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1. Experimental Procedures
1.1. Materials. All chemicals were purchased from commercial sources and used as received.

1.2. Synthesis of trianglamine TA. Trianglamine TA was prepared according to previous report.[l 'TH NMR (400 MHz, Chloroform-d)
6 7.15 (s, 2H), 4.07 (d, J = 14.0 Hz, 1H), 3.28 (s, 1H), 3.16 (d, J = 14.0 Hz, 1H), 2.30 — 2.28 (m, 1H), 2.04 — 2.02 (m, 1H), 1.84 — 1.82
(m, 1H), 1.33 — 1.27 (m, 2H); '3C NMR (101 MHz, Chloroform-d) & 138.04, 127.58, 69.13, 57.68, 29.44, 24.59. HRMS (ESI) calcd for
C45Hs1Ng [(M+H)*]: 685.4958, Found: 685.5024.

1.3. Synthesis of ligand Da-A. A solution of Da (498.4 mg, 3.0 mmol) and allyl bromide (907.4 mg, 7.5 mmol) in acetonitrile (50 mL)
was heated at reflux with powdered K,COj3; (1.66 g, 12 mmol) for 4 h. The solvent was evaporated and the residue was dissolved in
CH,CI, and extracted with aqueous Na,COj; (5%). The organic phase was dried over NaSQO,, evaporated and dried in vacuo to get
the crude product in 83% yield, which was directly used in the next step. '"H NMR (400 MHz, Chloroform-d) & 10.53 (s, 2H), 7.44 (s,
2H), 6.06 (ddt, J = 17.2, 10.5, 5.2 Hz, 2H), 5.44 (dq, J = 17.2, 1.5 Hz, 2H), 5.34 (dq, J = 10.6, 1.4 Hz, 2H), 4.67 (dt, J = 5.2, 1.6 Hz,
4H); 3C NMR (101 MHz, Chloroform-d) 5 189.28, 154.90, 132.22, 129.51, 118.62, 112.29, 69.93.

HO
HO ~/"Br 0/\/
OH 5
K,CO,, ACN o
HO Reflux for 4 h

CHO
CHO H
Yield: 83%
Da o Da-A

N 0\/\ Paraformaldehyde NH 0\/\ 0,
O S0 (o g by
N 0N\== O McOH, reflux for 2 h “NH 0"N\== 0
7y Yield: 96% " Hiy
N A Na, :/\

P-TA P-TA intermediate
Scheme S1. Synthetic scheme of pillar[3]trianglamine P-TA.

1.4. Synthesis of P-TA intermediate. A mixture of (R, R)-(+)-1,2-Diaminocyclohexane L-Tartrate (528.6 mg, 2.0 mmol), Da-A (492.5
mg, 2.0 mmol), MeOH (20 mL) and triethylamine (0.7 mL) were stirred at room temperature overnight. The mixture was cooled in an
ice bath and sodium borohydride (228 mg, 6 mmol) was added over one hour. After the system had been stirred for a further three
hours at room temperature, the solvents were removed in vacuo and the residue was extracted with dichloromethane and aqueous
sodium carbonate (5%). The organic solution was dried over NaSO,, evaporated and dried in vacuo. Trianglamine P-TA
intermediate was obtained in a yield of 94%. HRMS (ESI) calcd for CgoHgsNsOg [(M+H)*]: 985.6531, Found: 985.6526.

1.5. Synthesis of Pillared Trianglamine P-TA. P-TA intermediate (492.7 mg, 0.5 mmol) and paraformaldehyde (180 mg, 6 mmol)
in CH3;0H (10 mL) was stirred at 70 °C for 2 h. The solvent was evaporated and the residue was dissolved in CH,CI, and extracted
with aqueous Na,CO; (5%). The organic phase was dried over NaSO,, evaporated and dried in vacuo to get the crude product in 96%
yield. Crude product was purified via crystallization from dichloromethane. '"H NMR (400 MHz, Chloroform-d) & 6.93 (s, 6H), 5.95 (ddt,
J=17.3,10.4, 5.1 Hz, 6H), 5.28 (dq, J = 17.3, 1.7 Hz, 6H), 5.10 (dq, J = 10.6, 1.6 Hz, 6H), 4.42 (d, J = 1.6 Hz, 12H), 3.71 (d, J = 14.7
Hz, 6H), 3.53 (d, J = 14.6 Hz, 6H), 3.28 (s, 6H), 2.35 — 2.33 (m, 6H), 2.04 — 2.02 (m, 6H), 1.83 — 1.81 (m, 6H), 1.31 — 1.25 (m, 12H);
3C NMR (101 MHz, Chloroform-d) & 150.12, 133.94, 127.09, 117.01, 113.23, 77.94, 69.60, 69.30, 51.22, 29.63, 24.66. HRMS (ESI)
calcd for Cg3HgsNgOg [(M+H)*]: 1021.6531, Found: 1021.6722.

