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Figure S1. %Ecorr[T] vs. %Ecorr[(T)] for 132 complexes with six helium atoms as ligands at 
various metal–helium bond lengths. We find four clusters that do not lie on the parity line, which 
are LS Co(II)He6, IS Fe(III)He6, IS Mn(II)He6, and IS Cr(II)He6 at varied metal–He distances.  
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Figure S2. Distribution of %Ecorr[(T)] for TMCs with isovalent 2p- and 3p-coordinating ligands. 
(top) H2O (blue) and H2S (green); (middle) OH- (blue) and SH- (green); (bottom) F- (blue) and 
Cl- (green). TMCs with both one and two non-He ligands are shown together in the distributions. 
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Figure S3. DEH-L for Fe(II)(CO)(He)5 versus metal–helium distance in Å. The Fe-C distance of 
the carbonyl ligand is relaxed freely while the metal–helium distance is constrained. DEH-L was 
computed with CCSD(T) at a mixed basis set with cc-pVTZ on Fe and cc-pVDZ on C, O, and 
He. 
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Table S1. Summary of MR diagnostics grouped by type and method used. Compared to our 
prior work1, D1 and D2 diagnostics are not calculated due to their high linear correlations with 
some of the other diagnostics (D1 and T1, D2 and C02). 

Diagnostic Method Type Extended description 
B12 DFT TAE Differences in total atomization energy for 

BLYP and B1LYP (25% exchange) divided by 
number of pairs of bonded atoms 

A25[PBE]3 DFT  TAE 4x the difference in TAE[PBE] and TAE[PBE0] 
(25% exchange) divided by TAE[PBE] 

IND[PBE]4-5 DFT occupations Estimation of non-dynamical contribution from 
finite-temperature DFT with PBE functional (T 
= 5000 K) 

rND[PBE]6 DFT occupations ratio of FT-DFT IND from PBE to the sum of IND 
with the dynamical term, ID 

IND[B3LYP]4-5 DFT occupations Estimation of non-dynamical contribution from 
finite-temperature DFT with B3LYP functional 
(T = 9000 K) 

rND[B3LYP]6 DFT occupations ratio of FT-DFT IND from B3LYP to the sum of 
IND with the dynamical term, ID 

nHOMO[MP2]3, 7 MP2  occupations MP2 highest occupied natural orbital 
occupation 

nLUMO[MP2]3, 7 MP2  occupations MP2 lowest unoccupied natural orbital 
occupation 

T18 CCSD  excitations Frobenius norm of the single-excitation 
amplitude vector normalized by the square 
root of the number of electrons in CCSD 

max(t1)9 CCSD excitations The largest eigenvalue of the matrix derived 
from the single-excitation amplitudes. 

%TAE[(T)]10 CCSD(T)  TAE Percent difference in TAE from CCSD vs. 
CCSD(T) 

C02[14]8, 11-13 CASSCF  occupations CASSCF leading coefficient CSF at an active 
space of 14 orbitals 

nHOMO[14]3, 14 CASSCF occupations CASSCF highest occupied natural orbital 
occupation at an active space of 14 orbitals 

nLUMO[14]3, 14 CASSCF  occupations CASSCF lowest unoccupied natural orbital 
occupation at an active space of 14 orbitals 
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Figure S4. An upper triangular matrix of unsigned Pearson’s r for pairs of MR diagnostics 
and %Ecorr[(T)] on the set of more than 10,000 TMCs. For each pair, the circle is colored by the 
unsigned Pearson’s r and the r value is explicitly shown. Fourteen active orbitals are used for the 
CASSCF calculations 
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Figure S5. An upper triangular matrix of Spearman’s r for pairs of MR diagnostics 
and %Ecorr[(T)] on the set of more than 10,000 TMCs. For each pair, the circle is colored by the 
Spearman’s r and the r value is explicitly shown. Fourteen active orbitals are used for the 
CASSCF calculations 
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Figure S6. Bar plot of unsigned Pearson’s r for %Ecorr[(T)] with different MR diagnostics on 
more than 10,000 TMCs. Fourteen active orbitals are used for the CASSCF calculations 
 

