Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Torsional Strain Inversed Chemoselectivity in Pd-Catalyzed Atroposelective Carbonylation Reaction of Dibenzothiophenium

Qiuchi Zhang,^a Xiaoping Xue,^a Biqiong Hong^b and Zhenhua Gu^{a,b,*}

^{*a*} Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)

^b College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108 (P.R. China)

*Correspondence to: zhgu@ustc.edu.cn

Contents

1. General information	S2
2. Synthetic details	S2
3. DFT Calculation	S19
3. References	S30
4. Copies of NMR spectroscopies	
5. Copies of HPLC Traces	S80
6. Crystal data and structure refinement	S112

1. General Information

All reactions were carried out under a nitrogen atmosphere in oven dried glassware, unless the reaction procedure states otherwise. All NMR spectra were recorded on a Bruker AC-400 FT or AC-500 FT spectrometer using solvent residue as an internal reference (7.26 and 77.16 ppm for CDCl₃, 2.52 and 39.52 ppm for DMSO- d_6 , 3.31 and 49.00 ppm for MeOH- d_4). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet. High resolution mass spectra (HRMS (ESI)) was recorded on a high-resolution mass spectrometer (Waters XEVO-G2 Q-TOF). All the amines from commercial sources were purified by recrystallization, distillation or flash column chromatography (except for MeNH₂ and Me₂NH are aqueous solution, which were used as received). All other reagents were used as received from commercial sources and used without further purification. Flash column chromatography was performed by using 200-300 mesh silica gel as the stationary phase.

2. Synthetic details

Procedures for preparation of the sulfoniums:

Typical Procedure:¹⁻⁴

All cyclic diarylsulfoniums, except **1f**, were synthesized using the following method: under an inert atmosphere, to an oven dried round bottom flask charged with the cyclic diaryliodonium salt (1.0 mmol, 1.0 equiv), potassium thioacetate (137.0 mg, 1.2 mmol, 2.0 equiv), copper(II) triflate (36.2 mg, 0.10 mmol, 10 mol%), 1,10-phenanthroline (21.6 mg, 0.12 mmol, 12 mol%) and potassium phosphate (424.2 mg, 2.0 mmol, 2.0 equiv) was added dry dimethyl sulfoxide (10 mL). The mixture was heated at 110 °C overnight with vigorous stirring. After completion of the reaction, it was cooled to room temperature and diluted with 20 mL of ethyl acetate. The mixture was then filtered through a celite pad. The filtrate was poured into 50 mL of water, the mixture was then extracted three times with ethyl acetate (30 mL×3), the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was then flushed with PE through column of silica gel to afford the crude diarylthiophen intermediate, which was used in the next step without further purification.

Under an inert atmosphere, an oven dried round bottom flask was charged with the diarylthiophen (0.50 mmol, 1.0 equiv), the diaryliodonium salt (0.50 mmol, 1.0 equiv) and copper(II) acetate (9.1 mg, 0.050 mmol, 10 mol%). The mixture, which liquefied to a black oil upon heating, was heated to 130 °C with vigorous stirring for 1 h. After being cooled to room temperature, the reacting mixture was dissolved in a small amount of dichloromethane and directly purified by flash column chromatography (PE/EA 90/10, then DCM/MeOH 97/3) on silica gel to afford the crude product as a brown oil. The crude product was the further purified by vigorous stirring under ether for about 1

h, and the solid was collected by filtration and dried under vacuum.

1,9-dimethyl-5-phenyl-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (1a)

The reaction of 2,2'-dimethyl-[1,1'-biphenyl]iodonium trifluoromethanesulfonate salt (9.12 g, 20 mmol) afforded **1a** (5.33 g, 61% overall yield) as a light yellow powder. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.7 Hz, 2H), 7.65 – 7.45 (m, 7H), 2.75 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.1. ¹³C NMR (126 MHz, CDCl₃) δ 138.9, 138.2, 137.6, 135.0, 131.7, 131.3, 131.0, 130.4, 128.2, 126.6, 120.9 (q, J = 321.3 Hz), 24.9. HRMS (ESI) calcd for: C₂₀H₁₇S⁺ [M-OTf]⁺ 289.1045, found: 289.1053.

1,9-dimethyldibenzo[2,1-b:1',2'-d]thiophene (S1)⁵

Compound S1 can be isolated, pure S1 was used in some small scale reactions. The reaction of 2,2'dimethyl-[1,1'-biphenyl]iodonium trifluoromethanesulfonate salt (9.12 g, 20 mmol, 1.0 equiv) with potassium thioacetate (2.74 g, 24 mmol, 1.2 equiv) afforded S1, it was separated by flash column chromatography (PE) as a white solid (2.77 g, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 7.9 Hz, 3H), 2.79 (s, 6H).

1,9-dimethyl-5-(*p*-tolyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (1b)

The reaction of **S1** (105.5 mg, 0.50 mmol, 1.0 equiv) and bis(4-methylphenyl)iodonium trifluoromethanesulfonate (229.1 mg, 0.50 mmol, 1.0 equiv) afforded **1b** (175.5 mg, 78%) as a white powder. ¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 2H), 7.57 (t, *J* = 7.7 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.77 (s, 6H), 2.38 (s, 3H). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -78.1. ¹³**C NMR** (126 MHz, CDCl₃) δ 146.7, 138.9, 138.1, 137.5, 132.4, 131.8, 131.0, 130.6, 126.6, 124.3, 121.0 (q, *J* = 321.2 Hz), 24.9, 21.8. **HRMS (ESI)** calcd for: C₂₁H₁₉S⁺ [M-OTf]⁺ 303.1202, found: 303.1205.

1,9-dimethyl-5-(*m*-tolyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (1c)

The reaction of **S1** (105.5 mg, 0.50 mmol, 1.0 equiv) and bis(3-methylphenyl)iodonium trifluoromethanesulfonate (229.1 mg, 0.50 mmol, 1.0 equiv) afforded **1c** (182.4 mg, 81%) as a light yellow powder. ¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.8 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 2H), 7.56 (t, *J* = 7.8 Hz, 3H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H),

2.75 (s, 6H), 2.35 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -78.1. ¹³C NMR (126 MHz, CDCl₃) δ 142.5, 138.9, 138.2, 137.5, 135.9, 131.5, 131.3, 131.1, 131.0, 127.7, 126.9, 126.6, 120.9 (q, J = 321.3 Hz), 24.9, 21.4. HRMS (ESI) calcd for: C₂₁H₁₉S⁺ [M-OTf⁻]⁺ 303.1202, found: 303.1206. **5-(4-methoxyphenyl)-1,9-dimethyl-5***H***-dibenzo[***b,d***]thiophen-5-ium trifluoromethanesulfonate (1d)**

The reaction of **S1** (105.5 mg, 0.50 mmol, 1.0 equiv) and bis(4-anisyl)iodonium triflate (735.4 mg, 1.5 mmol, 3 equiv) afforded **1d** (112.1 mg, 48%) as a brown powder. ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H), 7.60 – 7.51 (m, 4H), 6.99 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H), 2.75 (s, 6H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.2. ¹³**C NMR** (101 MHz, CDCl₃) δ 165.0, 138.6, 138.0, 137.4, 133.1, 132.3, 130.9, 126.5, 120.9 (q, J = 321.8 Hz), 117.3, 116.3, 56.2, 24.9. **HRMS (ESI)** calcd for: C₂₁H₁₉OS⁺ [M-OTf]⁺ 319.1151, found: 319.1159.

1,9-dimethyl-5-(4-(trifluoromethyl)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium (1e)

The reaction of **S1** (105.5 mg, 0.50 mmol, 1.0 equiv) and bis(4-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate (283.1 mg, 0.50 mmol, 1.0 equiv) afforded **1e** (214.6 mg, 85%) as a light brown powder. ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.8 Hz, 2H), 2.78 (s, 6H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.5, -78.3. ¹³**C NMR** (101 MHz, CDCl₃) δ 139.1, 138.6, 137.9, 136.2 (q, J = 33.7 Hz), 133.1, 131.2, 131.1, 130.5, 128.4 (q, J = 3.7 Hz), 127.1, 122.7 (q, J = 274.6 Hz), 120.8 (q, J = 321.7 Hz), 24.9. **HRMS (ESI)** calcd for: C₂₁H₁₆F₃S⁺ [M-OTf]⁺ 357.0919, found: 357.0925. **Synthesizing** of 7-phenyl-7*H*-dinaphtho[2,1-*b*:1',2'-*d*]thiophen-7-ium trifluoromethanesulfonate (1f) ^{6,7}:

Under an inert atmosphere an oven dried sealed tube charged with 2-iodo-1,1'-binaphthalene (760.5 mg, 2.0 mmol, 1.0 equiv), Pd_2dba_3 (36.6 mg, 0.040 mmol, 2.0 mol%), DPEPhos (43.1 mg, 0.080 mmol, 4.0 mol%), and potassium *tert*-butoxide (246.9 mg, 2.2 mmol, 1.0 equiv) was added dry toluene (5 mL), and the thiophenol (242.4 mg, 2.2 mmol, 1.0 equiv) was then added to the mixture. The mixture was then stirred at 110 °C for 12 h. After being cooled to room temperature, the mixture was filtered through a small pad of celite and silica gel. The solvent was removed under reduced pressure, and the crude product was used in the next step without further purification.

To a solution of above thioether in 5 mL of DCM was added 3-chloroperoxybenzoic acid

(*m*CPBA, 75%, 506.2 mg, 2.2 mmol, 1.0 equiv) in portions at -40 °C. The resulting mixture was slowly warmed to room temperature and stirred at the same temperature for 2 h. The mixture was filtered through a silica gel pad (washed with PE to remove the impurities and collected with PE/EA 3/1) and the solvent was removed under reduced pressure to afford the crude sulfoxide.

To a solution of the above sulfoxide in DCM (5 mL) was added trifluoromethanesulfonic anhydride (0.34 mL, 2.0 mmol, 1.0 equiv) dropwise at -40 °C. The mixture was stirred at the same temperature for 30 min, and then slowly warmed to room temperature within 12 h. The solvent was removed under reduced pressure and the residue was then purified by flash column chromatography (PE/EA 90/10, then DCM/MeOH 97/3) on silica gel to afford the crude product as a brown oil, the crude product was stirred vigorously under ether for about 1 h. Then the solid was collected by filtration and dried under vacuum as a brown powder (141.5 mg, 11% overall yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (d, J = 8.5 Hz, 2H), 8.26 – 8.17 (m, 4H), 8.12 (d, J = 8.3 Hz, 2H), 7.90 – 7.70 (m, 6H), 7.64 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.9 Hz, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.1. ¹³**C NMR** (126 MHz, CDCl₃) δ 138.1, 136.8, 135.3, 133.3, 131.9, 131.14, 131.08, 129.65, 129.69, 129.3, 127.7, 127.6, 125.2, 122.3, 121.0 (q, J = 321.1 Hz). **HRMS (ESI)** calcd for: C₂₆H₁₇S⁺ [M-OTf]⁺ 361.1045, found: 361.1049.

1,3,7,9-tetramethyl-5-phenyl-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1g)

The reaction of 2,2',4,4'-tetramethyl-[1,1'-biphenyl]-cyclic iodonium triflate (484.3 mg, 1.0 mmol) afforded **1g** (272.5 mg, 58% overall yield) as a brown powder. ¹H **NMR** (400 MHz, CDCl₃) δ 7.74 (s, 2H), 7.67 – 7.61 (m, 3H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.43 (s, 2H), 2.71 (s, 6H), 2.41 (s, 6H). ¹⁹F **NMR** (376 MHz, CDCl₃) δ -78.2. ¹³C **NMR** (101 MHz, CDCl₃) δ 141.7, 139.0, 136.6, 136.5, 134.8, 131.7, 131.5, 130.6, 128.7, 127.0, 121.0 (q, *J* = 321.8 Hz), 25.0, 21.1. **HRMS (ESI)** calcd for: C₂₂H₂₁S⁺ [M-OTf]⁺ 317.1358, found: 317.1360.

