Me₂(CH₂=CH)SiCN: a bifunctional ethylene equivalent for Diels-Alder reaction based controllable tandem synthesis

Wen-Biao Wu,^a Bo-Shuai Mu,^a Jin-Sheng Yu,^{*a,b} and Jian Zhou^{a,b}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China

*Email: jsyu@chem.ecnu.edu.cn

^b Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China

Supporting Information

Contents	Page
1. General information	1
2. The synthesis of Me ₂ (CH ₂ =CH)SiCN	2
3. Initial attempt and condition optimizations	3-6
4. The correlation of serial number of α , β -unsaturated aldehydes & <i>P</i> -ylides, and their structure	7
5. The synthesis of unknown α , β -unsaturated aldehydes and ketones	8-10
6. General procedure for the tandem synthesis of cyclohexenyl ketones 5	11-19
7. General procedure for the tandem synthesis of 2-acetyl cyclohexancarbonitriles 6	20-25
8. The possible pathway for the generation of 5a and 6a	26
9. Synthetic applications	27-30
10. X-ray crystallographic data	31-59
11. NMR spectra and HPLC trace	60-181

1. General information

Reactions were monitored by thin layer chromatography (TLC) using UV light or KMnO₄ to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. The HRMS spectra were measured on Waters GCT PremierTM, JEOL-AccuTOF-GCv4G-GCT MS or Bruker maXis impact spectrometer using electron spray ionization (ESI) method. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained using Bruker DPX-300, DPX-400 or DPX-500 MHz spectrometer. Chemical shifts are reported in ppm from CDCl₃ or CD₂Cl₂ with the solvent resonance or Si(CH₃)₄ as the internal standard. The following abbreviations are used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

Unless mentioned, all reactions were performed under an atmosphere of air. Anhydrous ClCH₂CH₂Cl, CH₂Cl₂ and CH₃CN was prepared by first distillation from P₂O₅ and then freshly distilled from CaH₂ prior to use. Anhydrous EtOAc was prepared by distillation over activated CaSO₄ and then freshly distilled from 5Å MS prior to use. Anhydrous toluene, THF and 1,4-dioxane were prepared by distillation over sodium-benzophenone ketyl prior to use. The α , β -unsaturated aldehydes **8u**¹, **8w**², **8x**³ and **8aa**⁴ were prepared according to the literature reports, and all other aldehydes were commercially available.

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Tetrahydrofuran	THF
3	N,N-Dimethylformamide	DMF
4	Tetrabutylammonium fluoride	TBAF
5	Butylated hydroxytoluene	BHT
6	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone	DDQ

T	• •	e		•
	161	nt	ahh	revistion
_	130	UL.	avv	i c viacion.

¹ J. R. Wolstenhulme, J. Rosenqvist, O. Lozano, J. Ilupeju, N. Wurz, K. M. Engle, G. W. Pidgeon, P. R. Moore, G. Sandford, V. Gouverneur, *Angew. Chem. Int. Ed.* **2013**, *52*, 9796-9800.

² S. Dey, D. Mal, *Tetrahedron Lett.* **2005**, *46*, 5483-5486.

³ P. Panda, S. Nayak, S. K. Sahoo, S. Mohapatra, D. Nayak, R. Pradhan, C. N. Kundu, RSC Adv. 2018, 8, 16802-16814.

⁴ B. S. Donslund, A. Monleln, T. A. Palazzo, M. L. Christensen, A. Dahlgaard, J. D. Erickson, K. A. Jørgensen, *Angew. Chem. Int. Ed.* **2018**, *57*, 1246-1250.

2. The synthesis of Me₂(CH₂=CH)SiCN

The newly designed bifunctional ethylene equivalent reagent Me₂(CH₂=CH)SiCN was prepared according to our previous procedure for the synthesis of Me₂(CH₂Cl)SiCN.⁵ To a 250 mL three-necked flask was added fine ground NaCN (740 mmol, 36.2 g), which was dried under vacuum at 125 °C for 12 h. After cooling down to room temperature, anhydrous CH₃CN (80 mL) was added, followed by the sequential addition of freshly distilled Me₂(CH₂=CH)SiCl (814 mmol, 112 mL) and ZnI₂ (18.5 mmol, 5.9 g) under N₂ atmosphere. The resulting mixture was stirred at room temperature for about three days. After removing the solvent CH₃CN, the crude product was purified by distillation under reduced pressure to afford the analytically pure Me₂(CH₂=CH)SiCN **1** as a colorless liquid (80%, 65.7 g). Boiling point: 133-135 °C. ¹H NMR (400 MHz, CDCl₃): δ 6.21 (ABd, *J* = 14.0, 3.6 Hz, 1H), 6.15-6.06 (m, 1H), 5.98 (ABd, *J* = 20.0, 3.6 Hz, 1H), 0.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 137.2, 131.1, 126.0, -3.2; MS (EI): 111 (M⁺), 85; HRMS (EI): Exact mass calcd for C₅H₉NSi [M]⁺: 111.0499, found: 111.0501.

⁵ X.-P. Zeng, J. Zhou, J. Am. Chem. Soc. 2016, 138, 8730-8733.

3. Initial attempt and condition optimizations

3.1 The initial attempt of the tandem Wittig-cyanosilylation reaction

With this novel bifunctional reagent Me₂(CH₂=CH)SiCN **1** in hand, we first examined its performance in the cyanosilylation of conjugated dienone **2a** using our previously developed *P*-ylide catalytic system.⁶ To our delight, the desired silylated cyanohydrin **3a**, bearing both a diene and a vinyl moiety, could be obtained in 85% yield, under the catalysis of acetone derived *P*-ylide **7a** (10 mol%) (Scheme 2b of the main text). Furthermore, it was found that the tandem Wittig/cyanosilylation sequence starting from enal **8a**, ylide **7a** and reagent **1** also proceeded well, and provided the targeted product **3a** in 87% yield, wherein the residual ylide **7a** (0.1 equiv) from the Wittig step played a role in enabling the downstream cyanosilylation step, as depicted in Scheme S1.

Scheme S1. The initial attempt of the tandem Wittig-cyanosilylation reaction.

3.2 The studies of the intramolecular Diels-Alder reaction

After successfully obtaining the silicon-tethered triene **3a**, we explored its intramolecular Diels-Alder (DA) reaction using toluene as the solvent. We were delighted to find that full conversion of **3a** was observed at 120 °C, and the NMR yield was 95%. However, the targeted product **4a** was obtained in only 15% isolated yield as a single diastereomer (Table S1, entry 1). Further evaluation of both reaction temperature and additive effects failed to improve its isolated yield (entries 2-7). To understand the actual reason, we conducted the ¹H NMR and GC-MS analysis, as shown in Figure S1-S2. First, full consumption of starting material **3a** by TLC, ¹H NMR and GC-MS analysis excluded the possibility of low conversion. Second, four diastereomers of the desired product could be

⁶ W.-B. Wu, X.-P. Zeng, J. Zhou, J. Org. Chem. 2020, 85, 14342-14350.

observed in both ¹H NMR (Figure S1B) and GC-MS spectra (Figure S2B). Moreover, the ¹H NMR and GC-MS spectra of the sole one isomer **4a** obtained by column chromatography purification were also accord with one of four isomer, as compared in Figure S1A vs S1B and Figure S2A vs S2B. Based on these analysis, we concluded that the poor stability of other three isomers during silica gel column chromatography purification process might be responded to the low isolated yield. Therefore, we decided to develop a tandem DA reaction and *retro*-cyanosilylation sequence that will avoid the isolation of DA adducts and facilitate the removal of silyl group to provide the cyclohexene derivatives via tandem synthesis.

	NC O Si Ph 3a (0.2 mmol)	additive (1.0 equiv) toluene, Temp.	NC O Si Ph 4a	
Entry	Temp. (°C)	t (h)	Additive	Isolated yield (%)
1^a	120	11.0	-	15
2	150	10.0	-	16
3	185	8.0	-	11
4	120	11.0	BHT	16
5	120	11.0	Hydroquinone	15
6	120	0.5	Et ₂ AlCl	mess
7	120	0.5	$BF_3 \cdot Et_2O$	mess

Table S1. Influence of temperature and additives in the intramolecular Diels-Alder reaction.

^{*a*} 95% NMR yield, using 1,3,5-trimethoxybenzene as internal standard.

Figure S1. ¹H NMR analysis of Diels-Alder reaction mixture and the isolated product 4a.

Figure S2. GC-MS analysis of Diels-Alder reaction mixture and the isolated product 4a.

3.3 Condition optimization for the controllable synthesis of cyclohexene derivatives

With this idea in mind, we explored the desilylative condition after the DA reaction of **3a** reached completion. Upon treated the crude reaction mixture with a solution of TBAF in THF (1.0 M), and found that such sequence produced two products—cyclohexenyl methyl ketone **5a** with 11% yield and

2-acetyl-5-phenylcyclohexancarbonitrile **6a** with 52% yield and 1.2:1 dr (Table S2, entry 1). Encouraged by this result, further optimization was conducted to realize the controllable synthesis of **5a** and **6a** given that both are useful synthons. First, a series of metal additives, including CuCl₂·2H₂O, FeCl₂, AgOAc, NiCl₂·6H₂O, Zn(OAc)₂·4H₂O, and Mn(OAc)₂·4H₂O, were investigated to improve the yield of **5a** via capturing the resulting cyano anion (entries 2-7). It was found that all of them could inhibit the formation of **6a**, and Mn(OAc)₂·4H₂O turned out to be optimal, affording **5a** in 73% yield (entry 7). Further investigation of solvent effect revealed that the use of EtOAc slightly improved the yield and dr value of **6a** (entry 11 vs entries 8-10). By using TBAF (70 wt.% in H₂O) instead of its THF solution, the dr value of **6a** could be greatly improved to >20:1, accompanied with a slightly increased 64% yield (entry 12).

CN Si Ph	Solvent (0.5 M) 120 °C, 16 h		TBAF (4.0 equivs) Additive (1.0 equiv) rt, Time	O Ph	+ NC,,, Ph
3a (0.2 mmol)		4a		5a	6a

Table S2. Selected condition optimization^a

	(
Entry	Solvent	Additive	Time (h)	Yield of 5a (%)	Yield of 6a (%)	dr of $6a^b$
1	toluene	-	4	11	52	1.2:1
2	toluene	$CuCl_2 \cdot 2H_2O$	4	35	<5	-
3	toluene	FeCl ₂	4	34	<5	-
4	toluene	AgOAc	4	12	<5	-
5	toluene	NiCl ₂ ·6H ₂ O	4	62	<5	-
6	toluene	$Zn(OAc)_2 \cdot 2H_2O$	4	60	<5	-
7	toluene	Mn(OAc) ₂ ·4H ₂ O	4	73	<5	-
8	DCE	-	12	58	29	>20:1
9	MeCN	-	12	<5	58	2.6:1
10	dioxane	-	12	<5	50	1.1:1
11	EtOAc	-	12	<5	57	4.0:1
12 ^c	EtOAc	-	24	13	64	>20:1

^{*a*} Reaction conditions: **3a** (0.2 mmol), TBAF (0.8 mL, 1.0 M in THF), additive (0.2 mmol), solvent (0.4 mL). The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} TBAF (70 wt.% in H₂O) was used instead of TBAF (1.0 M in THF).

4. The correlation of serial number of α,β-unsaturated aldehydes & *P*-ylides, and their structure

Because the space limitation of the manuscript, we showed the structure of each α , β -unsaturated aldehydes and *P*-ylides, and its serial number in this section.

5. The synthesis of unknown α , β -unsaturated aldehydes and ketones

To a solution of 7-bromo-3,4-dihydro-2*H*-naphthalen-1-one (1.250 g, 5.0 mmol) in methanol (10 mL) was added NaBH₄ (0.950 g, 25.0 mmol) at 0 °C. The reaction mixture was then stirred at room temperature for 1 hour before quenching with 1M HCl. The aqueous layer was extracted with EtOAc (20 mL \times 3) and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated under vacuo to give the crude 7-bromo-1,2,3,4-tetrahydronaphthalen-1-ol as a pale yellow oil, which was used directly in the next step.

To a solution of above crude 7-bromo-1,2,3,4-tetrahydronaphthalen-1-ol in DMF (5 mL) was added POCl₃ (1.0 mL, 11.5 mmol) slowly at 0 °C. The resulting reaction solution was then heated at 100 °C for 5 hour. After cooling to room temperature, the reaction was quenched with water and adjusted the pH to around 7.0 with 3M NaOH aqueous solution. The aqueous phase was extracted with EtOAc (20 mL × 3). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc (5/1, v/v) as the eluent to afford the desired α , β -unsaturated aldehydes **8v** as yellow oil in 15% yield (176.3 mg). ¹H NMR (400 MHz, CDCl₃): δ 9.67 (s, 1H), 7.42-7.40 (m, 2H), 7.20-7.19 (m, 1H), 7.10-7.08 (m, 1H), 2.82 (t, *J* = 12.0 Hz, 2H), 2.59-2.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.7, 144.0, 140.4, 137.0, 134.2, 133.2, 131.4, 129.7, 120.4, 26.7, 19.3. IR (neat): v 1672.3, 1552.7, 1301.9, 1114.9, 1074.4, 904.6, 829.4 cm⁻¹; MS (EI): 238 [M(⁸¹Br)⁺, 33], 236 [M(⁷⁹Br)⁺, 35], 207 (7), 157 (26), 128 (100), 102 (9), 77 (11), 63 (10); HRMS (EI): Exact mass calcd for C₁₁H₉O⁷⁹Br [M]⁺: 235.9837, Found: 235.9835.

8

NaH (1.760 g, 60% in mineral oil, 44 mmol) was added to a 100 mL flame-dried flask under N₂ atmosphere, which was washed with anhydrous *n*-hexane (10 mL \times 3). Then anhydrous toluene (10 mL) was added, followed by the addition of estrone 3-methyl ether **S1** (1.240 g, 4.4 mmol) and ethyl formate (3.5 mL, 44 mmol). The suspension was stirred at room temperature (rt) for 11 h until full conversion of **S1** by TLC analysis. The reaction mixture was poured in to 2M HCl (10 mL), and then extracted with EtOAc (20 mL \times 3). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give the intermediate **I**.

Under N₂ atmosphere, to a solution of CeCl₃ (0.217 g, 0.88 mmol) in anhydrous MeOH (10 mL) was successively added all the above intermediate **I** (ca. 4.4 mmol) and trimethoxymethane (0.467 g, 4.4 mmol) at rt. After being stirred overnight at rt, H₂O (5 mL) was added to the resulting solution, and exacted with CHCl₃ (20 mL × 3). The combined organic phases were washed with brine, and dried over Na₂SO₄. After evaporation, the crude residue was purified by flash column chromatography using PE/EtOAc (4:1, v/v) as the eluent to afford **S2** in 76% yield (1.084 g) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.19 (m, 2H), 6.73-6.70 (m, 1H), 6.64-6.63 (m, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 2.91-2.88 (m, 2H), 2.70-2.64 (m, 1H), 2.40-2.37 (m, 1H), 2.28-2.24 (m, 1H), 2.11-2.07 (m, 1H), 2.00-1.96 (m, 2H), 1.60-1.46 (m, 5H), 0.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 210.3, 157.7, 154.6, 137.9, 132.4, 126.4, 115.5, 114.0, 111.7, 61.6, 55.3, 48.9, 48.8, 44.2, 38.0, 31.7, 29.8, 26.9, 26.2, 24.7, 14.8. HRMS (ESI): Exact mass calcd for C₂₁H₂₆NaO₃ [M+Na]⁺: 349.1774; Found: 349.1777.

To a solution of **S2** (1.000 g, 3.3 mmol) in methanol (5 mL) was added NaBH₄ (0.623 g, 16.5 mmol). The reaction mixture was stirred at rt for 30 minutes before quenching with 1M HCl. The aqueous layer was extracted with EtOAc (20 mL × 3) and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The crude product was dried under vacuo to give the intermediate **II**, which was dissolved in acetone (5.0 mL). To this solution was added 3M HCl (10 mL), the reaction mixture was stirred at rt for 28 h, and extracted with EtOAc (20 mL × 3). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give the residue, which was purified by flash column chromatography using PE/EtOAc (4/1, v/v) as the eluent to give the product **8ab** as white solid in 33% yield (0.321 g). ¹H NMR (400 MHz, CDCl₃): 9.73 (s, 1H), 7.20-7.17 (s, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.73-6.70 (m, 1H), 6.65 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 2.93-2.88 (m, 2H), 2.62-2.57 (m, 1H), 2.40-2.28 (m, 2H), 2.18-2.11 (m, 1H), 1.99-1.93 (m, 2H), 1.76-1.69 (m, 2H), 1.64-1.59 (m, 2H), 1.51-1.40 (m, 1H), 0.91 (s, 3H); ¹³C

NMR (125 MHz, CDCl₃): δ 190.8, 163.6, 157.7, 146.3, 138.0, 132.5, 126.1, 114.0, 111.7, 55.3, 54.7, 47.7, 44.3, 37.5, 34.9, 29.8, 28.3, 27.8, 26.4, 16.3; HRMS (ESI): Exact mass calcd for C₂₀H₂₄O₂Na [M+Na]⁺: 319.1669, Found: 319.1670.