 
Figure S7. Bar plot of Spearman’s r for %Ecorr[(T)] with different MR diagnostics on more than 
10,000 TMCs. Fourteen active orbitals are used for the CASSCF calculations 
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Figure S8. 2D histogram for %Ecorr[(T)] vs. IND[B3LYP] (top left), rND[B3LYP] (top right), B1 
(bottom left), and %TAE[(T)] (bottom right) for more than 10,000 TMCs in this work (blue) and 
for the 12,500 equilibrium or distorted organic molecules in our prior work1 (AD-3165, PS-401, 
and LG-8934, red). The relative density of systems lying at a specific bin is represented by the 
opacity of the coloring, as shown in the color bars at right. 
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Figure S9. 2D histogram for %Ecorr[(T)] vs. nHOMO[14] (left) and C02[14] (right) for the 10,000 
TMCs in this work (blue) and for the 3566 equilibrium or distorted organic molecules in our 
prior work1 (AD-3165 and PS-401, red). The relative density of systems lying at a specific bin is 
represented by the opacity of the coloring. Fourteen active orbitals are used for the CASSCF 
calculations. Note that LG-8934 is not included in the comparison since WFT-based diagnostics 
were not computed in that set. 
 
 

 
Figure S10. 2D histogram for %Ecorr[(T)] vs. nHOMO[MP2] (left) and rND[B3LYP] (right) for 
more than 10,000 TMCs in this work. The 51 complexes with only one non-He ligand are shown 
in blue, and the trans and cis complexes (i.e., with two non-He ligands) are shown in red. The 51 
complexes have a smaller overall size than the trans and cis complexes. The relative density of 
systems lying at a specific bin is represented by the opacity of the coloring. 
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Figure S11. 2D histogram for %Ecorr[(T)] vs. nHOMO[MP2] (left) and rND[B3LYP] (right) for the 
12,500 equilibrium or distorted organic molecules in our prior work1, with the 3566 smaller 
molecules with < 6 heavy atoms (HA) shown in blue and 8934 larger molecules with ≥ 6 HAs 
shown in red. The relative density of systems lying at a specific bin is represented by the opacity 
of the coloring. 
 
 
Table S2. Summary of each ANN model's performance on predicting WFT-based MR 
diagnostics and %Ecorr[(T)] on a set-aside test set of 2,000 TMCs. Each line corresponds to an 
ANN trained to independently predict the quantity listed (i.e., we trained independent ANN 
model to predict each WFT-based diagnostic). 
 MAE scaled MAE Pearson’s r 

nHOMO[MP2] 0.009 0.013 0.88 
nLUMO[MP2] 0.009 0.010 0.91 
nHOMO[14] 0.027 0.027 0.85 
nLUMO[14] 0.033 0.024 0.81 
C02[14] 0.019 0.023 0.90 

%TAE[(T)] 0.348 0.007 0.90 
T1 0.006 0.020 0.89 

max(t1) 0.048 0.025 0.80 
%Ecorr[(T)] 0.211 0.016 0.94 
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Figure S12. The absolute difference of adiabatic spin splitting between B3LYP and CCSD(T) 
(i.e., |ΔΔEH-L[B3LYP-CCSD(T)]|) vs. the absolute difference (top) and the sum (bottom) of 
%Ecorr[(T)] of the two spin states, colored by kernel density estimation (KDE) density values, as 
indicated by inset color bars. A black dashed linear regression line is shown in each case together 
with the Pearson correlation coefficients. 
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Figure S13. (left) The absolute difference of adiabatic IP between CCSD and CCSD(T) (i.e., 
|ΔIP[CCSD-CCSD(T)]|) vs. the absolute difference (top) and the sum (bottom) of %Ecorr[(T)] of 
the two charge states. (right) The absolute difference of adiabatic IP between B3LYP and 
CCSD(T) (i.e., |ΔIP[B3LYP-CCSD(T)]|) vs. the absolute difference (top) and the sum (bottom) 
of %Ecorr[(T)] of the two charge states. In both cases, points are colored by kernel density 
estimation (KDE) density values, as indicated by inset color bars. A black dashed linear 
regression line is also shown in each case together with the Pearson correlation coefficients. 
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Table S3. Features used for each prediction task. 
Target Features 
WFT-based diagnostics CD-RACs, DFT-based diagnostics, oxidation state, spin state, and ligand 

charge 
DDEH-L CD-RACs from complexes in two spin states, oxidation state, and ligand 

charge, sums and differences of six DFT-based MR diagnostics, DFT 
evaluated DEH-L with BLYP, B3LYP, PBE, and PBE0 

