Supporting Information

Chiral Proline-Substituted Porous Organic Cages in Asymmetric
 Organocatalysis

Ning Xu, ${ }^{[a]}$ Kongzhao Su, ${ }^{[a, b]}$ El-Sayed M. El-Sayed, ${ }^{[a, b, d]}$ Zhanfeng Ju, ${ }^{[a]}$ and Daqiang Yuan*[a,b,c]

a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
${ }^{\text {b. }}$ University of the Chinese Academy of Sciences, Beijing, 100049, China
c. Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, Fujian, China.
${ }^{\text {d. }}$ Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Egypt.

Corresponding author: ydq@fjirsm.ac.cn

Table of Contents

1. General Materials and Measurements 3
2. Experimental Procedures 3
2.1 Synthesis of the chiral proline-decorated diamine ligands 3
2.2 Synthesis and characterization of the two chiral POCs 6
2.3 Catalytic activity test of the synthesized chiral POCs 18
2.4 2D NOESY experiments 36
2.5 Size selectivity study of CPOC-302-Pro 40
2.6 Catalytic recycle test of CPOC-302-Pro. 41
$2.7^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the precursor moleculars 43
3. Single Crystal Determination and Results 51
4. Geometry Optimized Models 53
5. References 53

SUPPORTING INFORMATION

1. General Materials and Measurements

Commercially available reagents were used as received without further purification. Most reagent-grade chemicals were obtained from Adamas Reagent, Ltd. C4RACHO was synthesized according to the procedure in the literature. All the reagent-grade chemicals were commercially available and used directly. FT-IR spectra were collected on KBr pellets in the 4000-400 cm-1 range using a VERTEX70 spectrometer. 1H NMR spectra were recorded on a Bruker Avance 400 spectrometer. High-resolution ESI-TOF-MS spectra were obtained on a MaXis ${ }^{\text {TM }} 4 \mathrm{G}$ instrument from Bruker. Thermogravimetric analyses (TGA) were measured on a NETZSCH STA 449C unit at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under a nitrogen atmosphere. Circular dichroism (CD) spectra were recorded with a Bio-logic MOS-450 CD Spectrometer at room temperature. Powder X-ray diffraction (PXRD) data were collected on a PANalytical B.V.Empyrean powder diffractometer using a Cu Ka source ($\lambda=1.5418 \AA$) over the range of $2 \theta=2.0-40.0^{\circ}$ with a step size of 0.02° and 2 s per step and MiniFlex 600 spectrometer using Cu Ka radiation over the range of $2 \theta=$ $4.0-50.0^{\circ}$ with a step size of 0.02° and 2 s per step. Elemental analysis (C, H,N) was performed on an Elementar Vario MICRO elemental analyzer. The sorption isotherm for N_{2} was measured using a Micromeritics ASAP 2020 plus analyzer with ultra-high-purity N_{2} (99.999\% purity) at liquid nitrogen temperature (77 K).

2. Experimental Procedures

2.1 Synthesis of the chiral proline-decorated diamine ligands

2.1.1 Synthesis of (S)-N-(3,5-diaminophenyl)pyrrolidine-2-carboxamide (A3)

Scheme S1. Synthetic route of (S)-N-(3,5-diaminophenyl)pyrrolidine-2-carboxamide.
To a solution of Boc-L-proline ($1.27 \mathrm{~g}, 5.9 \mathrm{mmol}$) in 20 mL dry THF was added triethylamine ($0.82 \mathrm{~mL}, 5.9$ mmol) under argon atmosphere. After the mixture was cooled to $0^{\circ} \mathrm{C}$, isobutyl chloroformate ($0.78 \mathrm{~mL}, 6.0$ mmol) was added dropwise followed by stirring for 1 h . After that, 2,4 -dinitroaniline ($0.99 \mathrm{~g}, 5.4 \mathrm{mmol}$) was added to the solution in small portions. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at room temperature for 2 h , and then heated at reflux for 24 h . Upon cooling down, the mixture was filtered and the filtrate was concentrated. The residue was purified by column chromatography with dichloromethane as the

SUPPORTING INFORMATION

eluent to give compound A1 as light yellow oil in 85% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=10.62$ (s, 1 H), 8.67 ($\mathrm{s}, 2 \mathrm{H}$), $8.61(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=171.72,155.88,148.11,140.85,118.16,112.04,81.38,60.46,47.31$, 29.30, 28.31, 24.26. Anal. calcd (\%): C, 50.53; H, 5.30; N, 14.73. Found (\%): C, 50.45; H, 5.38; N, 14.76. IR (KBr, cm${ }^{-1}$) v 3099, 2980, 1657, 1535, 1420, 1344, 1163, 1135, 899, 813, 772, 727. ESI-TOF-MS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 403.1224$, found 403.1212.
The above product A1 ($1.9 \mathrm{~g}, 5.0 \mathrm{mmol}$) was dissolved in dry dichloromethane (30 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$. Then, trifluoroacetic acid (15 mL) was slowly added to the solution. The mixture was stirred at room temperature for two days and concentrated under reduced pressure. Dichloromethane (10 mL) and $\mathrm{H}_{2} \mathrm{O}(10$ mL) were added, the resulting mixture was basified with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with dichloromethane (3×50 mL). The obtained organic layer was collected, washed with brine, and dried over anhydrous MgSO_{4}. After removing the organic solvent under reduced pressure, the residue was purified by column chromatography with dichloromethane/ethyl acetate ($3 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to afford compound $\mathbf{A 2}$ as light yellow solids in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=10.51(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 2 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 1 \mathrm{H})$, 3.13-3.19 (m, 1H), 3.00-3.06 (m, 1H), 2.23-2.30 (m, 2H), 1.79-1.84 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=174.52,148.70,140.17,118.68,113.08,60.80,47.36,30.67,26.30$.