Under N₂ atmosphere, to a solution of LiAlH₄ (0.570 g, 15 mmol) and AlCl₃ (1.000 g, 0.75 mmol) in Et₂O (10 mL) was added ethyl 4,4,4-trifluorocrotonate S3 (1.680 g, 10 mmol) at 0 °C. The suspension was stirred at 0 °C for 6 h until full conversion of S3 by TLC analysis. The reaction mixture was poured in to saturated NaHCO₃ (aq., 10 mL), and aqueous solution of HCl (4 N) was added slowly until the pH was 7. The resulting mixture was extracted with Et₂O (20 mL \times 3), and the combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The obtained crude alcohol was dissolved in mesitylene (10 mL), followed by the addition of MnO₂ (6.950 g, 80 mmol). The reaction mixture was stirred at 50 °C for 24 h until full conversion of alcohol by TLC analysis. After filtrating through Celite, to the filtrate was added Ph₃P=CHCOPh (3.800 g, 10 mmol), and the suspension was stirred at 80 °C until full conversion of aldehyde I by TLC analysis (ca. 11 h). The crude residue was purified by flash column chromatography using PE/EtOAc (20:1, v/v) as the eluent to afford **2m** in 35% yield (0.160 g) as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.63-7.59 (m, 1H), 7.53-7.49 (m, 2H), 7.40-7.33 (m, 1H), 7.25-7.21 (m, 1H), 7.01-6.94 (m, 1H), 6.19-6.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 139.3, 137.4, 135.3 (q, J = 6 Hz), 133.5, 131.6, 129.0, 128.7, 126.3 (q, J = 34 Hz), 122.7 (q, J = 268 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -64.408; IR (neat): v 1668.4, 1643.4, 1448.5, 1172.7, 1095.6, 995.3, 769.6, 984.7 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₂H₉F₃NaO [M+Na]⁺: 249.0498; Found: 249.0501.

6. General procedure for the tandem synthesis of cyclohexenyl ketones 5

Under N₂ atmosphere, to a 10 mL sealed tube was added α,β-unsaturated aldehydes **8** (1.0 mmol) and *P*-ylide **7** (1.1 mmol), followed by the addition of anhydrous acetonitrile (1.0 mL). The resulting mixture was heated to 80 °C until full conversion of **8** by TLC analysis (*ca.* 14 h). After cooling to rt, Me₂(CH=CH₂)SiCN **1** (250 µL, 2.0 mmol) was added. After being stirred at the same temperature for 24 h, the reaction mixture was rapidly passed through a short pad of silica gel, and washed with ether. The organic solution was concentrated in vacuo to give the crude silicon tethered triene **3**, which was dissolved in toluene (2.0 mL). The reaction mixture was cooled to rt, and Mn(OAc)₂·4H₂O (0.245 g, 1.0 mmol), TBAF (4.0 mL, 1.0 M in THF) was added. The suspension was stirred at rt until full conversion of **4** by TLC analysis (*ca.* 3~5 h), which was then poured in to H₂O (10 mL), and extracted with EtOAc (20 mL × 3). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc (4/1, v/v) as the eluent to give the cyclohexenyl ketones **5**. (Note: *P*-ylide Ph₃P=CHCONEt₂ **7f** (3.8 mg, 0.01 mmol) was added as an extra catalyst in the cyanosilylation step in the cases of **5q-s**.)

Product **5a** was obtained in 65% yield (130.0 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.30 (m, 2H), 7.24-7.20 (m, 3H), 6.99-6.97 (m, 1H), 2.82-2.75 (m, 1H), **5a** 2.62-2.53 (m, 2H), 2.43-2.35 (m, 1H), 2.33 (s, 3H), 2.30-2.20 (m, 1H), 2.08-2.02 (m, 1H), 1.76-1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 146.1, 140.2, 139.6, 128.7, 126.9, 126.5, 39.4, 34.3, 29.4, 25.5, 23.9; IR (neat): v 1786.1, 1658.8, 1639.5, 1386.8, 1249.9, 960.6, 767.7, 704.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₆NaO [M+Na]⁺: 223.1093; Found: 223.1083.

Product **5b** was obtained in 51% yield (109.1 mg) as white solid. Mp: 51-53 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.10 (m, 4H), 6.98-6.97 (m, 1H), 2.78-2.71 (m, 1H), 2.59-2.53 (m, 2H), 2.41-2.36 (m, 1H), 2.33 (s, 3H), 2.32 (s, 3H), 2.28-2.23 (m, 1H), 2.05-1.99 (m, 1H), 1.72-1.63 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 199.2, 143.1, 140.4, 139.6, 136.0, 129.3, 126.8, 39.0, 34.4, 29.5, 25.5, 23.9, 21.1; IR (neat): v 1666.5, 1386.8, 1249.9, 1070.5, 958.6, 623.0, 599.9, 561.3 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₈NaO [M+Na]⁺: 237.1250; Found: 237.1254.

Product **5c** was obtained in 63% yield (144.5 mg) as white solid. Mp: 45-47 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.13 (m, 2H), 6.97 (t, J = 1.6 Hz, 1H), 6.87-6.85 (m, 2H), 3.80 (s, 3H), 2.78-2.70 (m, 1H), 2.59-2.52 (m, 2H), 2.38-2.23 (m, 5H), 2.04-1.99 (m, 1H), 1.70-1.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ

199.2, 158.2, 140.3, 139.6, 138.2, 127.8, 114.1, 55.4, 38.5, 34.5, 29.6, 25.5, 23.9; IR (neat): v 1710.9, 1653.0, 1508.3, 1244.1, 1035.8, 958.6, 621.1, 599.9 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{15}H_{18}NaO_2$ [M+Na]⁺: 253.1199; Found: 253.1206.

Product **5d** was obtained in 80% yield (184.3 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.15 (m, 2H), 7.00-6.87 (m, 3H), 3.83 (s, 3H), 3.23-3.17 (m, 1H), 2.64-2.53 (m, 2H), 2.33 (s, 3H), 2.30-2.21 (m, 2H), 1.98-1.94 (m, 1H), 1.80-1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 157.1, 141.0, 139.5, 134.2, 127.3, 126.6, 120.8, 110.5, 55.4, 33.0, 32.4, 27.8, 25.5, 24.0; IR (neat): v 1784.2, 1664.6, 1492.9, 1384.9, 1028.1, 960.6, 752.2, 594.1 cm⁻¹; HRMS (ESI):Exact mass calcd for C₁₅H₁₈NaO₂ [M+Na]⁺: 253.1199; Found: 253.1215.

Product **5e** was obtained in 52% yield (121.6 mg) as white solid. Mp: 66-68 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.27 (m, 2H), 7.16-7.14 (m, 2H), 6.97-6.96 (m, 1H), 2.79-2.73 (m, 1H), 2.59-2.53 (m, 2H), 2.37-2.35 (m, 1H), 2.33 (s, 3H), 2.29-2.23 (m, 1H), 2.03-1.99 (m, 1H), 1.72-1.62 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 199.1, 144.5, 139.8, 139.6, 132.1, 128.8, 128.3, 38.9, 34.2, 29.3, 25.5, 23.7; IR (neat): v 1710.9, 1658.8, 1354.0, 1249.9, 1089.8, 960.6, 812.0, 702.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₅ClNaO [M+Na]⁺: 257.0704; Found: 257.0706.

Product **5f** was obtained in 53% yield (148.3 mg) as white solid. Mp: 104-106 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.43 (m, 2H), 7.11-7.09 (m 2H), 6.96-6.95 (m, 1H), 2.79-2.72 (m, 1H), 2.59-2.52 (m, 2H), 2.38-2.31 (m, 4H), 2.29-2.21 (m, 1H), 2.04-1.99 (m, 1H), 1.72-1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1,

145.0, 139.8, 139.6, 131.7, 128.7, 120.2, 38.9, 34.1, 29.2, 25.5, 23.7; IR (neat): v 1714.7, 1384.9, 1352.1, 1249.9, 1070.5, 960.6, 810.1, 599.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₅BrNaO [M+Na]⁺: 301.0198; Found: 301.0200.

Product **5g** was obtained in 60% yield (131.0 mg) as white solid. Mp: 56-58 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.16 (m, 2H), 7.02-6.98 (m, 2H), 6.97-6.96 (m, 1H), 2.80-2.74 (m, 1H), 2.59-2.53 (m, 2H), 2.38-2.32 (m, 4H), 2.29-2.24 (m, 1H), 2.04-2.00 (m, 1H), 1.73-1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 161.6

(d, J = 242 Hz), 141.7 (d, J = 3 Hz), 139.9, 139.6, 128.3 (d, J = 7 Hz), 115.4 (d, J = 21 Hz), 38.7, 34.4, 29.5, 25.5, 23.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -116.943; IR (neat): v 1712.8, 1641.4, 1508.3, 1386.8, 1354.0, 833.3, 623.0, 597.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₅FNaO [M+Na]⁺: 241.0999; Found: 241.1000.

Product **5h** was obtained in 39% yield (81.5 mg) as white solid. Mp: 53-55 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.25 (m, 1H), 7.01-6.99 (m, 1H), 6.97-6.56 (m, 1H), 6.94-6.90 (m, 2H), 2.84-2.76 (m, 1H), 2.59-2.54 (m, 2H), 2.40-2.37 (m, 1H), 2.33 (s, 3H), 2.29-2.24 (m, 1H), 2.07-2.02 (m, 1H), 1.74-1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 163.2 (d, *J* = 244 Hz), 148.7 (d, *J* = 7 Hz), 139.7, 139.6, 130.1 (d, *J* = 9 Hz), 122.6 (d, *J* = 2 Hz), 113.7 (d, *J* = 21 Hz), 113.3 (d, *J* = 20 Hz), 39.2, 34.0, 29.2, 25.5, 23.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -113.258; IR (neat): v 1784.2, 1662.6, 1485.2, 1384.9, 1249.8, 1070.5, 702.1, 597.9

cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₅FNaO₂ [M+Na]⁺: 241.0999; Found: 241.1012.

Product **5i** was obtained in 45% yield (98.0 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.18 (m, 2H), 7.12-7.08 (m, 1H), 7.05-7.01 (m, 1H), 6.98-6.97 (m, 1H), 3.17-3.09 (m, 1H), 2.63-2.55 (m, 2H), 2.41-2.36 (m, 1H), 2.33 (s, 3H), 2.30-2.25 (m, 1H), 2.03-1.99 (m, 1H), 1.83-1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1,

160.9 (d, J = 243 Hz), 144.0, 139.6, 132.6 (d, J = 15 Hz), 127.9 (d, J = 8 Hz), 127.7 (d, J = 5 Hz), 124.4 (d, J = 3 Hz), 115.6 (d, J = 23 Hz), 32.8, 32.6 (d, J = 2 Hz), 27.9, 25.5, 23.7; ¹⁹F NMR (376)

MHz, CDCl₃): δ -118.974; IR (neat): v 1666.5, 1489.1, 1384.9, 1352.1, 1070.5, 960.6, 754.2, 638.4 cm⁻¹;HRMS (ESI):Exact mass calcd for C₁₄H₁₅FNaO₂ [M+Na]⁺: 241.0999; Found: 241.1004.

Product 5j was obtained in 48% yield (117.7 mg) as white solid. Mp: 95-97 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.75 (m, 1H), 7.60-7.56 (m, 1H), 7.45-7.43 (m, 1H), 7.39-7.35 (m, 1H), 6.97-6.95 (m, 1H), 3.31-3.24 (m, 1H), 2.77-2.70 (m, 1H), 2.65-2.59 (m, 1H), 2.39-2.22 (m, 5H), 2.05-2.01 (m, 1H), 1.84-1.77 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃): δ 198.8, 150.2, 140.0, 139.5, 139.4, 132.9, 128.0, 127.3, 124.2, 34.3, 34.0, 28.8, 25.5, 23.8; IR (neat): v 1710.9, 1431.2, 1217.1, 995.3, 850.6, 817.8, 684.7, 636.5 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{14}H_{15}NNaO_3$ [M+Na]⁺: 268.0944; Found: 268.0957.

Product 5k was obtained in 77% yield (145.8 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 1.2 Hz, 1H), 6.93-6.92 (m, 1H), 6.31-6.29 (m, 1H), 6.02 (d, J =1.6 Hz, 1H), 2.94-2.88 (m, 1H), 2.70-2.62 (m, 1H), 2.52-2.37 (m, 2H), 2.31 (s, 3H), 2.28-2.12 (m, 2H), 1.71-1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 159.0, 141.2, 139.6, 139.1, 110.1, 103.8, 32.6, 31.0, 27.0, 25.4, 22.8; IR (neat): v 1585.5, 1384.9, 1303.9, 1166.9, 962.5, 883.4, 804.3, 752.2 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₂H₁₄NaO₂ [M+Na]⁺: 213.0886; Found: 213.0889.

Product 51 was obtained in 30% yield (45.9 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.88 (s, 1H), 2.46-2.35 (m, 2H), 2.28 (s, 3H), 2.12-2.06 (m, 1H), 1.91-1.82 (m, 2H), 1.47-1.40 (m, 1H), 1.36-1.29 (m, 2H), 1.21-1.14 (m, 1H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 140.7, 139.8, 34.6, 32.6, 28.9, 28.0, 25.4, 23.2, 11.5; IR (neat): v 1714.7, 1641.4, 1386.8, 1352.1, 1246.0, 1070.5, 827.5, 632.7 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₀H₁₆NaO [M+Na]⁺: 175.1093; Found: 175.1088.

Product **5m** was obtained in 43% yield (71.0 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.87 (s, 1H), 2.46-2.34 (m, 2H), 2.28 (s, 3H), 2.12-2.05 (m, 1H), 1.90-1.80 n-Pr (m, 2H), 1.54-1.52 (m, 1H), 1.39-1.34 (m, 2H), 1.30-1.25 (m, 2H), 1.21-1.13 (m, 1H), 5m 0.91 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 140.7, 139.8, 38.5, 33.0, 32.5, 28.4, 25.4, 23.2, 20.1, 14.4; IR (neat): v 1786.1, 1641.4, 1386.8, 1352.1, 1072.4, 760.0, 638.4, 560.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₈NaO [M+Na]⁺: 189.1250; Found: 189.1242.

Product **5n** was obtained in 40% yield (73.0 mg) as colorless oil.⁷ ¹H NMR (400 MHz, CDCl₃): δ 6.88-6.87 (m, 1H), 2.46-2.34 (m, 2H), 2.28 (s, 3H), 2.12-2.03 (m, 1H), 1.90-1.82 (m, 2H), 1.51 (s, br, 1H), 1.31-1.29 (m, 6H), 1.21-1.11 (m, 1H), 0.90 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 140.7, 139.8, 36.0, 33.0, 32.8, 29.3, 28.4, 25.4, 23.2, 23.0, 14.2; IR (neat): v 1784.2, 1641.4, 1352.1, 1147.7, 1070.5, 910.4, 760.0, 640.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₂H₂₀NaO [M+Na]⁺: 203.1406; Found: 203.1402.

Product **50** was obtained in 40% yield (77.6 mg) as colorless oil.⁷ ¹H NMR (400 MHz, CDCl₃): δ 6.87 (t, J = 2.8 Hz, 1H), 2.45-2.34 (m, 2H), 2.28 (s, 1H), 2.13-2.04 (m, 1H), 1.90-1.81 (m, 2H), 1.51 (s, 1H), 1.32-1.26 (m, 8H), 1.21-1.11 (m, 1H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 140.7, 139.8, 36.2, 33.0, 32.9, 32.2, 28.4, 26.7, 25.4, 23.2, 22.8, 14.2; IR (neat): v 1668.4, 1386.8, 1247.7, 1070.5, 952.8, 906.5, 640.4, 600.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₂₂NaO [M+Na]⁺: 217.1563; Found: 217.1556.

Product **5p** was obtained in 65% yield (139.1 mg) as white solid. Mp: 43-45 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.30 (m, 2H), 7.23-7.20 (m, 3H), 6.97-6.96 (m, 1H), 2.82-2.79 (m, 1H), 2.71 (q, J = 7.2 Hz, 2H), 2.60-2.54 (m, 2H), 2.41-2.26 (m, 2H), 2.06-2.02 (m, 1H), 1.77-1.66 (m, 1H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.9, 146.2, 139.0, 138.6, 128.7, 126.9, 126.5, 39.5, 34.2, 30.4, 29.5, 24.1, 8.8; IR (neat): v 1780.3, 1712.8, 1496.8, 1220.9, 954.8, 896.9, 873.8, 702.1 cm⁻¹; MS (EI): 214 (M⁺, 48), 185 (36), 157 (5), 129 (9), 123 (21), 104 (100), 91 (20), 81 (48); HRMS (EI): Exact mass calcd for C₁₅H₁₈O [M]⁺: 214.1358, Found: 214.1362.

