk < 0, a high relative prevalence of the corresponding subgraph motif k within the feature
vector F contributes to “more negative” ∆∆G predictions (favorable CL selectivity). Likewise, for a
learned weight θk > 0, a high relative prevalence of the corresponding subgraph motif k contributes
to “more positive” ∆∆G predictions (unfavorable CL selectivity). Similarly, weights where θk ≈ 0
correspond to subgraph motifs that maintain relatively neutral cardiolipin selectivity. Because our
goal is to minimize ∆∆G to better promote CL selectivity, identifying the subgraphs with negative
learned weights θk corresponds to motifs most influential for good CL selectivity.

We determine the optimal number of features to retain in our model by performing cross-validation
on the L1 regularization weight α presented in Fig. S23, suggesting that the lowest generalization error
is achieved when α ≈ 0.03 corresponding to 126 nonzero coefficients and mean absolute error (MAE)
for predicting ∆∆G of ∼0.38 kcal/mol. The performance of this model is further quantified in Fig. S24
presenting a correlation plot between calculated and predicted ∆∆G using Leave One Out (LOO)
cross-validation. The largest and smallest learned nonzero coefficient weights θk from this optimal
model provide a rank-ordering for the subgraphs that correlate with motifs displaying favorable and
unfavorable ∆∆G selectivity (Fig. 5). Our trained model can also be deployed to predict ∆∆G transfer
free energies of coarse-grained compounds of potentially larger size than what was contained in our
training dataset. Specifically, by constructing a feature vector for a target coarse-grained topology
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based on representation of the k = 1608 enumerated subgraphs we can use Eqn. 18 to predict CL
selectivity of coarse-grained compounds of arbitrary size.

10 3 10 2 10 1 100

0

100

200

300

400

500

600

Nu
m

be
r o

f s
ub

gr
ap

hs

Number of non-zero learned coefficents

10 3 10 2 10 1 100

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

5-
fo

ld
 M

AE
 C

V 
sc

or
e

5-fold cross-validated mean absolute G error

Figure S23: Performance of LASSO regression model as a function of the sparsity regularization
parameter α. (left) The number of CG sub-graphs with non-zero learned coefficient values identified
by training the LASSO regression model trained at each α value. (right) 5-fold cross validated MAE
score of the LASSO regression model trained at each α value. The best generalization error of ∼0.38
kcal/mol is achieved when α ≈ 0.03 where the model chooses to retain 126 nonzero coefficients.
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Figure S24: Correlation plot between true and predicted ∆∆G values for all 439 interfacial molecules for
which alchemical free energy calculations were conducted using leave-one-out cross-validation predic-
tions of the LASSO model at the optimal value of α chosen using 5-fold cross validation (cf. Fig. S23).
Error bars in the predicted ∆∆G correspond to uncertainties predicted by the GPR model, whereas
those in the calculated ∆∆G denote the uncertainties in our free energy calculations estimated by
singular value decomposition.21
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1.6 Functional group analysis

Coarse-grained beads represent an average over chemical and physical properties of contained sub-
structures. To extract the encoded chemical information, we map functional groups identified on the
atomistic level to CG beads attributed to the same positions in the small molecule. All-atom structures
containing cycles require special treatment that we describe herein. Five-membered rings map to two
small CG beads (S-beads), six-membered rings are modeled by three S-beads. For the data sets of
molecules containing five- or six-membered rings, initially only Martini 2 parameterizations created
with AutoMartini51 were present. For those cases, the Martini representations were transferred to
the 5+0 model using a simple replacement scheme according to the water-octanol partitioning coeffi-
cients of the respective bead types, see Table 2. Ionizable groups were handled following the approach
described in Sec. 1.6.1.

Table 2: Mapping Martini 2 bead types2 to 5+0 bead types5

used to translate molecular representations present in the
Martini force field to the 5+0 force field. Bead types part
of the original publication of the 5+0 force field but not
used in our work are set in cursive. Note the N0 Martini
bead type being mapped to a T4 bead despite being consid-
ered nonpolar in Martini2. This choice was made because
the water-octanol partitioning coefficient for N0 is given as
∆GW→Ol = −1.00 kcal/mol, which is closest to the ∆GW→Ol

of T4 (−2.46 kcal/mol) in the subset of beads used here5.