1,2,8,9-tetramethyl-5-phenyl-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (1h)

The reaction of 2,2',3,3'-tetramethyl-[1,1'-biphenyl]-cyclic iodonium triflate (484.3 mg, 1.0 mmol) afforded **1h** (258.4 mg, 55% overall yield) as a brown powder. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.59 (q, *J* = 7.6 Hz, 3H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 7.6 Hz, 2H), 2.51 (s, 6H), 2.47 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -78.1. ¹³C NMR (126 MHz, CDCl₃) δ 145.8,

139.4, 136.5, 134.8, 132.5, 131.6, 130.3, 128.8, 128.6, 126.0, 120.9 (q, *J* = 321.3 Hz), 21.8, 20.8. **HRMS (ESI)** calcd for: C₂₂H₂₁S⁺ [M-OTf]⁺ 317.1358, found: 317.1362. **5-phenyl-5***H***-dibenzo[***b***,***d***]thiophen-5-ium trifluoromethanesulfonate (1i)**

The reaction of dibenzo[*b,d*]thiophene (0.92 g, 5.0 mmol, 1.0 equiv) and diphenyliodonium triflate (2.2 g, 5.0 mmol, 1.0 equiv) afforded **1i** (1.9 g, 93%) as a white powder. ¹**H NMR** (400 MHz, MeOH-d₄) δ 8.44 (d, *J* = 7.9 Hz, 2H), 8.19 (d, *J* = 8.1 Hz, 2H), 7.96 (t, *J* = 7.7 Hz, 2H), 7.74 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.3 Hz, 3H), 7.67 – 7.57 (m, 4H). ¹⁹**F NMR** (376 MHz, MeOH-d₄) δ -79.9. ¹³**C NMR** (101 MHz, MeOH-d₄) δ 140.8, 136.0, 135.5, 133.8, 132.70, 132.68, 131.2, 129.1, 129.0, 125.6, 121.8 (q, *J* = 319.9 Hz). **HRMS (ESI)** calcd for: C₁₈H₁₃S⁺ [M-OTf]⁺ 261.0732, found: 261.0735 **General Procedure of Pd-Catalyzed Carbonylation Reaction of Sulfoniums:**

Under a N₂ atmosphere a dried Schlenk tube was charged with the cyclic sulfonium (0.20 mmol, 1.0 equiv), the amine (0.40 mmol, 2.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 2.5 mol%), BoPhoz (9.4 mg, 0.015 mmol, 7.5 mol%) and potassium phosphate (42.4 mg, 0.20 mmol, 1.0 equiv). After the N₂ was replaced by CO via purging with a CO balloon, *p*-cymene/THF (2mL, 100/1) was added, and then the mixture was stirred at room temperature for 36 h. After complete consumption of the starting material, the mixture directly purified by flash column chromatography (PE, then PE/EA 10/1) on silica gel to afford the desired product.

2',6-dimethyl-6'-(phenylthio)-N-(p-tolyl)-[1,1'-biphenyl]-2-carboxamide (3a)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3a** (84.6 mg, 99%, 89% ee) as a light yellow oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 15.488 min (minor), 19.520 min (major). [α]_D²⁰ = -17.15 (c 0.66, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (bs, 1H), 7.80 (dd, $J_1 = 6.5$ Hz, $J_2 = 2.6$ Hz, 1H), 7.49 – 7.46 (m, 2H), 7.45 – 7.41 (m, 2H), 7.39 – 7.31 (m, 3H), 7.15 – 7.08 (m, 4H), 7.05 (d, J = 8.3 Hz, 2H), 6.79 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.7$ Hz, 1H), 2.29 (s, 3H), 2.12 (s, 3H), 2.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 137.69, 137.67, 137.4, 136.5, 136.4, 135.5, 135.4, 134.7, 133.9, 132.5, 131.7, 129.7, 129.4, 128.9, 128.7, 128.6, 128.0, 126.9, 124.4, 120.4, 21.0, 20.2, 19.9. HRMS (ESI) calcd for: C₂₈H₂₆NOS⁺ [M+H]⁺ 424.1730, found: 424.1734.

2',6-dimethyl-6'-(phenylthio)-N-(o-tolyl)-[1,1'-biphenyl]-2-carboxamide (3b)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *o*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3b** (83.2 mg, 98%, 91% ee) as a light yellow oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 30: 70, flow: 1.0 mL/min, $\lambda = 210$ nm, tr = 9.489 min (minor), 23.533 min (major). [α]_D²⁰ = -14.74 (c 0.42, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, $J_I = 6.1$ Hz, $J_2 = 3.0$ Hz, 1H), 7.66 (bs, 1H), 7.47 – 7.42 (m, 2H), 7.36 – 7.25 (m, 6H), 7.14 – 7.07 (m, 4H), 7.07 – 7.03 (m, 1H), 6.76 – 6.70 (m, 1H), 2.08 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 137.8, 137.6, 137.5, 136.9, 136.6, 135.62, 135.57, 134.3, 132.3, 132.0, 131.1, 130.5, 129.7, 128.7, 128.6, 128.6, 128.0, 126.6, 126.4, 125.7, 124.6, 124.1, 20.3, 19.9, 17.8. HRMS (ESI) calcd for: C₂₈H₂₆NOS⁺ [M+H]⁺ 424.1730, found: 424.1729

2',6-dimethyl-6'-(phenylthio)-N-(m-tolyl)-[1,1'-biphenyl]-2-carboxamide (3c)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *m*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3c** (84.8 mg, 99%, 86% ee) as a light yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 7.812 min (major), 8.736 min (minor). [α]_D²⁰ = -7.08 (c 0.30, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (bs, 1H), 7.76 (dd, J_1 = 6.3 Hz, J_2 = 2.8 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.28 (m, 3H), 7.17 – 7.06 (m, 4H), 6.95 (dd, J_1 = 8.1 Hz, J_2 = 2.2 Hz, 1H), 6.87 (d, J = 7.5 Hz, 1H), 6.79 (dd, J_1 = 7.2 Hz, J_2 = 2.0 Hz, 1H), 2.27 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 138.8, 137.9, 137.8, 137.6, 137.5, 136.6, 136.5, 135.5, 134.7, 132.6, 131.9, 129.7, 128.9, 128.7, 128.6, 128.1, 126.9, 125.1, 124.6, 121.0, 117.3, 21.6, 20.3, 19.9. HRMS (ESI) calcd for: C₂₈H₂₆NOS⁺ [M+H]⁺ 424.1730, found: 424.1754.

2',6-dimethyl-N-phenyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3d)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and aniline (37.2 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3d** (81.5 mg, >99%, 80% ee) as a light yellow oil. HPLC conditions: Chiralpak ID, isopropanol/hexane = 20: 80, flow: 1.0 mL/min, λ = 254 nm, tr = 9.165 min (major), 10.882 min (minor). [α]_D²⁰ = -12.51 (c 0.30, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (bs, 1H), 7.79 (dd, J_1 = 6.4 Hz, J_2 = 2.7 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.42 – 7.38 (m, 2H), 7.36 – 7.29 (m, 3H), 7.26 – 7.20 (m, 4H), 7.15 – 7.08 (m, 2H), 7.05 (tt, J_1 = 6.6 Hz, J_2 = 2.2 Hz, 1H), 6.79 (dd, J_1 = 7.3 Hz, J_2 = 1.9 Hz, 1H), 2.10 (s, 3H), 1.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 138.0, 137.8, 137.7, 137.5, 136.6, 136.3, 135.6, 134.7, 132.7, 131.9, 129.8, 129.0, 128.8, 128.6, 128.1, 127.0, 124.6, 124.3, 120.3, 20.3, 19.9. HRMS (ESI) calcd for: C₂₇H₂₄NOS⁺ [M+H]⁺ 410.1573, found: 410.1577.

N-(4-(tert-butyl)phenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3e)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-*tert*-butylaniline (59.7 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3e** (68.3 mg, 73%, 90% ee) as a brown oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr = 15.386 min (minor), 18.759 min (major). [α]_D²⁰ = -10.01 (c 0.38, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.44 (d, *J* = 6.2 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.34 – 7.29 (m, 3H), 7.27 – 7.22 (m, 2H), 7.16 – 7.06 (m, 4H), 6.78 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.5 Hz, 1H), 2.09 (s, 3H), 1.98 (s, 3H), 1.27 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 147.3, 137.8, 137.4, 136.6, 136.4, 135.5, 135.4, 134.8, 132.6, 131.9, 129.8, 128.9, 128.8, 128.6, 128.1, 127.1, 125.8, 124.5, 120.2, 34.5, 31.5, 20.3, 19.9. HRMS (ESI) calcd for: C₃₁H₃₂NOS⁺ [M+H]⁺ 466.2199, found: 466.2206.

N-(4-fluorophenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3f)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-fluoroaniline (44.4 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3f** (59.7 mg, 70%, 85% ee) as a light yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 8.814 min (major), 10.054 min (minor). [α]_D²⁰ = -29.52 (c 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (bs, 1H), 7.76 (dd, J_1 = 6.3 Hz, J_2 = 2.7 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.40 – 7.28 (m, 5H), 7.17 – 7.05 (m, 4H), 6.97 – 6.87 (m, 2H), 6.78 (dd, J_1 = 7.2 Hz, J_2 = 2.0 Hz, 1H), 2.10 (s, 3H), 1.98 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -118.0. ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 159.5 (d, J = 244.1 Hz), 137.9, 137.7, 137.5, 136.6, 136.2, 135.6, 134.6, 133.9 (d, J = 3.0 Hz), 132.7, 131.8, 129.8, 129.0 128.8, 128.7, 128.1, 126.9, 124.6, 122.2 (d, J = 7.9 Hz), 115.6 (d, J = 22.4 Hz), 20.2, 19.9. HRMS (ESI) calcd for: C₂₇H₂₃FNOS⁺ [M+H]⁺ 428.1479, found: 428.1474.

N-(4-bromophenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3g)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-bromoaniline (68.8 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3g** (70.1 mg, 72%, 85% ee) as a brown oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 8.544 min (major), 9.316 min (minor). $[\alpha]_D^{20} = -20.16$ (c 0.09, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (bs, 1H), 7.77 (dd, $J_I = 7.1$ Hz, $J_2 = 2.0$ Hz, 1H), 7.50 – 7.42 (m, 2H), 7.39 – 7.30 (m, 7H), 7.14 – 7.03 (m, 4H), 6.79 (dd, $J_I = 7.3$ Hz, $J_2 = 1.8$ Hz, 1H), 2.09 (s, 3H), 1.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 137.8, 137.61, 137.56, 137.1, 136.5, 136.0, 135.6, 134.6, 132.9, 131.9, 131.7, 129.8, 129.1, 128.9, 128.7, 128.2, 127.0, 124.7, 121.8, 116.9, 20.2, 19.9. HRMS (ESI) calcd for: C₂₇H₂₃⁷⁹BrNOS⁺ [M+H]⁺ 488.0678, found: 488.0682.

2',6-dimethyl-6'-(phenylthio)-*N*-(4-(trifluoromethyl)phenyl)-[1,1'-biphenyl]-2-carboxamide (3h)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-(trifluoromethyl)aniline (64.4 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3h** (93.0 mg, 97%, 82% ee) as a pale yellow solid. HPLC conditions: Chiralpak OD-H, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr = 6.873 min (minor), 7.641 min (major). [α]_D²⁰ = -7.97 (c 0.29, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (bs, 1H), 7.80 (dd, J_1 = 7.2 Hz, J_2 = 1.8 Hz, 1H), 7.53 – 7.42 (m, 4H), 7.40 – 7.28 (m, 7H), 7.18 – 7.08 (m, 2H), 6.82 (dd, J_1 = 7.5 Hz, J_2 = 1.8 Hz, 1H), 2.10 (s, 3H), 1.98 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.1. ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 141.1, 137.8, 137.7, 137.6, 136.4, 135.7, 134.6, 133.1, 131.7, 129.8, 129.1, 129.0, 128.7, 128.2, 127.1, 126.2 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 32.8 Hz), 124.8, 124.2 (q, *J* = 272.1 Hz), 119.7, 20.2, 19.9. HRMS (ESI) calcd for: C₂₈H₂₃F₃NOS⁺ [M+H]⁺ 478.1447, found: 478.1454.