DIP CD-RACs from complexes in two oxidation states, spin state of the ox-II 
complex, and ligand charge, sums and differences of six DFT-based MR 
diagnostics, DFT evaluated DEH-L with BLYP, B3LYP, PBE, and PBE0 

 

 
Figure S14. (top) Distributions of absolute errors for IP predicted with DFT using B3LYP (red) 
and our transfer learning models (gray) on the set-aside test data, with the cumulative count 
shown according to the axis on the right. The MAEs are shown as vertical bars at 0.40 eV for 
DFT and 0.14 eV for transfer learning. (bottom) MAE of our multi-pronged strategy of transfer 
learning, uncertainty quantification, and multi-level modeling vs. the percentage of CCSD(T) 
calculations required. In both cases, we treat CCSD(T) results as our reference. 
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Table S4. MAE of ΔEH-L and IP for B3LYP, MP2, CCSD, and their corresponding transfer 
learning approaches on the set-aside test data (1355 points for ΔEH-L and 657 points for IP). In 
both cases, CCSD(T) is treated as the reference. The transfer learning approach leads to 5- to 10-
fold reductions in MAE and systematically improves with the level of the quantum chemistry 
method. The inputs of the models are described in Table S3 and all the models as well as 
hyperparameters are included in the zip file of the Supporting Information. 

 MAE of ΔEH-L 
(kcal/mol) 

MAE of IP (eV) 

B3LYP 10.2 0.40 
DFT-cost transfer learning 2.8 0.14 

MP2 10.4 0.61 
MP2-cost transfer learning 2.1 0.12 

CCSD 5.6 0.35 
CCSD-cost transfer learning 0.4 0.06 

 

 
Figure S15. MAE of ΔEH-L (top) and IP (bottom) for the multi-pronged strategy where the 
highest UQ points are explicitly computed by CCSD(T) (black) compared to those are directly 
filtered (i.e., eliminated) from the set-aside test data15. The x axis refers to the fraction of data 
considered to have high model uncertainty judged by a cutoff and are thus calculated or excluded. 
In the multi-pronged strategy, we perform CCSD(T) on this fraction of data and thus its error is 
counted as zero. In the direct filtering strategy, this fraction of data is removed from the test data. 
Note that if we randomly select points in the multi-pronged filtering strategy (instead of using 
UQ), the MAE would not decrease with respect to the data fraction (i.e., 2.8 kcal/mol ΔEH-L and 
1.4 eV for IP) on average (i.e., if we repeat this random process many times independently).  

data fraction

CCSD(T)
filtered

IP

6EH-L
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Table S5. Metals (M), oxidation states (ox), and spin states considered in this work. Cases where 
the high-spin state is not calculated are shown with “--”. 
d electron 
configuration 

M(ox) High-spin 
state 

Intermediate-
spin state 

Low-spin state 

d3 Cr(III) -- quartet doublet 
d4 Mn(III)/Cr(II) quintet triplet singlet 
d5 Fe(III)/Mn(II) sextet quartet doublet 
d6 Co(III)/Fe(II) quintet triplet singlet 
d7 Co(II) -- quartet doublet 
 
 
Table S6. Summary of ligands studied. The ligands are either from the spectrochemical series 
(spectro) or our previous OHLDB set16. For each ligand, the atoms with non-zero formal charges 
are also shown for simplicity. 
Chemical name Formula SMILES string Source Formal 

charge 
Connecting 
atom 

amine NH2- [NH2-] spectro [(“N”: -1)] N 
ammonia NH3 [NH3] spectro [] N 
phosphide PH2- [PH2-] spectro [(“P”: -1)] P 
phosphine PH3 [PH3] spectro [] P 
azide N3- [N-]=[N+]=[N-] spectro [(“N”: -1), 

(“N”: 1), (“N”: 
-1)] 

N 

carbonyl CO [C-]#[O+] spectro [(“C”: -1), 
(“O”: 1)] 