Product **5q** was obtained in 75% yield (171.6 mg) as white solid. Mp: 41-43 °C. ¹H $f_{i,Pr}$ NMR (400 MHz, CDCl₃): δ 7.34-7.30 (m, 2H), 7.24-7.20 (m, 3H), 6.98-6.97 (m, 1H), 3.35-3.28 (m, 1H), 2.84-2.76 (m, 1H), 2.60-2.54 (m, 2H), 2.42-2.37 (m, 1H), 2.30-2.22 (m, 1H), 2.07-2.02 (m, 1H), 1.78-1.67 (m, 1H), 1.12 (d, J = 1.2 Hz, 3H), 1.11 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.5, 146.2, 138.4, 138.0, 128.7, 126.9, 126.5, 39.5, 34.3, 33.9, 29.5, 24.4, 19.7; IR (neat): v 1714.7, 1653.0, 1359.8, 1220.9, 1199.7, 964.4, 763.8, 700.2 cm⁻¹; MS (EI): 228 (M⁺, 37), 185 (100), 157 (4), 141 (4), 129 (14), 115 (9), 104 (31), 91 (24); HRMS (EI):

⁷ A. I. Pavlyuchenko, G. V. Purvanetskas, V. K. Daukshas, N. I. Smirnova, N. I. Korotkova, E. I. Kovshev, *Chem. Heterocycl. Compd.* 1984, 20, 515-518.

Exact mass calcd for C₁₆H₂₀O [M]⁺: 228.1517, Found: 228.1514.

Product **5r** was obtained in 54% yield (122.0 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.31 (m, 2H), 7.26-7.23 (m, 3H), 7.13-7.12 (m, 1H), 2.86-2.78 (m, 1H), 2.65-2.57 (m, 2H), 2.45-2.37 (m, 2H), 2.33-2.25 (m, 1H), 2.08-2.03 (m, 1H), 1.79-1.69 (m, 1H), 1.08-1.05 (m, 2H), 0.91-0.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 200.9, 146.2, 139.9, 138.6, 128.7, 126.9, 126.5, 39.5, 34.4, 29.5, 24.4, 15.8, 10.9, 10.7; IR (neat): v 1668.4, 1641.4, 1492.9, 1352.1, 964.4, 910.4, 758.0, 702.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₈NaO [M+Na]⁺: 249.1250; Found: 249.1246.

Product **5s** was obtained in 50% yield (128.9 mg) as white solid.⁸ Mp: 44-46 °C. ¹H Ph NMR (400 MHz, CDCl₃): δ 7.68-7.66 (m, 2H), 7.53-7.49 (m, 1H), 7.45-7.41 (m, 2H), 7.35-7.31 (m, 2H), 7.26-7.21 (m, 3H), 6.66-6.65 (m, 1H), 2.92-2.85 (m, 1H), 2.76-2.70 (m, 1H), 2.62-2.54 (m, 1H), 2.51-2.36 (m, 2H), 2.15-2.10 (m, 1H), 1.89-1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 146.1, 143.1, 138.8, 138.7, 131.6, 129.3, 128.7, 128.2, 127.0, 126.5, 39.6, 34.3, 29.5, 24.9; IR (neat): v 1784.2, 1599.0, 1577.8, 1311.6, 1213.2, 925.8, 758.8, 667.4 cm⁻¹; MS (EI): 262 (M⁺, 41), 244 (1), 171 (11), 158 (10), 145 (11), 129 (4), 104 (100), 91 (10); HRMS (EI): Exact mass calcd for C₁₉H₁₈O [M]⁺: 262.1358, Found: 262.1362.

Ph product **5t** was obtained in 32% yield (81.9 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 1.5:1. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.31 (m, 2H), 7.27-7.23 (m, 1H), 7.16-7.14 (m, 2H), 6.75-6.73 (m, 1H), 3.17-3.14 (m, 1H), 2.52-2.45 (m, 1H), 2.27 (s, 3H), 2.25-2.20 (m, 1H), 1.99-1.94 (m, 1H), 1.68-1.59 (m, 2H), 1.28-1.24 (m, 1H), 1.13-1.09 (m, 2H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.68 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 143.9, 143.4, 139.4, 128.71, 128.70, 126.8, 50.3, 43.1, 38.3, 26.4, 25.5, 25.2, 24.0, 22.8, 21.6; IR (neat): v 1668.4, 1602.9, 1562.3, 1365.6, 960.6, 864.1, 700.2, 582.5 cm⁻¹. MS (EI): 256 (M⁺, 95), 213 (18), 199 (51), 171 (17), 157 (49), 129 (100), 117 (12), 91 (39); HRMS (EI): Exact mass calcd for C₁₈H₂₄O [M]⁺: 256.1827, Found: 256.1823.

⁸ F.-F. Pan, P. Guo, C.-L. Li, P. Su, X.-Z. Shu, Org. Lett. 2019, 21, 3701-3705.

Product **5u** was obtained in 40% yield (90.4 mg) as white solid. Mp: 68-70 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 16:1. ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.15 (m, 2H), 7.14-7.07 (m, 2H), 6.89-6.87 (m, 1H), 2.95-2.90 (m, 1H), 2.86-2.83 (m, 2H), 2.68-2.67 (m, 1H), 2.49-2.43 (m, 1H), 2.33 (s, 3H), 2.27-2.20 (m, 1H), 1.98-1.94 (m, 2H), 1.74-1.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 143.8, 139.9, 139.4, 136.3, 129.4, 129.1, 126.2, 126.0, 36.9, 35.9, 29.7, 28.5, 25.8, 25.5, 23.7; IR (neat): v 1683.9, 1658.8, 1500.6, 1352.1, 1286.5, 1037.7, 819.8, 611.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₈NaO [M+Na]⁺: 249.1250; Found: 249.1244.

Product **5v** was obtained in 50% yield (76.3 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 7:1. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 2.0 Hz, 1H), 7.22 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.86-6.84 (m, 1H), 2.92-2.86 (m, 1H), 2.78-2.74 (m, 2H), 2.65-2.63 (m, 1H), 2.48-2.42 (m, 1H), 2.32 (s, 3H), 2.27-2.19 (m, 1H), 1.98-1.93 (m, 2H), 1.73-1.68 (m, 1H), 1.66-1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 143.1, 142.2, 139.4, 135.2, 132.1, 130.7, 129.1, 119.7, 36.8, 35.5, 29.1, 28.4, 25.6, 25.5, 23.5; IR (neat): v 1660.7, 1344.4, 1246.0, 887.3, 827.5, 607.6, 584.4, 553.6 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₇⁷⁹BrNaO [M+Na]⁺: 327.0355; Found: 327.0362.

Product **5w** was obtained in 43% yield (110.9 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 9:1. ¹H NMR (400 MHz, CDCl₃): δ 7.14 (d, *J* = 8.4 Hz, 1H), 6.88-6.86 (m, 1H), 6.77-6.74 (m, 1H), 6.61 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 2.87-2.79 (m, 3H), 2.66-2.64 (m, 1H),

2.47-2.42 (m, 1H), 2.32 (s, 3H), 2.26-2.17 (m, 1H), 1.96-1.89 (m, 2H), 1.69-1.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 157.4, 143.9, 139.4, 137.4, 132.0, 130.3, 113.4, 112.8, 55.4, 36.2, 36.1, 29.9, 28.5, 25.8, 25.5, 23.6; IR (neat): v 1664.6, 1562.3, 1211.3, 1109.1, 977.9, 856.4, 659.7, 597.9 cm⁻¹; MS (EI): 256 (M⁺, 89), 241 (13), 213 (21), 199 (7), 172 (31), 160 (100), 147 (11), 115 (17); HRMS (EI): Exact mass calcd for C₁₇H₂₀O₂ [M]⁺: 256.1463, Found: 256.1461.

Product **5x** was obtained in 30% yield (68.4 mg) as white solid. Mp: 101-103 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 6:1. ¹H NMR (500 MHz, CDCl₃): δ 7.20 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 6.93 (td, J = 7.5, 1.5 Hz, 1H), 7.14-7.10 (m, 1H), 7.14-7.10 (

1.0 Hz, 1H), 6.83 (dd, J = 8.5, 1.5 Hz, 1H), 6.77-6.76 (m, 1H), 4.27-4.24 (m, 1H), 3.86 (dd, J = 11.0, 8.5 Hz, 1H), 2.96-2.94 (m, 2H), 2.47-2.42 (m, 1H), 2.33 (s, 3H), 2.26-2.20 (m, 1H), 2.11-2.07 (m, 1H), 1.80-1.72 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 198.9, 154.5, 142.3, 137.3, 129.7, 127.7, 125.2, 121.2, 117.0, 65.9, 34.9, 33.0, 28.0, 25.6, 22.5; IR (neat): v 1668.4, 1487.1, 1456.3, 1386.8, 1352.1, 1112.9, 1043.5, 582.5 cm⁻¹; MS (EI): 228 (M⁺, 100), 185 (18), 132 (97), 131 (68), 115 (10), 107 (18), 97 (18), 77 (14); HRMS (EI): Exact mass calcd for C₁₅H₁₆O₂ [M]⁺: 228.1150, Found: 228.1153.

Product **5y** was obtained in 34% yield (26.3 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was > 20:1. ¹H NMR (400 MHz, CDCl₃): **5y** δ 6.65 (t, J = 2.8 Hz, 1H), 2.84-2.82 (m, 1H), 2.46 (dt, J = 16.8, 4.4 Hz, 1H), 2.29 (s, 3H), 2.21-2.16 (m, 2H), 2.10-2.04 (m, 1H), 1.99-1.96 (m, 1H), 1.93-1.88 (m, 2H), 1.82-1.75 (m, 1H), 1.62-1.58 (m, 1H), 1.51-1.47 (m, 1H), 1.26 (s, 3H), 1.06 (d, J = 10.0 Hz, 1H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 146.6, 141.3, 47.0, 41.4, 40.1, 38.6, 33.4, 33.2, 26.9, 26.8, 26.5, 25.3, 21.6, 20.8; IR (neat): v 1660.7, 1633.7, 1500.6, 1037.7, 879.5, 819.8, 740.7, 609.5 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₂₂NaO [M+Na]⁺: 241.1563; Found: 241.1554.

Product **5z** was obtained in 49% yield (80.9 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 11:1. ¹H NMR (400 MHz, CDCl₃): δ 6.87-6.96 (m, 1H), 2.61-2.59 (m, 1H), 2.36-2.33 (m, 1H), 2.29 (s, 3H), 2.14-2.04 (m, 2H), 2.00-1.93 (m, 1H), 1.87-1.78 (m, 1H), 1.69-1.62 (m, 2H), 1.60-1.53 (m, 1H), 1.43-1.33 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.5, 144.4, 139.0, 40.6, 36.3, 31.9, 31.0, 26.0, 25.4, 24.4, 21.4; IR (neat): v 1784.2, 1668.4, 1386.4, 1352.1, 1249.9, 1072.4, 858.3, 607.6 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₆NaO [M+Na]⁺: 187.1093; Found: 187.1094.

Product **5aa** was obtained in 40% yield (76.2 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was >20:1. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.16 (m, 4H), 6.89 (t, *J* = 2.0 Hz, 1H), 3.29-3.24 (m, 3H), 2.84-2.79

(m, 1H), 2.29 (s, 3H), 2.25-2.20 (m, 2H), 1.95-1.88 (m, 1H), 1.79-1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 145.9, 142.9, 142.0, 139.8, 126.8, 126.7, 125.0, 123.8, 42.6, 40.4, 37.8, 25.4, 25.1, 20.9; IR (neat): v 2358.9, 1685.8, 1662.6, 1477.5, 1246.0, 842.9, 740.7, 597.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₆NaO [M+Na]⁺: 235.1093; Found: 235.1084.

Product **5ab** was obtained in 69% yield (75.3 mg) as white solid. Mp: 118-120 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 12:1. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.20 (m, 1H), 6.94-6.92 (m, 1H), 6.71-6.70 (m, 1H), 6.63-6.62 (m, 1H), 3.77 (s, 3H),

2.99-2.93 (m, 1H), 2.88-2.80 (m, 2H), 2.69-2.63 (m, 1H), 2.33-2.25 (m, 4H), 2.19-2.15 (m, 1H), 1.87-1.75 (m, 5H), 1.65-1.50 (m, 6H), 1.43-1.29 (m, 3H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 157.6, 145.6, 139.3, 138.1, 132.9, 126.4, 114.0, 111.6, 55.3, 48.0, 47.3, 44.6, 44.0, 39.2, 36.9, 33.3, 32.6, 30.1, 28.3, 26.4, 22.5, 22.4, 22.0, 20.4; IR (neat): *v* 1683.9, 1658.9, 1500.6, 1311.6, 1234.4, 1037.7, 819.8, 651.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₃₂NaO₂ [M+Na]⁺: 387.2295; Found: 387.2291.

7. General procedure for the tandem synthesis of 2-acetyl cyclohexancarbonitriles 6

Under N₂ atmosphere, to a 10 mL sealed tube was added α , β -unsaturated aldehydes **8** (1.0 mmol) and ylide **7** (1.1 mmol), followed by the addition of anhydrous acetonitrile (1.0 mL). The resulting mixture was heated to 80 °C until full conversion of **8** by TLC analysis (ca. 14 h). After cooling to rt, Me₂(CH=CH₂)SiCN **1** (250 µL, 2.0 mmol) was added. After being stirred at the same temperature for 24 h, the reaction mixture was rapidly passed through a short pad of silica gel, and washed with ether. The organic solution was concentrated in vacuo to give the crude silicon-tethered triene **3**, which was dissolved in EtOAc (2.0 mL). The resulting mixture was heated to 120 °C for 16 h. After full conversion of **3** by TLC analysis, the reaction mixture was cooled to rt, and TBAF (1.491 g, 70 wt.% in H₂O) was added. The suspension was stirred at rt until full conversion of **4** by TLC analysis (ca. 24 h), which was then poured in to H₂O (10 mL), and extracted with EtOAc (20 mL × 3). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc (2/1, v/v) as the eluent to give the desired products **6**. (Note: *P*-ylide Ph₃P=CHCONEt₂ **7f** (3.8 mg, 0.01 mmol) was added as an extra catalyst in the cyanosilylation step in the cases of **6i-o**.)

Product **6a** was obtained in 55% yield (125.4 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was >20:1. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.23 (m, 2H), 7.19-7.13 (m, 3H), 3.35-3.34 (m, 1H), 2.92-2.86 (m, 1H), 2.42 (dt, *J* = 12.8, 3.6 Hz, 1H), 2.26-2.16 (m, 5H), 2.08-2.03 (m, 1H), 1.89-1.78 (m, 1H), 1.72-1.65 (m, 1H), 1.58-1.47 (m, 1H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 207.2, 145.1, 129.0, 127.2, 127.0, 120.4, 51.8, 39.9, 35.9, 33.6, 29.5, 27.9, 25.6; IR (neat): v 1708.9, 1494.8, 1363.7, 1178.5, 760.0, 700.2, 592.2, 570.9 cm⁻¹; MS (EI): 227 (M⁺, 100), 209 (10), 184 (47), 180 (19), 156 (23), 143 (21), 131 (17), 104 (97); HRMS (EI): Exact mass calcd for C₁₅H₁₇NO [M]⁺: 227.1310, Found: 227.1308.

Product **6b** was obtained in 63% yield (151.8 mg) as white solid. Mp: 101-103 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 4.7:1. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.13 (m, 2H), 7.11-7.09 (m, 2H), 3.42-3.40 (m, 1H), 2.96-2.90 (m, 1H), 2.50-2.45 (m, 1H), 2.33 (s, 3H), 2.31-2.26 (m, 1H), 2.25

(s, 3H), 2.22-2.21 (m, 1H), 2.13-2.09 (m, 1H), 1.95-1.85 (m, 1H), 1.77-1.72 (m, 1H), 1.59-1.52 (m, 1H); 13 C NMR (100 MHz, CDCl₃): δ 206.7, 141.5, 136.5, 129.5, 126.8, 120.1, 51.8, 39.1, 35.9, 33.3, 29.4, 27.7, 25.4, 21.1; IR (neat): v 1708.0, 1515.1, 1454.4, 1363.7, 1177.6, 816.9, 805.3, 721.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₉NNaO [M+Na]⁺: 264.1359; Found: 264.1359.

Product **6c** was obtained in 77% yield (197.9 mg) as white solid. Mp: 58-60 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 5.2:1. ¹H NMR (400 MHz, CDCl₃): δ 7.16-7.14 (m, 2H), 6.90-6.87 (m, 2H), 3.82 (s, 3H), 3.43-3.42 (m, 1H), 2.97-2.91 (m, 1H), 2.51-2.45 (m, 1H), 2.33-2.22 (m, 5H), 2.15-2.10 (m, 1H), 1.98-1.87 (m, 1H), 1.77-1.69 (m, 1H), 1.59-1.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 206.8, 158.5, 136.6, 127.8, 120.1, 114.2, 55.4, 51.8, 38.7, 36.1, 33.5, 29.5, 27.7, 25.4; IR (neat): v 1702.2, 1511.3, 1245.1, 1177.6, 1031.9, 826.5, 805.3, 783.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₉NNaO₂ [M+Na]⁺: 280.1308; Found: 280.1308.