N-(4-methoxyphenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3i)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-methoxyaniline (49.3 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3i** (97.3 mg, >99%, 81% ee) as a brown oil. HPLC conditions: Chiralpak IA, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 12.988 min (major), 14.281 min (minor). [α]_D²⁰ = -52.06 (c 0.16, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (bs, 1H), 7.79 – 7.76 (m, 1H), 7.49 – 7.43 (m, 2H), 7.42 – 7.39 (m, 2H), 7.38 – 7.30 (m, 3H), 7.16 – 7.07 (m, 4H), 6.82 – 6.74 (m, 3H), 3.76 (s, 3H), 2.11 (s, 3H), 2.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 156.4, 137.71, 137.66, 137.3, 136.5, 136.4, 135.4, 134.7, 132.4, 131.7, 131.0, 129.7, 128.9, 128.7, 128.6, 128.0, 126.9, 124.4, 122.2, 114.0, 55.5, 20.2, 19.9. HRMS (ESI) calcd for: C₂₈H₂₅NO₂SNa⁺ [M+Na]⁺ 462.1498, found: 462.1503.

N-(4-(tert-butoxy)phenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3j)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-(*tert*-butoxy)aniline (66.1 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3j** (87.1 mg, >99%, 80% ee) as a light yellow oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 17.285 min (major), 19.100 min (minor). [α]_D²⁰ = -21.40 (c 0.09, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (bs, 1H), 7.77 (dd, J_I = 6.8 Hz, J_2 = 2.4 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.41 – 7.35 (m, 2H), 7.35 – 7.27 (m, 3H), 7.15 – 7.03 (m, 4H), 6.86 (dt, J_I = 8.8 Hz, J_2 = 2.8 Hz, 2H), 6.80 (dd, J_I = 7.1 Hz, J_2 = 2.1 Hz, 1H), 2.09 (s, 3H), 2.00 (s, 3H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 151.8, 137.7, 137.5, 137.4, 136.7, 136.3, 135.6, 134.5, 133.5, 132.5, 132.0, 129.7, 128.8,

128.7, 128.5, 128.1, 126.8, 124.7, 124.6, 121.1, 78.6, 28.8, 20.3, 19.9. **HRMS (ESI)** calcd for: C₃₁H₃₂NO₂S⁺ [M+H]⁺ 482.2148, found: 482.2150.

N-(2-methoxyphenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3k)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-methoxyaniline (49.3 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3k** (75.6 mg, 72%, 93% ee) as a light yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 8.848 min (major), 10.406 min (minor). [α]_D²⁰ = -27.38 (c 0.28, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J_I = 8.0 Hz, J_2 = 1.7 Hz, 1H), 8.15 (bs, 1H), 7.67 (dd, J_I = 6.0 Hz, J_2 = 3.1 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.30 – 7.26 (m, 2H), 7.21 – 7.13 (m, 3H), 7.11 – 7.04 (m, 2H), 6.99 (td, J_I = 7.8 Hz, J_2 = 1.4 Hz, 1H), 6.84 (dd, J_I = 7.5 Hz, J_2 = 1.6 Hz, 1H), 6.75 (dd, J_I = 8.1 Hz, J_2 = 1.3 Hz, 1H), 3.57 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 148.3, 137.7, 137.6, 137.5, 137.0, 136.9, 136.4, 133.9, 133.4, 132.3, 129.2, 128.35, 128.29, 128.0, 127.91, 127.86, 126.2, 126.1, 123.8, 120.9, 120.4, 109.8, 55.3, 20.4, 19.9. HRMS (ESI) calcd for: C₂₈H₂₆NO₂S⁺ [M+H]⁺ 440.1679, found: 440.1680.

N-(4-acetylphenyl)-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (31)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-acetylaniline (54.1 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3l** (37.0 mg, 41%, 88% ee) as a yellow solid. HPLC conditions: Chiralpak IC, isopropanol/hexane = 20: 80, flow: 1.0 mL/min, λ = 254 nm, tr = 22.873 min (major), 25.975 min (minor). [α]_D²⁰ = -25.07 (c 0.14, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (bs, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 7.3 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.39 (d, *J* = 7.9 Hz, 2H), 7.35 – 7.30 (m, 5H), 7.19 – 7.05 (m, 2H), 6.81 (d, *J* = 7.4 Hz, 1H), 2.54 (s, 3H), 2.10 (s, 3H), 1.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 167.1, 142.4, 137.8, 137.64, 137.60, 136.4, 135.72, 135.69, 134.6, 133.1, 132.9, 131.6, 129.8, 129.7, 129.1, 129.0, 128.7, 128.2, 127.1, 124.7, 119.2, 26.5, 20.2, 19.9. HRMS (ESI) calcd for: C₂₉H₂₆NO₂S⁺ [M+H]⁺ 452.1679, found: 452.1674.

2',6-dimethyl-6'-(phenylthio)-N-(pyridin-2-yl)-[1,1'-biphenyl]-2-carboxamide (3m)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 2-aminopyridine (37.6 mg, 0.40 mmol, 2.0 equiv) under standard condition for 72 h afforded **3m** (75.0 mg, 91%, 84% ee) as a pale yellow solid. HPLC conditions: Chiralpak IA, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr =

8.333 min (major), 9.221 min (minor). $[\alpha]_D^{20} = -14.79$ (c 0.14, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.78 (bs, 1H), 8.20 (dd, $J_I = 5.1$ Hz, $J_2 = 1.9$ Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.64 – 7.59 (m, 4H), 7.49 – 7.40 (m, 2H), 7.29 (dd, $J_I = 5.0$ Hz, $J_2 = 1.9$ Hz, 3H), 7.07 – 7.00 (m, 2H), 6.96 (dd, J_I = 7.3 Hz, $J_2 = 4.9$ Hz, 1H), 6.71 (dd, $J_I = 6.5$ Hz, $J_2 = 2.7$ Hz, 1H), 2.08 (s, 3H), 2.01 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 151.6, 147.9, 138.1, 137.8, 137.5, 137.4, 136.45, 136.43, 136.1, 134.72, 134.70, 132.6, 132.3, 129.5, 128.5, 128.44, 128.42, 127.6, 125.9, 124.8, 119.6, 114.0, 20.2, 19.8. HRMS (ESI) calcd for: C₂₆H₂₃N₂OS⁺ [M+H]⁺ 411.1526, found: 411.1531.

2',6-dimethyl-6'-(phenylthio)-N-(pyridin-4-yl)-[1,1'-biphenyl]-2-carboxamide (3n)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-aminopyridine (37.6 mg, 0.40 mmol, 2.0 equiv) under standard condition for 72 h afforded **3n** (25.3 mg, 31%, 85% ee) as a light yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 9.082 min (minor), 10.902 min (major). [α]_D²⁰ = -11.32 (c 0.23, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 10.59 (s, 1H), 8.36 (d, *J* = 6.5 Hz, 2H), 7.59 – 7.41 (m, 5H), 7.26 – 7.17 (m, 5H), 7.16 – 7.09 (m, 2H), 6.83 (dd, *J*₁ = 5.7 Hz, *J*₂ = 3.5 Hz, 1H), 1.97 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 167.7, 150.2, 146.0, 138.9, 137.4, 136.8, 135.7, 135.0, 134.8, 132.2, 131.6, 129.4, 128.0, 127.9, 127.6, 127.5, 127.2, 125.4, 113.5, 20.2, 19.4. HRMS (ESI) calcd for: C₂₆H₂₃N₂OS⁺ [M+H]⁺ 411.1526, found: 411.1531.

2',6-dimethyl-6'-(phenylthio)-N-(4-vinylphenyl)-[1,1'-biphenyl]-2-carboxamide (30)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 4-aminostyrene (37.6 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3o** (45.8 mg, 53%, 87% ee) as a light yellow oil. HPLC conditions: Chiralpak IG, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr = 35.024 min (major), 41.869 min (minor). [α]_D²⁰ = -22.52 (c 0.92, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (bs, 1H), 7.80 – 7.77 (m, 1H), 7.48 – 7.43 (m, 2H), 7.41 – 7.37 (m, 2H), 7.35 – 7.30 (m, 3H), 7.28 – 7.24 (m, 2H), 7.21 – 7.16 (m, 2H), 7.13 – 7.06 (m, 2H), 6.78 (dd, J_I = 7.2 Hz, J_2 = 1.9 Hz, 1H), 6.63 (dd, J_I = 17.6 Hz, J_2 = 10.9 Hz, 1H), 5.64 (dd, J_I = 17.6 Hz, J_2 = 0.9 Hz, 1H), 5.16 (dd, J_I = 10.8 Hz, J_2 = 0.9 Hz, 1H), 2.09 (s, 3H), 1.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 137.8, 137.7, 137.6, 137.5, 136.5, 136.3, 135.6, 134.7, 133.7, 132.7, 131.8, 129.8, 129.1, 129.0, 128.8, 128.7, 128.5, 128.1, 127.1, 126.8, 124.6, 120.2, 113.0, 20.2, 19.9. HRMS (ESI) calcd for: C₂₉H₂₆NOS⁺ [M+H]⁺ 436.1730, found: 436.1734.

2',6-dimethyl-N-(naphthalen-2-yl)-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3p)

The reaction of 1a (84.7 mg, 0.20 mmol, 1.0 equiv) and 2-naphthylamine (57.3 mg, 0.40 mmol, 2.0

equiv) under standard condition for 72 h afforded **3p** (69.7 mg, 76%, 88% ee) as a brown oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, temperature = 5 °C, tr = 18.775 min (major), 24.001 min (minor). [α]_D²⁰ = -22.44 (c 1.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.97 (m, 2H), 7.83 (dd, J_1 = 5.8 Hz, J_2 = 3.3 Hz, 1H), 7.76 – 7.70 (m, 3H), 7.68 (d, J = 8.8 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.47 – 7.28 (m, 7H), 7.15 – 7.08 (m, 2H), 7.06 (dd, J_1 = 8.8 Hz, J_2 = 2.2 Hz, 1H), 6.81 (dd, J_1 = 6.5 Hz, J_2 = 2.6 Hz, 1H), 2.12 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 137.8, 137.6, 137.5, 136.6, 136.3, 135.6, 135.4, 134.6, 133.9, 132.7, 131.8, 130.7, 129.8, 129.0, 128.8, 128.7, 128.6, 128.1, 127.8, 127.6, 127.0, 126.5, 125.0, 124.7, 120.2, 117.0, 20.3, 19.9. HRMS (ESI) calcd for: C₃₁H₂₆NOS⁺ [M+H]⁺ 460.1730, found: 460.1731.

2',6-dimethyl-N-(naphthalen-1-yl)-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3q)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 1-naphthylamine (57.3 mg, 0.40 mmol, 2.0 equiv) under standard condition for 72 h afforded **3q** (30.2 mg, 33%, 90% ee) as a brown oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 20: 80, flow: 1.0 mL/min, λ = 254 nm, tr = 15.499 min (minor), 24.185 min (major). [α]_D²⁰ = -25.89 (c 0.48, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.21 (bs, 1H), 7.86 – 7.78 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 4.4 Hz, 2H), 7.44 – 7.34 (m, 3H), 7.29–7.24 (m, 4H), 7.18 (t, *J* = 7.5 Hz, 2H), 7.13 – 7.07 (m, 2H), 6.70 (dd, *J*₁ = 7.1 Hz, *J*₂ = 2.0 Hz, 1H), 2.13 (s, 3H), 2.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 138.1, 138.0, 137.6, 137.1, 136.4, 135.4, 134.8, 134.1, 132.7, 132.5, 131.4, 129.7, 129.0, 128.72, 128.69, 128.5, 128.0, 126.8, 126.1, 126.0, 125.8, 124.2, 121.73, 121.71, 20.4, 20.0. HRMS (ESI) calcd for: C₃₁H₂₆NOS⁺ [M+H]⁺ 460.1730, found: 460.1741.