Martini 2 Type 5+0 Type Polar/Nonpolar/Apolar, Donor/Acceptor
P5 T1 Polar
P4 T1 Polar
P3 T1 Polar
P2 T2 Polar
P1 T2 Polar
Nda T3 Nonpolar Donor+Acceptor
Nd T3d Nonpolar Donor
Na T3a Nonpolar Acceptor
N0 T4 Apolar
C5 T4 Apolar
C4 T4 Apolar
C3 T5 Apolar
C2 T5 Apolar
C1 T5 Apolar

CG beads represent an average over the chemical and physical properties of all underlying heavy
atoms. To extract the chemical information encoded by each bead type, we link functional groups
automatically identified on the atomistic level using the Ertl algorithm52 to CG representations of
small molecules. To account for the limited resolution of the CG model, the resolution of the identified
functional groups was also deliberately reduced. For example primary, secondary and tertiary amines
or alcohols were all labeled as amine- or hydroxy-groups. A list of the functional groups identified by
this algorithm in our dataset is given in Table 3.
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Table 3: Functional groups identified by the Ertl algorithm52 in
the dataset of coarse-grained small molecules from the GDB.53 To
take into account the limited resolution of coarse-grained models,
the functional groups and their chemical and physical properties
are kept very generic. The section of molecules containing five- or
six-membered rings were mainly used to investigate the influence
of heteroatoms within the rings or substituents attached to rings
on the choice of bead types in the coarse-graining process.

Functional group Properties (Rx is any alkyl/aryl group) Structure
Max. three-membered rings, structures represented by one CG bead

amines The basic nitrogen atom has one lone electron pair.
Contains one or more substituents (Rx).

alkyl halides
The carbon-halogen bond is polar with a partial posi-
tive charge on the carbon and a partial negative charge
on the halogen.

hydroxy group
Can form intermolecular hydrogen bonds. Can easily
be deprotonated (high dipole moment between O and
H).

alkenes C=C double bond. Apolar/hydrophobic, no rotation
around double bond.

amidines Strong bases, but uncharged/unionized at physiological
pH.

cyano group Polar (high dipole moment between C and N).

alkynes (acetylenes) Apolar/hydrophobic, C-C triple bond allows no bend-
ing or rotation.

aldehydes Polar (dipole moment between O and C). Can form
hydrogen bonds.

vinyl halide Apolar/hydrophobic.

cyclo-propyl Apolar/hydrophobic, can interact with aromatic
groups.

hydrazones Weak acids/bases, not ionized at physiological pH.

amides
Polar (diploe moments between N and C and O and
C). Weak base, not deprotonated under physiological
pH. Hydrogen bond donors and acceptors.

oximes Neutral, hydrogen bond donor (N) and acceptor (O).

ketones Polar, hydrogen bond acceptor.
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ethers Nonpolar, hydrogen bond acceptor.

aziridines Polar, wear bases, not protonated at physiological pH.
Hydrogen bond donor.

carboxylic acids Polar, hydrogen bond acceptors, deprotonated at phys-
iological pH.

carboxylic acid esters Nonpolar, hydrogen bond acceptors. Acidic, not de-
protonated around physiological pH.

oxiranes Hydrogen bond acceptors, polar.

methoxy groups Polar.

halogen derivs. Polar.

hydroxamic acids Polar, hydrogen bond donors and acceptors. Weak
acid, not deprotonated at physiological pH.

ureas Polar. Acidic, not ionized at physiological pH. Hydro-
gen bond acceptors.

hydroxylamines Polar. Hydrogen bond donors and acceptors.

methyl esters Nonpolar. Hydrogen bond acceptor.

alkanes Apolar

hydrazine derivs. Polar. Forms hydrogen bonds. Basic, not protonated
at physiological pH.

carboxylic acid imides Polar, acidic, hydrogen bond acceptor.

semicarbazides Polar. Hydrogen bond donors and acceptors.

carbamic acid esters Polar. Hydrogen bond donors and acceptors.

acetals/ketals Polar. Hydrogen bond acceptors.