Compound A2 ($1.4 \mathrm{~g}, 5.0 \mathrm{mmol}$), $5 \% \mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~g})$ and dry THF (30 mL) were mixed in a 100 mL round bottom flask. After vacuumized and refilled with H_{2} for three times, the mixture was stirred at room temperature for two days. After that, the reaction mixture was filtered through Celite and the filtrate was concentrated to give the product A3 as white solids in 92% yield, mp : $125.4-127.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})=9.41(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 4 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.90(\mathrm{~m}$, 2 H), 1.95-2.04 (m, 1H), 1.67-1.76 (m, 1H), 1.58-1.64 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})=$ $172.95,149.88,139.75,96.33,94.81,61.24,47.26,30.99,26.48$. Anal. calcd (\%): C, 59.98; H, 7.32; N, 25.44. Found (\%): C, 59.95; H, 7.38; N, 25.46. IR (KBr, cm^{-1}) v 3366, 3303, 3217, 2958, 1666, 1611, 1534, 1493, 1452, 1185, 1080, 922, 835, 712, 681. ESI-TOF-MS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 221.1397$, found 221.1384.

2.1.2 Synthesis of (S)-N-(4,4'-diamino-[1,1'-biphenyl]-2-yl)pyrrolidine-2-carboxamide (B3)

Scheme S2. Synthetic route of (S)-N-(4,4'-diamino-[1, 1'-biphenyl]-2-yl)pyrrolidine-2-carboxamide.

2-Bromo-5-nitroaniline ($2.17 \mathrm{~g}, 10.0 \mathrm{mmol}$), 4-nitrophenylboronic acid ($1.67 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($0.58 \mathrm{~g}, 0.5 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(6.37 \mathrm{~g}, 30.0 \mathrm{mmol})$ were mixed in a 200 mL Schlenk flask. After vacuumed and refilled with argon for three times, toluene-water-ethanol ($30 \mathrm{ml}, 20 \mathrm{ml}, 10 \mathrm{ml}$) was added. The mixture was stirred at $95^{\circ} \mathrm{C}$ for 24 h and then cooled to room temperature. The organic phase was separated and the aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine, and dried over anhydrous MgSO_{4}. The solvent was evaporated under reduced pressure and purified by column chromatography with petroleum ether/dichloromethane ($1 / 1, \mathrm{v} / \mathrm{v}$) as eluent to afford 4,4'-dinitro-[1, 1'-biphenyl]-2-amine in 90% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})=8.33(\mathrm{~d}, 2 \mathrm{H}), 7.75$ (d, 2H), $7.65(\mathrm{~d}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=$ 148.82, 147.34, 147.25, 145.23, 131.81, 130.53, 129.64, 124.55, 111.00, 109.70.

To a solution of Boc-L-proline ($1.27 \mathrm{~g}, 5.9 \mathrm{mmol}$) in 20 mL dry THF was added triethylamine ($0.82 \mathrm{~mL}, 5.9$ mmol) under argon atmosphere. After the mixture was cooled to $0^{\circ} \mathrm{C}$, isobutyl chloroformate ($0.78 \mathrm{~mL}, 6.0$ mmol) was added dropwise followed by stirring for 1 h . Subsequently, 4,4'-dinitro-[1,1'-biphenyl]-2-amine $(1.4 \mathrm{~g}, 5.4 \mathrm{mmol})$ was added to the solution in small portions. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at room temperature for 2 h , and then heated at reflux for 24 h . After cooling, the mixture was filtered and the filtrate was concentrated. The residue was purified by column chromatography with dichloromethane as the eluent to give compound B1 as light yellow solids in 80% yield, mp: 62.5-63.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.39(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, 2 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}), 7.57(\mathrm{~d}, 2 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}), 4.30(\mathrm{~d}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=172.99$, 153.57, 147.93, 147.68, 142.97, 136.33, 136.21, 130.48, 129.96, 124.06, 118.69, 116.57, 80.61, 70.66, 47.01, 30.64, 27.88, 23.29. Anal. calcd (\%): C, 57.89; H, 5.30; N, 12.27. Found (\%): C, 57.94; H, 5.21; N, 12.24. IR (KBr, cm^{-1}) v 2976, 1693, 1592, 1521, 1389, 1338, 1303, 1158, 1086, 8564, 741, 695. ESI-TOFMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 479.1537$, found 479.1539.

To a solution of B1 ($2.74 \mathrm{~g}, 6.0 \mathrm{mmol}$) in dry dichloromethane $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid (25 mL). The mixture was stirred at room temperature for two days and concentrated under reduced

SUPPORTING INFORMATION

pressure. After the addition of dichloromethane $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the resulting mixture was basified with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and then concentrated to dryness. The crude product was purified by chromatography on silica gel with dichloromethane/ethyl acetate ($3 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to afford compound B2 as white solids in 85% yield, mp: 95.3-96.9 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=10.21(\mathrm{~s}, 1 \mathrm{H}), 9.37$ (d, 1H), 8.40 (d, 2H), 8.03-8.06 (m, 1H), 7.60 (d, 2H), 7.41 (d, 1H), 3.80-3.84 (m, 1H), 2.88-2.94 (m, 1H), 2.55-2.60 (m, 1H), 2.12-2.19 (m, 1H), 1.99-2.05 (m, 1H), 1.59-1.75 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(p p m)=173.85,148.31,147.81,143.13,135.97,135.35,130.39,130.09,124.09,118.45,115.31,60.82$, 47.09, 30.56, 26.15. Anal. calcd (\%): C, 57.30; H, 4.53; N, 15.72. Found (\%): C, 57.33; H, 4.54; N, 15.62. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v 3122, 2867, 1698, 1598, 1512, 1452, 1344, 1081, 904, 855, 732, 700, 614. ESI-TOF-MS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 357.1154$, found 357.1191.
Compound B2 ($1.78 \mathrm{~g}, 5.0 \mathrm{mmol}$), 5\% Pd/C (1.2 g) and dry THF (40 mL) were mixed in a 100 mL round bottom flask. After vacuumized and refilled with H_{2} for three times, the mixture was stirred at room temperature for two days. After that, the reaction mixture was filtered through Celite and the filtrate was concentrated to give the product B3 as white solids in 96% yield, mp: 83.2-84.6 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})=10.07(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}), 6.71(\mathrm{~d}, 2 \mathrm{H}), 6.39-6.41(\mathrm{~m}, 1 \mathrm{H})$, $5.20(\mathrm{~d}, 4 \mathrm{H}), 3.67-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 1 \mathrm{H})$, 1.61-1.70 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})=173.18,148.19,147.85,135.75,130.80$, 130.21, 126.25, 120.90, 114.52, 110.09, 105.76, 61.16, 46.96, 31.02, 26.24. Anal. calcd (\%): C, 68.90; H, 6.80; N, 18.90. Found (\%): C, 68.85; H, 6.88; N, 18.93. IR (KBr, cm ${ }^{-1}$) v 3438, 3343, 3216, 2967, 2866, 1665, 1606, 1511, 1470, 1288, 1243, 1180, 812, 556. ESI-TOF-MS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$297.1710, found 297.1690.