Product **6d** was obtained in 67% yield (172.3 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 2.5:1. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.19 (m, 1H), 7.13-7.11 (m, 1H), 6.94-6.90 (m, 1H), 6.88-6.86 (m, 1H), 3.83 (s,

3H), 3.41-3.34 (m, 2H), 2.50-2.46 (m, 1H), 2.30-2.22 (m, 5H), 2.10-2.06 (m, 1H), 1.97-1.87 (m, 1H), 1.81-1.73 (m, 1H), 1.66-1.55 (m, 1H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 207.1, 157.2, 132.5, 127.7, 126.6, 120.7, 120.2, 110.7, 55.4, 52.0, 34.1, 33.2, 31.4, 29.5, 27.8, 25.5; IR (neat): v 1683.9, 1653.0, 1367.5, 1332.8, 1157.3, 785.0, 752.2, 651.9 cm⁻¹; MS (EI): 257 (M⁺, 100), 242 (5), 213 (64), 202 (21), 186 (20), 173 (15), 161 (20), 147 (19); HRMS (EI): Exact mass calcd for C₁₆H₁₉NO₂ [M]⁺: 257.1416, Found: 257.1413.

Product **6e** was obtained in 51% yield (125.0 mg) as white solid. Mp: 64-66 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 8.4:1. ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.15 (m, 2H), 7.03-6.99 (m, 2H), 3.42-3.41 (m, 1H),

2.99-2.92 (m, 1H), 2.51-2.46 (m, 1H), 2.33-2.29 (m, 1H), 2.26 (s, 3H), 2.23-2.21 (m, 1H), 2.13-2.09 (m, 1H), 1.96-1.85 (m, 1H), 1.75-1.68 (m, 1H), 1.60-1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 206.6, 161.8 (d, J = 243 Hz), 140.1, 128.3 (d, J = 8 Hz), 120.0, 115.6 (d, J = 21 Hz), 51.7, 38.9, 36.0, 33.4, 29.4, 27.7, 25.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -116.152; IR (neat): v 1704.1, 1507.4, 1362.7, 1218.1, 1160.2, 847.7, 826.5, 811.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₆FNNaO [M+Na]⁺: 268.1108; Found: 268.1103.

Product **6f** was obtained in 67% yield (176.0 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 4.6:1. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.28 (m, 2H), 7.15-7.13 (m, 2H), 3.43-3.42 (m, 1H), 2.98-2.91 (m, 1H), 2.50-2.46 (m, 1H), 2.33-2.29 (m, 1H), 2.26 (s, 3H), 2.24-2.21

(m, 1H), 2.13-2.08 (m, 1H), 1.96-1.85 (m, 1H), 1.75-1.67 (m, 1H), 1.61-1.50 (m, 1H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 206.5, 142.9, 132.6, 129.0, 128.3, 120.0, 51.7, 39.0, 35.7, 33.2, 29.3, 27.8, 25.3; IR (neat): v 1703.1, 1651.1, 1494.8, 1361.7, 1091.7, 814.0, 719.5, 621.1 cm⁻¹; MS (EI): 261 (M⁺, 100), 243 (14), 218 (61), 206 (19), 190 (21), 177 (20), 138 (91), 125 (72); HRMS (EI): Exact mass calcd for C₁₅H₁₆NO³⁵Cl [M]⁺: 261.0920, Found: 261.0917.

Product **6g** was obtained in 60% yield (183.6 mg) as white solid. Mp: 85-87 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 9.9:1. ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.10-7.08 (m, 2H), 3.43-3.41 (m, 1H), 2.98-2.90 (m, 1H), 2.50-2.45 (m, 1H), 2.34-2.28 (m, 1H), 2.25 (s, 3H), 2.23-2.20 (m, 1H), 2.13-2.08 (m, 1H), 1.96-1.85 (m, 1H), 1.75-1.67 (m, 1H), 1.57-1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 206.4, 143.4, 131.9, 128.7, 120.7, 119.9, 51.7, 39.1, 35.7, 33.1, 29.3, 27.7, 25.3; IR (neat): v 1703.2, 1490.0, 1361.8, 1178.5, 1072.4, 990.5, 810.1, 614.3 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₆⁷⁹BrNNaO [M+Na]⁺: 328.0307; Found: 328.0308.

Product **6h** was obtained in 83% yield (180.6 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 2.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, J = 2.0, 0.8 Hz, 1H), 6.30 (dd, J = 3.2, 2.0 Hz, 1H), 6.03-6.02 (m, 1H), 3.40-3.38 (m, 1H), 3.11-3.04 (m, 1H), 2.49-2.44 (m, 1H), 2.43-2.38 (m, 1H), 2.32-2.26 (m, 1H), 2.25-2.22 (m, 4H), 1.92-1.81 (m, 1H), 1.76-1.68 (m, 1H), 1.62-1.51 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 206.6, 157.5, 141.4, 119.8, 110.1, 104.1, 51.6, 33.2, 32.9, 30.4, 28.7, 27.7, 24.6; IR (neat): v 1666.5, 1560.4, 1396.5, 1275.0, 1153.4, 883.4, 734.9, 600.0 cm⁻¹; MS (EI): 217 (M⁺, 98), 199 (11), 184 (18), 173 (54), 159 (14), 147 (37), 133 (17), 94 (100); HRMS (EI): Exact mass calcd for $C_{13}H_{15}NO_2 [M]^+$: 217.1103, Found: 217.1102.

Product **6i** was obtained in 99% yield (286.1 mg) as white solid. Mp: 130-132 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 4.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.90 (m, 2H), 7.63-7.59 (m, 1H), 7.53-7.49 (m, 2H), 7.37-7.33 (m, 2H), 7.27-7.26 (m, 3H), 3.46-3.41 (m, 1H), 3.39-3.36 (m, 1H), 3.12-3.04 (m, 1H), 2.35-2.30 (m, 1H), 2.26-2.21 (m, 1H), 2.17-2.12 (m, 1H), 2.09-1.99 (m, 1H), 1.97-1.89 (m, 1H), 1.78-1.68 (m, 1H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 199.3, 144.5, 135.3, 133.6, 129.1, 128.8, 128.4, 127.0, 126.9, 120.2, 46.8, 39.7, 36.2, 33.2, 30.4, 26.6; IR (neat): v 1681.9, 1651.1, 1446.6, 1224.8, 1062.8, 949.0, 761.9, 700.2 cm⁻¹; MS (EI): 289 (M⁺, 6), 245 (4), 184 (2), 172 (15), 131 (3), 105 (100), 91 (6), 77 (27); HRMS (EI): Exact mass calcd for C₂₀H₁₉NO [M]⁺: 289.1467, Found: 289.1465.

Product **6j** was obtained in 32% yield (81.6 mg) as white solid. Mp: 69-71 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 3.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.58-7.56 (m, 1H), 7.50-7.46 (m, 2H), 3.30-3.26 (m, 1H), 3.25-3.23 (m, 1H), 2.19-2.13 (m, 1H), 2.11-2.05 (m, 1H), 2.01-1.96 (m, 1H), 1.90-1.75 (m, 2H), 1.42-1.33 (m, 3H), 1.30-1.24 (m, 2H), 1.18-1.08 (m, 1H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 135.5, 133.5, 129.0, 128.4, 120.4, 47.4, 38.7, 35.6, 33.0, 32.2, 30.2, 26.3, 19.9, 14.4; IR (neat): v 1683.9, 1447.6, 1239.3, 1222.9, 943.2, 939.4, 761.9, 698.2 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO [M+Na]⁺: 278.1515; Found: 278.1512.

Product **6k** was obtained in 34% yield (91.5 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 2.8:1. ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.60-7.57 (m, 1H), 7.50-7.46 (m, 2H), 3.30-3.25 (m, 1H), 3.24-3.23 (m, 1H), 2.19-2.14 (m, 1H), 2.11-2.06 (m, 1H), 2.01-1.96 (m, 1H), 1.91-1.83 (m, 1H), 1.81-1.76 (m, 1H), 1.42-1.36 (m, 1H), 1.34-1.26 (m, 6H), 1.18-1.09 (m, 1H), 0.91 (t, *J* =6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 135.5, 133.6, 129.0, 128.5, 122.4, 45.6, 33.6, 32.7, 32.0, 29.3, 28.4, 26.7, 25.6, 22.9, 14.2; IR (neat): v 1675.2, 1595.2, 1450.5, 1212.3, 1187.2, 956.7, 768.7, 694.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₃NNaO [M+Na]⁺: 292.1672; Found: 292.1664. Product **6I** was obtained in 50% yield (141.5 mg) as white solid. Mp: 75-77 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 3.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 2H), 3.30-3.25 (m, 1H), 3.24-3.23 (m, 1H), 2.19-2.15 (m, 1H), 2.11-2.06 (m, 1H), 2.00-1.97 (m, 1H), 1.91-1.83 (m, 1H), 1.81-1.74 (m, 1H), 1.43-1.27 (m, 9H), 1.18-1.08 (m, 1H), 0.90 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 135.5, 133.5, 129.0, 128.4, 120.4, 47.4, 36.5, 35.6, 33.3, 32.3, 32.1, 30.2, 26.5, 26.4, 22.7, 14.2; IR (neat): v 2925.1, 1670.4, 1596.1, 1448.6, 1223.9, 927.8, 693.4, 602.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₂₅NNaO [M+Na]⁺: 306.1828; Found: 306.1827.

Product **6m** was obtained in 90% yield (252.9 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 5.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.64-7.60 (m, 1H), 7.53-7.49 (m, 2H), 3.37-3.32 (m, 2H), 2.61-2.54 (m, 1H), 2.41-2.37 (m, 1H), 2.24-2.16 (m, 2H), 1.96-1.88 (m, 1H), 1.83-1.75 (m, 1H), 1.64-1.58 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 198.5, 135.0, 133.9, 129.2, 128.4, 127.1 (q, *J* = 276 Hz), 119.1, 46.4, 38.2 (q, *J* = 27.5 Hz), 29.0, 28.1 (d, *J* = 2.5 Hz), 24.7, 24.3 (d, *J* = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -73.371; IR (neat): v 1681.9, 1651.1, 1338.6, 1273.0, 1151.5, 954.8, 785.0, 692.4 cm⁻¹; MS (EI): 281 (M⁺, 2), 262 (1), 158 (1), 133 (1), 105 (100), 78 (3), 77 (32), 65 (1); HRMS (EI): Exact mass calcd for C₁₅H₁₄NOF₃ [M]⁺: 281.1027, Found: 281.1025.

Product **6n** was obtained in 58% yield (147.9 mg) as white solid. Mp: 91-93 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 6.4:1. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.31 (m, 2H), 7.26-7.21 (m, 3H), 3.37-3.34 (m, 1H), 3.02-2.96 (m, 1H), 2.91-2.84 (m, 1H), 2.67-2.63 (m, 1H), 2.29-2.23 (m, 2H), 2.16-2.10 (m, 1H), 1.97-1.86 (m, 1H), 1.81-1.74 (m, 1H), 1.66-1.55 (m, 1H), 1.15 (d, *J* = 6.8 Hz, 3H), 1.12 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 212.6, 144.5, 128.8, 126.93, 126.90, 120.2, 49.6, 39.6, 37.7, 36.0, 33.3, 29.5, 25.4, 19.1, 18.2; IR (neat): v 1705.1, 1492.9, 1455.3, 1360.8, 1093.7, 984.7, 958.6, 758.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO [M+Na]⁺: 278.1515; Found: 278.1516.

Product **60** was obtained in 73% yield (184.7 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 4.8:1. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.31 (m, 2H), 7.25-7.22 (m, 3H), 3.44-3.41 (m, 1H), 3.03-2.97 (m, 1H), 2.72-2.67 (m, 1H), 2.41-2.36 (m, 1H), 2.30-2.24 (m, 1H), 2.17-2.12 (m, 1H), 2.09-2.02 (m, 1H), 2.01-1.90 (m, 1H), 1.83-1.76 (m, 1H), 1.68-1.57 (m, 1H), 1.15-1.12 (m, 2H), 0.98-0.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 208.6, 144.6, 128.8, 126.9, 126.8, 120.2, 51.8, 39.7, 36.0, 33.3, 29.7, 25.3, 18.7, 11.7, 11.6; IR (neat): v 1702.2, 1511.3, 1388.8, 1247.0, 1084.9, 986.6, 981.8, 700.2 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₉NNaO [M+Na]⁺: 276.1359; Found: 276.1353.

Product **6p** was obtained in 57% yield (71.1 mg) as colorless oil. ¹H NMR analysis of the crude mixture revealed that the dr value was 3.4:1. ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.12 (m, 3H), 7.11-7.07 (m, 1H), 3.22 (s, 1H), 3.15-3.11 (m, 1H), 2.92-2.89 (m, 2H), 2.62-2.58 (m, 1H), 2.53-2.48 (m, 1H), 2.25 (s, 3H), 2.20-2.17 (m, 1H), 2.00-1.89 (m, 3H), 1.68-1.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 139.6, 134.8, 129.3, 129.2, 126.5, 126.3, 120.2, 46.6, 37.4, 36.4, 34.4, 31.1, 29.5, 27.9, 25.1, 23.2; IR (neat): v 2933.7, 2360.9, 1707.0, 1489.1, 1182.4, 910.4, 756.0, 733.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₉NNaO [M+Na]⁺: 276.1359; Found: 276.1356.

Product **6q** was obtained in 66% yield (93.4 mg) as white solid. Mp: 118-120 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 1.9:1. ¹H NMR (400 MHz, CDCl₃): δ 7.06-7.03 (m, 1H), 6.75-6.72 (m, 1H), 6.62-6.61 (m, 1H), 3.77 (s, 3H), 3.21 (s, br, 1H), 3.09-3.04 (m, 1H), 2.88-2.85 (m, 2H),

2.61-2.56 (m, 1H), 2.51-2.45 (m, 1H), 2.24 (s, 3H), 2.18-2.14 (m, 1H), 1.98-1.88 (m, 3H), 1.65-1.62 (m, 2H); 13 C NMR (100 MHz, CDCl₃): δ 207.3, 158.1, 136.0, 131.9, 130.2, 120.3, 113.6, 112.7, 55.4, 46.7, 37.6, 35.7, 34.4, 31.1, 29.8, 27.9, 25.1, 23.2; IR (neat): v 2923.2, 1705.1, 1610.6, 1498.7, 1248.9, 1129.3, 1034.8, 818.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺: 306.1464; Found: 306.1462.

Product **6r** was obtained in 54% yield (89.6 mg) as white solid. Mp: 194-196 °C. ¹H NMR analysis of the crude mixture revealed that the dr value was 3.0:1. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.27 (m, 1H), 7.25-7.23 (m, 1H), 6.97-6.95 (m, 1H), 3.22 (s, br, 1H), 3.12-3.07 (m, 1H), 2.86-2.81 (m, 2H), 2.61-2.56 (m, 1H),

2.50-2.44 (m, 1H), 2.25 (s, 3H), 2.21-2.18 (m, 1H), 2.00-1.87 (m, 3H), 1.68-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 207.1, 141.9, 133.8, 132.0, 130.9, 129.6, 120.0, 119.7, 46.5, 37.0, 36.3, 34.2, 30.9, 29.0, 27.9, 25.0, 23.0; IR (neat): v 1704.1, 1507.4, 1250.9, 1218.1, 1160.2, 847.7, 811.1, 642.3 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₈⁷⁹BrNNaO [M+Na]⁺: 354.0464; Found: 354.0456.

8. The possible pathway for the generation of 5a and 6a

Based on our results, we tentatively proposed a pathway for the generation of **5a** and **6a** from the DA adduct **4a** (Scheme S2A). First, the *retro*-cyanosilylation reaction of **4a** occurred to give the intermediate **I** and cyanide anion (CN⁻) in the presence of fluoride ion (F⁻), and the intermediate **I** could be detected by GC-MS and ESI when NH₄F was used as the fluoride ion source. Under the action of another F⁻, the intermediate **I** subsequently underwent desilylation to provide the intermediate **II**, which then rapidly isomerized to give enone **5a**. On the other hand, the desired **6a** might generate from **5a** via a conjugate addition with the residual cyanide anion, in the absence of Mn(OAc)₄ as the CN⁻ capturing agent. This result was further confirmed by the control experiment that **5a** could be readily converted into **6a** in 80% NMR yield with >20:1 dr in the presence of Me₂(CH₂=CH)SiCN (1.0 equiv) and TBAF (4.0 equivs), as shown in Scheme S2B.

A) Proposed mechanism for generation of 7a and 8a from 6a

Scheme S2. Proposed mechanism and control experiment.

9. Synthetic applications

9.1 Synthetic transformations of 5a

To a 25 mL flask was added ketone **5a** (40.0 mg, 0.2 mmol), followed by the addition of EtOH (1.0 mL) and Pd/C (10 wt.%, 4.0 mg). This resulting mixture was in a vacuum and back-filled with H₂ (1 atm). After being stirred at rt for 10 h, the reaction solution was filtered, and the filtered-cake was washed with EtOH (10.0 mL). The filtrate was evaporated under vacuo to give the crude product, which was re-dissolved in THF (1.0 mL). To this solution was added NaO'Bu (48.0 mg, 0.5 mmol), and then stirred at 100 °C for 13 h. After removal of solvent THF under the reduced pressure, the crude residue was purified by silica gel column chromatography using PE/EtOAc (10:1, v/v) as the eluent to give 1-(4-phenylcyclohexyl) ethanone **9** in 68% yield (27.5 mg) as colorless oil.⁹ ¹H NMR analysis of the crude residue revealed that the ratio of *trans-* and *cis-*isomer was 7:1. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.25 (m, 2H), 7.21-7.19 (m, 3H), 2.53-2.48 (m, 1H), 2.44-2.38 (m, 1H), 2.18 (s, 3H), 2.06-2.00 (m, 4H), 1.56-1.45 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 212.2, 147.0, 128.5, 126.9, 126.3, 51.2, 43.9, 33.5, 28.8, 28.2.