N-benzyl-2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3r)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and benzylamine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3r** (50.7 mg, 60%, 82% ee) as a brown oil. HPLC conditions: Chiralpak IA, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 10.667 min (major), 13.181 min (minor). [α]_D²⁰ = -19.57 (c 0.86, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (t, *J* = 4.6 Hz, 1H), 7.41 (d, *J* = 4.6 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.25 – 7.15 (m, 5H), 7.08 (d, *J* = 4.7 Hz, 2H), 6.96 (d, *J* = 7.4 Hz, 2H), 6.87 (d, *J* = 6.6 Hz, 2H), 6.55 – 6.46 (m, 2H), 4.51 (dd, *J*₁ = 14.6 Hz, *J*₂ = 6.5 Hz, 1H), 4.19 (dd, *J*₁ = 14.6 Hz, *J*₂ = 4.4 Hz, 1H), 2.04 (s, 3H), 1.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 137.8, 137.7, 137.5, 137.3, 136.6, 136.3, 135.2, 134.8, 132.1, 131.3, 129.6, 128.8, 128.7, 128.5, 128.3, 128.1, 127.6, 127.4, 126.5, 123.9, 44.2, 20.2, 19.8. HRMS (ESI) calcd for: C₂₈H₂₆NOS⁺ [M+H]⁺ 424.1730, found: 424.1739.

2',6-dimethyl-*N*-(2-methylallyl)-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3s)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and 2-methylallylamine (28.4 mg, 0.40 mmol, 2.0 equiv) under standard condition for 72 h afforded **3s** (52.0 mg, 67%, 86% ee) as a white solid. HPLC conditions: Chiralpak AD-3, isopropanol/hexane = 3: 97, flow: 1.0 mL/min, λ = 210 nm, tr = 22.954 min (major), 32.893 min (minor). [α]_D²⁰ = -5.90 (c 0.10, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, J_I = 6.0 Hz, J_2 = 3.0 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.38 – 7.32 (m, 3H), 7.10 – 7.05 (m, 2H), 6.71 (dd, J_I = 6.3 Hz, J_2 = 2.9 Hz, 1H), 6.27 (t, J = 6.0 Hz, 1H), 4.81 – 4.66 (m, 1H), 4.62 – 4.47 (m, 1H), 3.77 (dd, J_I = 15.4 Hz, J_2 = 6.3 Hz, 1H), 3.69 (dd, J_I = 15.5 Hz, J_2 = 5.6 Hz, 1H), 2.04 (s, 3H), 1.97 (s, 3H), 1.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 142.0, 137.7, 137.6, 137.3, 136.8, 136.7, 135.3, 134.6, 132.03, 132.00, 129.7, 128.9, 128.5, 128.4, 127.8, 126.4, 124.3, 111.5, 45.8, 20.2, 19.9. HRMS (ESI) calcd for: C₂₅H₂₆NOS⁺ [M+H]⁺ 388.1730, found: 388.1740.

N,2',6-trimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3t)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and methylamine (40% aq w/w, 35.0 µL, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3t** (56.5 mg, 81%, 73% ee) as a white solid. HPLC conditions: Chiralpak ID, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 14.737 min (major), 16.292 min (minor). [α]_D²⁰ = -1.38 (c 0.24, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (dd, $J_1 = 6.2$ Hz, $J_2 = 2.7$ Hz, 1H), 7.42 – 7.30 (m, 7H), 7.15 – 7.04 (m, 2H), 6.81 (dd, $J_1 = 6.3$ Hz, $J_2 = 2.7$ Hz, 1H), 6.04 (bs, 1H), 2.66 (d, J = 4.8 Hz, 3H), 2.03 (s, 3H), 1.97 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 170.1, 137.8, 137.5, 137.2, 136.8, 136.7, 135.8, 133.8, 132.9, 131.9, 129.6, 128.5, 128.4, 128.3, 128.1, 126.0, 125.2, 26.6, 20.3, 19.9. **HRMS (ESI)** calcd for: C₂₂H₂₂NOS⁺ [M+H]⁺ 348.1417, found: 348.1426.

N,*N*,2',6-tetramethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3u)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and dimethylamine (40% aq w/w, 49.5 µL, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3u** (52.1 mg, 72%, 75% ee) as a white solid. HPLC conditions: Chiralpak IA, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 10.417 min (major), 12.447 min (minor). [α]_D²⁰ = -27.93 (c 0.17, CHCl₃). ¹H **NMR** (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.27 – 7.22 (m, 2H), 7.23 – 7.18 (m, 3H), 7.18 – 7.09 (m, 3H), 7.01 (dd, J_I = 7.0 Hz, J_I = 2.2 Hz, 1H), 2.84 (s, 3H), 2.80 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 170.2, 139.4, 137.84, 137.75, 136.5, 135.5, 130.8, 130.6, 129.2, 128.5, 128.3, 128.1, 127.1, 126.8, 124.7, 39.6, 34.8, 20.6, 19.9. **HRMS (ESI)** calcd for: C₂₃H₂₄NOS⁺ [M+H]⁺ 362.1573, found: 362.1580.

(2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-yl)(piperidin-1-yl)methanone (3v)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and piperidine (34.1 mg, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3v** (47.6 mg, 59%, 50% ee) as a pale yellow solid. HPLC conditions: Chiralpak IA, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr = 9.670 min (major), 11.468 min (minor). [α]_D²⁰ = +5.50 (c 0.66, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.21 (m, 7H), 7.18 (d, *J* = 7.1 Hz, 1H), 7.10 (d, *J* = 6.7 Hz, 2H), 6.92 (d, *J* = 7.2 Hz, 1H), 3.95 (d, *J* = 11.8 Hz, 1H), 3.60 (d, *J* = 13.5 Hz, 1H), 3.03 – 2.89 (m, 2H), 2.10 (s, 3H), 1.99 (s, 3H), 1.74 – 1.64 (m, 1H), 1.57 – 1.36 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 139.3, 138.6, 137.9, 137.5, 135.9, 135.7, 135.0, 131.8, 130.6, 129.3, 128.2, 128.1, 127.24, 127.17, 126.8, 124.2, 48.8, 42.5, 26.5, 25.8, 24.7, 20.6, 19.9. HRMS (ESI) calcd for: C₂₆H₂₇NOSNa⁺ [M+Na]⁺ 424.1706, found: 424.1714.

(2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-yl)(morpholino)methanone (3w)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and morpholine (34.8 mg, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3w** (68.5 mg, 85%, 71% ee) as a pale yellow solid. HPLC conditions: Chiralpak IC, isopropanol/hexane = 20: 80, flow: 1.0 mL/min, λ = 254 nm, tr = 10.033 min (major), 11.937 min (minor). [α]_D²⁰ = -18.67 (c 0.06, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 7H), 7.16 (dd, J_I = 7.4 Hz, J_2 = 1.6 Hz, 1H), 7.11 (d, J = 5.0 Hz, 2H), 6.88 (bs, 1H), 3.74 – 3.45 (m, 7H), 3.35 (d, J = 13.6 Hz, 1H), 2.10 (s, 3H), 2.02 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 139.1, 138.2, 137.8, 137.5, 135.3, 135.0, 134.6, 132.4, 131.1, 129.4, 128.3, 127.9, 127.8, 127.4, 126.0, 124.5, 67.1, 66.9, 48.1, 42.0, 20.5, 19.9. HRMS (ESI) calcd for: C₂₅H₂₅NO₂SNa⁺ [M+Na]⁺ 426.1498, found: 426.1497.

(2',6-dimethyl-6'-(phenylthio)-[1,1'-biphenyl]-2-yl)(thiomorpholino)methanone (3x)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and thiomorpholine (41.3 mg, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3x** (73.6 mg, 90%, 56% ee) as a brown solid. HPLC conditions: Chiralpak IA, isopropanol/hexane = 3: 97, flow: 1.0 mL/min, λ = 210 nm, tr = 15.986 min (major), 20.693 min (minor). [α]_D²⁰ = -7.86 (c 0.33, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.22 (m, 7H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.10 (d, *J* = 5.0 Hz, 2H), 6.95 – 6.83 (m, 1H), 4.24 (d, *J* = 11.5 Hz, 1H), 3.90 (d, *J* = 11.9 Hz, 1H), 3.33 (t, *J* = 11.1 Hz, 2H), 2.69 (t, *J* = 11.6 Hz, 2H), 2.46 (t, *J* = 12.9 Hz, 2H), 2.08 (s, 3H), 2.01 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 139.3, 138.2, 138.0, 137.5, 135.3, 135.1, 135.0, 132.1, 131.0, 129.4, 128.3, 128.0, 127.6, 127.4, 126.5, 124.1, 50.1, 43.9, 28.1, 27.7, 20.5, 19.9. HRMS (ESI) calcd for: C₂₅H₂₆NOS₂⁺ [M+H]⁺ 420.1450, found: 420.1439.

2',6-dimethyl-*N*-(oxodiphenyl-λ⁶-sulfanylidene)-6'-(phenylthio)-[1,1'-biphenyl]-2carboxamide (3y)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *S*,*S*-diphenylsulphoximine (86.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3y** (84.6 mg, 79%, 86% ee) as a brown oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 30: 70, flow: 1.0 mL/min, λ = 254 nm, tr = 8.509 min (major), 11.616 min (minor). [α]_D²⁰ = -30.52 (c 0.23, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 7.86 (d, *J* = 7.6 Hz, 1H), 7.76 (dt, *J*_I = 8.3 Hz, *J*₂ = 1.2 Hz, 2H), 7.69 (dt, *J*_I = 8.4 Hz, *J*₂ = 1.2 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 4H), 7.49 (d, *J* = 7.4 Hz, 1H), 7.40 (td, *J*_I = 7.6 Hz, 1Z) + 7.57 (d, 3H), 1.88 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 174.9, 139.4, 139.23, 139.21, 137.2, 136.8, 136.5, 136.3, 136.0, 133.7, 133.6, 133.5, 132.74, 132.67, 129.75, 129.72, 129.54, 129.51, 128.0, 127.6, 127.5, 127.1, 127.0, 126.0, 124.1, 20.1, 19.5. HRMS (ESI) calcd for: C_{33H28}NO₂S₂⁺ [M+H]⁺ 534.1556, found: 534.1563.

2',6-dimethyl-*N*-((*R*)-1-phenylethyl)-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3z)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *R*-1-phenylethylamine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3z** (45.3 mg, 52%, 1:7.5 dr) as a light yellow oil. $[\alpha]_D^{20} = -21.93$ (c 1.29, CHCl₃). ¹H NMR (500 MHz, CDCl₃) for major compound: δ 7.79 – 7.62 (m, 1H), 7.44 – 7.37 (m, 2H), 7.37 – 7.25 (m, 4H), 7.21 – 7.11 (m, 4H), 7.06 (dt, $J_I = 16.0$ Hz, $J_2 = 7.5$ Hz, 2H), 6.86 – 6.76 (m, 2H), 6.54 (dd, $J_I = 7.9$ Hz, $J_2 = 1.3$ Hz, 1H), 6.43 (d, J = 7.7 Hz, 1H), 5.15 – 4.98 (m, 1H), 2.03 (s, 3H), 1.91 (s, 3H), 1.40 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) for major compound: δ 168.3, 142.8, 138.2, 137.5, 137.2, 136.6, 136.2, 135.13, 135.05, 132.1, 131.2, 129.7, 129.0, 128.50, 128.47, 128.4, 127.6, 127.0, 126.9, 126.3, 123.7, 48.9, 21.4, 20.1, 19.8. HRMS (ESI) calcd for: C₂₉H₂₇NOSNa⁺ [M+Na]⁺ 460.1706, found: 460.1703. **2',6-dimethyl-***N*-((*S*)-1-phenylethyl)-6'-(phenylthio)-[1,1'-biphenyl]-2-carboxamide (3aa)

The reaction of **1a** (84.7 mg, 0.20 mmol, 1.0 equiv) and *S*-1-phenylethylamine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition except at 60 °C for 24 h afforded **3aa** (54.2 mg, 62%, 1:9 dr) a light yellow oil. $[\alpha]_D^{20} = +18.23$ (c 1.02, CHCl₃). ¹H NMR (500 MHz, CDCl₃) for major compound: δ 7.74 – 7.64 (m, 1H), 7.44 – 7.34 (m, 3H), 7.33 – 7.26 (m, 5H), 7.23 – 7.15 (m, 4H), 7.15 – 7.06 (m, 2H), 6.61 (dd, $J_I = 7.6$ Hz, $J_2 = 1.7$ Hz, 1H), 6.40 (d, J = 8.1 Hz, 1H), 5.10 – 5.00 (m, 1H), 2.09 (s, 3H), 1.98 (s, 3H), 0.97 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) for major compound: δ 168.0, 142.9, 138.5, 137.6, 137.1, 136.5, 136.2, 135.3, 135.2, 132.2, 130.9, 129.7, 129.2, 128.7, 128.53, 128.49, 127.5, 127.4, 126.9, 126.5, 123.2, 48.9, 20.7, 20.1, 19.9. HRMS (ESI) calcd for:

2',6-dimethyl-*N*-(*p*-tolyl)-6'-(*p*-tolylthio)-[1,1'-biphenyl]-2-carboxamide (3bb)

The reaction of **1b** (90.5 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3bb** (86.8 mg, 99%, 87% ee) a light yellow oil. HPLC conditions: Chiralpak IC, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 15.608 min (minor), 20.567 min (major). [α]_D²⁰ = -15.31 (c 0.93, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (bs, 1H), 7.78 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.7$ Hz, 1H), 7.45 (d, J = 6.4 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 7.10 – 7.06 (m, 3H), 7.04 (t, J = 8.4 Hz, 3H), 6.70 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.5$ Hz, 1H), 2.36 (s, 3H), 2.27 (s, 3H), 2.10 (s, 3H), 1.96 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 139.5, 138.4, 137.6, 137.4, 136.5, 136.1, 135.45, 135.42, 135.2, 133.9, 132.5, 130.6, 129.4, 128.7, 128.6, 127.8, 127.7, 127.1, 123.8, 120.54, 120.48, 21.4, 21.0, 20.2, 19.9. HRMS (ESI) calcd for: C₂₉H₂₈NOS⁺ [M+H]⁺ 438.1886, found: 438.1895.

