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General Details

Unless otherwise stated, all manipulations were conducted in dry solvents under an inert
atmosphere of nitrogen, using either standard Schlenk techniques or a glovebox. Pentane, toluene,
tetrahydrofuran (THF), diethyl ether, acetonitrile (MeCN), and dichloromethane (CH,Cl,) were
dried using a JC Meyers Phoenix SDS solvent purification system. Benzene-dg, CDCl;, and were
freed from oxygen with vigorous nitrogen bubbling for 30 minutes, and then dried for at least 48
h over 3 A molecular sieves (5% by mass). CD,Cl, was freed from oxygen via freeze-pump-thaw
three times, and then dried for at least 48 h over 3 A molecular sieves (5% by mass). All reaction
solvents were stored over 3 A molecular sieves. All substrates, internal standards, or catalysts were
used as received (or synthesized) unless otherwise noted. CuCl was purified by reported methods,!
dried under vacuum at 200 °C overnight in the absence of light, then ground in a mortar and pestle
in a glovebox for all reactions in this manuscript. Compounds S1,2 S3,3 S4,* S5,° S6.,° 1a,” 1b,% and
Cp,Zr(pyr)(Me;SiC=CSiMe;)° were synthesized by literature procedures. Celite® was dried in an
oven at 150 °C for at least 24 hours, then brought into a glove-box. NMR spectra were recorded
on 300, 400, 500, or 600 MHz spectrometers. Chemical shifts (§) are given in ppm and are
referenced to residual solvent peaks for 'H-NMR spectra (8 = 7.26 ppm for CDCl;, = 5.32 ppm for
CD,Cl, and 8 = 7.16 for C4Dg) and '3C-NMR spectra (& = 77.16 ppm for CDCls, 8 = 128.06 for
C¢Dg). NMR spectra are shown using MestReNova NMR processing software. Column
chromatography was carried out using Fisher Chemical 40-63um, 230-400 mesh silica gel.
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Svynthetic procedures and basic characterization data

Synthesis of oligoynes

Scheme S1. Synthesis of compound 1c
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Reagents and conditions: (a) 4-(tertbutyl)phenylacetylene (2.1 equivs), Cul (0.05 equivs),
Pd(PPhj3), (0.02 equivs), triethylamine, THF, 23 °C, 92%; (b) 1) ‘BuLi (2.0 equivs), CuCN (0.5
equivs), Et,0, -78 °C, ii) 1,4-benzoquinone (1.6 equivs), 23 °C, 62%.

1-bromo-4-trifluoromethyl-2,6-(1-ethynyl-4-tertbutylphenyl)benzene (S2). A 150 mL
schlenk flask was charged with S1 (6.48 g, 13.6 mmol, 1 equiv), Pd(PPh3), (0.31 g, 0.27 mmol,
0.02 equivs), copper iodide (0.14 g, 0.70 mmol, 0.05 equivs), triethylamine (30 mL), and
tetrahydrofuran (50 mL). 4-(tertbutyl)phenylacetylene (4.51 g, 28.5 mmol, 2.1 equivs) was then
added, the flask was sealed, and the solution was stirred at RT for 18 h. The reaction mixture was
then diluted with 200 mL dichloromethane and washed with 2 M aqueous HC1 3x100 mL, dried
over MgSQO,, and concentrated via rotary evaporation. The crude solid was dissolved in 120 mL
hexanes, filtered through a short plug of silica, and concentrated to dryness via rotary
evaporation to afford S2 (6.70 g, 92%) as a pale yellow solid. '"H NMR (400 MHz, CDCl;) 6
7.71 (s, 2H), 7.53-7.56 (m, 4 H), 7.40-7.43 (m, 4 H), 1.34 (s, 18 H) 13C NMR (101 MHz,
CDCly) 6 152.8, 132.2, 131.8, 129.8 (q, J =33 Hz), 128.5 (q, J =4 Hz), 127.7, 125.6, 123.4 (q, J
=273 Hz), 119.3, 96.2, 86.7, 35.0, 31.3 HRMS-EI (m/z): [M]" calcd for C;;H,sF;Br, 536.1326;
found, 536.1323.