To a sealed tube was added **5a** (0.20 mmol, 40.0 mg) and thiosemicarbazide (0.20 mmol, 18.2 mg), followed by the addition of EtOH (1.0 mL) and NaOH (5.0 mmol, 200.0 mg) at rt. The reaction mixture was stirred at 100 °C until full conversion of **5a** (ca. 13 h). The 4M HCl aqueous solution was then added slowly until the pH was 2, and the resulting mixture was filtered to afford analytically pure **10** in 74% yield (40.6 mg) as brown solid. Mp: 161-163 °C. ¹H NMR analysis revealed the *Z/E* value was >20:1. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 7.34-7.31 (m, 2H), 7.24-7.21 (m, 3H), 6.43-6.41 (m, 1H), 6.33 (s, br, 1H), 2.85-2.78 (m, 1H), 2.65-2.53 (m, 2H), 2.39-2.32 (m, 2H), 2.04 (s, 3H), 1.80-1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 179.3, 149.2, 146.3, 136.1, 132.1, 128.7,

⁹ H. E. Zimmerman, P. S. Mariano, J. Am. Chem. Soc. **1968**, 90, 6091-6096.

126.9, 126.5, 39.8, 34.5, 29.7, 25.2, 11.5; IR (neat): v 1714.7, 1365.6, 1224.8, 1093.6, 840.9, 744.5, 698.2, 601.8 cm⁻¹; MS (EI): 273 (M⁺, 69), 256 (45), 240 (100), 214 (35), 128 (28), 104 (62), 91 (82), 77 (34); HRMS (EI): Exact mass calcd for C₁₅H₁₉N₃S [M]⁺: 273.1300, Found: 273.1302.

To a solution of **5a** (0.20 mmol, 40.0 mg) in EtOH (0.5 mL) was added NaOH (0.5 mL, 0.4 M in H₂O) at rt. After being stirred for 10 min, benzaldehyde (0.20 mmol, 21 µL) was added. The reaction mixture was stirred for about 3 h until full conversion of **5a** by TLC analysis. Then H₂O (5 mL) was added to the resulting mixture, and extracted with EtOAc (20 mL × 3). The combined organic phases were washed with brine, and dried over Na₂SO₄. After evaporation, the residue was purified by silica gel column chromatography using PE/EtOAc (20/1, v/v) as the eluent to afford the product **11** in 36% yield (20.7 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.68-7.64 (m, 1H), 7.61-7.58 (m, 2H), 7.41-7.38 (m, 3H), 7.36-7.32 (m, 3H), 7.25-7.21 (m, 3H), 7.11-7.09 (m, 1H), 2.89-2.82 (m, 1H), 2.72-2.60 (m, 2H), 2.48-2.37 (m, 2H), 2.12-2.07 (m, 1H), 1.84-1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.8, 146.1, 142.9, 140.3, 139.3, 135.4, 130.2, 129.0, 128.7, 128.3, 127.0, 126.5, 121.5, 39.5, 34.4, 29.5, 24.5; IR (neat): *v* 1654.9, 1597.1, 1492.9, 1448.5, 1384.9, 974.1, 754.2, 696.3 cm⁻¹; MS (EI): 287 (M⁺, 41), 245 (100), 203 (89), 161 (30), 119 (20), 91 (13), 73 (14), 52 (3); HRMS (EI): Exact mass calcd for C₂₁H₂₀O [M]⁺: 288.1514, Found: 288.1512.

Under N₂ atmosphere, to a solution of **5a** (0.20 mmol, 40.0 mg) in anhydrous THF (1.0 mL) was added Et₃N (0.22 mmol, 60 μ L) at 0 °C, followed by the addition of TIPSOTf (0.50 mmol, 70 μ L). The reaction mixture was stirred at the same temperature for about 4 h until full conversion of **5a** by TLC analysis. *n*-Hexane (10 mL) was added slowly, and the resulting mixture was washed with saturated NaHCO₃ (aq., 5 mL) and brine, successively. The organic phases were evaporated to give the crude silyl enol ether, which was directly dissolved in anhydrous toluene (0.5 mL). To this solution were added ethyl propiolate (0.30 mmol, 30 μ L). After being stirred at 110 °C for 4 h and cooled to rt,

DDQ (0.20 mmol, 45.4 mg) was added to the reaction mixture, and then stirred at rt for 2 h. After full conversion, the reaction mixture was directly purified by silica gel column chromatography using PE/EtOAc (20/1, v/v) as the eluent to deliver the product **12** in 40% yield (36.3 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.71-7.70 (m, 1H), 7.33-7.27 (m, 4H), 7.22-7.19 (m, 1H), 6.68-6.67 (m, 1H), 4.26 (q, *J* = 7.0 Hz, 2H), 3.53-3.48 (m, 1H), 3.12-3.04 (m, 2H), 2.88-2.84 (m, 1H), 2.76-2.70 (m, 1H), 2.17-2.14 (m, 1H), 1.91-1.83 (m, 1H), 1.35-1.31 (m, 6H), 1.13-1.12 (m, 18H); ¹³C NMR (125 MHz, CDCl₃): δ 167.7, 157.4, 146.8, 141.1, 129.6, 128.6, 128.5, 127.1, 126.2, 122.6, 114.5, 60.4, 40.0, 36.6, 29.4, 25.4, 18.2, 14.5, 13.2; IR (neat): *v* 825.5, 1030.0, 1134.1, 1170.8, 1255.7, 1471.7, 1587.4, 1712.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₈H₄₀O₃SiNa [M+Na]⁺: 475.2639; Found: 475.2649.

To a 5 mL vial was added ketone **2a** (86.0 mg, 0.5 mmol), (*R*,*R*)-**15** (30.4 mg, 0.05 mmol, 10 mol%), and ylide **7a** (15.9 mg, 0.05 mmol, 10 mol%), followed by the addition of anhydrous CH₂Cl₂ (1.0 mL) and Ph₃PO (139.0 mg, 1.0 equiv), successively. The resulting mixture was cooled down to -30 °C for 0.5 h, and Me₂(CH₂=CH)SiCN **1** (125 μ L, 1.0 mmol) was added. After being stirred at -30 °C for 2 days, the reaction mixture was rapidly passed through a short pad of silica gel, and washed with ether. The obtained organic solution was concentrated in vacuo to give the crude product, which was purified by silica gel column chromatography using PE/Et₂O (10:1, v/v) as the eluent to afford the desired cyanohydrin **3a** in 88% yield (124.5 mg). HPLC analysis (Chiralcel OJ-H, *i*-PrOH/hexane = 1/99, 1.0 mL/min, 230 nm; tr (minor) = 15.45 min, tr (major) = 20.13 min) gave the isomeric composition of the product: 90% ee. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.41 (m, 2H), 7.36-7.32 (m, 2H), 7.28-7.24 (m, 1H), 6.77-6.62 (m, 3H), 6.25-6.16 (m, 1H), 6.07-6.02 (m, 1H), 5.84-5.73 (m, 2H), 1.71 (s, 3H), 0.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 137.6, 136.7, 135.8, 133.8, 132.9, 131.7, 128.9, 128.3, 126.8, 126.5, 120.7, 70.0, 30.8, -0.3; IR (neat): v 1714.7, 1616.4, 1406.1, 1251.8, 960.5,

835.2, 748.4, 636.5 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NSiNaO [M+Na]⁺: 306.1285; Found: 306.1288.

The cyanohydrin **3a** (56.6 mg, 0.2 mmol) was dissolved in toluene (1.0 mL). The reaction solution was heated to 120 °C for 15 h. After full conversion of **3a** by TLC analysis, the reaction mixture was cooled to room temperature, and Mn(OAc)₂·4H₂O (49.0 mg, 0.2 mmol), TBAF (0.8 mL, 1.0 M in THF) were added. The suspension was stirred at room temperature for 6 h until full conversion of **4a** by TLC analysis. The reaction mixture was poured in to H₂O (10 mL), and extracted with EtOAc (20 mL × 3). The combined organic phases were then washed with brine, dried over Na₂SO₄ and concentrated under the reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc (4/1, v/v) as the eluent to give the cyclohexenyl ketone **5a**. HPLC analysis (Chiralpak AS-H, *i*-PrOH/hexane = 5/95, 1.0 mL/min, 205 nm; tr (major) = 7.29 min, tr (minor) = 8.63 min) gave the isomeric composition of the product: 42% ee. ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.29 (m, 3H), 7.27-7.20 (m, 2H), 6.14-6.09 (m, 1H), 5.90-5.84 (m, 1H), 3.36-3.31 (m, 1H), 2.49-2.44 (m, 1H), 2.06-1.84 (m, 2H), 1.73 (s, 3H), 1.64-1.59 (m, 1H), 0.30 (s, 3H), 0.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 136.9, 128.8, 127.8, 126.6, 123.2, 122.0, 77.5, 48.2, 43.5, 30.0, 28.0, 23.9, 0.01, -3.0; MS (EI): 283 (M⁺, 55), 256 (35), 214 (87), 154 (81), 135 (100), 128 (29), 101 (27), 85 (56); HRMS (EI): Exact mass calcd for C₁₇H₂₁NOSi [M]⁺: 283.1392, Found: 283.1390.

10. X-ray crystallographic data

10.1 X-ray crystallographic data of 5u.¹⁰

Data intensity of **5u** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer at 293(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **5u**: C₁₆H₁₈O, T = 296(2) K, monoclinic, space group P21/n, a = 7.27630(10) Å, b = 13.18790(10) Å, c = 12.60950(10) Å, a = 90 deg, $\beta = 94.1790(10)$ deg, $\gamma = 90$ deg, V = 1206.78(2) Å³. Z = 4, $d_{calc} = 1.246$ g/cm³. 25070 reflections measured, 2436 [R_{int} = 0.0430, R_{sigma} = 0.0171], ($I > 2\sigma(I)$, final), R₁ = 0.0433, wR₂ = 0.1109 (all data).

Table S3. Crystal data and structure refinement for 5u.

Identification code	5u	
Empirical formula	$C_{16}H_{18}O$	
Formula weight	226.30	
Temperature	293(2) K	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 7.27630(10) Å	$\alpha = 90^{\circ}$
	b = 13.18790(10) Å	$\beta = 94.1790(10)^{\circ}$
	c = 12.60950(10) Å	$\gamma = 90^{\circ}$
Volume	1206.78(2) Å ³	
Z	4	
ρcalcg	1.246(cm ³)	
μ	$0.581(\text{mm}^{-1})$	
F(000)	488.0	

¹⁰ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1921832).

Crystal size	$0.32\times0.28\times0.22~mm^3$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Theta range for data collection	9.718 to 148.868°.
Index ranges	$-9 \le h \le 9, -16 \le k \le 16, -15 \le l \le 15$
Reflections collected	25070
Independent reflections	2436 [$R_{int} = 0.0430$, $R_{sigma} = 0.0171$]
Data / restraints / parameters	2436/0/156
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	$R_1=0.0433,wR_2=0.1102$
R indices (all data)	$R_1 = 0.0441, wR_2 = 0.1109$
Largest diff. peak and hole	0.42 and -0.20 e.Å ⁻³

Table S4. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **5u**. Ueq is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
O1	8858.6(13)	7389.1(8)	5663.9(8)	27.9(3)
C1	798.0(17)	6168.7(9)	3455.2(10)	19.2(3)
C2	400.9(17)	5132.4(10)	3497.1(11)	22.9(3)
C3	-1060.5(18)	4714.4(10)	2881.5(11)	24.0(3)
C4	-2175.1(17)	5338.0(10)	2219.3(11)	23.3(3)
C5	-1810.6(17)	6368.0(10)	2176.3(10)	21.1(3)
C6	-325.8(16)	6795.6(9)	2786.2(10)	18.8(3)
C7	6.1(18)	7925.7(9)	2740.0(10)	21.8(3)
C8	1976.8(18)	8211.3(10)	3109.0(11)	23.6(3)
C9	2514.5(17)	7734.2(9)	4195.4(10)	20.6(3)
C10	4361.2(18)	8108.4(10)	4646.2(10)	22.2(3)
C11	5861.9(17)	7530.6(9)	4847.9(10)	19.2(3)
C12	5859.0(17)	6417.6(10)	4574.8(11)	22.1(3)
C13	4260.7(17)	6163.2(10)	3764.9(10)	21.3(3)
C14	2442.7(16)	6569.5(9)	4144.1(10)	19.5(3)
C15	7573.2(17)	7950.6(10)	5394.9(10)	21.1(3)
C16	7700.6(19)	9070.5(10)	5643.2(11)	27.4(3)

Table S5. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for **5u**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U ₂₂	U33	U ₂₃	U13	U12
01	19.4(5)	33.1(5)	30.2(5)	3.3(4)	-4.6(4)	-0.9(4)
C1	15.7(6)	20.4(6)	21.3(6)	-1.0(5)	-0.5(5)	0.7(5)
C2	18.6(6)	20.4(6)	28.9(7)	1.1(5)	-2.9(5)	1.9(5)
C3	20.2(6)	19.2(6)	32.2(7)	-3.0(5)	-0.7(5)	-1.1(5)
C4	17.3(6)	27.0(7)	24.9(6)	-5.5(5)	-2.8(5)	-1.5(5)
C5	17.2(6)	25.5(6)	20.1(6)	0.5(5)	-1.6(5)	2.8(5)
C6	17.2(6)	20.8(6)	18.4(6)	-0.5(5)	0.6(5)	1.7(5)
C7	21.8(6)	19.9(6)	23.0(6)	2.1(5)	-3.8(5)	3.5(5)
C8	23.8(7)	18.2(6)	28.2(7)	1.9(5)	-3.3(5)	-0.6(5)
C9	17.6(6)	21.5(6)	22.4(6)	-1.9(5)	-0.4(5)	1.7(5)
C10	22.8(7)	21.3(6)	22.3(6)	-1.6(5)	-0.7(5)	-1.7(5)
C11	17.3(6)	22.5(6)	17.7(6)	1.1(5)	1.0(5)	-2.2(5)
C12	16.3(6)	23.1(6)	26.5(6)	1.4(5)	-1.4(5)	1.2(5)
C13	18.5(6)	20.4(6)	24.6(6)	-0.5(5)	-0.5(5)	1.7(5)
C14	17.0(6)	20.9(6)	20.1(6)	1.8(5)	-1.4(5)	0.4(5)
C15	19.0(6)	27.0(7)	17.4(6)	2.9(5)	0.9(5)	-3.3(5)
C16	24.6(7)	27.6(7)	29.1(7)	0.3(5)	-4.9(5)	-7.6(5)

Table S6. Bond Lengths for 5u.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C15	1.2215(16)	C8	C9	1.5322(18)
C1	C2	1.3986(17)	C9	C10	1.5036(17)
C1	C6	1.4012(17)	C9	C14	1.5381(17)
C1	C14	1.5214(16)	C10	C11	1.3406(18)
C2	C3	1.3845(18)	C11	C12	1.5077(17)
C3	C4	1.3902(18)	C11	C15	1.4859(17)
C4	C5	1.3858(19)	C12	C13	1.5281(17)
C5	C6	1.3984(17)	C13	C14	1.5355(17)
C6	C7	1.5116(17)	C15	C16	1.5112(18)

C7 C8	1.5223(17)
-------	------------

Table S7. Bond Angles for 5u.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	119.09(11)	C10	C9	C14	111.74(10)
C2	C1	C14	118.29(11)	C11	C10	C9	125.33(12)
C6	C1	C14	122.62(11)	C10	C11	C12	121.50(11)
C3	C2	C1	121.35(12)	C10	C11	C15	121.30(12)
C2	C3	C4	119.46(12)	C15	C11	C12	117.14(11)
C5	C4	C3	119.89(12)	C11	C12	C13	110.77(10)
C4	C5	C6	121.08(12)	C12	C13	C14	110.26(10)
C1	C6	C7	121.14(11)	C1	C14	C9	113.20(10)
C5	C6	C1	119.12(11)	C1	C14	C13	111.14(10)
C5	C6	C7	119.71(11)	C13	C14	C9	109.52(10)
C6	C7	C8	112.44(10)	01	C15	C11	120.11(12)
C7	C8	C9	110.19(11)	01	C15	C16	120.06(12)
C8	C9	C14	111.52(10)	C11	C15	C16	119.81(11)
C10	C9	C8	111.48(11)				

Table S8. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å²×10³) for **5**u.