2',6-dimethyl-N-(p-tolyl)-6'-(m-tolylthio)-[1,1'-biphenyl]-2-carboxamide (3cc)

The reaction of **1c** (90.5 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3cc** (89.4 mg, >99%, 80% ee) a light yellow oil. HPLC conditions: Chiralpak IA, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 210 nm, tr = 13.083 min (minor), 15.066 min (major). [α]_D²⁰ = -10.51 (c 0.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (bs, 1H), 7.77 (dd, J_1 = 5.7 Hz, J_2 = 3.4 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.23 – 7.14 (m, 4H), 7.14 – 7.06 (m, 4H), 7.03 (d, J = 8.2 Hz, 2H), 6.77 (dd, J_1 = 7.5 Hz, J_2 = 1.7 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 3H), 2.10 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 139.7, 137.9, 137.7, 137.4, 136.4, 135.5, 135.4, 134.0, 132.5, 131.9, 131.3, 129.9, 129.5, 129.4, 129.1, 128.7, 128.6, 128.5, 127.9, 127.0, 124.4, 120.5, 21.3, 21.0, 20.3, 19.9. HRMS (ESI) calcd for: C₂₉H₂₈NOS⁺ [M+H]⁺ 438.1886, found: 438.1897.

2'-((4-methoxyphenyl)thio)-6,6'-dimethyl-N-(p-tolyl)-[1,1'-biphenyl]-2-carboxamide (3dd)

The reaction of **1d** (93.7 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3dd** (46.9 mg, 52%, 68% ee) a yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 14.444 min (minor), 16.275 min (major). $[\alpha]_D^{20} = -14.32$ (c 0.12, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89

(bs, 1H), 7.79 (dd, $J_1 = 6.1$ Hz, $J_2 = 3.0$ Hz, 1H), 7.54 – 7.42 (m, 2H), 7.38 – 7.31 (m, 2H), 7.13 – 6.99 (m, 6H), 6.93 – 6.85 (m, 2H), 6.65 (d, J = 7.7 Hz, 1H), 3.82 (s, 3H), 2.27 (s, 3H), 2.11 (s, 3H), 1.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 160.7, 139.0, 137.5, 137.4, 137.3, 136.5, 135.6, 135.4, 135.3, 134.0, 132.6, 129.5, 128.7, 128.6, 127.6, 127.2, 123.2, 121.4, 120.5, 115.5, 55.5, 21.0, 20.2, 19.9. HRMS (ESI) calcd for: C₂₉H₂₈NO₂S⁺ [M+H]⁺ 454.1835, found: 454.1847.

2',6-dimethyl-*N*-(*p*-tolyl)-6'-((4-(trifluoromethyl)phenyl)thio)-[1,1'-biphenyl]-2-carboxamide (3ee)

The reaction of **1e** (101.3 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3ee** (90.1 mg, 92%, 69% ee) a light yellow oil. HPLC conditions: Chiralpak AD-H, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, $\lambda = 254$ nm, tr = 8.239 min (minor), 9.150 min (major). [α]²⁰_D = +10.50 (c 1.32, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, $J_1 = 5.9$ Hz, $J_2 = 3.2$ Hz, 1H), 7.46 – 7.41 (m, 3H), 7.36 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.07 – 6.98 (m, 5H), 2.28 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.7. ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 139.6, 139.3, 138.6, 137.5, 136.3, 136.2, 135.3, 134.3, 134.1, 132.5, 131.6, 129.49, 129.48, 129.40 (q, J = 32.6 Hz), 129.0, 128.5, 127.9, 126.22, 126.15 (q, J = 3.7 Hz), 124.0 (q, J = 272.7 Hz), 120.0, 20.9, 20.5, 19.9. HRMS (ESI) calcd for: C₂₉H₂₅F₃NOS⁺ [M+H]⁺ 492.1603, found: 492.1613.

2'-(phenylthio)-N-(p-tolyl)-[1,1'-binaphthalene]-2-carboxamide (3ff)

The reaction of **1f** (102.1 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3ff** (104.4 mg, >99%, 89% ee) a white solid. HPLC conditions: Chiralpak IC, isopropanol/hexane = 30: 70, flow: 1.0 mL/min, $\lambda = 210$ nm, tr = 15.554 min (major), 20.563 min (minor). [α]²⁰_{*D*} = +57.61 (c 0.25, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.07 (m, 2H), 8.00 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.57 (ddd, J_I = 8.2 Hz, J_2 = 6.7 Hz, J_3 = 1.2 Hz, 1H), 7.45 (ddd, J_I = 8.1, J_2 = 6.7, J_3 = 1.2 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.28 – 7.21 (m, 5H), 7.17 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.1 Hz, 2H), 6.85 – 6.77 (m, 2H), 2.22 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 136.5, 135.2, 134.7, 134.4, 133.83, 133.82, 133.35, 133.32, 133.02, 132.96, 132.3, 131.9, 129.55, 129.50, 129.41, 129.39, 129.3, 128.5, 128.4, 128.0, 127.5, 127.3, 126.8, 126.3, 126.15, 126.07, 125.4, 119.9, 20.9. **HRMS (ESI)** calcd for: C₃₄H₂₆NOSNa⁺ [M+H]⁺ 496.1730, found: 496.1731.

2',4,4',6-tetramethyl-6'-(phenylthio)-N-(p-tolyl)-[1,1'-biphenyl]-2-carboxamide (3gg)

The reaction of **1g** (93.3 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3gg** (96.0 mg, >99%, 86% ee) a light yellow oil. HPLC conditions: Chiralpak IG, isopropanol/hexane = 10: 90, flow: 1.0 mL/min, λ = 254 nm, tr = 14.662 min (major), 20.441 min (minor). [α]_D²⁰ = -13.84 (c 2.63, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (bs, 1H), 7.60 (s, 1H), 7.43 – 7.36 (m, 2H), 7.36 – 7.28 (m, 3H), 7.26 (s, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 6.89 (s, 1H), 6.59 (s, 1H), 2.42 (s, 3H), 2.27 (s, 3H), 2.17 (s, 3H), 2.04 (s, 3H), 1.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 138.4, 138.2, 137.7, 137.44, 137.42, 136.3, 135.6, 134.5, 133.80, 133.76, 133.4, 132.7, 132.2, 129.7, 129.4, 129.1, 128.7, 127.6, 125.1, 120.3, 21.4, 21.3, 21.0, 20.2, 19.9. HRMS (ESI) calcd for: C₃₀H₃₀NOS⁺ [M+H]⁺ 452.2043, found: 452.2052.

2',3',5,6-tetramethyl-6'-(phenylthio)-N-(p-tolyl)-[1,1'-biphenyl]-2-carboxamide (3hh)

The reaction of **1h** (93.3 mg, 0.20 mmol, 1.0 equiv) and *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv) under standard condition afforded **3hh** (87.0 mg, 96%, 76% ee) a yellow solid. HPLC conditions: Chiralpak IA, isopropanol/hexane = 5: 95, flow: 1.0 mL/min, λ = 254 nm, tr = 17.230 min (minor), 19.324 min (major). [α]_D²⁰ = +18.67 (c 0.07, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.66 (bs, 1H), 7.35 – 7.29 (m, 3H), 7.29 – 7.22 (m, 3H), 7.08 – 6.98 (m, 5H), 6.79 (d, *J* = 8.0 Hz, 1H), 2.37 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 1.90 (s, 3H), 1.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 139.9, 137.9, 136.5, 136.2, 135.8, 135.6, 135.5, 134.7, 134.2, 134.1, 133.7, 132.8, 130.2, 129.9, 129.5, 129.4, 128.5, 126.7, 125.3, 120.3, 21.1, 21.0, 20.4, 16.8, 16.1. HRMS (ESI) calcd for: C₃₀H₃₀NOS⁺ [M+H]⁺ 452.2043, found: 452.2043.

Method for crystal growth about 1a and 3gg

Compound **1a** (30 mg) was dissolved in about 1 mL of DCM, then about 2 mL of EA was added to the mixture, the solvent was slowly volatizing under open air to afford crystalline, which was suitable for single crystal X-ray analysis.

Compound **3hh** (40 mg) was dissolved in a about 1 mL of DCM, then about 3 mL of Et₃N was added to the mixture, the solvent was slowly volatizing under open air to afford crystalline, which was suitable for single crystal X-ray analysis.

DFT Calculations:

Computational Methods:

B2PLYPD3/def2-TZVP // B3LYP-D3BJ/6-311G(d,p)

All of the DFT calculations were performed with Gaussian 16 software packages⁸. The optimization calculations were employed at B3LYP level of theory⁹ at 298.15 K with the D3 version of Grimme's dispersion (with Becke-Johnson damping)¹⁰. The 6-311G(d,p) basis sets¹¹ were employed for the C, H, S atoms. Vibrational frequency analysis were calculated at the same level of theory to verify whether each optimized structure is an energy minimum and to evaluate its zero-point vibrational energy. All of the product structures were fully optimized without any symmetric restrictions. To obtain more accurate energies, single-point energy calculations were performed on all optimized structures applying the def2-TZVP basis set¹² at the B2PLYPD3 level of theory¹³. A standard state of 298.15 K and 1 atm was used. All discussed energies are Gibbs free energies in gas phase (ΔG_g).

Table S1. Thermal correction of Gibbs free energy (TCG, hartree) and single-point energies (E, hartree) in 298.15 K and 1 atm for all species involved in this study.