Tetrayne 1c. A 500 mL Schlenk flask was charged with S2 (5.00 g, 9.80 mmol, 1.00 equiv) and
diethyl ether (135 mL), and the stirred solution was cooled to -78 °C with a CO,(s)/acetone bath.
To this solution was added fert-butyllithium* (1.7 M in hexanes, 11.0 mL, 9.80 mmol, 2.00
equivs) by addition funnel over 15 min and the resulting mixture was stirred for a further 1 h at —
78 °C. Copper(I) cyanide (0.42 g, 4.65 mmol, 0.50 equivs) was added, the reaction mixture was
stirred at -78 °C for an additional 1 h, and the flask was removed from the CO,(s)/acetone bath
and allowed to warm to RT. 1,4-benzoquinone (1.61 g, 14.9 mmol, 1.60 equivs) was added, and
the reaction mixture was stirred for 2 h. The solution was then poured into 500 mL of 1 M
aqueous HCI, the organic layer was separated, and the aqueous layer was washed with 2x100 mL
ethyl acetate. The organic layers were combined, dried over MgSQO,, and concentrated to dryness
via rotary evaporator. The crude product was purified by column chromatography (100%
hexanes) and subsequently recrystallized from toluene at -78 °C to afford 1c¢ (2.65 g, 62%) as
pale yellow crystals. "TH NMR (400 MHz, C¢Dg) 6 7.96 (s, 4 H), 7.24 (m, 8 H), 7.02 (m, 8 H),
1.04 (s, 36 H) 13C NMR (101 MHz, CDCl3) 6 152.3, 147.4, 131.5, 130.8 (g, /=33 Hz), 127.3
(q, /=4 Hz), 125.6, 125.4, 123.8 (q, /=273 Hz), 119.6, 95.2, 86.0, 34.9, 31.2 HRMS-ESI
(m/z): [M+H]* caled for C¢,Hs7Fg, 915.4359; found, 915.4374.
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*NOTE: tert-butyllithium is highly pyrophoric and should be handled with care.

Scheme S2. Synthesis of compound 1d

S4

Reagents and conditions: PdCly(PPhs), (0.06 equivs), K,COj5 (2.5 equivs), toluene, EtOH, H,O,
90 °C, 33%.

Tetrayne 1d. A 150 mL Teflon stoppered flask was charged with S3 (675 mg, 2.43 mmol, 2.50
equivs), S4 (533 mg, 0.97 mmol, 1.00 equiv), PACI,(PPh;), (41 mg, 0.058 mmol, 0.06 equivs),
K,CO3 (336 mg, 2.43 mmol, 2.5 equivs), toluene (23 mL), ethanol (23 mL), and water (6 mL).
The flask was sealed with a Teflon stopper, and the stirred solution was heated to 90 °C for 3 h.
The mixture was allowed to cool to RT and was diluted with 100 mL dichloromethane and 100
mL water. The organic layer was separated, and the aqueous layer was extracted with 100 mL of
dichloromethane. The combined organic phases were washed with 100 mL 1.5 M HCI and 100
mL brine, dried over MgSQ,, and concentrated by rotary evaporator. The crude product was
purified by column chromatography (0-25% toluene in hexanes) and concentrated by rotary
evaporator. The resulting beige solid was triturated with hexanes (3x10 mL) to afford 1d (305
mg, 33%) as a white powder. 'TH NMR (400 MHz, CD,Cl,) 6 7.96 (s, 2 H), 7.69-7.74 (m, 4 H),
7.43-7.51 (m, 4 H), 7.25-7.30 (m, 8 H), 7.14-7.19 (m, 8 H), 1.28 (s, 18 H), 1.18 (s, 18 H)

13C NMR (101 MHz, CDCl3) 6 151.5, 151.1, 142.0, 141.8, 134.1, 132.2, 131.4, 131.3, 130.6,
127.7, 127.5, 125.3, 125.2, 123.3, 122.3, 120.6, 120.4, 94.3, 93.6, 88.8, 88.5, 34.9, 34.7, 31.3,
31.2 HRMS-EI (m/z): [M]" calcd for C¢sHg,, 854.4852; found, 854.4836.
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Scheme S3. Synthesis of compound 1e

Pr
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Reagents and conditions: nBuLi (2.50 equivs), ZnCl, (2.60 equivs), Pd(PPh;), (0.05 equivs), THF,
65 °C, 50%.

