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1. Experimental Procedures

1.1. Materials. All chemicals were purchased from commercial sources and used as received.

1.2. Synthesis of trianglamine TA. Trianglamine TA was prepared according to previous report.[1] 1H NMR (400 MHz, Chloroform-d) 
δ 7.15 (s, 2H), 4.07 (d, J = 14.0 Hz, 1H), 3.28 (s, 1H), 3.16 (d, J = 14.0 Hz, 1H), 2.30 – 2.28 (m, 1H), 2.04 – 2.02 (m, 1H), 1.84 – 1.82 
(m, 1H), 1.33 – 1.27 (m, 2H); 13C NMR (101 MHz, Chloroform-d) δ 138.04, 127.58, 69.13, 57.68, 29.44, 24.59. HRMS (ESI) calcd for 
C45H61N6 [(M+H)+]: 685.4958, Found: 685.5024.

1.3. Synthesis of ligand Da-A. A solution of Da (498.4 mg, 3.0 mmol) and allyl bromide (907.4 mg, 7.5 mmol) in acetonitrile (50 mL) 
was heated at reflux with powdered K2CO3 (1.66 g, 12 mmol) for 4 h. The solvent was evaporated and the residue was dissolved in 
CH2Cl2 and extracted with aqueous Na2CO3 (5%). The organic phase was dried over NaSO4, evaporated and dried in vacuo to get 
the crude product in 83% yield, which was directly used in the next step. 1H NMR (400 MHz, Chloroform-d) δ 10.53 (s, 2H), 7.44 (s, 
2H), 6.06 (ddt, J = 17.2, 10.5, 5.2 Hz, 2H), 5.44 (dq, J = 17.2, 1.5 Hz, 2H), 5.34 (dq, J = 10.6, 1.4 Hz, 2H), 4.67 (dt, J = 5.2, 1.6 Hz, 
4H); 13C NMR (101 MHz, Chloroform-d) δ 189.28, 154.90, 132.22, 129.51, 118.62, 112.29, 69.93. 

Scheme S1. Synthetic scheme of pillar[3]trianglamine P-TA.

1.4. Synthesis of P-TA intermediate. A mixture of (R, R)-(+)-1,2-Diaminocyclohexane L-Tartrate (528.6 mg, 2.0 mmol), Da-A (492.5 
mg, 2.0 mmol), MeOH (20 mL) and triethylamine (0.7 mL) were stirred at room temperature overnight. The mixture was cooled in an 
ice bath and sodium borohydride (228 mg, 6 mmol) was added over one hour. After the system had been stirred for a further three 
hours at room temperature, the solvents were removed in vacuo and the residue was extracted with dichloromethane and aqueous 
sodium carbonate (5%). The organic solution was dried over NaSO4, evaporated and dried in vacuo. Trianglamine P-TA 
intermediate was obtained in a yield of 94%. HRMS (ESI) calcd for C60H85N6O6 [(M+H)+]: 985.6531, Found: 985.6526.

1.5. Synthesis of Pillared Trianglamine P-TA. P-TA intermediate (492.7 mg, 0.5 mmol) and paraformaldehyde (180 mg, 6 mmol) 
in CH3OH (10 mL) was stirred at 70 °C for 2 h. The solvent was evaporated and the residue was dissolved in CH2Cl2 and extracted 
with aqueous Na2CO3 (5%). The organic phase was dried over NaSO4, evaporated and dried in vacuo to get the crude product in 96% 
yield. Crude product was purified via crystallization from dichloromethane. 1H NMR (400 MHz, Chloroform-d) δ 6.93 (s, 6H), 5.95 (ddt, 
J = 17.3, 10.4, 5.1 Hz, 6H), 5.28 (dq, J = 17.3, 1.7 Hz, 6H), 5.10 (dq, J = 10.6, 1.6 Hz, 6H), 4.42 (d, J = 1.6 Hz, 12H), 3.71 (d, J = 14.7 
Hz, 6H), 3.53 (d, J = 14.6 Hz, 6H), 3.28 (s, 6H), 2.35 – 2.33 (m, 6H), 2.04 – 2.02 (m, 6H), 1.83 – 1.81 (m, 6H), 1.31 – 1.25 (m, 12H); 
13C NMR (101 MHz, Chloroform-d) δ 150.12, 133.94, 127.09, 117.01, 113.23, 77.94, 69.60, 69.30, 51.22, 29.63, 24.66. HRMS (ESI) 
calcd for C63H85N6O6 [(M+H)+]: 1021.6531, Found: 1021.6722.