Compd.	TCG	Ε	Compd.	TCG	Е
1i	0.225717	-2051.219968	7i	0.244363	-2052.397802
H_2	-0.001444	-1.159449	7i'	0.142438	-860.471636
1i'	0.219326	-1091.106429	Ph	0.072747	-231.817104
HOTf	0.005336	-961.310496	7a	0.291119	-2130.871143
1a	0.278434	-2129.676067	7a'	0.166245	-899.708573
1a'	0.270240	-1169.578152	Tol	0.096100	-271.053733

Cartesian coordinates for all optimized geometries:

F	-2.00826300	-1.74477700	-1.21481500
F	-4.07498000	-1.34857500	-1.75786400
F	-3.59014900	-2.05351200	0.23938400

H_2			
01			
Н	0.00000000	0.00000000	0.37226500
Н	0.00000000	0.00000000	-0.37226500

С	0.69923400	-1.42635800	1.17382800	
С	-0.14913700	-1.36731600	0.06547300	
С	0.27613500	-1.92395200	-1.14444000	
С	1.52842700	-2.52042900	-1.24336000	
С	2.37426100	-2.56287600	-0.13648000	
С	1.95579100	-2.01543600	1.07281200	
Н	0.38308900	-0.97574000	2.10677000	
Н	-0.37716800	-1.88031400	-2.00679000	
Н	1.84539600	-2.95182500	-2.18603800	
Н	3.35390900	-3.01951900	-0.21756300	
Н	2.61085600	-2.03599600	1.93581100	
С	-1.48278700	-0.71925900	0.17504700	
С	-1.82024900	0.44336500	-0.54594800	
С	-2.44311000	-1.26991500	1.02891200	
С	-3.09736200	0.99571300	-0.42776300	
С	-3.71731000	-0.72099600	1.14061500	
Н	-2.18398700	-2.16021700	1.59015000	
С	-4.04944600	0.40877200	0.40023500	
Н	-3.33118600	1.90041600	-0.97541400	
Н	-4.44618900	-1.17722600	1.80004000	
Н	-5.03747900	0.84675400	0.47984500	
S	-0.65666200	1.26940200	-1.63602700	
С	0.74061100	1.48272500	-0.53251100	
С	2.00549700	1.07916200	-0.95642400	
С	0.57283400	2.04712100	0.73343600	
С	3.10060300	1.23523100	-0.11159000	
Н	2.12144300	0.61209900	-1.92565000	
С	1.66803600	2.18304000	1.57862600	

Н	-0.41289100	2.35875800	1.05562900
С	2.93483200	1.77918800	1.15863200
Н	4.07976800	0.90711800	-0.44004600
Н	1.53342800	2.61235600	2.56492800
Н	3.78643600	1.88622600	1.82015900

HOTf

1a

01			
0	-1.22897100	-1.35121800	-0.61851500
S	-0.86063400	-0.14809500	0.07763900
0	-1.25423500	0.16284200	1.43466800
0	-1.25162000	1.10230200	-0.88383200
С	1.00940300	0.00394100	-0.00303700
F	1.36174300	1.22438900	0.40352800
F	1.54327200	-0.90563000	0.80226700
F	1.42826600	-0.19086700	-1.24487900
Н	-1.40718800	1.88343600	-0.33081800

01				
С	-3.704	25000 -0.344	480500 2.7	77935000
С	-3.608	12200 -0.868	887600 1.4	48202200
С	-2.516	02400 -0.462	200000 0.0	58852500
С	-1.496	21300 0.26	780800 1.	33129800
С	-1.568	33800 0.74	579500 2.	62420000
С	-2.733	88600 0.47	807200 3.	33782400
Н	-4.553	66600 -0.63	985700 3.	38548000
Н	-0.743	44000 1.29	090300 3.	06522500
Н	-2.850	.82200 0.84	969300 4.	34809600
С	-2.158	69600 -0.763	384700 -0.7	1830900
С	-0.788	49600 -0.53	759200 -0.9	7619600
С	-2.963	12000 -1.12	104400 -1.8	31868800
С	-0.152	42700 -0.810	046300 -2.1	7027200
С	-2.321	49000 -1.410	024300 -3.0	3171800
С	-0.947	83900 -1.30	194000 -3.2	20356200
Н	0.908	377800 -0.62	958400 -2.2	27189700
Н	-2.937	41600 -1.69	769300 -3.8	87691100
Н	-0.497	60900 -1.54	419600 -4.1	5809900
S	0.032	.99500 0.28	959300 0.	39197500
С	0.103	379700 2.02	.018100 -0.	13623500
С	1.203	39400 2.75	i174400 0.	.29408700

С	-0.92678000	2.57673400	-0.88669900	
С	1.26009900	4.10280300	-0.04443400	
Н	1.99361700	2.26785500	0.85633400	
С	-0.84491500	3.92296600	-1.22113700	
Н	-1.76543200	1.97525500	-1.21197400	
С	0.24581400	4.68418600	-0.79905900	
Н	2.11144000	4.69176400	0.27359700	
Н	-1.63089500	4.37638500	-1.81280900	
Н	0.30463600	5.73262800	-1.06607200	
0	2.30099900	0.08410500	-0.93732500	
S	3.37462900	-0.16827200	0.07270900	
0	3.08469300	0.47763200	1.36882200	
0	4.73715600	-0.06863100	-0.43615500	
С	3.12993700	-1.99026900	0.43450500	
F	1.87062300	-2.22162500	0.87610700	
F	3.97696600	-2.42093400	1.37179900	
F	3.30698800	-2.72363900	-0.67251300	
С	-4.59168300	-1.94371500	1.08889200	
Н	-5.52226800	-1.54242000	0.68222100	
Н	-4.16414400	-2.62462100	0.35462600	
Н	-4.84987200	-2.52920800	1.97305500	
С	-4.47152400	-1.06762600	-1.82124100	
Н	-4.93295100	-2.04071100	-1.64114200	
Н	-4.84872800	-0.36946200	-1.07528400	
Н	-4.81261500	-0.72413900	-2.79958200	

01			
С	0.56324800	1.12925300	-1.22275600
С	-0.33226500	1.07435300	-0.15246500
С	-0.17984900	1.95513200	0.93165100
С	0.89454200	2.84874100	0.91678000
С	1.79465600	2.88506200	-0.14381300
С	1.62559700	2.02447900	-1.22368600
Н	0.43804400	0.43696700	-2.04627000
Н	1.02057200	3.53053900	1.75130200
Н	2.62151400	3.58596000	-0.12729800
Н	2.32216100	2.03770500	-2.05315100
С	-1.44847600	0.08433700	-0.18603000
С	-1.38755100	-1.11308200	0.54984500

С	-2.58841200	0.35049100	-0.96685600	
С	-2.44368200	-2.02570600	0.51316300	
С	-3.63871500	-0.57091100	-0.98296200	
С	-3.57246000	-1.74859300	-0.24814500	
Н	-2.36751300	-2.94719000	1.07651600	
Н	-4.51935600	-0.35564000	-1.57807800	
Н	-4.39391400	-2.45512200	-0.27504500	
S	-0.01762300	-1.49882100	1.64543300	
С	1.39420400	-1.40630900	0.54740300	
С	2.49773500	-0.64835700	0.93520900	
С	1.40885500	-2.09666300	-0.66589100	
С	3.61359400	-0.57768000	0.10658000	
Н	2.46329900	-0.08773500	1.86047600	
С	2.51843800	-2.00350100	-1.49846500	
Н	0.54849800	-2.68612100	-0.95768500	
С	3.62483000	-1.24671400	-1.11391400	
Н	4.46438800	0.02308900	0.40595200	
Н	2.52346800	-2.53114800	-2.44550900	
Н	4.48918800	-1.17881500	-1.76400000	
С	-2.69538000	1.63136800	-1.75778800	
Н	-2.48124700	2.50178500	-1.13287800	
Н	-1.97565400	1.65487000	-2.58026000	
Н	-3.69620200	1.74353200	-2.17775700	
С	-1.14623000	1.94049300	2.08750400	
Н	-1.01638400	1.03651400	2.68880800	
Н	-0.99225400	2.80549500	2.73480700	
Н	-2.18270200	1.94928500	1.74096400	

- Jan de la companya	
AT BE	

C	0.71007700	0.00007700	0.00020700	
2	0./100//00	-0.00007700	0.00028/00	
С	1.41979500	-1.31648900	0.98984100	
С	0.61141400	-2.44629000	1.10620100	
С	2.66083200	-1.21383700	1.61290000	
С	1.09275800	-3.52090000	1.84953600	
Н	-0.37280900	-2.45247900	0.64643600	
С	3.11855000	-2.29756100	2.35526800	
Н	3.24442500	-0.30556100	1.54162700	
С	2.33956100	-3.44914000	2.46633900	
Н	0.48019100	-4.40736000	1.95767300	

Н	4.07887300	-2.23853100	2.85289600
Н	2.70162000	-4.28731200	3.04973800
С	1.41888800	1.51558700	0.64538500
С	0.60987000	2.18126100	1.56504800
С	2.65973100	2.00439100	0.24498200
С	1.09041000	3.36290200	2.12352500
Н	-0.37424000	1.78577600	1.80012700
С	3.11659600	3.18974100	0.81176300
Н	3.24373700	1.48849800	-0.50561600
С	2.33698900	3.86173500	1.75302000
Н	0.47732500	3.89979600	2.83669900
Н	4.07672900	3.59162800	0.51181700
Н	2.69838600	4.78651800	2.18677200
С	1.41911300	-0.19881600	-1.63487100
С	0.60978500	0.26445100	-2.67111200
С	2.66041100	-0.78898300	-1.85805000
С	1.09039200	0.15786600	-3.97369300
Н	-0.37452900	0.66518700	-2.44598800
С	3.11738700	-0.89015500	-3.16800400
Н	3.24477200	-1.18069500	-1.03604200
С	2.33741500	-0.41142900	-4.22051500
Н	0.47709000	0.50677800	-4.79519500
Н	4.07789900	-1.35003400	-3.36615900
Н	2.69891400	-0.49769700	-5.23828300
0	-2.08226100	0.89299300	-1.12418600
S	-2.44045200	-0.00020600	0.00003400
0	-2.08168000	0.52687200	1.33548900
0	-2.08163300	-1.42023500	-0.21139700
С	-4.31163000	-0.00060400	0.00035700
F	-4.78237200	1.23710100	0.20123500
F	-4.78220100	-0.44572500	-1.17195800
F	-4.78180400	-0.79352900	0.97200800

S	-0.00063500	1.66997900	-0.00017600
С	1.38805100	0.54033400	0.07010600
С	1.40336000	-0.54137400	0.95543600
С	2.49540800	0.79102600	-0.74136200
С	2.51597000	-1.37212200	1.01214300

Н	0.54449700	-0.73040000	1.58697900
С	3.61646700	-0.03280900	-0.66119900
Н	2.47288100	1.62147300	-1.43649600
С	3.62816700	-1.11831000	0.20934600
Н	2.52005100	-2.21375400	1.69524300
Н	4.47407500	0.16821300	-1.29275000
Н	4.49624000	-1.76453700	0.26266900
С	-1.38825100	0.53899200	-0.07012600
С	-2.49935500	0.79445100	0.73477200
С	-1.39938300	-0.54818200	-0.94876300
С	-3.61988000	-0.03004600	0.65461500
Н	-2.48017300	1.62912400	1.42494600
С	-2.51164600	-1.37943900	-1.00536300
Н	-0.53769800	-0.74108600	-1.57525800
С	-3.62752700	-1.12093400	-0.20924900
Н	-4.48033000	0.17471600	1.28108300
Н	-2.51243600	-2.22528400	-1.68325700
Н	-4.49523400	-1.76765400	-0.26248100

Ph

01			
С	1.21107600	0.68938400	0.00000300
С	0.00839900	1.39361600	-0.00001800
С	-1.20262500	0.70401900	0.00001700
С	-1.21110900	-0.68948600	-0.00000200
С	-0.00845100	-1.39353100	-0.00001200
С	1.20271400	-0.70402400	0.00001200
Н	2.15323900	1.22595100	0.00001800
Н	-2.13829000	1.25184000	0.00003100
Н	-2.15330600	-1.22584400	0.00000500
Н	-0.01494400	-2.47774200	-0.00003400
Н	2.13827800	-1.25186700	0.00002200
Н	0.01500200	2.47779400	-0.00004200

С	-2.99193600	0.06854900	1.54297500
С	-1.80655000	0.88929000	3.94190100
Н	0.05685900	0.86050100	2.84773400
С	-3.76799100	0.24192500	2.68548500
Н	-3.43733700	-0.26820400	0.61655700
С	-3.17893600	0.65690200	3.87842300
Н	-3.78937600	0.78661900	4.76395100
С	-1.37324100	-0.98186800	-0.88335300
С	-1.04076900	-2.32517700	-0.76468500
С	-2.30391500	-0.51397000	-1.80719800
С	-1.67677800	-3.25961500	-1.58808800
Н	-0.26796500	-2.62276200	-0.06332300
С	-2.93028700	-1.44841800	-2.62368900
Н	-2.51458600	0.54247800	-1.90296800
С	-2.62178000	-2.80319300	-2.50990700
Н	-3.65371600	-1.11739000	-3.35913100
Н	-3.11252400	-3.51691400	-3.16230000
С	-0.57377100	1.72615700	-0.59397700
С	0.47775700	1.98154600	-1.46921600
С	-1.58749400	2.64906500	-0.35215500
С	0.51738500	3.20003700	-2.15259500
Н	1.25272500	1.23376900	-1.60003800
С	-1.53773400	3.86180900	-1.03177500
Н	-2.37926900	2.44012500	0.35366400
С	-0.50032800	4.12989300	-1.92186500
Н	-2.30898300	4.60296700	-0.85935800
Н	-0.47434600	5.08328700	-2.43792900
0	1.91465400	-0.66869300	-1.06071900
S	2.52302900	-1.42299200	0.06613100
0	1.51858800	-2.04000000	0.96274200
0	3.68473400	-2.23889900	-0.27084400
С	3.22039500	-0.04385700	1.13141100
F	4.10922400	0.69144200	0.45229800
F	2.23188800	0.80377300	1.53676000
F	3.81025400	-0.51840600	2.23092900
С	1.63872200	3.48230100	-3.11819400
Н	1.45791100	2.98208800	-4.07475900
Н	1.73741400	4.55165800	-3.31236800
Н	2.58948500	3.10922400	-2.73295000
Н	-1.34640400	1.19316500	4.87389800
Н	-4.83269700	0.04711800	2.64283200
С	-1.31964900	-4.71870700	-1.47678100
Н	-1.66682100	-5.13250800	-0.52540700
Н	-1.76784000	-5.30091300	-2.28334700