2.1.3 Synthesis of (S)-N-([1,1'-biphenyl]-2-yl)pyrrolidine-2-carboxamide (BPP)

BPP
Scheme S3. Synthetic route of (S)-N-([1,1'-biphenyl]-2-yl)pyrrolidine-2-carboxamide (BPP).
The model catalyst BPP was synthesized followed the synthetic route similar to compound $\mathbf{B 2}$ as white solids in 86% total yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=9.95(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, 1 \mathrm{H}), 7.46(\mathrm{t}, 2 \mathrm{H}), 7.35-$ $7.41(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}), 3.74-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=173.48,138.39$, 134.91, 132.22, 129.83, 129.25, 128.53, 128.24, 127.48, 123.71, 120.24, 60.84, 46.89, 30.75, 25.91. ESI-TOF-MS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 267.1492$, found 267.1472.

SUPPORTING INFORMATION

2.2 Synthesis and characterization of the two chiral POCs

2.2.1 Synthesis of CPOC-401-Pro

(S)-N-(3,5-diaminophenyl)pyrrolidine-2-carboxamide (A3) (0.08 mmol, 17.6 mg) and C4RACHO (0.04 mmol , 33 mg) were added into $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ and stirred at $65^{\circ} \mathrm{C}$ for 1 day. After cooling to room temperature, Bromobenzene (1.5 mL) was added and slow vapor diffusion of MeOH into the mixture was conducted for two weeks. Red block single crystals of CPOC-401-Pro were obtained in $\sim 52 \%$ yield and washed with $\mathrm{MeOH} .\left(\mathrm{mp}>400^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=16.05(\mathrm{~s}, 1 \mathrm{H}), 10.73(\mathrm{~s}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 0.5 \mathrm{H})$, $9.27(\mathrm{~d}, 1 \mathrm{H}), 7.12-7.34(\mathrm{~m}, 2.5 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 0.5 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H})$, $1.74(\mathrm{~s}, 1 \mathrm{H}), 1.04(\mathrm{t}, 6 \mathrm{H})$. Anal. calcd (\%): C, 70.45; H, 6.76; N, 9.39. Found (\%): C, 70.21; H, 6.88; N, 9.41. IR (KBr, cm ${ }^{-1}$) v 2953, 2926, 2867, 1620, 1579, 1452, 1293, 1211, 994, 858, 798, 681. ESI-TOF-MS: calcd. for CPOC-401-Pro $\left(\mathrm{C}_{280} \mathrm{H}_{320} \mathrm{~N}_{32} \mathrm{O}_{40}\right)[\mathrm{M}+5 \mathrm{H}]^{5+} 955.6889$, found 955.6886.

2.2.2 Synthesis of CPOC-302-Pro

(S)-N-(4,4'-diamino-[1,1'-biphenyl]-2-yl)pyrrolidine-2-carboxamide (B3) ($0.10 \mathrm{mmol}, 29.6 \mathrm{mg}$) and C4RACHO ($0.05 \mathrm{mmol}, 41.2 \mathrm{mg}$) were added into $\mathrm{PhCl}(6 \mathrm{~mL})$ and stirred at $100^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, slow vapor diffusion of MeOH into the mixture was conducted for one week. Red block single crystals of CPOC-302-Pro were obtained in $\sim 65 \%$ yield and washed with $\mathrm{MeOH} .\left(\mathrm{mp}>400{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=16.17(\mathrm{~s}, 1 \mathrm{H}), 10.19(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 0.5 \mathrm{H}), 7.13-7.42(\mathrm{~m}$, $4.5 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 0.5 \mathrm{H}), 2.95(\mathrm{~s}, 0.5 \mathrm{H}), 2.69(\mathrm{~s}, 0.5 \mathrm{H}), 1.61-2.11(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H})$. Anal. calcd (\%): C, 73.19; H, 6.59; N, 8.33. Found (\%): C, 73.22; H, 6.46; N, 8.19. IR (KBr, cmr) v 2955, 2922, 2863, 1621, 1574, 1525, 1502, 1453, 1294, 1202, 1094, 1003, 799, 748. ESI-TOF-MS: calcd. for CPOC-302-Pro $\left(\mathrm{C}_{492} \mathrm{H}_{528} \mathrm{~N}_{48} \mathrm{O}_{60}\right)[\mathrm{M}+5 \mathrm{H}]^{5+} 1615.6052$, found 1615.6061 ; $[\mathrm{M}+6 \mathrm{H}]^{6+} 1346.5056$, found $1346.5064 ;[\mathrm{M}+7 \mathrm{H}]^{7+}$ 1154.2915, found 1154.2905.

Figure S1. FT-IR spectra of C4RACHO, A3 and CPOC-401-Pro.

Figure S2. FT-IR spectra of C4RACHO, B3 and CPOC-302-Pro.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{CPOC}-401$-Pro $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR Spectrum of CPOC-401-Pro recorded in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of CPOC-401-Pro recorded in CDCl_{3}.