1.6. Single Crystal Growth. Single crystals of the pillared trianglamine P-TA were grown by slow evaporation of dichloromethane
solution at room temperature. Single crystals of 1-He@P-TA were obtained as follows: firstly mixed P-TA with 1-He, then sonicated it
for 10 min and filtered the mixture through a PTFE membrane (220 nm) to get a clear solution, finally colorless single crystals
appeared by slow evaporation of 1-He over several days. Single crystals of trans-3-He@P-TA were grown via a vapor diffusion
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method: P-TA dissolved in CHCI; in a small vial was placed in a large vial containing trans-3-He to allow trans-3-He diffusion into the
CHCI; solution.

1.7. Adsorption Material Activation. The desolvated P-TA crystals were prepared under vacuum at 120 C overnight. The activated
adsorptive separation materials (activated P-TA) after adsorption could be regenerated to release the adsorbed guests upon heating
at 90 ‘C under vacuum overnight, and the released guests could be collected via a condensation setup.

1.8. Adsorption Experiments for linear hexene isomers vapor. An open 5 mL vial containing 10 mg of adsorbent was placed in a
sealed 20 mL vial containing 1 mL of solvents (1-He, trans-3-He or an equimolar mixture of 1-He and frans-3-He) at room
temperature. The uptake capacity of adsorbents was measured at different time intervals by completely dissolving the samples
in CDCI; and measuring the ratio of 1-He or trans-3-He by 'H NMR, respectively. Uptake capacity values were determined from
the ratio of each isomer peaks using "H NMR and GC following literature protocols.[?

2. Methods

2.1. Solution NMR. NMR spectra were recorded on Bruker-400 (400 MHz for 'H; 101 MHz for '3C) instruments internally referenced
to SiMe, signal.

2.2. Thermogravimetric Analysis. Thermogravimetric analysis (TGA) was carried out using a TGA Q50 analyzer (TA Instruments)
with an automated vertical overhead thermobalance. The samples were heated at 10 °C/min from 25 to 800 °C using N, as the
protective gas.

2.3. Nitrogen Adsorption Experiment. Low-pressure gas adsorption measurement was performed on a Micromeritics Accelerated
Surface Area and Porosimetry System (ASAP) 2020 surface area analyzer. Samples were degassed under dynamic vacuum for 12 h
at 60 °C prior to each measurement. N, isotherms were measured using a liquid nitrogen bath (77 K).

2.4. Powder X-Ray Diffraction. Powder X-ray diffraction (PXRD) patterns were obtained using a D8 ADVANCE Twin X-ray
diffractometer (40 KV, 40 mA) with the Cu Ka radiation (A = 1.54178 A). Data were measured over the range of 3-40° in 2°/min steps.

2.5. Single Crystal X-ray Diffraction. Single crystal X-ray diffraction data were recorded on a Bruker D8 Venture equipped with a
digital camera diffractometer using graphite-monochromated Cu Ka (A= 1.54178 A) or Mo Ka (A= 1.54178 A) radiation for the crystal
structures. Raw data were integrated using Bruker AXS SAINT software and absorption corrections were applied using SADABS.[34]
All structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement
package using Least Squares minimization operated in the OLEX2 interface.l® All non-hydrogen atoms were refined anisotropically.
In the final refinement, a twin law (TWIN -1 -1 001 0 0 0 -1 2; BASF = 0.12) was required for the structural refinement of 1-He@P-
TA. Based on theanalysis of '"H NMR and TGA as well as the solvent mask calculation results, the asymmetric unit contains one unit
of P-TA and one unit of 1-He in the 1-He@P-TA; While trans-3-He molecules sit inside the intrinsic cavity of P-TA with 0.5 occupancy
in the trans-3-He@P-TA. The hydrogen atoms on organic carbon atoms were fixed in calculated positions. Crystal data and
structural refinement for 1-He@P-TA and trans-3-He@P-TA are listed in Table S2.