 \bigcirc 7a'

01			
S	0.40991800	-1.76358800	-0.54343000
С	-1.09785900	-0.88146400	-0.14484800
С	-2.07867500	-1.53060000	0.60183400
С	-1.32039900	0.41504100	-0.61849900
С	-3.28217400	-0.87679900	0.86336500
Н	-1.89800300	-2.52960600	0.97859000
С	-2.50997000	1.08274000	-0.33832400
Н	-0.55193000	0.90568500	-1.20395400
С	-3.49399800	0.41683900	0.40446300
Н	-4.04997200	-1.37917400	1.44058000
Н	-4.42995400	0.92030500	0.62215300
С	1.66288700	-0.56051800	-0.10545700
С	1.59126400	0.17281800	1.08239700
С	2.76039700	-0.40418300	-0.95365100
С	2.60636900	1.06530700	1.40595000
Н	0.74100600	0.04714800	1.74071000
С	3.78487100	0.47543300	-0.61025400
Н	2.80475600	-0.96258800	-1.88091500
С	3.70904100	1.21644100	0.56528100
Н	2.54217200	1.63625000	2.32519900
Н	4.63488400	0.59066400	-1.27286200
Η	4.50115100	1.90841200	0.82552700
С	-2.73944400	2.49167900	-0.82507300
Н	-3.69279900	2.57701000	-1.35362600
Η	-2.76753300	3.19508000	0.01306500
Η	-1.94632800	2.81181400	-1.50269600
Tol			
01			
С	0.91132300	0.00621500	-0.00001100
С	0.19800900	-1.19758000	-0.00000700
С	-1.19282700	-1.20548000	0.00000600
С	-1.90017700	-0.00438200	0.00001500
С	-1.20328200	1.19983000	0.00000900
С	0.19039100	1.20201300	-0.00000500
Н	-2.98395300	-0.00887000	0.00002300

Н	-1.74310100	2.14003600	0.00001200
Н	0.72610300	2.14549000	-0.00001100
Н	0.74060500	-2.13763400	-0.00001600
С	2.41988200	0.00252000	-0.00000800
Н	2.81364900	-0.51322500	0.88114500
Н	2.81365600	-0.51353700	-0.88097400
Н	2.81953600	1.01834600	-0.00018300
Н	-1.72640700	-2.14942900	0.00000900

3. Reference:

1. Zhao, K.; Duan, L.; Xu, S.; Jiang, J.; Fu, Y.; Gu, Z. Chem 2018, 4, 599-612.

2. Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610-2618.

3. Wang, M.; Wei, J.; Fan, Q.; Jiang, X. Chem. Commun. 2017, 53, 2918-2921.

4. Zhang, B.; Li, T.; Kang, Y. Res. Chem. Intermed., 2017, 43, 6617-6625.

5. Shimada T.; Cho Y. H.; Hayashi T. J. Am. Chem. Soc. 2002, 124, 13396-13397.

6. Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069-3073.

7. Kafuta, K.; Korzun, A.; Böhm, M.; Golz, C.; Alcarazo, M. Angew. Chem., Int. Ed. 2020, 59, 1950–1955

8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Vreven, T.; Mont-gomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;Nor-mand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G.A.; Salvador, P.;Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 16, RevisionC.03*, Gaussian, Inc., Wallingford CT, **2016**.

9. (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss. H. Chem. Phys. Lett. 1989, 157, 200–206. (b) Lee,
C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

10. (a) Grimme, S.; Anthony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. (b) Grimme, S.; Ehrlich, S.; Goerigk. L. J. Comp. Chem. 2011, 32, 1456–1565.

11. (a) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley. J. S. Int. J. Quantum Chem. 1978, 14, 545–560. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654
12. (a) Schaefer, A.; Horn, H.; Ahlrichs. R. J. Chem. Phys. 1992, 97, 2571–2577. (b) Schaefer, A.; Huber, C.; Ahlrichs. R. J. Chem. Phys. 1994, 100, 5829–5835. (c) Weigend, F. Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (d) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

13. (a) Goerigk, L.; Grimme. S. J. Chem. Theory Comput. **2011**, 7, 291–309. (b) Grimme. S. J. Chem. Phys. **2006**, *124*, 034108. (c) Schwabe, T.; Grimme. S. Phys. Chem. Chem. Phys. **2007**, *9*, 3397.

4. Copies of NMR spectra

Figure S2. ¹⁹F NMR spectra (376 MHz, CDCl₃) of 1a

Figure S4. ¹H NMR spectra (500 MHz, CDCl₃) of 1b

Figure S6. ^{13}C NMR spectra (126 MHz, CDCl₃) of 1b

Figure **S8**. ¹⁹F NMR spectra (471 MHz, CDCl₃) of **1c**

Figure S10. ¹H NMR spectra (400 MHz, CDCl₃) of 1d

Figure S12. ¹³C NMR spectra (101 MHz, CDCl₃) of 1d

Figure S13. ¹H NMR spectra (400 MHz, CDCl₃) of 1e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S14. ¹⁹F NMR spectra (376 MHz, CDCl₃) of 1e

Figure S15. ¹³C NMR spectra (101 MHz, CDCl₃) of 1e

Figure S16. ¹H NMR spectra (400 MHz, CDCl₃) of 1f

Figure S17. ¹⁹F NMR spectra (376 MHz, CDCl₃) of 1f

Figure S18. ¹³C NMR spectra (126 MHz, CDCl₃) of 1f

Figure **S20**. ¹⁹F NMR spectra (376 MHz, CDCl₃) of **1g**

Figure S22. ¹H NMR spectra (500 MHz, CDCl₃) of 1h

Figure S24. ¹³C NMR spectra (126 MHz, CDCl₃) of 1h

Figure S25. ¹H NMR spectra (400 MHz, MeOH-d₄) of 1i

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S26. ¹⁹F NMR spectra (376 MHz, MeOH-d₄) of 1i

Figure S28. ¹H NMR spectra (500 MHz, CDCl₃) of 3a

Figure S30. ¹H NMR spectra (500 MHz, CDCl₃) of 3b

Figure S32. ¹H NMR spectra (500 MHz, CDCl₃) of 3c

Figure S34. ¹H NMR spectra (500 MHz, CDCl₃) of 3d

Figure S36. ¹H NMR spectra (500 MHz, CDCl₃) of 3e

Figure S38. ¹H NMR spectra (400 MHz, CDCl₃) of 3f

Figure **S39**. ¹⁹F NMR spectra (471 MHz, CDCl₃) of **3f**

Figure S40. ¹³C NMR spectra (126 MHz, CDCl₃) of 3f

Figure S42. ¹³C NMR spectra (126 MHz, CDCl₃) of 3g

Figure S43. ¹H NMR spectra (500 MHz, CDCl₃) of 3h

3h

Figure S46. ¹H NMR spectra (500 MHz, CDCl₃) of 3i

Figure S48. $^1\mathrm{H}$ NMR spectra (500 MHz, CDCl_3) of 3j

Figure **S50**. ¹H NMR spectra (500 MHz, CDCl₃) of **3**k

Figure S52. ¹H NMR spectra (500 MHz, CDCl₃) of 31

Figure S54. ¹H NMR spectra (500 MHz, CDCl₃) of 3m

Figure S55. ¹³C NMR spectra (126 MHz, CDCl₃) of 3m

Figure S56. ¹H NMR spectra (400 MHz, DMSO-d₆) of 3n

Figure S58. ¹H NMR spectra (500 MHz, CDCl₃) of 30

Figure S60. ¹H NMR spectra (400 MHz, CDCl₃) of 3p

Figure S62. ¹H NMR spectra (500 MHz, CDCl₃) of 3q

Figure S64. $^1\mathrm{H}$ NMR spectra (400 MHz, CDCl_3) of 3r

Figure S66. ¹H NMR spectra (500 MHz, CDCl₃) of 3s

Figure S68. ¹H NMR spectra (400 MHz, CDCl₃) of 3t

Figure S70. ¹H NMR spectra (500 MHz, CDCl₃) of 3u

Figure S72. ¹H NMR spectra (500 MHz, CDCl₃) of 3v

Figure S74. ¹H NMR spectra (500 MHz, CDCl₃) of 3w

Figure S76. ¹H NMR spectra (500 MHz, CDCl₃) of 3x

Figure S78. ¹H NMR spectra (400 MHz, DMSO-d₆) of 3y

Figure S80. ¹H NMR spectra (500 MHz, CDCl₃) of 3z

Figure S82. ¹H NMR spectra (500 MHz, CDCl₃) of 3aa

Figure S83. ¹³C NMR spectra (126 MHz, CDCl₃) of 3aa

Figure S84. ¹H NMR spectra (500 MHz, CDCl₃) of 3bb

Figure S86. ¹H NMR spectra (400 MHz, CDCl₃) of 3cc

Figure S88. ¹H NMR spectra (400 MHz, CDCl₃) of 3dd

Figure **S90**. ¹H NMR spectra (500 MHz, CDCl₃) of **3ee**

Figure S91. ¹⁹F NMR spectra (471 MHz, CDCl₃) of 3ee

Figure **S92**. ¹³C NMR spectra (126 MHz, CDCl₃) of **3ee**

Figure S94. 13 C NMR spectra (126 MHz, CDCl₃) of 3ff

Figure **S96**. ¹³C NMR spectra (126 MHz, CDCl₃) of **3gg**

Figure S98. ¹³C NMR spectra (126 MHz, CDCl₃) of 3hh

5. Copies of HPLC Traces

<Peak Table>

Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	15.782	40651879	1193314	50.045		Μ					
2	19.574	40577992	941121	49.955		М					
Total		81229872	2134435								

Figure S99. HPLC data of racemic 3a

<Peak Table>

Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	15.488	101747	4134	5.432							
2	19.520	1771299	57417	94.568							
Total		1873046	<mark>61551</mark>								

Figure S100. HPLC data of 3a

Detect	Detector A Channel 1 210nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	9.681	41315791	1924825	50.054								
2	24.323	41226154	877081	49.946								
Tota		82541944	2801906									

<Peak Table>

Detect	Detector A Channel 1 210nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	9.489	5449628	269606	4.587								
2	23.533	113363309	2442572	95.413		M						
Total		118812937	2712178									

Figure S102. HPLC data of 3b

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	8.184	13785446	640814	48.037						
2	9.269	14911915	657244	51.963		M				
Total		28697361	1298058							

<Peak Table>

Detect	Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	7.812	50591178	2893217	93.153								
2	8.736	3718596	199045	6.847		V						
Total		54309774	3092262									

Figure **S104**. HPLC data of **3c**

Figure S106. HPLC data of 3d

Detect	Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	15.088	42086334	1606203	50.108								
2	17.963	41904672	1509682	49.892		M						
Total		83991005	3115885									

<Peak Table>

Detector / Onumber / 20 min

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.386	189398	7286	4.987			
2	18.759	3608597	111421	95.013		S	
Tota		3797995	118708				

Figure S108. HPLC data of 3e

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	9.178	2320548	106595	49.429						
2	10.390	2374162	102614	50.571		V				
Total		4694709	209209							