C 

chloride Cl- [Cl-] spectro [(“Cl”: -1)] Cl 
fluoride F- [F-] spectro [(“F”: -1)] F 
cyanide CN- [C-]#N spectro [(“C”: -1)] S 
hydrogen sulfide H2S [SH2] spectro [] S 
hydrosulfide HS- [HS-] spectro [(“S”: -1)] O 
water H2O [OH2] spectro [] O 
hydroxyl OH- [OH-] spectro [(“O”: -1)] N 
isothiocyanate NCS- [N-]=C=S spectro [(“N”: -1)] S 
thiocyanate SCN- [S-]-C#N spectro [(“S”: -1)] N 
nitrito NO2- [O-]-N=O spectro [(“O”: -1)] N 
C2 C2 C4C OHLDB [] C 
nitrogen N2 N#N OHLDB [] N 
oxygen O2 O#O OHLDB [] O 
sulfidocarbon CS [C-]#[S+] OHLDB [(“C”: -1), 

(“S”: 1)] 
C 

hydrogen cyanide HCN [CH]#N OHLDB [] N 
cyanate NCO- N#C[O-] OHLDB [(“O”: -1)] N 
oxoazanide NO- [N-]=O OHLDB [(“N”: -1)] N 
sulfanylideneazanide NS- [N-]=S OHLDB [(“N”: -1)] N 
formaldehyde H2CO O=[CH2] OHLDB [] O 
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Table S7. Type of TMCs and their DFT geometry optimization success rate. Metal–He distances 
are studied in 0.1 Å intervals from 1.4 to 1.9 Å and 0.2 Å intervals from 2.1 to 2.7 Å  
Type of TMCs all-He 1-non-He trans cis 
Theoretical size 220 5500 5500 5500 
Successful cases 220 4321 4730 3577 
Success rate 100% 79% 86% 65% 
 
 

 
Figure S16. Workflow of computing 14 MR diagnostics. All calculations were performed with 
ORCA 4.0.2.117-18. 
 
 
Table S8. Default convergence parameters used in self-consistent field calculations (i.e., HF, 
DFT, and CCSD(T)) for ORCA 4.0.2.117-18. 

Software Energy convergence 
threshold (Ha) 

DIIS error 
(Ha) 

Maxiter 

ORCA 1e-6 1e-6 125 
 
 
Table S9. MR diagnostics calculation attrition counts and reasons. 
Type Count Reason 
Zero-temperature DFT (B3LYP, 
BLYP, B1LYP, PBE, and PBE0) 

983 SCF convergence issue 

Finite-temperature DFT (B3LYP 
and PBE) 

151 SCF convergence issue 

CASSCF at an active space of 
14 orbitals 

424 CASSCF convergence issue or 
exceeding the time limit of 48 hours. 

CCSD(T) 629 MDCI convergence issue or 
exceeding the time limit of 48 hours. 
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Figure S17. Potential energy curve for trans LS Co(II)He4(CO)2 (left) and LS Co(III)He5(NH2-) 
(right) for HF (blue), CCSD (green), and CCSD(T) (gray) in Ha with increasing metal–He 
distance. For each method, the energies are shifted such that the minimum is set to 0 Ha. A 
discontinuity can be seen in LS Co(III)He5(NH2-) at metal–He of 1.7 Å, resulting from the 
abnormally large perturbative correction at this metal–He distance. 
 
 
Table S10. T1 diagnostics for trans LS Co(II)He4(CO)2 and LS Co(III)He5(NH2-) with increasing 
metal–He distances. The T1 diagnostic of trans LS Co(II)He4(CO)2 at a metal–He distance of 1.7 
Å is bolded. This discontinuity in T1 diagnostic suggests the CCSD wavefunction was not 
converged to the same electronic structure at this particular metal–He distance. In cases where 
the CCSD calculation did not converge, the T1 diagnostic is shown as “--”. 
Metal-He distance (Å) 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.3 2.5 2.7 
trans LS Co(II)He4(CO)2 0.05 0.08 -- 0.28 -- -- 0.09 0.09 0.09 0.09 
LS Co(III)He5(NH2-) 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 
 
 
Table S11. Cutoff values for the Grubbs test and Z-score test. A TMC was removed if it was 
marked as an outlier by both the Grubbs and Z-score tests. 
Grubbs Z-score 
0.05 2.0 
 
 
Table S12. Removed TMCs at each filtering step. The theoretical size of the dataset is 16,720. 
Reason Number of points 
Bad DFT optimized geometry 3872 
Missing any of the 14 MR diagnostics 2187 
Abnormal perturbative T correction 274 
14 orbitals not large enough as active space 334 
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Figure S18. Distribution of the standard deviation (std. dev.) for the C02 diagnostic obtained with 
three active spaces (i.e., 10 orbitals, 12 orbitals, and 14 orbitals). The cutoff value of 0.1 is 
shown by a vertical dashed line. The y axis is in log scale. 
 