2.6. Gas Chromatography. Gas Chromatographic (GC) Analysis: GC measurements were carried out using a J&W (122-1364)
instrument configured with an FID detector and a DB-624 column (60 m x 0.25 mm x 1.4 ym). The following GC method was used:
the oven was programmed from 40 °C ramped in 10 °C/min increments to 240 °C with 26 min hold. The total run time was 50 min
and the injection temperature was 250 °C. The detector temperature was 260 °C with hydrogen, air, and make-up flow rates of 35,
350, and 30 mL/min, respectively. The helium (carrier gas) flow rate was 3.0 mL/min. The samples were injected in the splitless mode.
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Figure S1. 'H NMR spectrum (400 MHz, 298K, CDCI3) of ligand Da-A.
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Figure S2. '3C NMR spectrum (101 MHz, 298K, CDCl;) of ligand Da-A.
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Figure S3. '"H NMR spectrum (400 MHz, 298K, CDCl5) of pillar[3]trianglamine P-TA.
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Figure S4. *C NMR spectrum (101 MHz, 298K, CDCl,) of pillar[3]trianglamine P-TA.
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Figure S5. The asymmetric unit and the space filling structure of crystalline P-TA.

Figure S6. Packing arrangement of crystalline P-TA along (a) a-axis (b) b-axis and (c) c-axis.
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Figure S7. Thermogravimetric analysis: the as synthesized crystalline P-TA and activated P-TA.
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Figure S8. The PXRD patterns: (I) simulated from the single crystal structure of P-TA; (Il ) experimental from P-TA crystals; (I1I) activated P-TA.
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Figure $10. "H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He for 16 h.
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Figure S11. 'H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of trans-3-He for 16 h.

€202 62°L

L6'0
26°0
¥6°0
1670
66°0
LO'L
8Z'L
(41
Vel
9¢’L
PE A
6€°L
0¥l
vl
vl
98’1
96°L
66°1
Loz
€0z
02
02
80°2
9¢'z
9g'e
A4

oz'e
89°1L

/"

rJf

c a

/\/\/
b

trans-3-He

og'e

Hinw.m

Fees
F oo

£9'e
15°¢
e
al'e

AYAAYS
d b
1-He

f

VY
44
v6'r
167
00'§
vo's
zL's
]
62'S
£e's
97§
'8
v's
6L'S
18°G =
z8's 4
£8's 4
£8'5
58'S
98°5 1
18'8

88'S

68'S

£6°S

ve's

56'S

16'S

86'S
00'9
109
z0'9
26'9

TB.NF

L6714
S19
9€'9

u..am.a

€074
(4]

A N i L

J

Taa.u

7.0 6.5 6.0 5.5 5.0 45 4.0 35 3.0 25 2.0 15 1.0 0.5 0.0
1 (ppm)

7.5

8.0

Figure S12. 'H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He/trans-3-He mixtures for 16 h.
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Figure S13. Experimental PXRD patterns of activated P-TA (black); activated P-TA after being exposed to 1-He (red); activated P-TA after being exposed to

trans-3-He (blue); activated P-TA after being exposed to 1-He/trans-3-He mixtures for 16 h (green).
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Figure S14. Chemical structure of TA and experimental PXRD patterns of (I) activated TA; (II) activated TA after being exposed to 1-He; (Ill) activated TA after

being exposed to trans-3-He; (IV) activated TA after being exposed to 1-He/trans-3-He mixtures for 16h.
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Figure S15. Thermogravimetric analysis of activated P-TA after adsorption of 1-He.

100

801

60

40

Weight Loss (%)

201

1 —— Trans-3-He

I v I " I v ) N ) " I N ) N
100 200 300 400 500 600 700 800
T (°C)

Figure $16. Thermogravimetric analysis of activated P-TA after adsorption of trans-3-He.
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Figure S17. 'H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He over time.
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Figure S18. 'H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of trans-3-He over time.
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Figure $19. 'H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He/trans-3-He mixtures over time.
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Figure $20. Gas chromatography showing the relative uptake of 1-He and trans-3-He by activated P-TA from their mixtures for 16h.
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Figure S21. (a) Time-dependent PXRD patterns of P-TA loaded with 1-He after exposure to trans-3-He vapor under different times. (b) Time-dependent PXRD
patterns of P-TA loaded with trans-3-He after exposure to 1-He vapor under different times.
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Figure S22. Experimental PXRD patterns of guest-loaded P-TA (exposing to 1-He and trans-3-He mixtures) after guests were fully removed at 90 °C under
vacuum: (I) the first cycle; (II) the third cycle; (III) the fifth cycle.
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Figure S$23. Water stability of: (I) activated P-TA,; (II) activated P-TA soaked in water for 7 days.
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Figure S24. Activated P-TA (1mg) in 1-He (10 mL) (a) before and (b) after sonication for 10 min.
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Figure $25. Experimental PXRD patterns of activated P-TA after exposure to 1-He/trans-3-He mixtures for 16 h: (I) activated P-TA; (II) activated P-TA in vapor;
(II1) activated P-TA in liquid.
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Synthesis of SBA-15. SBA-15 was prepared according to a previously published report.e!
Synthesis of modified SBA-15. Activated P-TA (150 mg) was firstly dissolved in DCM (10 mL), then SBA-15 (150mg) was added