1.6. Single Crystal Growth. Single crystals of the pillared trianglamine P-TA were grown by slow evaporation of dichloromethane 
solution at room temperature. Single crystals of 1-He@P-TA were obtained as follows: firstly mixed P-TA with 1-He, then sonicated it 
for 10 min and filtered the mixture through a PTFE membrane (220 nm) to get a clear solution, finally colorless single crystals 
appeared by slow evaporation of 1-He over several days. Single crystals of trans-3-He@P-TA were grown via a vapor diffusion 
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method: P-TA dissolved in CHCl3 in a small vial was placed in a large vial containing trans-3-He to allow trans-3-He diffusion into the 
CHCl3 solution.

1.7. Adsorption Material Activation. The desolvated P-TA crystals were prepared under vacuum at 120 ℃ overnight. The activated 
adsorptive separation materials (activated P-TA) after adsorption could be regenerated to release the adsorbed guests upon heating 
at 90 ℃ under vacuum overnight, and the released guests could be collected via a condensation setup.

1.8. Adsorption Experiments for linear hexene isomers vapor. An open 5 mL vial containing 10 mg of adsorbent was placed in a 
sealed 20 mL vial containing 1 mL of solvents (1-He, trans-3-He or an equimolar mixture of 1-He and trans-3-He) at room 
temperature. The uptake capacity of  adsorbents was  measured  at different  time  intervals  by  completely dissolving  the  samples  
in  CDCl3  and  measuring  the  ratio  of  1-He or trans-3-He  by 1H NMR, respectively.  Uptake capacity values were determined from 
the ratio of each isomer peaks using 1H NMR and GC following literature protocols.[2]

2. Methods

2.1. Solution NMR. NMR spectra were recorded on Bruker-400 (400 MHz for 1H; 101 MHz for 13C) instruments internally referenced 
to SiMe4 signal.

2.2. Thermogravimetric Analysis. Thermogravimetric analysis (TGA) was carried out using a TGA Q50 analyzer (TA Instruments) 
with an automated vertical overhead thermobalance. The samples were heated at 10 °C/min from 25 to 800 oC using N2 as the 
protective gas.

2.3. Nitrogen Adsorption Experiment. Low-pressure gas adsorption measurement was performed on a Micromeritics Accelerated 
Surface Area and Porosimetry System (ASAP) 2020 surface area analyzer. Samples were degassed under dynamic vacuum for 12 h 
at 60 °C prior to each measurement. N2 isotherms were measured using a liquid nitrogen bath (77 K). 

2.4. Powder X-Ray Diffraction. Powder X-ray diffraction (PXRD) patterns were obtained using a D8 ADVANCE Twin X-ray 
diffractometer (40 KV, 40 mA) with the Cu Kα radiation (λ = 1.54178 Å). Data were measured over the range of 3−40° in 2°/min steps.

2.5. Single Crystal X-ray Diffraction. Single crystal X-ray diffraction data were recorded on a Bruker D8 Venture equipped with a 
digital camera diffractometer using graphite-monochromated Cu Kα (λ= 1.54178 Å) or Mo Kα (λ= 1.54178 Å) radiation for the crystal 
structures. Raw data were integrated using Bruker AXS SAINT software and absorption corrections were applied using SADABS.[3,4] 
All structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement 
package using Least Squares minimization operated in the OLEX2 interface.[5] All non-hydrogen atoms were refined anisotropically. 
In the final refinement, a twin law (TWIN -1 -1 0 0 1 0 0 0 -1 2; BASF = 0.12) was required for the structural refinement of 1-He@P-
TA. Based on theanalysis of 1H NMR and TGA as well as the solvent mask calculation results, the asymmetric unit contains one unit 
of P-TA and one unit of 1-He in the 1-He@P-TA; While trans-3-He molecules sit inside the intrinsic cavity of P-TA with 0.5 occupancy 
in the trans-3-He@P-TA. The hydrogen atoms on organic carbon atoms were fixed in calculated positions. Crystal data and 
structural refinement for 1-He@P-TA and trans-3-He@P-TA are listed in Table S2.

2.6. Gas Chromatography. Gas Chromatographic (GC) Analysis: GC measurements were carried out using a J&W (122-1364) 
instrument configured with an FID detector and a DB-624 column (60 m × 0.25 mm × 1.4 μm). The following GC method was used: 
the oven was programmed from 40 °C ramped in 10 °C/min increments to 240 °C with 26 min hold. The total run time was 50 min 
and the injection temperature was 250 °C. The detector temperature was 260 °C with hydrogen, air, and make-up flow rates of 35, 
350, and 30 mL/min, respectively. The helium (carrier gas) flow rate was 3.0 mL/min. The samples were injected in the splitless mode.

 



S4

Figure S1. 1H NMR spectrum (400 MHz, 298K, CDCl3) of ligand Da-A.

Figure S2. 13C NMR spectrum (101 MHz, 298K, CDCl3) of ligand Da-A.
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Figure S3. 1H NMR spectrum (400 MHz, 298K, CDCl3) of pillar[3]trianglamine P-TA.

Figure S4. 13C NMR spectrum (101 MHz, 298K, CDCl3) of pillar[3]trianglamine P-TA.
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Figure S5. The asymmetric unit and the space filling structure of crystalline P-TA.