Atom	x	у	z	U(eq)
H2	1133.42	4715.67	3947.69	27
H3	-1294.53	4022.1	2910.77	29
H4	-3163.72	5064.4	1805.74	28
H5	-2565.84	6781.54	1734.74	25
H7A	-833.72	8267.97	3184.34	26
H7B	-258.54	8158.82	2015.36	26
H8A	2084.17	8943.15	3159.52	28
H8B	2808.19	7975.84	2594.23	28
H9	1599.05	7952.37	4680.75	25
H10	4471.3	8796.89	4797.37	27
H12A	5750.24	6020.99	5215.06	27

H12B	7015.02	6240.64	4284.42	27
H13A	4177.39	5434.04	3672.75	26
H13B	4481.32	6463.25	3083.38	26
H14	2334.8	6319.07	4868.63	23
H16A	6837.46	9239.62	6156.09	41
H16B	7418.81	9452.9	5004.12	41
H16C	8926.3	9230.53	5927.08	41
H2	1133.42	4715.67	3947.69	27
H3	-1294.53	4022.1	2910.77	29

10.2 X-ray crystallographic data of 5x.¹¹

Data intensity of **5x** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer at 100.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal Data for **5x**, C₁₅H₁₆O₂ (M =228.28 g/mol): monoclinic, space group Cc (no. 9), a = 8.78830(10) Å, b = 12.6773(2) Å, c = 10.4803(2) Å, β = 99.0970(10)°, V = 1152.94(3) Å³, Z = 4, T = 100.00(10) K, μ (CuK α) = 0.682 mm⁻¹, *Dcalc* = 1.315 g/cm³, 10931 reflections measured (12.36° $\leq 2 \Theta \leq 148.886^{\circ}$), 2186 unique (R_{int} = 0.0431, R_{sigma} = 0.0216) which were used in all calculations. The final R₁ was 0.0314 (I > 2 σ (I)) and wR₂ was 0.0845 (all data).

Table S9. Crystal data and structure refinement for 5x.			
Identification code	5x		
Empirical formula	$C_{15}H_{16}O_2$		
Formula weight	228.28		
Temperature	100.00(10) K		

¹¹ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1917989).
monoclinic, Cc		
a = 8.78830(10) Å	$\alpha = 90 \text{ deg}$	
b = 12.6773(2) Å	$\beta = 99.0970(10) \text{ deg}$	
c = 10.4803(2) Å	$\gamma = 90 \text{ deg}$	
1152.94(3) Å ³		
4, 1.315 Mg/m ³		
1.315		
0.682		
488.0		
$0.32\times0.26\times0.22~mm^3$		
$CuK\alpha$ ($\lambda = 1.54184$)		
12.36 to 148.886		
-10≤h≤10, -15≤k≤15	, -12≤l≤12	
10931		
2186 [$R_{int} = 0.0431$, R_{sigm}	ha = 0.0216]	
2186/2/156		
1.046		
$R_1 = 0.0314, wR_2 = 0.084$	14	
$R_1 = 0.0314, wR_2 = 0.084$	45	
0.18/-0.20		
0.14(12)		
	monoclinic, Cc a = 8.78830(10) Å b = 12.6773(2) Å c = 10.4803(2) Å 1152.94(3) Å ³ 4, 1.315 Mg/m ³ 1.315 0.682 488.0 0.32 × 0.26 × 0.22 mm ³ CuK α (λ = 1.54184) 12.36 to 148.886 -10 \leq h \leq 10, -15 \leq k \leq 15 10931 2186 [R _{int} = 0.0431, R _{sign} 2186/2/156 1.046 R ₁ = 0.0314, wR ₂ = 0.084 R ₁ = 0.0314, wR ₂ = 0.084 0.18/-0.20 0.14(12)	

Table S10. Fractional Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($A^2 \times 10^3$) for **5x**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	у	Z.	U(eq)
01	3310.3(16)	4325.4(10)	3714.8(13)	22.0(3)
O2	5677.9(19)	9454.2(11)	5834.0(15)	27.5(4)
C1	4423(2)	3824.0(15)	4565(2)	19.4(4)
C13	3252(2)	5456.2(14)	3842(2)	22.0(4)
C7	5875(2)	5530.2(14)	5179.8(19)	18.5(4)
C12	4849(2)	5950.8(14)	3968.7(19)	19.9(4)
C11	4746(2)	7133.7(15)	3965.8(19)	20.4(4)
C10	5222(2)	7747.8(14)	4989(2)	19.1(4)

C5	6751(2)	3744.7(16)	6100(2)	21.3(4)
C3	5349(2)	2156.3(14)	5485(2)	23.2(4)
C14	5173(2)	8919.7(13)	4893(2)	19.9(4)
C9	5871(3)	7295.5(14)	6292(2)	21.2(4)
C6	5675(2)	4347.5(14)	5286(2)	19.4(4)
C8	5517(2)	6120.3(15)	6374.3(19)	20.0(4)
C2	4269(2)	2730.4(15)	4661(2)	22.3(4)
C4	6593(2)	2662.6(16)	6211(2)	23.5(4)
C15	4498(3)	9436.9(15)	3637(2)	25.3(5)

Table S11. Anisotropic displacement parameters ($A^2 \times 10^3$) for **5x**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^*b^*U_{12}]$

Atom	U 11	U22	U 33	U23	U 13	U12
O 1	26.3(7)	13.9(7)	24.5(8)	-0.2(5)	-0.1(6)	-1.8(5)
O2	40.5(9)	16.2(7)	25.0(8)	-3.0(5)	2.7(6)	-1.7(6)
C1	21.7(9)	17.5(9)	20.0(9)	-0.4(7)	6.8(8)	0.4(7)
C13	26.2(10)	12.5(9)	25.9(11)	1.3(7)	-0.7(8)	-0.7(7)
C7	17.7(9)	14.4(9)	23.6(10)	0.0(7)	4.1(7)	-0.4(7)
C12	27.1(10)	14.1(9)	19.1(10)	-1.6(7)	5.9(7)	-2.2(7)
C11	24.9(10)	16.2(9)	20.3(10)	1.4(7)	3.7(8)	-2.1(7)
C10	20.3(8)	14.9(8)	22.4(10)	0.9(7)	5.0(8)	-0.1(7)
C5	20.6(9)	19.7(10)	24.2(10)	-3.0(8)	4.7(8)	1.9(7)
C3	32.4(11)	12.5(8)	26.5(10)	-1.0(7)	10.4(9)	1.1(7)
C14	21.1(9)	14.8(8)	24.2(11)	0.1(8)	4.9(7)	0.6(8)
C9	29.3(11)	15.4(9)	18.8(10)	-1.2(7)	3.4(8)	-0.9(7)
C6	22.8(10)	14.3(8)	22.4(10)	-0.8(7)	7.8(8)	1.5(7)
C8	23.3(10)	16.1(9)	20.0(10)	0.1(7)	1.8(8)	0.0(7)
C2	27.1(11)	17.9(10)	22.6(10)	-1.6(7)	6.4(8)	-2.6(8)
C4	27.9(10)	16.9(9)	26.1(11)	1.0(8)	5.5(8)	7.0(8)
C15	31.7(11)	14.3(8)	28.2(11)	2.1(8)	-0.5(8)	-0.6(7)

Table S12. Bond lengths [Å] for 5x.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	1.371(2)	C11	C10	1.338(3)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C13	1.441(2)	C10	C14	1.489(2)
O2	C14	1.221(2)	C10	C9	1.507(3)
C1	C6	1.399(3)	C5	C6	1.397(3)
C1	C2	1.398(3)	C5	C4	1.385(3)
C13	C12	1.523(3)	C3	C2	1.385(3)
C7	C12	1.532(3)	C3	C4	1.386(3)
C7	C6	1.516(2)	C14	C15	1.506(3)
C7	C8	1.533(3)	C9	C8	1.527(2)
C12	C11	1.502(2)			

Table S13. Bond Angles for 5x.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	01	C13	115.67(15)	C14	C10	C9	116.35(15)
01	C1	C6	123.38(16)	C4	C5	C6	121.73(18)
01	C1	C2	116.04(17)	C2	C3	C4	120.14(17)
C2	C1	C6	120.57(18)	O2	C14	C10	119.72(17)
01	C13	C12	111.83(16)	O2	C14	C15	120.47(16)
C12	C7	C8	109.70(15)	C10	C14	C15	119.80(16)
C6	C7	C12	110.20(15)	C10	C9	C8	111.78(15)
C6	C7	C8	112.44(16)	C1	C6	C7	121.32(16)
C13	C12	C7	110.03(16)	C5	C6	C1	117.95(16)
C11	C12	C13	110.87(16)	C5	C6	C7	120.73(17)
C11	C12	C7	112.12(15)	C9	C8	C7	111.11(16)
C10	C11	C12	124.62(17)	C3	C2	C1	120.07(19)
C11	C10	C14	121.59(17)	C5	C4	C3	119.54(18)
C11	C10	C9	122.04(16)				

Table S14. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for **5x**.

Atom	x	у	z	U(eq)
H13A	2793.57	5632.4	4597.55	26

H13B	2602.42	5748.27	3090.34	26
H7	6950.44	5670.62	5094.49	22
H12	5308.7	5736.77	3215.84	24
H11	4320.99	7462.37	3198.32	25
H5	7594.52	4078.47	6581.18	26
H3	5240.02	1429.68	5552.53	28
H9A	5437.39	7669.69	6957.65	25
H9B	6978.37	7398.99	6450.9	25
H8A	4438.08	6027.88	6444.89	24
H8B	6128.1	5825.2	7143.29	24
H2	3439.25	2388.13	4171.43	27
H4	7317.3	2278.41	6767.13	28
H15A	4582.71	10189.16	3726.54	38
H15B	3431.91	9244.68	3418.11	38
H15C	5048.14	9206.68	2965.7	38

10.3 X-ray crystallographic data of 5ab.¹²

Data intensity of **5ab** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods, and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-hydrogen atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **5ab**: C₂₅H₃₂O₂, (M =364.50 g/mol): monoclinic, space group P21 (no. 4), a = 12.1960(5) Å, b = 6.2725(2) Å, c = 13.2067(7) Å, β = 97.530(4)°, V = 1001.59(7) Å3, Z = 2, T = 100.00(10) K, μ (CuK α) = 0.574 mm⁻¹, *Dcalc* = 1.209 g/cm³, 21715 reflections measured (9.284° ≤ 2 Θ ≤ 150.772°), 3981 unique (R_{int} = 0.0843, R_{sigma} = 0.0419) which were used in all calculations. The final R₁ was 0.0858 (I > 2 σ (I)) and wR₂ was 0.2587 (all data).

¹² Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 2076484).

Table S15. Crystal data and structure refinement for 5ab.

Identification code	5ab	
Empirical formula	$C_{25}H_{32}O_2$	
Formula weight	364.50	
Temperature/K	100.00(10)	
Crystal system	monoclinic	
Space group	P21	
Unit cell dimensions	a = 12.1960(5) Å	$\alpha = 90 \text{ deg}$
	b = 6.2725(2) Å	$\beta = 97.530(4) \text{ deg}$
	c = 13.2067(7) Å	$\gamma = 90 \text{ deg}$
Volume/Å ³	1001.59(7)	
Ζ	2	
pcalcg/cm ³	1.209	
μ/mm^{-1}	0.574	
F(000)	396.0	
Crystal size/mm ³	$0.46 \times 0.44 \times 0.28$	
Radiation	$CuK\alpha (\lambda = 1.54184)$	
2Θ range for data collection/°	9.284 to 150.772	
Index ranges	$-15 \leq h \leq 15, -7 \leq$	$\leq k \leq 7, -16 \leq l \leq 15$
Reflections collected	21715	
Independent reflections	3981 [$R_{int} = 0.0843$, R	$_{sigma} = 0.0419$]
Data/restraints/parameters	3981/1/247	
Goodness-of-fit on F2	1.083	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0858, wR_2 = 0.$	2572
Final R indexes [all data]	$R_1 = 0.0874, wR_2 = 0.$	2587
Largest diff. peak/hole / e Å ⁻³	0.37/-0.33	
Flack parameter	0.2(3)	

 \equiv

Table S16. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5ab**. U(eq) is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Atom	x	У	Z	U(eq)
O1	529(4)	6542(9)	7421(4)	53.2(13)
O2	8025(3)	5303(8)	-177(3)	44.5(11)
C1	1980(4)	3393(9)	4514(4)	31.0(11)
C2	1776(4)	3483(9)	5613(4)	31.5(11)
C3	1319(4)	5130(9)	6032(4)	29.9(11)
C4	1061(5)	7172(9)	5453(4)	37.1(13)
C5	1767(5)	7410(9)	4595(4)	34.9(12)
C6	1648(4)	5456(9)	3897(4)	31.2(11)
C7	2408(4)	5387(9)	3047(4)	30.6(11)
C8	2636(4)	7497(9)	2522(4)	33.0(11)
C9	3538(4)	7256(10)	1826(4)	35.2(12)
C10	4600(4)	6191(8)	2349(4)	30.3(11)
C11	5479(4)	5846(9)	1648(4)	30.7(11)
C12	5592(4)	7223(10)	833(4)	34.8(12)
C13	6415(5)	6994(10)	232(4)	39.2(13)
C14	7190(4)	5338(10)	410(4)	36.0(12)
C15	7073(4)	3913(10)	1195(4)	34.7(12)
C16	6229(4)	4152(9)	1815(4)	31.4(11)
C17	6174(5)	2511(9)	2649(4)	35.6(12)
C18	5453(4)	3234(9)	3451(4)	32.2(11)
C19	4368(4)	4119(8)	2925(4)	30.5(11)
C20	3520(4)	4632(8)	3640(4)	29.3(11)
C21	3201(4)	2883(8)	4362(4)	29.6(11)
C22	1005(4)	5044(10)	7091(4)	36.1(12)
C23	1287(5)	3093(11)	7729(4)	42.7(14)
C24	1913(5)	3769(11)	2249(4)	38.5(13)
C25	8870(5)	3765(14)	55(5)	52.0(18)

Table S17. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **5ab**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	U 11	U 22	U33	U23	U 13	U12
01	55(3)	64(3)	43(3)	-4(2)	14(2)	21(2)
O2	36(2)	63(3)	35(2)	-1(2)	8.3(16)	-5(2)
C1	35(3)	29(3)	29(3)	-1(2)	4(2)	-3(2)
C2	29(2)	30(3)	35(3)	-1(2)	4(2)	-2.6(19)
C3	26(2)	32(3)	31(3)	2(2)	2.1(18)	3(2)
C4	39(3)	36(3)	37(3)	4(2)	8(2)	15(2)
C5	34(3)	32(3)	40(3)	1(2)	8(2)	9(2)
C6	29(2)	34(3)	30(3)	1(2)	1.5(19)	3(2)
C7	29(2)	34(3)	28(3)	-2(2)	1.6(19)	2(2)
C8	38(3)	32(3)	29(3)	4(2)	1(2)	2(2)
C9	37(3)	36(3)	32(3)	5(2)	2(2)	3(2)
C10	31(2)	31(3)	28(3)	-1(2)	2(2)	-1(2)
C11	29(2)	34(3)	29(3)	-2(2)	1(2)	-3(2)
C12	32(3)	40(3)	32(3)	2(2)	3(2)	1(2)
C13	38(3)	48(3)	30(3)	7(2)	0(2)	-4(3)
C14	32(2)	52(3)	25(3)	-7(2)	5(2)	-10(2)
C15	30(3)	40(3)	33(3)	-7(2)	1(2)	-1(2)
C16	31(2)	32(3)	31(3)	0(2)	2.6(19)	-4(2)
C17	34(3)	36(3)	37(3)	-2(2)	7(2)	5(2)
C18	34(3)	30(3)	33(3)	2(2)	5(2)	2(2)
C19	31(2)	28(2)	32(3)	-3(2)	5(2)	-1.5(19)
C20	31(2)	26(2)	30(3)	0(2)	1.5(19)	-1.6(19)
C21	32(3)	24(2)	33(3)	0.4(19)	6(2)	0.0(19)
C22	33(3)	43(3)	32(3)	-4(2)	4(2)	6(2)
C23	46(3)	51(3)	31(3)	8(3)	8(2)	3(3)
C24	32(3)	49(3)	34(3)	-4(2)	3(2)	-3(2)
C25	33(3)	83(5)	42(3)	-5(3)	12(2)	3(3)

Length/Å Length/Å Atom Atom Atom Atom C9 C10 C22 1.215(7) **O**1 1.359(6) C10 O2 C14 C11 C25 1.416(9) C10 O2 C19 C11 1.506(7) C1 C2 C12 C11 C1 C6 1.554(7) C16 C21 1.561(7) C1 C12 C13 C2 C3 C13 C14 1.329(7) C3 C14 C4 1.504(7) C15 C15 1.498(7) C3 C22 C16 C16 C5 1.517(8) C4 C17 C17 C5 C6 1.529(8) C18 C18 1.546(7) C6 C7 C19 C7 C19 1.537(7) C8 C20 C7 C20 C20 1.548(7) C21 1.529(8) C22 C7 C24 C23 C8 C9 1.531(7)

Table S18. Bond Lengths for 5ab.

Table S19. Bond Angles for 5ab.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C14	O2	C25	117.8(5)		C12	C11	C10
C2	C1	C6	114.2(4)		C16	C11	C10
C2	C1	C21	114.4(4)		C16	C11	C12
C6	C1	C21	106.9(4)		C13	C12	C11
C3	C2	C1	124.2(5)		C12	C13	C14
C2	C3	C4	121.4(5)		O2	C14	C13
C2	C3	C22	122.2(5)		O2	C14	C15
C4	C3	C22	116.3(5)		C15	C14	C13
C3	C4	C5	111.2(4)		C14	C15	C16
C4	C5	C6	110.7(5)		C11	C16	C15
C5	C6	C1	110.7(4)		C11	C16	C17
C5	C6	C7	116.2(4)		C15	C16	C17

C7	C6	C1	102.5(4)	C16	C17	C18
C6	C7	C20	102.1(4)	C19	C18	C17
C8	C7	C6	117.7(4)	C18	C19	C10
C8	C7	C20	107.0(4)	C18	C19	C20
C24	C7	C6	107.4(4)	C20	C19	C10
C24	C7	C8	109.8(4)	C19	C20	C7
C24	C7	C20	112.7(4)	C19	C20	C21
C9	C8	C7	111.9(4)	C21	C20	C7
C8	C9	C10	113.7(4)	C20	C21	C1
C9	C10	C19	112.8(4)	O1	C22	C3
C11	C10	C9	114.1(4)	O1	C22	C23
C11	C10	C19	111.6(4)	C23	C22	C3

Table S20. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **5ab**.