Figure S6. ${ }^{1} \mathrm{H}$ NMR of CPOC-302-Pro $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR Spectrum of CPOC-302-Pro recorded in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of CPOC-302-Pro recorded in CDCl_{3}.

Figure S9. ESI-TOF-MS spectrum of CPOC-401-Pro.

Figure S10. ESI-TOF-MS spectrum of $[\mathrm{M}+5 \mathrm{H}]^{5+}, \mathrm{M}$ represents the intact assembly of CPOC-401-Pro.

Figure S11. ESI-TOF-MS spectrum of CPOC-302-Pro.

Figure S12. ESI-TOF-MS spectrum of $[\mathrm{M}+5 \mathrm{H}]^{5+}$, M represents the intact assembly of CPOC-302-Pro.

Figure S13. ESI-TOF-MS spectrum of $[\mathrm{M}+6 \mathrm{H}]^{6+}$, M represents the intact assembly of CPOC-302-Pro.

Figure S14. ESI-TOF-MS spectrum of $[\mathrm{M}+7 \mathrm{H}]^{7+}$, M represents the intact assembly of CPOC-302-Pro.

Figure S15. ESI-TOF-MS spectrum of CPOC-302-Pro after five catalytic cycles.

Figure S16. CD spectra of CPOC-401-Pro in CHCl_{3} at room temperature.

Figure S17. CD spectra of CPOC-302-Pro in CHCl_{3} at room temperature.

Figure S18. TGA curves of CPOC-401-Pro and CPOC-302-Pro.

Figure S19. PXRD patterns of CPOC-401-Pro after desolvation.

Figure S20. PXRD patterns of CPOC-302-Pro after desolvation.

2.3 Catalytic activity test of the synthesized chiral POCs

Table S1. Optimization of the reaction conditions of asymmetric aldol reaction

Entry ${ }^{\text {a }}$	Catalyst	Solvent	Additive	Yield(\%) ${ }^{\text {b }}$	anti/syn ${ }^{\text {c }}$	ee(\%) ${ }^{\text {d }}$
1	CPOC-302-Pro	Toluene	Acetic acid	65	85:15	79
2	CPOC-302-Pro	Toluene	TFA	Trace	--	--
3	CPOC-302-Pro	Toluene	TsOH	Trace	--	--
4	CPOC-302-Pro	Toluene	PhCOOH	76	87:13	81
5	CPOC-302-Pro	Toluene	4-NBA	88	88:12	82
6	CPOC-302-Pro	CHCl_{3}	4-NBA	75	89:11	79
7	CPOC-302-Pro	DCE	4-NBA	86	83:17	80
8	CPOC-302-Pro	o-Xylene	4-NBA	90	86:14	83
9	CPOC-302-Pro	Mesitylene	4-NBA	83	85:15	83
10	CPOC-302-Pro	THF	4-NBA	64	80:20	82
11	CPOC-302-Pro	$\mathrm{CH}_{3} \mathrm{CN}$	4-NBA	45	75:25	66
12	CPOC-302-Pro	MTBE	4-NBA	95	90:10	86

SUPPORTING INFORMATION

$\mathbf{1 3}$	$\mathrm{CPOC}-302-\mathrm{Pro}$	$\mathrm{MTBE} / \mathrm{H}_{2} \mathrm{O}=100 / 1$	4-NBA	99	$93: 7$	92
$\mathbf{1 4}$	$\mathrm{CPOC}-401-P r o$	$\mathrm{MTBE} / \mathrm{H}_{2} \mathrm{O}=100 / 1$	4-NBA	98	$88: 12$	83

${ }^{\text {a }}$ Reaction conditions: aldehyde (0.20 mmol), ketone (2.0 mmol), $10 \mathrm{~mol} \%$ catalyst (related to the proline amount in the material), 4-nitrobenzoic acid (4-NBA) ($20 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.01 mL), and MTBE $(1.0 \mathrm{~mL})$ at r.t. for 3 days. ${ }^{\text {I }}$ Isolated yield. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by chiral HPLC.

2.3.1 General Procedure for asymmetric aldol reaction

In a tube with the aldehyde (0.2 mmol), ketone (2.0 mmol), 4-nitrobenzoic acid (0.04 mmol) and the chiral POCs (10 mol\% loading of effective chiral proline groups) was added 1.0 mL MTBE and $0.01 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at room temperature. The mixture was stirred for 3 days at room temperature. After the reaction was completed (monitored by TLC), $3.0 \mathrm{~mL} n$-hexane was added to the mixture and the catalyst was isolated by centrifugation and thoroughly washed with n-hexane for three times. The combined organic phase was concentrated in vacuo and purified by column chromatography on silica gel. ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to determine the diastereoselectivity (dr) value. The enantioselectivity (ee) value was determined by HPLC on a chiral-phase Chiralpak AD-H, OD-H or AS-H column.

Table S2. Performance comparison between CPOC-302-Pro with other chiral porous/supramolecular materials for the model aldol reactions.

Catalyst	yield (\%)	anti/syn	ee (\%)	Reference
CPOC-302-Pro	99	$93: 7$	92	This work
CMIL-1	81	$4: 1$	66	S1
Cd-TBT	97	$1: 1$	58	S2
IRMOF-Pro	100	$3: 1$	14	S 3
Ap@3	72	$3.3: 1$	74	S 4
UiO-68-NHPro	97	$12: 88$	0	S 5
CZJ-18(Cu)-Pro	95	$9: 1$	88	S 6
DMTA-TPB1/4'	95	$10.3: 1$	71	S 8
PAF-1-NHPro	70	$6: 1$	73	S 9
Co-Pro1	42			