 
Text S1. We have introduced a systematic approach to featurize molecular inorganic complexes 
that blends metal-centric and whole-complex topological properties in a feature set referred to as 
revised autocorrelation functions (RACs).19 These RACs, variants of graph autocorrelations 
(ACs),20-23 are sums of products and differences of atomic properties, i.e., electronegativity (𝜒), 
nuclear charge (Z), topology (T), covalent radius (S), and identity (I). Standard ACs are defined 
as 
    

where Pd is the AC for property P at depth d, δ is the Dirac delta function, and dij is the bond-
wise path distance between atoms i and j.   
 
In our approach, we have five types of RACs: 

• :  standard ACs start on the full molecule (f) and have all atoms in the scope (all). 

•  and : restricted-scope ACs that start on the full molecule (f) and separately 
evaluate axial or equatorial ligand properties 

    

where nax/eq is the number of atoms in the corresponding axial or equatorial ligand and properties 
are averaged within the ligand subtype. 

Pd = PiPjδ (dij ,d)
j
∑

i
∑

all
fPd

ax
fPd eq

fPd

ax/eq
fPd =

1
ax/eq ligands

PiPjδ (dij ,d)
i

nax/eq

∑
i

nax/eq

∑
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•  : restricted-scope, metal-centered (mc) descriptors that start on the metal center (mc) 
and have all atoms in the scope (all), in which one of the atoms, i, in the i,j pair is a metal 
center: 

    

•  :and : restricted-scope, metal-proximal ACs that start on a ligand-centered (lc) 
and separately evaluate axial or equatorial ligand properties, in which one of the atoms, i, in 
the i,j pair is the metal-coordinating atom of the ligand: 

    

We also modify the AC definition, Pʹ, to property differences rather than products for a 
minimum depth, d, of 1 (as the depth-0 differences are always zero): 

    

where scope can be axial, equatorial, or all ligands. 

Although RACs have been demonstrated to be accurate for predicting equilibrium properties 
with ML models, including spin-splitting energies and redox potential24-25, they encode no 
explicit 3D geometry information and cannot distinguish distorted geometries from equilibrium 
structures. Therefore, we combine RACs and a 3D geometry-based representation, the Coulomb 
matrix (CM), in a new representation we refer to as the Coulomb-decay revised autocorrelations 
(CD-RACs)1.   

 

The form of CD-RACs is analogous to RACs, but is simply scaled by the pairwise atom distance 
when the bond depth is not zero. When the bond depth is zero, we use the power of 2.4 and 
introduce a pre-factor of 0.5 as in CM. 
 
We calculate CD-RACs at all starting points (lc, mc, and f), all scopes (eq, ax, and all), and 
consider both the products and differences, which gives 180 CD-RACs in total. Among the CD-
RACs, some are constant either due to their nature (e.g., full-complex depth-0 I CD-RAC is 
always 0.5) or small sizes of TMCs in the dataset (e.g., all full-complex depth-3 CD-RACs are 
0). Eliminating those constant CD-RACs yields 134 CD-RACs in total. 
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Table S13. Range of hyperparameters sampled for ANN models trained from scratch with 
Hyperopt26. The lists in the architecture row can refer to two or three hidden layers (i.e., the 
number of items in the list), and the number of nodes in each layer are the elements in the list. 
The built-in Tree of Parzen Estimator algorithm in Hyperopt was used for the hyperparameter 
selection process.  

Architecture ([128], [256], [512], [128, 128], [256, 256], [512, 512], 
[128, 128, 128], [256, 256, 256], [512, 512, 512]) 

L2 
regularization 

[1e-6, 1] 

Dropout rate [0, 0.5] 

Learning rate [1e-5, 1e-3] 

Beta1 [0.75, 0.99] 

Batch size [16, 32, 64, 128, 256, 512] 
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