into the above solution. The mixture was then sonicated followed by slow evaporation of dichloromethane and washing by DCM (3
times). The as-synthesized P-TA loaded SBA-15 was finally dried under vacuum at 120 ‘C overnight.
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Figure $26. SEM images (a) SBA-15; (b) P-TA modified SBA-15 showing no P-TA crystallization on the surface.
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Figure S27. (a) small-angle and (b) broad-angle PXRD patterns: (I) SBA-15; (II) P-TA crystals; (III) as-synthesized P-TA loaded SBA-15; (IV) modified SBA-15;
(V) activated P-TA.
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Figure S$28. Pore size distributions of (a) SBA-15 and (b) modified SBA-15.
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Figure $29. (a) Setup of column chromatography using SBA-15 or modified SBA-15 as the stationary phase. (b) Relative amount of 1-He and trans-3-He after the
first run with unmodified SBA-15 as the stationary phase.
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Table S1. Experimental single crystal X-ray data.

Identification code
Empirical formula
Formula weight
Temperature /K
Crystal system
Space group

a/A

b/A

c/A

a/°

pre

y/r°

Volume /A3

Z

Pealc 2em?

W /mm-t

F(000)

Radiation

Theta range for data collection/®

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=2c ()]*
Final R indexes [all data]®
CCDC

TA

Cys Hgo Ng -CH,Cl,2
769.91

120.05
Orthorhombic

P 2,2,2,

9.0657(2)
18.4002(4)
25.5482(5)

90.00

90.00

90.00

4261.71(16)

4

1.200

0.192

1656

MoKa. (A = 0.71073A)

2.35 to 27.45

A11<h <11, -23 <k <23, -31<1<33

39169

9752 [Ryy = 0.0368, Ryg,q= 0.0325]

8444/44/514
1.048

R, =0.0447, wR, =0.1044
Ry =0.0572, wR, =0.1147

2113421

P-TA

Cg3 Hgy Ng Oy -CH,CI,2
1106.28

120.0

Trigonal

P31

20.2894(6)

20.2894(6)

13.6577(5)

90.00

90.00

120.00

4869.1(3)

3

1.132

0.151

1782

MoKa (% = 0.710734)

2.321027.09

-26<h<21,-26<k <26,-17 <1<17

63281

14887 [Ry = 0.0667. Rygyq=0.0533]

11228/117/731
1.052

R, =0.0699, wR; = 0.1820
R, =0.1001, wR, = 0.2123

2115290

aFormula is given based on single-crystal X-ray data.
® Ry = Z|Fo| - [Fell/ ZIFol, wR, = { ZIW(Fo>-F2)2l/ Z[w(F2)1}*
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Table S2. Experimental single crystal X-ray data.

Identification code
Empirical formula
Formula weight
Temperature /K
Crystal system
Space group

a/A

b/A

c/A

a/°

p e

v

Volume /A*

z

Peate &/cm’®

1 /mmt

F(000)

Radiation

Theta range for data collection/®

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2¢ (I)]®
Final R indexes [all data]®
CCDC

1-He@P-TA
Cg3 Hgq Ng Og - CeH,

1105.51

120.0

Trigonal

R3

20.366

20.366

13.791

90.00

90.00

120.00

4953.9

3

1.112

0.553

1800

CuKo (A =1.54178 A)

4.344 t0 65.024
-232h<23,-235k<23,-16 <1<16
16121

3722 [Ryyy = 0.0241, Rp,,= 0.0206]
3721/1049/282

1.102

R, = 0.0381, wR, = 0.1073

R, = 0.0381, wR, = 0.1073

2120030

trans-3-He@P-TA

Cgs Hgy Ng Og 0.5(CH,)*
1063.43

120.0

Trigonal

R3

20.3338(3)

20.3338(3)

13.7372(4)

90.00

90.00

120.00

4918.9(2)

3

1.077

0.540

1728

CuKa (A =1.54178 A)
5.97 to 65.10
-22<h<23,-23<k<23,-16<1<16
21516

3648 [R,,; = 0.0215, R,yy,,,= 0.0145]
3650/908/283

1.074

Ry = 0.0708, wR, = 0.2055
R, = 0.0708, wR, = 0.2056
2113573

aFormula is given based on single-crystal X-ray data.
® Ry = Z||Fo| - [Felll ZIFol, wR, = { ZIW(Fo>-F2)2l/ Z[w(Fo2)1}*
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