Figure **S109**. HPLC data of racemic **3f**

<Peak Table>

I	Detector A Channel 1 254nm											
Ī	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
Γ	1	8.814	21980997	1301877	92.562							
	2	10.054	1766382	97039	7.438		V					
Γ	Total		23747379	1398916								

Figure S110. HPLC data of 3f

Figure S112. HPLC data of 3g

Figure S114. HPLC data of racemic 3h

Detect	Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	13.557	8262543	278155	49.984								
2	14.938	8267977	263817	50.016		V						
Total		16530520	541973									

<Peak Table>

Detector A Channel 1 254nm									
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	12.988	65641138	2574321	90.714				
	2	14.281	6719358	239114	9.286		V		
	Total		72360496	2813435					

Figure S116. HPLC data of 3i

Dete	ctor A Chann	el 1 254nm					
Pea	k# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1 17.329	1014587	28331	49.513			
	2 19.163	1034537	26596	50.487		SV	
То	tal	2049124	54926				

<Peak Table>

Detect	Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	17.285	24767889	798698	89.903								
2	19.100	2781676	80846	10.097		SV						
Total		27549565	879544									

Figure S118. HPLC data of racemic 3j

Detector A Channel 1 254nm									
Peak	# Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
1	9.906	4697846	310941	52.451					
2	2 11.517	4258836	249891	47.549					
Tota	al	8956682	560832						

<Peak Table>

Detect	or A Channe	el 1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.848	48915041	2484208	96.675		Μ	
2	10.406	1682155	84402	3.325		M	
Total		50597196	2568610				

Figure **S120**. HPLC data of **3**k

Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	23.535	2197267	44503	49.997		V					
2	26.345	2197537	39912	50.003		SV					
Total		4394805	84414								

<Peak Table>

[Detector A Channel 1 254nm										
I	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
Γ	1	22.873	73621608	1216862	94.195		V				
Γ	2	25.975	4536751	79357	5.805		V				
Γ	Total		78158359	1296219							

Figure S122. HPLC data of 31

<Peak Table>

Detector A Channel 2 254nm									
[Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	8.307	35144759	1530231	50.556				
[2	9.181	34371988	1432019	49.444		V		
[Total		69516747	2962250					

Figure **S123**. HPLC data of racemic **3m**

<Peak Table> Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.333	5819715	302523	92.112		M	
2	9.221	498338	24399	7.888		VΜ	
Total		6318053	326921				

Figure S124. HPLC data of 3m

Detect	or A Chann	el 1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.811	39403726	1289848	49.954			
2	10.755	39476383	1109811	50.046		V	
Total		78880109	2399658				

Figure **S125**. HPLC data of racemic **3n**

<Peak Table>

Detect	or A Channe	el 1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.082	1902461	98445	7.364		M	
2	10.902	23933727	1046468	92.636		M	
Tota		25836188	1144912				

Figure **S126**. HPLC data of **3n**

	Detect	or A Channe	el 1 254nm					
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	34.951	2780432	47477	50.524			
	2	41.704	2722807	39017	49.476		V	
ſ	Total		5503239	86494				

<Peak Table>

Detect	or A Channe	el 1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	35.024	3382401	43680	93.314		S	
2	41.869	242332	2974	6.686			
Total		3624733	46654				

Figure S128. HPLC data of 30

Figure S130. HPLC data of 3p

Detect	Detector A Channel 1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	15.166	11035965	355278	49.622		Μ						
2	23.436	11204318	242485	50.378		S						
Total		22240283	597763									

<Peak Table>

Detect	Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	15.499	412537	12612	5.063		Μ					
2	24.185	7735136	158685	94.937		М					
Total		8147673	171297								

Figure **S132**. HPLC data of **3q**

Detect	Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	10.545	2799396	99819	49.269		M					
2	13.077	2882445	65205	50.731		М					
Total		5681841	165024								

<Peak Table>

Detector A Channel 1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	10.667	28711118	1184592	90.830		Μ		
2	13.181	2898553	73224	9.170		M		
Total		31609671	1257816					

Figure S134. HPLC data of 3r

<peak< th=""><th colspan="12">Peak Table></th></peak<>	Peak Table>											
Detect	Detector A Channel 2 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	23.078	38993450	656726	50.361								
2	33.084	38433944	650050	49.639								
Total		77427394	1306776									

Figure S135. HPLC data of racemic 3s

<Peak Table> Detector A Channel 2 254nm

Detector // Ondriner 2 20 min								
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	22.954	4388698	86979	93.195			
	2	32.893	320450	7178	6.805		V	
	Total		4709148	94157				

Figure S136. HPLC data of 3s

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	14.587	601278	18445	50.383						
2	15.979	592136	18791	49.617		V				
Total		1193414	37237							

Figure S137. HPLC data of racemic 3t

<Peak Table>

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	14.737	3000235	100563	86.396						
2	16.292	472400	15707	13.604		SV				
Total		3472635	116271							

Figure S138. HPLC data of 3t

<peak< th=""><th colspan="12">Peak ladie></th></peak<>	Peak ladie>											
Detector A Channel 2 254nm												
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	10.472	5894816	221971	49.863								
2	12.454	5927315	219931	50.137								
Total		11822131	441902									

<Peak Table>

vr ear										
Detector A Channel 2 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	10.417	26765580	1112982	87.284						
2	12.447	3899431	162908	12.716		V				
Total		30665011	1275890							

Figure S140. HPLC data of 3u

Detec	tor A Chann	el 1 254nm					
Peak	# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.708	20974150	788229	49.297			
2	11.438	21572137	772123	50.703		VM	
Tota	al	42546287	1560352				

<Peak Table>

Dete	ctor A Chann	el 1 254nm					
Pea	k# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1 9.670	8792193	354967	74.863			
	2 11.468	2952231	116833	25.137			
То	tal	11744424	471800				

Figure S142. HPLC data of 3v

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	9.646	20372535	1095433	50.024						
2	11.565	20353028	927850	49.976		V				
Total		40725563	2023283							

<Peak Table>

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	10.033	13476792	822997	85.286		М				
2	11.937	2325087	123020	14.714		М				
Tota		15801879	946017							

Figure S144. HPLC data of 3w

Detect	or A Channe	el 2 210nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.651	21651527	616068	48.472		М	
2	20.252	23016323	497853	51.528		М	
Total		44667850	1113920				

<Peak Table> Detector A Channel 2 210nm

Delection							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.986	61948825	1691391	77.972			
2	20.693	17501512	357939	22.028		M	
Total		79450337	2049330				

Figure **S146**. HPLC data of **3**x

5	<pre>Peak</pre>										
Detector A Channel 2 254nm											
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
	1	9.359	696090	31056	50.190						
	2	12.681	690806	25321	49.810						
	Total		1386896	56377							

<Peak Table> Detector A Channel 2 254nm

Detector A offanner 2 2041111								
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	8.509	2329178	122844	92.926			
	2	11.616	177305	7818	7.074			
	Total		2506483	130661				

Figure S148. HPLC data of 3y

Detect	or A Channe						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.371	3707708	97189	49.847			
2	20.188	3730519	80616	50.153		V	
Total		7438228	177805				

<Peak Table>

Detect	or A Channe	el 1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.608	2038915	44011	6.615		S	
2	20.567	28781580	557644	93.385			
Total		30820495	601655				

Figure S150. HPLC data of 3bb

Detector A Channel 1 210nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	13.090	15249867	736618	50.230						
2	15.067	15110049	641738	49.770						
Tota		30359916	1378356							

<Peak Table>

1	Detect	or A Channe	el 1 210nm					
[Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
ĺ	1	13.083	12253437	488473	9.858			
ĺ	2	15.066	112051650	3263436	90.142			
ĺ	Total		124305087	3751910				

Figure **S152**. HPLC data of **3cc**

Detector A Channel 1 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	14.411	58954795	1882247	49.743						
2	16.232	59563400	1671292	50.257		V				
Total		118518195	3553539							

<Peak Table>

Detector A Channel 1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	14.444	2029010	60123	16.034				
2	16.275	10625376	302392	83.966		V		
Total		12654387	362515					

Figure **S154**. HPLC data of **3dd**

Detector A Channel 1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	8.147	1748102	52746	50.549				
2	9.091	1710140	57827	49.451		VM		
Total		3458243	110572					

<Peak Table>

Detector A Channel 1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	8.239	6340912	383032	15.541		M		
2	9.150	34460717	1989984	84.459		M		
Total		40801629	2373016					

Figure S156. HPLC data of 3ee

<Peak Table>

Detector A Channel 1 254nm							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.759	17074931	549212	50.461			
2	22.762	16762658	402371	49.539			
Total		33837589	951583				

Figure S157. HPLC data of racemic 3ff

<Peak Table> Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.554	95229928	2862357	94.411			
2	20.563	5637316	154399	5.589		Μ	
Total		100867244	3016756				

Figure S158. HPLC data of 3ff

<Peak Table>

Detect	Detector A Channel 1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.192	113270559	2683985	50.876		M	
2	19.751	109369659	2111990	49.124		M	
Total		222640217	4795974				

<Peak Table>

I	Detect	or A Channe	el 1 254nm					
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	14.662	10792592	277247	92.806			
ĺ	2	20.441	836566	17625	7.194		М	
ĺ	Total		11629159	294873				

Figure **S160**. HPLC data of **3gg**

<Peak Table>

Detecto	or A Channe	el 1 210nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.297	15750641	327081	49.938			
2	19.448	15789456	319008	50.062		VM	
Total		31540096	646089				

Figure S161. HPLC data of racemic 3hh

<Peak Table>

Detector A Channel 1 210nm							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.230	32817819	583740	12.204			
2	19.324	236088158	3850452	87.796		SV	
Total		268905977	4434192				

Figure S162. HPLC data of 3hh

6. Crystal data and structure refinement

Table S2 Crystal data and structure refinement for 1a.			
Identification code	1a		
Empirical formula	$C_{21}H_{17}F_3O_3S_2$		
Formula weight	438.46		
Temperature/K	149.99(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
a/Å	8.8793(2)		
b/Å	13.4651(3)		
c/Å	16.2393(3)		
α/°	90		
β/°	94.659(2)		
γ/°	90		
Volume/Å ³	1935.17(7)		
Z	4		
$\rho_{calc}g/cm^3$	1.505		
μ/mm^{-1}	2.944		
F(000)	904.0		
Crystal size/mm ³	$0.13 \times 0.11 \times 0.09$		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/c	9 8.542 to 147.964		
Index ranges	$\textbf{-11} \leq h \leq 10, \textbf{-16} \leq k \leq 12, \textbf{-19} \leq \textbf{l} \leq 20$		
Reflections collected	12756		
Independent reflections	3845 [$R_{int} = 0.0382$, $R_{sigma} = 0.0289$]		
Data/restraints/parameters	3845/2/284		
Goodness-of-fit on F ²	1.062		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0456, wR_2 = 0.1181$		
Final R indexes [all data]	$R_1 = 0.0470, wR_2 = 0.1194$		
Largest diff. peak/hole / e Å ⁻³ 0.60/-0.41			

Table S2 Crystal data and structure refinement for 1a

Identification code	3hh
Empirical formula	C ₃₀ H ₂₉ NOS
Formula weight	451.60
Temperature/K	219.99(10)
Crystal system	trigonal
Space group	P3121
a/Å	10.0094(4)
b/Å	10.0094(4)
c/Å	42.946(2)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	3726.2(4)
Z	6
$\rho_{calc}g/cm^3$	1.207
μ/mm^{-1}	1.314
F(000)	1440.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/ $\!\!\!\!^{c}$	6.174 to 147.91
Index ranges	$-11 \le h \le 12, -10 \le k \le 12, -52 \le l \le 53$
Reflections collected	19253
Independent reflections	4999 [$R_{int} = 0.0421$, $R_{sigma} = 0.0312$]
Data/restraints/parameters	4999/0/303
Goodness-of-fit on F ²	1.090
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0436, wR_2 = 0.1060$
Final R indexes [all data]	$R_1 = 0.0471, \ wR_2 = 0.1089$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.20/-0.24
Flack/Hooft parameter	0.002(10)/-0.005(10)

Table S3 Crystal data and structure refinement for 3hh.

Figure **S163**. Thermal ellipsoid plot for the crystal structure for **1a**, probability levels (50%)

Figure **S164**. Thermal ellipsoid plot for the crystal structure for **3hh**, probability levels (50%)