Five-membered rings, represented by two CG beads

cyclopentyls

azoles (di- /triazoles)

oxazoles (oxadi- /-triaz.)
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pyrrolidines

pyrrolines

pyrroles

furans

Six-membered rings, represented by three CG beads

cyclo-hexyls

pyrans

oxanes (di- /trioxanes)

piperidines

oxohetarenes

iminohetarenes

pyridines

di- /triazines

phenols

arenes (benzenes)

benzyl halides

δ-lactams
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1.6.1 Identification of ionizable functional groups

Chemical properties of molecules depend, among other characteristics, on their ionization state in a
given environment. This is described by acidity or basicity following the Brønsted-Lowry theory, the
tendency of a molecule to lose or gain a proton resulting in a net negative or positive charge (19).
The probability to de-/protonate depends on the chemical structure of a molecule and the pH of the
environment54

H2A+ H+



(b)

HA �
(a)

H+ + A−. (19)

The acid dissociation constant Ka (20) is expressed as the ratio of the molar concentrations (signified
by brackets) of the dissociated and undissociated species55

Ka =
[A−] [H+]

[HA]
=

[conjugate base]

[conjugate acid]
×
[
H+
]
. (20)

The dissociation constant Ka is commonly given in logarithmic form, following equation (21)

pKa = − log10(Ka) = pH + log10

[conjugate acid]

[conjugate base]
. (21)

We follow the definition of acidity and basicity proposed by the ChemAxon 56 software. The apKa,
signified by (a) in Eqn. 19 and defined in Eqn. 22, is equivalent to the standard definition of the pKa
found in the literature. The bpKa (under (b) in Eqn. 19 and defined in Eqn. 23) however is expressed
as the deprotonation of its conjugate acid instead of the protonation of the base.

(a) apKa(HA) = pKa(HA) = pH + log10

[HA]

[A−]
, (22)

(b) bpKa(HA) = bKa(H2A+) = pH + log10

[H2A+]

[HA]
. (23)

For biomolecular systems, the relevant pH range is in the physiologically neutral spectrum around
pH ∼ 7. Following Eqn. 22, for compounds with an apKa ≤ 7 this leads to a decrease of the acid
([HA]) concentration, while the concentration of the conjugate base ([A−]) increases. Analogously,
Eqn. 23 shows that for compounds with a bpKa ≥ 7 the concentration of the base ([HA]) decreases
and the concentration of the conjugate acid (H2A+) increases. This allows to predict if the charge-
neutral compounds in the data set obtained from the GDB53 are likely to be negatively or positively
charged in the physiologically relevant pH range. Functional groups with a median apKa ≤ 7 or with a
median bpKa ≥ 7 can be considered negatively or positively charged, respectively, under physiological
conditions.
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Figure S25: Ring structures identified in subsets of the GDB53 mapping to (a) 5 beads or (b) 6 beads
of the 5+0 force field5,57. The subsets were prescreened to remove molecules not containing ring
systems. The prefix S signals the use of small variants of the beads used to model rings according to
the Martini force field. Dark colors represent higher observation probabilities of a chemical structure
for the corresponding bead sequence.
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Figure S26: All dissociation constants calculated with the Calculator Plugin of Marvin56 by ChemAxon.
For the definition of the dissociation constant apKa in (a) refer to Eqn. 22, for the bpKa in (b) see
Eqn. 23. Only the functional groups with (a) apKa ≤ 7 will be negatively charged at physiological
pH ∼ 7. The opposite holds for (b), only the functional groups with apKa ≥ 7 will carry a positive
charge around pH 7.
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Figure S27: CG representations for NAO, Quinaldine red and Benzothiazolium used for experimental
validation. The probabilistic relationship of functional groups and substructures of small molecules
containing rings in Fig. S25 was used to generate the CG representations.
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