Atom	x	у	z	U(eq)
H1	1520.85	2237.31	4189.1	37
H2	1983.63	2310.5	6024.71	38
H4A	1194.03	8370.26	5917.34	45
H4B	285.67	7187.31	5170.89	45
H5A	2535.63	7580.71	4881.08	42
H5B	1541.48	8675.71	4199.74	42
H6	876.27	5334.98	3584.24	37
H8A	1960.4	7989.74	2121.12	40
H8B	2863.18	8564.92	3038.54	40
H9A	3721.91	8655.37	1585.19	42
H9B	3247.67	6415.2	1234.33	42
H10	4921.89	7195.59	2873.83	36
H12	5088.79	8333.39	696.43	42
H13	6462.66	7945.67	-300.59	47
H15	7564.14	2777.26	1311.17	42
H17A	6916.36	2227.24	2982.18	43
H17B	5879.05	1190.24	2342.27	43

H18A	5309.99	2036.06	3879.25	39
H18B	5837.98	4321.9	3882.5	39
H19	4043.93	3069.2	2423.07	37
H20	3816.22	5826.95	4069.53	35
H21A	3679.18	2925.63	5008.76	36
H21B	3253.73	1483.54	4059.12	36
H23A	2074.68	2901.54	7831.65	64
H23B	943.4	1868.57	7385.41	64
H23C	1023.57	3260.87	8378.16	64
H24A	1880.46	2394.43	2563.64	58
H24B	2368.04	3686.48	1709.85	58
H24C	1181.01	4210.26	1973.82	58
H25A	9409.48	3921.54	-408.01	78
H25B	8554.65	2361.81	-13.67	78
H25C	9218.11	3969.6	742.63	78

10.4 X-ray crystallographic data of 6i.¹³

Data intensity of **6i** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods, and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-hydrogen atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **6i**: C₂₀H₁₇NO (M =287.35 g/mol): orthorhombic, space group P212121 (no. 19), a = 6.55952(19) Å, b = 7.19955(14) Å, c = 33.3740(6) Å, V = 1576.11(6) Å³, Z = 4, T = 100.00(10) K, μ (CuK α) = 0.580 mm⁻¹, *Dcalc* = 1.211 g/cm³, 32998 reflections measured (13.394° ≤ $2\Theta \le 134.15^{\circ}$), 2806 unique (R_{int} = 0.0588, R_{sigma} = 0.0246) which were used in all calculations. The final R₁ was 0.0392 (I > 2 σ (I)) and wR₂ was 0.1052 (all data).

¹³ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 2083519).

Table S21. Crystal data and structure refine	ement for 6i	
Identification code	6i	
Empirical formula	C ₂₀ H ₁₇ NO	
Formula weight	287.35	
Temperature/K	100.00(10)	
Crystal system	orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.55952(19) Å	$\alpha = 90 \text{ deg}$
	b = 7.19955(14) Å	$\beta = 90 \text{ deg}$
	c = 33.3740(6) Å	$\gamma = 90 \text{ deg}$
Volume/Å ³	1576.11(6)	
Z	4	
pcalcg/cm ³	1.211	
μ/mm^{-1}	0.580	
F(000)	608.0	
Crystal size/mm ³	$0.3\times0.25\times0.25$	
Radiation	CuKa ($\lambda = 1.54184$)	
2Θ range for data collection/°	13.394 to 134.15	
Index ranges	$-7 \le h \le 7, -8 \le k \le 8, -39 \le 1$	l ≤ 39
Reflections collected	32998	
Independent reflections	2806 [$R_{int} = 0.0588$, $R_{sigma} =$	0.0246]
Data/restraints/parameters	2806/0/217	
Goodness-of-fit on F2	1.078	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0392, wR_2 = 0.1032$	
Final R indexes [all data]	$R_1 = 0.0425, wR_2 = 0.1052$	
Largest diff. peak/hole / e Å ⁻³	0.32/-0.13	
Flack parameter	0.08(19)	

Table S22. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **6i**. U(eq) is defined as 1/3 of of the trace of the orthogonalised Uij tensor.

Atom	x	У	z	U(eq)
C1	-7470(5)	-5160(4)	-2194.1(7)	45.6(6)

C01	-3755(9)	458(7)	-1449.4(16)	42.0(12)
C02	-4945(10)	-2173(6)	-1040.5(13)	43.9(13)
C2	-8786(5)	-6609(4)	-2277.7(7)	52.4(7)
C3	-10700(5)	-6671(4)	-2104.2(8)	52.8(7)
C4	-11311(5)	-5264(4)	-1849.8(7)	47.6(6)
C5	-10017(4)	-3800(4)	-1765.2(7)	42.8(6)
C6	-8075(4)	-3736(3)	-1934.8(7)	40.3(6)
C7	-6616(4)	-2172(4)	-1859.7(7)	42.6(6)
C8	-7128(4)	-719(3)	-1544.8(7)	41.2(6)
C9	-5732(4)	979(4)	-1564.8(8)	44.5(6)
C10	-6479(5)	2476(3)	-1273.6(7)	44.9(6)
C11	-6585(4)	1770(3)	-840.2(7)	43.1(6)
C12	-7821(5)	-28(3)	-816.3(7)	44.5(6)
C13	-7114(5)	-1534(3)	-1113.7(7)	44.6(6)
C14	-7447(4)	3224(3)	-558.5(7)	41.2(6)
C15	-9351(4)	4029(4)	-628.6(8)	45.5(6)
C16	-10144(5)	5341(3)	-367.7(8)	48.5(7)
C17	-9065(5)	5869(4)	-32.1(9)	49.4(7)
C18	-7198(5)	5071(4)	43.3(8)	50.6(7)
C19	-6390(4)	3758(3)	-218.0(8)	45.7(6)
N01	-2096(8)	126(8)	-1342.7(17)	65.2(14)
N02	-3265(9)	-2643(7)	-988.0(13)	60.8(14)
O1	-5032(3)	-2053(3)	-2049.7(6)	55.3(5)

Table S23. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **6i**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U_{22}	U33	U ₂₃	U 13	U12
C1	60.5(17)	46.0(14)	30.3(11)	2.1(11)	-2.3(11)	13.4(13)
C01	45(3)	30(2)	52(3)	-2(2)	10(2)	-1(2)
C02	79(4)	30(2)	23(2)	2.3(17)	-1(2)	13(3)
C2	78(2)	46.1(15)	33.1(12)	-9.1(11)	-7.4(13)	12.3(15)
C3	68.2(19)	50.9(15)	39.2(13)	-5.9(12)	-10.6(13)	-0.9(15)
C4	53.2(17)	50.5(15)	39.2(12)	-1.5(12)	-6.1(12)	2.3(13)

C5	53.2(15)	41.8(13)	33.6(12)	-2.4(10)	-2.9(11)	13.0(12)
C6	54.8(16)	37.3(13)	28.7(11)	1.9(9)	-4.5(10)	11.4(11)
C7	51.2(16)	42.2(13)	34.6(12)	4.9(10)	0.8(11)	12.4(11)
C8	50.1(16)	36.0(12)	37.4(12)	2.5(10)	-0.1(11)	9.7(11)
C9	57.8(17)	36.8(12)	38.9(12)	5.4(10)	3.9(12)	5.4(12)
C10	57.8(17)	31.4(12)	45.6(14)	3.4(11)	4.4(12)	5.5(12)
C11	54.6(16)	33.8(12)	40.9(12)	1.3(10)	-4.5(11)	6.3(12)
C12	68.0(18)	30.6(12)	34.9(11)	2.4(10)	1.4(11)	3.3(12)
C13	66.8(18)	33.0(13)	33.8(12)	2.5(10)	-0.6(11)	8.7(12)
C14	53.1(16)	30.2(11)	40.4(12)	2.3(10)	-0.3(11)	1.1(12)
C15	53.8(17)	37.8(13)	45.0(13)	-0.7(11)	-3.5(12)	6.4(12)
C16	51.6(16)	34.9(13)	58.9(15)	1.0(12)	5.7(13)	5.0(12)
C17	59.6(18)	30.8(12)	57.7(16)	-7.8(12)	8.3(13)	-6.7(12)
C18	58.6(19)	38.0(13)	55.3(15)	-10.8(13)	-2.1(13)	-8.8(13)
C19	50.9(16)	34.6(13)	51.6(14)	-2.3(11)	-2.8(12)	-1.9(12)
N01	45(3)	62(3)	89(4)	-21(3)	2(3)	6(3)
N02	81(4)	62(3)	39(2)	-1(2)	-6(2)	33(3)
01	60.9(12)	54.6(11)	50.3(10)	-0.6(8)	13.8(10)	7.7(10)

 Table S24. Bond Lengths for 6i.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.383(4)		C8	C9
C1	C6	1.399(3)		C8	C13
C01	C9	1.403(6)		C9	C10
C01	N01	1.170(7)		C10	C11
C02	C13	1.516(7)		C11	C12
C02	N02	1.166(7)		C11	C14
C2	C3	1.383(4)		C12	C13
C3	C4	1.381(4)		C14	C15
C4	C5	1.383(4)		C14	C19
C5	C6	1.395(4)		C15	C16
C6	C7	1.499(4)		C16	C17
C7	C8	1.520(3)		C17	C18
C7	O1	1.220(3)		C18	C19

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	120.0(3)	C8	C9	C10	110.1(2)
N01	C01	C9	175.9(5)	C9	C10	C11	112.3(2)
N02	C02	C13	179.0(5)	C12	C11	C10	110.7(2)
C1	C2	C3	120.4(3)	C14	C11	C10	111.84(19)
C4	C3	C2	119.8(3)	C14	C11	C12	110.8(2)
C3	C4	C5	120.4(3)	C11	C12	C13	113.7(2)
C4	C5	C6	120.2(2)	C02	C13	C8	105.6(3)
C1	C6	C7	118.2(2)	C02	C13	C12	113.1(3)
C5	C6	C1	119.1(3)	C12	C13	C8	109.18(19)
C5	C6	C7	122.7(2)	C15	C14	C11	121.1(2)
C6	C7	C8	119.4(2)	C19	C14	C11	120.9(2)
01	C7	C6	120.6(2)	C19	C14	C15	118.0(2)
01	C7	C8	119.9(3)	C16	C15	C14	120.9(3)
C7	C8	C9	112.8(2)	C17	C16	C15	120.4(3)
C7	C8	C13	112.27(19)	C18	C17	C16	119.4(3)
C9	C8	C13	109.8(2)	C17	C18	C19	120.5(3)
C01	C9	C8	109.1(3)	C14	C19	C18	120.8(3)
C01	C9	C10	108.1(3)				

Table S25. Bond Angles for 6i.

Table S26. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **6i**.

Atom	x	у	z	U(eq)
H1	-6182.2	-5131.88	-2310.43	55
H2	-8382.31	-7548.59	-2451.67	63
H3	-11572.83	-7657.01	-2158.73	63
H4	-12601.9	-5302.08	-1734.7	57
H5	-10442.67	-2854.7	-1594.68	51
H8	-8517.56	-287.78	-1598.94	49
H9	-5710.54	1473.91	-1838.3	53
H10A	-7822.23	2891.78	-1355.88	54
H10B	-5565.92	3534.43	-1285.81	54

H11	-5191.81		1490.61	-753.01	52
H12A	-9242.8		255.24	-868.01	53
H12B	-7725.95		-518.74	-546.28	53
H15	-10096.31	l	3679.71	-853.33	55
H16	-11412.12	2	5867.24	-419.31	58
H17	-9594.3		6756.26	141.77	59
H18	-6469.58		5413.08	270.77	61
H19	-5124.77		3232.42	-163.48	55
Table S27	7. Atomic Occupar	ncy for 6i .			
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C01	0.5	C02	0.5	N01	0.5
N02	0.5				

10.5 X-ray crystallographic data of 6q.¹⁴

Data intensity of **6q** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods, and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-hydrogen atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **6q**: C₁₈H₂₁NO₂ (M =283.36 g/mol): triclinic, space group P-1 (no. 2), *a* = 7.2466(2) Å, *b* = 8.3731(2) Å, *c* = 12.6472(3) Å, α = 95.047(2)°, β = 96.626(2)°, γ = 94.254(2)°, V = 756.54(3) Å³, Z = 2, T = 170.00(10) K, μ (CuK α) = 0.638 mm⁻¹, *Dcalc* = 1.244 g/cm³, 14785 reflections measured (7.07° ≤ 2 Θ ≤ 134.126°), 2694 unique (R_{int} = 0.0241, R_{sigma} = 0.0162) which were used in all calculations. The final R₁ was 0.0406 (I > 2 σ (I)) and wR₂ was 0.1077 (all data).

Table S28. Crystal data and structure refinement for 6q.

¹⁴ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 2101568).

Identification code	6q	
Empirical formula	$C_{18}H_{21}NO_2$	
Formula weight	283.36	
Temperature/K	170.00(10)	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.2466(2) Å	$\alpha = 95.047(2) \text{ deg}$
	b = 8.3731(2) Å	$\beta = 96.626(2) \text{ deg}$
	c = 12.6472(3) Å	$\gamma = 94.254(2) \text{ deg}$
Volume/Å ³	756.54(3)	
Z	2	
pcalcg/cm ³	1.244	
μ/mm^{-1}	0.638	
F(000)	304.0	
Crystal size/mm ³	$0.32 \times 0.26 \times 0.22$	
Radiation	$CuK\alpha (\lambda = 1.54184)$	
2Θ range for data collection/°	7.07 to 134.126	
Index ranges	$-8 \leq h \leq 8, -9 \leq k \leq$	$9, -15 \leq 1 \leq 15$
Reflections collected	14785	
Independent reflections	2694 [$R_{int} = 0.0241, R_{sigma} =$	0.0162]
Data/restraints/parameters	2694/0/192	
Goodness-of-fit on F ²	1.033	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0406, wR_2 = 0.1064$	
Final R indexes [all data]	$R_1 = 0.0423, wR_2 = 0.1077$	
Largest diff. peak/hole / e Å ⁻³	0.28/-0.20	

Table S29. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **6q**. U(eq) is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Atom	x	у	Z	U(eq)
01	4767.4(14)	1314.5(12)	2068.7(7)	41.1(3)
O2	2790.3(16)	4649.4(13)	10110.0(8)	49.6(3)
N1	931(2)	1011.7(16)	8631.4(10)	53.1(4)
C1	5010.5(17)	2224.0(15)	4945.3(10)	30.5(3)

C2	5467.0(18)	1889.0(15)	3916.2(10)	33.4(3)
C3	4115.0(19)	1614.4(15)	3038.5(10)	32.9(3)
C4	2243.4(19)	1630.1(17)	3181.0(10)	36.9(3)
C5	1789.6(19)	1940.9(17)	4211.9(10)	36.5(3)
C6	3131.2(18)	2255.6(15)	5102.5(10)	30.8(3)
C7	2526.0(17)	2674.7(15)	6198.6(10)	30.0(3)
C8	1836.7(19)	4360.0(16)	6266.9(10)	35.2(3)
C9	1290(2)	4905.7(17)	7363.4(11)	37.6(3)
C10	2910.4(18)	4808.0(15)	8244.7(10)	32.2(3)
C11	3550.6(18)	3094.4(15)	8205.0(10)	32.5(3)
C12	4096.8(18)	2507.3(15)	7098.2(10)	31.5(3)
C13	5923.7(18)	3360.2(17)	6874.8(11)	38.0(3)
C14	6553.4(18)	2515.7(18)	5871.7(11)	37.1(3)
C15	2481.9(19)	5421.1(16)	9350.6(11)	36.8(3)
C16	1700(3)	7014.1(19)	9470.2(13)	53.1(4)
C17	2076(2)	1939.6(16)	8469.9(10)	37.3(3)
C18	3430(2)	1102(2)	1141.2(11)	49.5(4)

Table S30. Anisotropic Displacement Parameters (Å2×103) for **6q**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U 22	U 33	U23	U 13	U12
O1	47.0(6)	48.4(6)	29.9(5)	7.3(4)	8.9(4)	6.2(4)
O2	65.7(7)	48.5(6)	32.9(5)	0.7(4)	4.0(5)	0.5(5)
N1	68.4(9)	46.0(7)	43.4(7)	1.6(6)	15.5(6)	-16.2(7)
C1	31.1(7)	27.3(6)	33.0(7)	7.6(5)	2.6(5)	-1.5(5)
C2	32.3(7)	31.3(7)	37.7(7)	8.5(5)	7.0(5)	-0.4(5)
C3	42.1(7)	27.4(6)	30.6(7)	7.1(5)	7.8(5)	1.9(5)
C4	38.1(7)	41.2(7)	29.9(7)	3.1(5)	-1.6(5)	2.9(6)
C5	30.3(7)	45.2(8)	33.0(7)	2.6(6)	1.2(5)	2.1(6)
C6	31.3(7)	30.5(6)	30.0(7)	5.5(5)	1.5(5)	-0.7(5)
C7	27.0(6)	33.4(7)	28.3(6)	4.7(5)	0.7(5)	-3.4(5)
C8	34.5(7)	39.0(7)	32.4(7)	9.0(5)	0.7(5)	4.5(6)
C9	38.0(7)	39.0(7)	36.7(7)	5.7(6)	3.0(6)	8.5(6)