Figure S21. Kinetic results for the asymmetric aldol addition of p-nitrobenzaldehyde with cyclohexanone with $10 \mathrm{~mol} \%$ loadings of chiral proline groups in the cage catalysts.
Table S3. Substrate Scope of the aldol addition reactions catalyzed by CPOC-401-Pro ${ }^{\text {a }}$

yield $=90 \%$
dr $=87: 13$
ee $=84 \%$

yield $=93 \%$
dr $=85: 15$
ee $=82 \%$

yield $=95 \%$
$\mathrm{dr}=90: 10$
ee $=83 \%$

yield $=92 \%$
dr $=83: 17$
ee $=76 \%$

yield $=94 \%$
dr $=92: 8$
$\mathrm{ee}=77 \%$

yield $=90 \%$
$\mathrm{dr}=86: 14$
ee $=72 \%$

yield $=91 \%$
dr $=89: 11$
ee $=75 \%$

yield $=97 \%$
$\mathrm{dr}=82: 18$
ee $=76 \%$

yield $=96 \%$
$\mathrm{dr}=78: 22$
ee $=76 \%$

yield $=98 \%$
dr $=79: 21$
$e e=84 \%^{b}$

$$
\begin{aligned}
& \text { yield }=95 \% \\
& d r=75: 25 \\
& \text { ee }=70 \%
\end{aligned}
$$

yield $=90 \%$
ee $=44 \%^{b}$
${ }^{a}$ Reaction conditions: aldehyde (0.20 mmol), ketone (2.0 mmol), $10 \mathrm{~mol} \%$ catalyst (related to the proline amount in the material), 4-NBA (20 mol\%), $\mathrm{H}_{2} \mathrm{O}$ (0.01 mL), and MTBE (1.0 mL) at r.t. for 3 days. Isolated yield. The above Catalytic products were characterized by ${ }^{1} \mathrm{H}$ NMR and their ee values were determined by chiral HPLC. ${ }^{b}$ Under the $0^{\circ} \mathrm{C}$ reaction conditions.

2.3.2 ${ }^{1} \mathrm{H}$ NMR and HPLC of the catalytic product

(S)-2-((R)-hydroxy(2-nitrophenyl)methyl)cyclohexan-1-one
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm})=8.20(\mathrm{~d}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 2 \mathrm{H}), 4.91$ (dd, 1 H), 4.13 (d, 1H), 2.58-2.64 (m, $1 \mathrm{H})$, 2.47-2.52 (m, 1H), 2.34-2.42 (m, 1H), 2.09-2.15 (m, 1H), 1.81-1.85 (m, 1H), 1.54-1.70 (m, 3H), 1.33$1.44(\mathrm{~m}, 1 \mathrm{H})$. HPLC analysis (Chiralcel AD-H column, n-Hexane/i-PrOH = 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\text {minor }}=28.2 \mathrm{~min}, \mathrm{t}_{\text {major }}=37.7 \mathrm{~min}$.

SUPPORTING INFORMATION

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	27.690	89561	3.77
$\mathbf{2}$	37.091	2286381	96.23

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	28.857	146798	8.63
$\mathbf{2}$	38.489	1554331	91.37

SUPPORTING INFORMATION

(S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclohexan-1-one

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta(\mathrm{ppm})=7.85(\mathrm{~d}, 1 \mathrm{H}), 7.77(\mathrm{~d}, 1 \mathrm{H}), 7.64(\mathrm{t}, 1 \mathrm{H}), 7.44(\mathrm{t}, 1 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}), 4.09$ (bs, 1H), 2.74-2.80 (m, 1H), 2.43-2.48 (m, 1H), 2.30-2.39 (m, 1H), 2.05-2.13 (m, 1H), 1.83-1.87 (m, 1H), 1.57-1.78 (m, 4H). HPLC analysis (Chiralcel AD-H column, $n-H e x a n e / i-P r O H=80: 20,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $n m), \mathrm{t}_{\text {major }}=22.7 \mathrm{~min}, \mathrm{t}_{\text {minor }}=24.4 \mathrm{~min}$.

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	22.869	1597001	94.82
$\mathbf{2}$	24.506	87240	5.18

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	22.780	1831771	92.10
$\mathbf{2}$	24.483	157221	7.90

SUPPORTING INFORMATION

(S)-2-((R)-hydroxy(3-nitrophenyl)methyl)cyclohexan-1-one

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta(\mathrm{ppm})=8.22(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}), 7.54(\mathrm{t}, 1 \mathrm{H}), 4.91$ (dd, $1 \mathrm{H}), 4.17(\mathrm{~d}, 1 \mathrm{H}), 2.62-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.55-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 1 \mathrm{H})$. HPLC analysis (Chiralcel AD-H column, n -Hexane/i-PrOH = $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {major }}=22.3 \mathrm{~min}, \mathrm{t}_{\text {minor }}=28.6 \mathrm{~min}$.

SUPPORTING INFORMATION

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	22.400	1620880	94.58
$\mathbf{2}$	28.741	92884	5.42

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	22.453	1422240	91.08
$\mathbf{2}$	28.932	139239	8.92

(S)-2-((R)-hydroxy(pyridin-4-yl)methyl)cyclohexan-1-one

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=8.54-8.56(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 2.58-$ $2.64(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.69(\mathrm{~m}, 1 \mathrm{H})$, 1.36-1.43 (m, 1H). HPLC analysis (Chiralcel OD-H column, $n-H e x a n e / i-P r O H=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), \mathrm{t}_{\text {major }}=19.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=21.3 \mathrm{~min}$.

SUPPORTING INFORMATION

3-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzonitrile

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}), 4.12$ (s, 1H), 2.55-2.62 (m, 1H), 2.47-2.52 (m, 1H), 2.33-2.41 (m, 1H), 2.09-2.14 (m, 1H), 1.81-1.85 (m, 1H), 1.53-1.70 (m, 3H), 1.26-1.37 (m, 1H). HPLC analysis (Chiralcel AD-H column, n-Hexane/i-PrOH = 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm})$, $\mathrm{t}_{\text {major }}=23.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=30.6 \mathrm{~min}$.