Figure S6. Packing arrangement of crystalline P-TA along (a) a-axis (b) b-axis and (c) c-axis.
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Figure S7. Thermogravimetric analysis: the as synthesized crystalline P-TA and activated P-TA.

Figure S8. The PXRD patterns: (Ⅰ) simulated from the single crystal structure of P-TA; (Ⅱ) experimental from P-TA crystals; (Ⅲ) activated P-TA.
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Figure S9. Nitrogen adsorption isotherm at 77 K for activated P-TA. The calculated BET surface area is 3.9 m2/g.

Figure S10. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He for 16 h.
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Figure S11. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of trans-3-He for 16 h.

Figure S12. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He/trans-3-He mixtures for 16 h.  
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Figure S13. Experimental PXRD patterns of activated P-TA (black); activated P-TA after being exposed to 1-He (red); activated P-TA after being exposed to 
trans-3-He (blue); activated P-TA after being exposed to 1-He/trans-3-He mixtures for 16 h (green).

Figure S14. Chemical structure of TA and experimental PXRD patterns of (Ⅰ) activated TA; (Ⅱ) activated TA after being exposed to 1-He; (Ⅲ) activated TA after 
being exposed to trans-3-He; (Ⅳ) activated TA after being exposed to 1-He/trans-3-He mixtures for 16h.
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Figure S15. Thermogravimetric analysis of activated P-TA after adsorption of 1-He.

 

Figure S16. Thermogravimetric analysis of activated P-TA after adsorption of trans-3-He.
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Figure S17. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He over time.

Figure S18. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of trans-3-He over time.
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Figure S19. 1H NMR spectra (400 MHz, chloroform-d, 298 K) of activated P-TA after adsorption of 1-He/trans-3-He mixtures over time.

Figure S20. Gas chromatography showing the relative uptake of 1-He and trans-3-He by activated P-TA from their mixtures for 16h.

Figure S21. (a) Time-dependent PXRD patterns of P-TA loaded with 1-He after exposure to trans-3-He vapor under different times. (b) Time-dependent PXRD 
patterns of P-TA loaded with trans-3-He after exposure to 1-He vapor under different times.
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Figure S22. Experimental PXRD patterns of guest-loaded P-TA (exposing to 1-He and trans-3-He mixtures) after guests were fully removed at 90 oC under 
vacuum: (Ⅰ) the first cycle; (Ⅱ) the third cycle; (Ⅲ) the fifth cycle.

Figure S23. Water stability of: (Ⅰ) activated P-TA; (Ⅱ) activated P-TA soaked in water for 7 days.
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Figure S24. Activated P-TA (1mg) in 1-He (10 mL) (a) before and (b) after sonication for 10 min.
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Figure S25. Experimental PXRD patterns of activated P-TA after exposure to 1-He/trans-3-He mixtures for 16 h: (Ⅰ) activated P-TA; (Ⅱ) activated P-TA in vapor; 
(Ⅲ) activated P-TA in liquid.
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Synthesis of SBA-15. SBA-15 was prepared according to a previously published report.[6] 

Synthesis of modified SBA-15. Activated P-TA (150 mg) was firstly dissolved in DCM (10 mL), then SBA-15 (150mg) was added 
into the above solution. The mixture was then sonicated followed by slow evaporation of dichloromethane and washing by DCM (3 
times). The as-synthesized P-TA loaded SBA-15 was finally dried under vacuum at 120 ℃ overnight. 

Figure S26. SEM images (a) SBA-15; (b) P-TA modified SBA-15 showing no P-TA crystallization on the surface.

Figure S27. (a) small-angle and (b) broad-angle PXRD patterns: (Ⅰ) SBA-15; (Ⅱ) P-TA crystals; (Ⅲ) as-synthesized P-TA loaded SBA-15; (Ⅳ) modified SBA-15; 
(Ⅴ) activated P-TA.
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Figure S28. Pore size distributions of (a) SBA-15 and (b) modified SBA-15.

Figure S29. (a) Setup of column chromatography using SBA-15 or modified SBA-15 as the stationary phase. (b) Relative amount of 1-He and trans-3-He after the 
first run with unmodified SBA-15 as the stationary phase.
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Table S1. Experimental single crystal X-ray data. 

a Formula is given based on single-crystal X-ray data.
b R1 = Σ||Fo| - |Fc||/ Σ|Fo|, wR2 = { Σ[w(Fo

2-Fc
2)2]/ Σ[w(Fo

2)2]}½
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Table S2. Experimental single crystal X-ray data. 

a Formula is given based on single-crystal X-ray data.
b R1 = Σ||Fo| - |Fc||/ Σ|Fo|, wR2 = { Σ[w(Fo

2-Fc
2)2]/ Σ[w(Fo

2)2]}½
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