C10	32.2(7)	30.1(7)	33.0(7)	2.2(5)	3.6(5)	-4.6(5)
C11	32.0(7)	35.3(7)	28.3(6)	2.9(5)	-2.3(5)	0.1(5)
C12	32.5(7)	30.5(6)	30.7(7)	4.8(5)	0.4(5)	1.1(5)
C13	30.2(7)	45.2(8)	36.1(7)	3.8(6)	-2.1(5)	-4.0(6)
C14	27.3(7)	45.9(8)	37.6(7)	8.1(6)	2.6(5)	-2.2(6)
C15	33.6(7)	36.7(7)	37.4(7)	-2.2(6)	4.4(5)	-8.4(6)
C16	65.2(11)	46.1(9)	49.6(9)	-3.3(7)	17.4(8)	7.6(8)
C17	48.0(8)	36.0(7)	26.6(6)	1.3(5)	3.7(6)	-1.3(6)
C18	55.6(9)	60.5(10)	30.9(7)	-1.4(7)	6.3(6)	0.6(8)

Table S31. Bond Lengths for 6q.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C3	1.3742(15)	C7	C8	1.5302(18)
01	C18	1.4219(17)	C7	C12	1.5370(17)
O2	C15	1.2128(17)	C8	C9	1.5268(18)
N1	C17	1.1425(18)	C9	C10	1.5351(18)
C1	C2	1.3896(18)	C10	C11	1.5388(18)
C1	C6	1.4006(18)	C10	C15	1.5211(18)
C1	C14	1.5130(17)	C11	C12	1.5471(17)
C2	C3	1.3840(19)	C11	C17	1.4749(19)
C3	C4	1.390(2)	C12	C13	1.5245(18)
C4	C5	1.3884(19)	C13	C14	1.5302(19)
C5	C6	1.3929(18)	C15	C16	1.490(2)
C6	C7	1.5214(17)			

Table S32. Bond Angles for 6q.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	O1	C18	117.28(11)	C8	C9	C10	110.71(11)
C2	C1	C6	119.21(12)	C9	C10	C11	110.36(10)
C2	C1	C14	119.22(11)	C15	C10	C9	113.09(11)
C6	C1	C14	121.57(11)	C15	C10	C11	112.60(11)
C3	C2	C1	121.75(12)	C10	C11	C12	112.64(10)
01	C3	C2	115.49(12)	C17	C11	C10	110.86(11)

01	C3	C4	124.72(12)	C17	C11	C12	108.38(10)
C2	C3	C4	119.78(12)	C7	C12	C11	111.30(10)
C5	C4	C3	118.35(12)	C13	C12	C7	110.67(10)
C4	C5	C6	122.72(13)	C13	C12	C11	112.38(10)
C1	C6	C7	122.24(11)	C12	C13	C14	109.37(11)
C5	C6	C1	118.17(12)	C1	C14	C13	112.78(11)
C5	C6	C7	119.56(11)	O2	C15	C10	121.11(13)
C6	C7	C8	110.16(10)	O2	C15	C16	121.27(13)
C6	C7	C12	111.37(10)	C16	C15	C10	117.61(12)
C8	C7	C12	111.93(10)	N1	C17	C11	177.02(14)
C9	C8	C7	113.44(10)				

Table S33. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for **6q**.

Atom	x	У	Z,	U(eq)
H2	6713.95	1848.16	3814.5	40
H4	1317.74	1437.25	2600.28	44
H5	538.05	1938.92	4311.96	44
H7	1476.28	1907.05	6281.29	36
H8A	2810.87	5121.18	6099.53	42
H8B	766.3	4374.43	5732.24	42
H9A	214.87	4228.76	7500.41	45
H9B	947.75	6004.56	7370.8	45
H10	3956.7	5515.47	8080.38	39
H11	4644.36	3093.46	8738.69	39
H12	4278.13	1359.42	7101.96	38
H13A	6870.6	3337.81	7480.33	46
H13B	5750.4	4475.57	6769.78	46
H14A	7584.86	3168.15	5659.29	44
H14B	6999.59	1492.38	6039.39	44
H16A	386.67	6888.45	9232.08	80
H16B	2306.78	7741.34	9047.33	80
H16C	1904.44	7439.25	10208.18	80

H18A	4051.98	903.7	518.01	74
H18B	2781.69	2055.64	1086.78	74
H18C	2554.63	202.01	1192.55	74

10.6 X-ray crystallographic data of 6r.¹⁵

Data intensity of **6r** was collected using a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods, and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-hydrogen atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **6r**: C₁₇H₁₈BrNO (M = 332.23 g/mol): monoclinic, space group P21/c (no. 14), a = 19.7377(2) Å, b = 9.57380(10) Å, c = 7.61300(10) Å, $\beta = 99.0900(10)^\circ$, V = 1420.52(3) Å³, Z = 4, T = 169.99(10) K, μ (CuK α) = 3.891 mm⁻¹, Dcalc = 1.553 g/cm³, 13942 reflections measured (9.074° $\leq 2\Theta \leq 149.246^\circ$), 2860 unique (R_{int} = 0.0396, R_{sigma} = 0.0248) which were used in all calculations. The final R₁ was 0.0283 (I > 2 σ (I)) and wR₂ was 0.0740 (all data).

Table S34. Crystal data and structure refinement for 6r.

Identification code	6r	
Empirical formula	C ₁₇ H ₁₈ BrNO	
Formula weight	332.23	
Temperature/K	169.99(10)	
Crystal system	monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 19.7377(2) Å	$\alpha = 90 \text{ deg}$
	b = 9.57380(10) Å	$\beta = 99.0900(10) \text{ deg}$
	c = 7.61300(10) Å	$\gamma = 90 \text{ deg}$
Volume/Å ³	1420.52(3)	
Z	4	

¹⁵ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 2089395).

pcalcg/cm ³	1.553
μ/mm^{-1}	3.891
F(000)	680.0
Crystal size/mm ³	$0.42 \times 0.13 \times 0.11$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.074 to 149.246
Index ranges	$-24 \le h \le 23, -11 \le k \le 11, -6 \le l \le 9$
Reflections collected	13942
Independent reflections	2860 [$R_{int} = 0.0396$, $R_{sigma} = 0.0248$]
Data/restraints/parameters	2860/0/183
Goodness-of-fit on F ²	1.079
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0283, wR_2 = 0.0734$
Final R indexes [all data]	$R_1 = 0.0290, wR_2 = 0.0740$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.48

Table S35. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **6r**. U(eq) is defined as 1/3 of of the trace of the orthogonalised Uij tensor.

Atom	x	у	Z	U(eq)
Br1	923.8(2)	-429.7(2)	-336.3(3)	23.70(10)
O1	4454.6(8)	7113.8(18)	4265(2)	39.6(4)
N1	3269.8(10)	5341.5(19)	6341(2)	30.4(4)
C1	1809.0(9)	3483.6(19)	727(2)	17.5(3)
C2	1686.7(9)	2044.3(19)	663(2)	18.9(3)
C3	1076.8(10)	1536(2)	-256(2)	19.3(4)
C4	568.1(9)	2421(2)	-1102(2)	22.1(4)
C5	694.5(9)	3837(2)	-1031(2)	22.2(4)
C6	1312.1(10)	4392.8(19)	-145(2)	19.3(4)
C7	1426.2(10)	5957(2)	-160(3)	23.2(4)
C8	2180.2(10)	6354(2)	373(2)	22.7(4)
C9	2460.7(10)	5582.8(18)	2090(3)	19.2(4)
C10	3161.4(9)	6144.4(18)	3018(2)	18.5(4)
C11	3771.6(9)	5683.7(19)	2114(2)	18.9(4)
C12	3777.6(9)	4093(2)	1882(3)	21.5(4)

C13	3096.8(9)	3580.7(19)	852(2)	21.1(4)
C14	2485.5(9)	4001.4(18)	1758(2)	17.1(3)
C15	4448.0(10)	6271(2)	3076(3)	23.5(4)
C16	5096.5(10)	5784(2)	2494(3)	29.2(4)
C17	3250.0(9)	5697.1(19)	4898(3)	21.4(4)

Table S36. Anisotropic Displacement Parameters (Å2×103) for **6r**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U 13	U12
Br1	20.66(14)	18.91(14)	32.55(15)	-3.41(7)	7.30(9)	-4.43(6)
01	28.5(8)	42.8(9)	47.2(9)	-21.7(8)	5.1(7)	-9.9(7)
N1	29.6(10)	35.3(10)	26.8(9)	-1.8(7)	6.0(7)	1.6(7)
C1	16.5(8)	19.9(8)	16.7(8)	0.1(6)	4.9(7)	-0.4(7)
C2	16.9(8)	18.3(8)	21.8(8)	0.4(7)	4.4(7)	0.0(7)
C3	19.7(8)	19.2(9)	20.5(8)	-0.6(6)	7.4(7)	-3.2(7)
C4	16.7(8)	27.2(10)	22.3(9)	-0.1(7)	3.2(7)	-4.8(7)
C5	17.9(9)	25.1(9)	23.3(9)	3.5(7)	2.2(7)	1.5(7)
C6	19.5(9)	19.0(9)	20.0(9)	1.2(7)	4.9(7)	-0.5(7)
C7	21.7(9)	18.7(9)	27.7(9)	4.8(7)	-0.4(7)	1.4(7)
C8	23.9(9)	18.1(9)	25.8(9)	3.9(7)	3.2(7)	-0.4(7)
C9	17.2(9)	17.1(8)	23.3(9)	-1.5(7)	3.4(7)	0.4(6)
C10	16.8(8)	15.2(8)	23.6(9)	-2.0(6)	3.4(7)	-0.2(6)
C11	17.5(8)	18.6(8)	21.1(9)	-0.8(7)	4.5(7)	-1.1(7)
C12	17.1(8)	19.0(9)	29.0(9)	-3.5(7)	5.8(7)	0.3(7)
C13	19.3(9)	18.9(8)	25.5(9)	-4.3(7)	5.2(7)	-1.5(7)
C14	17.0(8)	15.1(8)	18.9(8)	0.5(6)	2.1(7)	-0.7(6)
C15	20.7(9)	20.8(9)	28.7(9)	2.5(7)	3.5(8)	-3.0(7)
C16	18.7(9)	29.5(10)	39.2(11)	0.5(9)	4.1(8)	-1.2(8)
C17	17.0(8)	18.8(8)	28.5(10)	-7.0(7)	3.9(7)	0.4(7)

Table S37. Bond Lengths for 6r.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C3	1.9054(19)	C7	C8	1.527(3)
01	C15	1.211(2)	C8	C9	1.527(3)

N1	C17	1.145(3)	C9	C10	1.547(2)
C1	C2	1.398(3)	C9	C14	1.537(2)
C1	C6	1.398(3)	C10	C11	1.543(2)
C1	C14	1.521(2)	C10	C17	1.478(3)
C2	C3	1.382(3)	C11	C12	1.533(2)
C3	C4	1.392(3)	C11	C15	1.525(3)
C4	C5	1.378(3)	C12	C13	1.526(2)
C5	C6	1.402(3)	C13	C14	1.535(2)
C6	C7	1.515(2)	C15	C16	1.494(3)

 Table S38. Bond Angles for 6r.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C14	118.13(15)	C14	C9	C10	111.60(14)
C6	C1	C2	119.53(16)	C11	C10	C9	113.70(15)
C6	C1	C14	122.33(16)	C17	C10	C9	107.57(15)
C3	C2	C1	119.76(17)	C17	C10	C11	111.58(15)
C2	C3	Br1	119.02(14)	C12	C11	C10	110.86(15)
C2	C3	C4	121.81(17)	C15	C11	C10	111.49(15)
C4	C3	Br1	119.17(14)	C15	C11	C12	113.55(15)
C5	C4	C3	117.90(17)	C13	C12	C11	110.87(15)
C4	C5	C6	122.05(17)	C12	C13	C14	112.07(15)
C1	C6	C5	118.93(17)	C1	C14	C9	110.96(14)
C1	C6	C7	121.69(16)	C1	C14	C13	111.76(14)
C5	C6	C7	119.38(16)	C13	C14	C9	112.34(15)
C6	C7	C8	112.55(15)	01	C15	C11	120.65(17)
C9	C8	C7	108.27(15)	O1	C15	C16	121.43(18)
C8	C9	C10	113.57(15)	C16	C15	C11	117.92(17)
C8	C9	C14	110.60(15)	N1	C17	C10	175.2(2)

Table S39. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **6r**.

Atom	x	у	Z	U(eq)	
H2	2014.7	1431.49	1237.11	23	
H4	155.83	2067.95	-1697.1	26	

H5	359.51	4442.76	-1588.82	27
H7A	1159.49	6396.21	653.63	28
H7B	1262.5	6313.84	-1344.03	28
H8A	2437.76	6093.38	-561.82	27
H8B	2223.02	7354.63	555.82	27
H9	2132.81	5732.27	2913.88	23
H10	3141.52	7167.11	2991.17	22
H11	3698.12	6089.89	917.71	23
H12A	4147.95	3831.95	1248.49	26
H12B	3859.35	3649.22	3041.92	26
H13A	3109.63	2571.37	752.14	25
H13B	3034.97	3967.11	-340.15	25
H14	2547.34	3542.84	2923.53	21
H16A	5476.44	6310.63	3101.65	44
H16B	5065.76	5916.68	1233.57	44
H16C	5163.86	4810.48	2771.11	44

11. NMR spectra and HPLC trace

0

wwb-wj-73

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2021/10/24 10:35:28 Page 1 / 1

2021/10/24 10:50:55 Page 1 / 1

Analysis Report

<Sample Information>

Sample Name	Name : wwb-wd-25-p-rac-ojh-99-1-1.0-230-1			
Sample ID	ID :			
Data Filename	ename : wwb-wd-25-p-rac-ojh-99-1-1.0-230-2.lcd			
Method Filename	: wa-1.0.lcm			
Vial #	: 1-1 : 20 ul	Sample Type	: Unknown	
Date Acquired	: 2016/11/28 11:33:47	Acquired by	: System Administrator	
Date Processed	: 2021/10/24 10:34:38	Processed by	: System Administrator	

<Chromatogram>

Detector A Channel 2 230nm

Deleci						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.999	3290660	76299	49.964		
2	20.459	3295386	37115	50.036		
Total		6586046	113413			

D:\Data\wuwenbiao\wd\wwb-wd-25-p-rac-ojh-99-1-1.0-230-2.lcd

Analysis Report

<sample< th=""><th>Information></th></sample<>	Information>
---	--------------

Sample Name	: wwb-wd-25-4-asy-ojh-99-1-1.0	0-230-1				
Sample ID						
Data Filename	: wwb-wd-25-4-asy-ojh-99-1-1.0	0-230-3.lcd				
Method Filename	: wa-1.0.lcm					
Batch Filename	:					
Vial #	: 1-1	Sample Type	: Unknown			
Injection Volume	: 20 uL					
Date Acquired	: 2016/11/28 16:40:27	Acquired by	: System Administrator			
Date Processed	: 2021/10/24 10:50:40	Processed by	: System Administrator			

<Chromatogram>

Date

Detect	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	15.445	1147391	28786	5.001			
2	20.128	21793651	277031	94.999			
Total		22941042	305816				

D:\Data\wuwenbiao\wd\wwb-wd-25-4-asy-ojh-99-1-1.0-230-3.lcd

572 wwb-wg-89-rac-ash-95-5-1.0-205-1				
Sample Name: Vial Number	wwb-wg-89-rac-ash-95-5-1.0-205-1 710	Injection Volume: Channel	20.0 UV VIS 1	Sa
Sample Type:	standard	Wavelength:	205	Sa
Control Program:	Wu Wenbiao	Bandwidth:	n.a.	Co
Quantif. Method: Run Time (min):	Wu Wenbiao 20.18	Dilution Factor: Sample Amount:	1.0000 1.0000	QL RL

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.35	n.a.	103.624	16.784	50.23	n.a.	BM *
2	8.69	n.a.	87.863	16.627	49.77	n.a.	BM *
Total:			191.488	33.410	100.00	0.000	

574 wwb-wg	J-89-2-asy-ash-95-5-1.0-205-1		
Sample Name: Vial Number:	wwb-wg-89-2-asy-ash-95-5-1.0-205-1	Injection Volume:	20.0
	/ IZ	Unanner.	00_013_1
Sample Type:	standard	wavelength:	205
Control Program:	Wu Wenbiao	Bandwidth:	n.a.
Quantif. Method:	Wu Wenbiao	Dilution Factor:	1.0000
Run Time (min):	38.95	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.29	n.a.	668.610	107.214	70.94	n.a.	BMB*
2	8.63	n.a.	230.971	43.914	29.06	n.a.	BMB*
Total:			899.581	151.128	100.00	0.000	