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	23.958	4498071	93.38
$\mathbf{2}$	30.833	318736	6.62

Serial Number	Retention Time $[\mathbf{m i n}]$	Area	Area \%
$\mathbf{1}$	23.965	5152551	87.94
$\mathbf{2}$	30.885	706541	12.06

SUPPORTING INFORMATION

4-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzonitrile

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.65(\mathrm{~d}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}), 4.84(\mathrm{dd}, 1 \mathrm{H}), 4.09(\mathrm{~d}, 1 \mathrm{H}), 2.46-2.61(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.37(\mathrm{~m}, 1 \mathrm{H})$. HPLC analysis (Chiralcel AD-H column, n -Hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$), $\mathrm{t}_{\text {minor }}=27.2 \mathrm{~min}, \mathrm{t}_{\text {major }}$ $=34.9 \mathrm{~min}$.

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	28.080	191464	5.64
$\mathbf{2}$	35.790	3200451	94.36

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	27.367	293189	11.75
$\mathbf{2}$	34.903	2202461	88.25

(S)-2-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)cyclohexan-1-one

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.61(\mathrm{~d}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}), 4.85(\mathrm{~d}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.63(\mathrm{~m}$, 1 H), 2.47-2.52 (m, 1H), 2.32-2.41 (m, 1H), 2.07-2.14 (m, 1H), 1.79-1.84 (m, 1H), 1.64-1.69 (m, 1H), 1.53$1.61(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.38(\mathrm{~m}, 1 \mathrm{H})$. HPLC analysis (Chiralcel AD-H column, n -Hexane/i-PrOH $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=11.2 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.2 \mathrm{~min}$.

SUPPORTING INFORMATION

Serial Number	Retention Time $[\mathbf{m i n}]$	Area	Area \%
$\mathbf{1}$	11.112	124667	5.95
$\mathbf{2}$	14.051	1969261	94.05

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	11.381	309841	12.26
2	14.422	2216971	87.74

SUPPORTING INFORMATION

(S)-3-((R)-hydroxy(4-nitrophenyl)methyl)tetrahydro-4H-pyran-4-one

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.23(\mathrm{~d}, 2 \mathrm{H}), 7.53(\mathrm{~d}, 2 \mathrm{H}), 5.00(\mathrm{dd}, 1 \mathrm{H}), 4.18-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $1 \mathrm{H})$, 3.70-3.77 (m, 2H), 3.44-3.49 (m, 1H), 2.87-2.93 (m, 1H), 2.65-2.73 (m, 1H), 2.52-2.57 (m, 1H). HPLC analysis (Chiralcel AD-H column, n -Hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\text {minor }}=22.6 \mathrm{~min}, \mathrm{t}_{\text {major }}$ $=26.2 \mathrm{~min}$.

Serial Number	Retention Time $[\mathbf{m i n}]$	Area	Area \%
$\mathbf{1}$	22.643	121308	6.60
$\mathbf{2}$	26.050	1715741	93.40

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	22.578	287445	14.80
$\mathbf{2}$	26.158	1654121	85.20

SUPPORTING INFORMATION

(S)-7-((R)-hydroxy(4-nitrophenyl)methyl)-1,4-dioxaspiro[4.5]decan-8-one
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.22(\mathrm{~d}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.97(\mathrm{~m}$, $4 \mathrm{H}), 2.96-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.48-$ $1.53(\mathrm{~m}, 1 \mathrm{H})$. HPLC analysis (Chiralcel AS-H column, n -Hexane/i-PrOH $=70: 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\text {minor }}=11.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=16.3 \mathrm{~min}$.

SUPPORTING INFORMATION

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	11.650	106101	8.20
$\mathbf{2}$	16.436	1187551	91.80

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	11.694	121668	11.96
$\mathbf{2}$	16.509	895758	88.04

(S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclopentan-1-one
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.20-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{t}, 1 \mathrm{H}), 2.61(\mathrm{~d}, 1 \mathrm{H}), 2.36-$ $2.52(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.19 (m, 1H), 1.96-2.07 (m, 2H), 1.70-1.76 (m, 2H). HPLC analysis (Chiralcel AD-H column, n-Hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=26.7 \mathrm{~min}, \mathrm{t}_{\text {major }}=28.2 \mathrm{~min}$.

(2S)-2-((R)-hydroxy(4-nitrophenyl)methyl)-4-methylcyclohexan-1-one
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=8.22(\mathrm{~d}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 4.94(\mathrm{~d}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 2.72-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.26-$ $1.34(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, 3 \mathrm{H})$. HPLC analysis (Chiralcel OD-H column, n -Hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=23.2 \mathrm{~min}, \mathrm{t}_{\text {major }}=28.2 \mathrm{~min}$.

Serial Number	Retention Time $[\mathbf{m i n}]$	Area	Area \%
$\mathbf{1}$	22.979	1826091	93.15
$\mathbf{2}$	28.240	134333	6.85

Serial Number	Retention Time $[\mathbf{m i n}]$	Area	Area \%
$\mathbf{1}$	21.477	2059801	85.81
$\mathbf{2}$	26.333	340666	14.19

SUPPORTING INFORMATION

(R)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=8.22(\mathrm{~d}, 2 \mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H}), 5.25-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, 1 \mathrm{H}), 2.85-2.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$. HPLC analysis (Chiralcel AS-H column, n -Hexane/i-PrOH $=70: 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}), \mathrm{t}_{\text {major }}=9.7 \mathrm{~min}, \mathrm{t}_{\text {minor }}=12.3 \mathrm{~min}$.

SUPPORTING INFORMATION

Serial Number	Retention Time [min]	Area	Area \%
$\mathbf{1}$	10.186	1748691	71.86
$\mathbf{2}$	13.165	684886	28.14

2.4 2D NOESY experiments

For NOESY experiments with the mixture of CPOC-302-Pro and the reactant (p-nitrobenzaldehyde or cyclohexanone), 0.05 mmol of the reactant was added to a solution of CPOC-302-Pro (20 mg CPOC-302Pro in 1.0 mL CDCl 3). After stirring for half an hour at room temperature, the mixture was carried out for the NOESY experiments.

SUPPORTING INFORMATION

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of p-nitrobenzaldehyde $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S23. 2D NOESY NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of the mixture of CPOC-302-Pro and p nitrobenzaldehyde. Expansion of marked area (in orange rectangle) is reported below.

SUPPORTING INFORMATION

Figure S24. Enlarged view of the orange rectangle in the 2D NOESY NMR spectrum of the mixture of CPOC-302-Pro and p-nitrobenzaldehyde. Exchange peaks between aromatic protons of pnitrobenzaldehyde outside the cavity (indicated with black snowflakes) and inside the cavity (indicated with a red snowflake) are shown.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of cyclohexanone $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

SUPPORTING INFORMATION

Figure S26. 2D NOESY NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of the mixture of CPOC-302-Pro and cyclohexanone. Expansion of marked area (in orange rectangle) is reported below.

Figure S27. Enlarged view of the orange rectangle in the 2D NOESY NMR spectrum of the mixture of CPOC-302-Pro and cyclohexanone. Exchange peaks between methylene protons (the α position) of cyclohexanone outside the cavity (indicated with a black snowflakes) and inside the cavity (indicated with a red snowflake) are shown.

SUPPORTING INFORMATION

2.5 Size selectivity study of CPOC-302-Pro

Synthesis of 5-formyl-2-nitrophenyl-3,5-di-tert-butylbenzoate

To a solution of 3,5-di-tert-butylbenzoic acid ($703 \mathrm{mg}, 3.0 \mathrm{mmol}$) in dry dichloromethane (12 mL) was added DCC ($680 \mathrm{mg}, 3.3 \mathrm{mmol}$), DMAP ($403 \mathrm{mg}, 3.3 \mathrm{mmol}$) under $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h .3 -hydroxy-4nitrobenzaldehyde ($501 \mathrm{mg}, 3.0 \mathrm{mmol}$) in 10 mL dichloromethane was added slowly and the mixture was stirred at room temperature for 12 h . After the reaction was completed, the reaction mixture was filtered and the obtained solution was concentrated under reduced pressure. The crude product was purified by chromatography on silica gel with petroleum ether/ethyl acetate ($5 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to afford the product 5 -formyl-2-nitrophenyl 3,5 -di-tert-butylbenzoate as white solids in 90% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ (ppm) $=10.12(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$.

For size selectivity study, two sets of reactions were performed. The procedures are similar to the above catalytic reactions. Under the optimal reaction conditions, 0.20 mmol 5 -formyl-2-nitrophenyl 3,5 -di-tertbutylbenzoate and 2.0 mmol cyclohexanone were reacted at room temperature in presence of model catalyst BPP and CPOC-302-Pro, respectively. After two days, the corresponding product was isolated by fast column chromatography with petroleum ether/ethyl acetate $(6 / 1, \mathrm{v} / \mathrm{v})$ as the eluent.

5-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)-2-nitrophenyl 3,5-di-tert-butylbenzoate
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=8.12(\mathrm{~d}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}), 7.74(\mathrm{t}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}), 5.49$ (s, 1H), 3.30 (s, 1H), 2.64-2.69 (m, 1H), 2.38-2.50 (m, 2H), 2.08-2.13 (m, 1H), 1.87-1.90 (m, 1H), 1.54-1.75 (m, 4H), 1.38 (s, 18H).

2.6 Catalytic recycle test of CPOC-302-Pro

Run catalyst Time (d) yield (\%) anti/syn ee (\%) $\mathbf{1}$ CPOC-302-Pro 2 99 $93: 7$ 92 $\mathbf{2}$ CPOC-302-Pro 2 96 $93: 7$ 92 $\mathbf{3}$ CPOC-302-Pro 2 95 $92: 8$ 92 $\mathbf{4}$ CPOC-302-Pro 2 93 $92: 8$ 92 $\mathbf{5}$ CPOC-302-Pro 2 90 $91: 9$ 90

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	27.690	89561	3.77
$\mathbf{2}$	37.091	2286381	96.23

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	27.489	81424	3.79
$\mathbf{2}$	36.728	2066973	96.21

SUPPORTING INFORMATION

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	27.733	121744	3.80
$\mathbf{2}$	37.177	3082045	96.20

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	28.985	62236	4.20
$\mathbf{2}$	38.687	1419931	95.80

Serial Number	Retention Time $[\mathrm{min}]$	Area	Area \%
$\mathbf{1}$	28.540	102052	4.98
$\mathbf{2}$	38.159	1947361	95.02

SUPPORTING INFORMATION

$2.7^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and mass spectra of the precursor moleculars

A1

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

$\stackrel{\sim}{\infty}$

SUPPORTING INFORMATION

(

SUPPORTING INFORMATION

3. Single Crystal Determination and Results

Single-crystal X-ray data of CPOC-302-Pro and CPOC-401-Pro were collected at 100.0(1) K on XtaLAB Synergy R, HyPix equipped with Hybrid Pixel Array detector. Data reduction was performed with CrysAlisPro package. ${ }^{510}$

The structures of CPOC-302-Pro and CPOC-401-Pro were solved by SHELXD-2018 and SHELXT-2018, respectively, and the refinements were done by full-matrix least-squares on F^{2} (SHELXL-2018) with the graphical interface Shelxle. ${ }^{\text {S11 }}$ The atoms in the cage framework were refined anisotropically, including constraints, restraints and rigid bodies where necessary. H atoms attached to carbon, nitrogen, and hydroxyl oxygen atoms were positioned geometrically and constrained to ride on their parent atoms. The two crystals were weakly diffracting, immediately losing solvent after removal from the mother liquor. Hence, the quality of the data is far more than sufficient to locate the substituted group. Meanwhile, the structure features large solvent-accessible volumes within the cage. The contents of these volumes are highly disordered and the residual electron density peaks are not arranged in an interpretable pattern. Consequently, the SQUEEZE function ${ }^{\text {S12 }}$ of PLATON was employed to remove the contribution of the electron density, which gave a potential solvent-accessible void of 33021 and $18897 \AA^{3}$ per unit cell (a total of approximately 6593 and 2594 electrons). The resultant files were used in further refinement. The detailed crystal data and cell parameters are summarized in Table S3. The geometry optimized structures of CPOC-302-Pro and CPOC-401-Pro were modeled using CP2K software, and the overlay of the X-ray and GFN-xTB optimized structure by CP2K shows a remarkable agreement (Figure S15)

Figure S22. The overlapping image of the crystal structure (blue) and optimized structure (red) of CPOC-302-Pro and CPOC-401-Pro.

SUPPORTING INFORMATION

Table S4. Crystal Data and Structural Refinement for CPOC-302-Pro and CPOC-401-Pro.

	CPOC-302-Pro	CPOC-401-Pro
CCDC No.	2113144	2113665
Empirical formula	$\mathrm{C}_{492} \mathrm{H}_{528} \mathrm{~N}_{48} \mathrm{O}_{60}$	$\mathrm{C}_{280} \mathrm{H}_{320} \mathrm{~N}_{32} \mathrm{O}_{40}$
Formula weight	8073.59	4773.66
Temperature (K)	100.0(1)	100.0(1)
Wavelength (\AA)	1.54184	1.54184
Crystal system	trigonal	triclinic
Space group	P3c1	P1
a (\AA)	32.5182(19)	28.4101(12)
b A)	32.5182(19)	30.2731(13)
$c(\AA)$	51.424(4)	32.7364(15)
$\alpha\left({ }^{\circ}\right)$	90	82.444(4)
$\beta\left({ }^{\circ}\right)$	90	81.795(4)
$Y\left({ }^{\circ}\right)$	120	63.273(4)
Volume (\mathbf{A}^{3})	47092(7)	24818(2)
Z	2	2
Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	0.569	0.639
Absorption coefficient (mm^{-1})	0.302	0.347
F_{000}	8592	5088
Crystal size (mm ${ }^{3}$)	$0.10 \times 0.05 \times 0.03$	$0.23 \times 0.18 \times 0.15$
θ range for data collection (${ }^{\circ}$)	2.327 to $77.023 \square$	2.075 to 78.085
Reflections collected	183245	330746
Independent reflections	58296	142785
Max. and min. transmission	0.92486 and 1.00000	0.87204 and 1.00000
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	58296 / 2020 / 1336	142785 / 15362 / 4273
Goodness-of-fit on F^{2}	0.793	1.377
Final R indices [/ $\square \mathbf{2 \sigma}(I)$]	$R 1=0.1220, w R 2=0.2206$	$R 1=0.2292, w R 2=0.4808$
R indices (all data)	$R 1=0.4055, w R 2=0.3757$	$R 1=0.3500, w R 2=0.5579$
Largest diff. peak and hole (e \AA^{-3})	0.309 and -0.157	1.624 and -0.875
Absolute structure parameter	0.2(3)	0.53(12)

[^0]
SUPPORTING INFORMATION

4. Geometry Optimized Models

The initial structures of CPOC-302-Pro and CPOC-401-Pro were token from their crystal structures and modified using Materials Studio to add the substituent group. The geometry optimizations were employed the GFN1-xTB method ${ }^{513,}$, 14 with Grimme's D3 van der Waals dispersion correction using the CP2K code ${ }^{\text {S15 }}$. GFNxTB is a method of self-consistent, third-order, density functional tight-binding (DFTB3), suitable for the calculation of structures, vibrational frequencies, and non-covalent interactions in large molecular systems. Only atomic coordinates of the periodic systems were optimized, and the cell parameters were fixed.) A convergence threshold of 3.0×10^{-6} Hartree was used for all self-consistent field (SCF) calculations. The structural optimizations were considered converged if the maximum force on all atoms falls below $4.5 \times 10^{-4} \mathrm{Hartree}^{\mathrm{Bohr}}{ }^{-1}$.

5. References

S1. M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo and K. Kim, J. Am. Chem. Soc., 2009, 131, 7524-7525.
S2. D. Dang, P. Wu, C. He, Z. Xie and C. Duan, J. Am. Chem. Soc., 2010, 132, 14321-14323.
S3. D. J. Lun, G. I. N. Waterhouse and S. G. Telfer, J. Am. Chem. Soc., 2011, 133, 5806-5809.
S4. Y. Liu, X. Xi, C. Ye, T. Gong, Z. Yang and Y. Cui, Angew. Chem. Int. Ed., 2014, 53, 13821-13825.
S5. C. Kutzscher, G. Nickerl, I. Senkovska, V. Bon and S. Kaskel, Chem. Mater., 2016, 28, 2573-2580.
S6. W.-L. He, M. Zhao and C.-D. Wu, Angew. Chem. Int. Ed., 2019, 58, 168-172.
S7. J. Zhang, X. Han, X. Wu, Y. Liu and Y. Cui, J. Am. Chem. Soc., 2017, 139, 8277-8285.
S8. P. Chen, J.-S. Sun, L. Zhang, W.-Y. Ma, F. Sun and G. Zhu, Sci. China Mater., 2019, 62, 194-202.
S9. X. Wu, C. He, X. Wu, S. Qu and C. Duan, Chem. Commun., 2011, 47, 8415-8417.
S10. Rigaku OD, CrysAlisPro V1.171.42.25a, 2021.
S11. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta crystallogr. Section C, 2015, 71, 3-8.
S12. A. L. Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta crystallogr. Section C, 2015, 71, 9-18

S13. C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci., 2020, 11, e1493
S14. S. Grimme, C. Bannwarth, P. Shushkov, A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1-86) J. Chem. Theory Comput., 2017, 13, 1989-2009.

S15. T. D. Kühne, M. Iannuzzi, M. D. Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borstnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter., CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations J. Chem. Phys., 2020, 152, 194103

[^0]: ${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma| |\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right||\Sigma| \mathrm{F}_{\mathrm{o}} \mid \cdot{ }^{\mathrm{b}} \mathrm{w} \mathrm{R}_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