Hexayne le. A 125 mL Schlenk flask was charged with S5 (1.43 g, 6.38 mmol, 2.60 equiv) and
tetrahydrofuran (20 mL) and the solution was cooled to —78 °C with a CO,(s)/acetone bath. To
this solution was added n-butyllithium (1.60 M in hexanes, 3.83 mL, 6.13 mmol, 2.50 equiv) by
syringe over 20 min and the resulting mixture was stirred for a further 10 min at —78 °C. To this
mixture was added ZnCl, (1.05 M in THF, 6.13 mL, 6.38 mmol, 2.60 equiv) by syringe over 5
min, and subsequently the flask was removed from the cold bath and warmed to RT over 1 h. At
this time S6 (2.20 g, 2.45 mmol, 1.00 equiv) and Pd(PPh3), (142 mg, 0.123 mmol, 0.050 equiv),
were added against a flow of N, the Schlenk flask was sealed, and the mixture was stirred at 65
°C for 18 h. The solution was then exposed to air and diluted with aqueous ammonium chloride
(40 mL). The crude product was extracted with CH,Cl, (3x20 mL), dried over MgSQO,, and
solvents were removed by rotary evaporation. The crude product was purified by column
chromatography (33-50% CH,Cl, in hexanes) and subsequently crystallized from hexanes at -30
°C to afford 1e (1.25 g, 50%) as off-white crystals. 'H NMR (400 MHz, CDCl3) & 8.64 (s, 2H),
8.56 (s, 2H), 8.34 (s, 2H), 8.33 (s, 2H), 7.73-7.68 (m, 2H), 7.46-7.38 (overlapped m, 6H), 7.29-
7.22 (m, 2H), 4.13 (s, 6H), 4.12 (s, 6H), 2.27-2.24 (t,J = 6.9 Hz, 4H), 2.15-2.11 (t,J= 6.9 Hz,
4H), 2.02-1.99 (t, J = 6.8 Hz, 4H), 1.46-1.39 (m, 4H), 1.32-1.23 (m, 4H), 1.19-1.10 (m, 4H),
0.88-0.82 (t, J= 7.6 Hz, 6H), 0.66-0.62 (t, J= 7.5 Hz, 6H), 0.52-0.48 (t, J = 7.4 Hz, 6H). 13C
NMR (101 MHz, CDCl3) 6 143.88, 143.78, 143.25, 140.66, 140.61, 132.20, 130.32, 128.48,
128.40, 127.31, 127.28, 127.22, 126.88, 126.00, 125.96, 124.70, 123.92, 123.16, 122.81, 94.31,
94.11, 93.60, 80.72, 80.65, 80.31, 61.23, 61.22, 22.09, 22.05, 21.95, 21.73, 21.65, 21.44, 13.50,
13.32, 13.15. HRMS-EI (m/z): [M]" calcd for C74H70O4, 1022.5274; found, 1022.5278.

Synthesis of zirconacyclopentadienes

R R Me;Si o CZFI’)Z
S livie
(I Cpozr” P R R
pyr
Toluene, 23 °C
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Procedure: In a glovebox, Cp,Zr(pyr)(Me;SiC=CSiMe;) (1.1 equivs per diyne) and the
appropriate oligoyne (1.0 equiv) were weighed into separate flasks. To each flask was then added
equal volumes of benzene, and a stir bar was added to the solution containing zirconium. To the
stirring solution of Cp,Zr(pyr)(Me;SiC=CSiMes;) was added the benzene solution of the diyne.
The reaction mixture was stirred for 10 minutes, concentrated to 25% of the original volume, and
diluted with pentane back to the original volume of the solution. The precipitate was collected on
a fritted funnel, washed with pentane (2 x 5 mL), and dried under vacuum to afford pure

zirconacyclopentadiene.
Cpy
O
\

S7. This compound was synthesized according to the procedure outlined above using the
following amounts: 1a (1.20 g, 3.14 mmol), Cp,Zr(pyr)(Me;SiC=CSiMes) (1.63 g, 3.45 mmol),
benzene (15 mL). S7 (1.60 g, 85%) was isolated as a dark brown/red powder. '"H NMR (600
MHz, Cg¢Dg): 6 7.80 (dd, J=7.90, 0.9 Hz, 2H), 7.71 (dd, J = 8.1, 1.2 Hz, 2H), 7.01-6.95
(overlapped m, 2H), 6.99 (d, J = 8.0 Hz, 4H), 6.83 (dt, /= 7.9, 0.9 Hz, 2H), 6.68 (d, J = 8.0 Hz,
4H), 2.19 (s, 6H). 3C NMR (151 MHz, C¢D¢): 6 197.2, 146.1, 139.3, 133.8, 132.9, 132.2,
130.1, 128.4, 127.0, 126.7, 126.6, 124.3, 112.1, 21.2. HRMS-EI (m/z): [M]* calcd for C4H;,Zr,
602.1551; found, 602.1550.

S8. This compound was synthesized according to the procedure outlined above using the
following amounts: 1b (300 mg, 0.78 mmol), Cp,Zr(pyr)(Me;SiC=CSiMe;) (395 mg, 1.56
mmol), benzene (3 mL). S8 (440 mg, 94%) was isolated as a bright orange powder. 'H NMR
(400 MHz, C¢Dg) 06 7.34 — 7.31 (d, J= 8.2 Hz, 4H), 7.29-27 (d, J = 8.2 Hz, 4H), 7.09-7.07 (d, J
=7.1 Hz, 2H), 6.98-6.96 (d, J= 7.1 Hz, 2H), 5.90 (s, 10H), 2.92 (s, 4H), 2.34 (s, 6H). 3C NMR
(101 MHz, C¢Dg) 6 193.32, 148.25, 142.05, 138.74, 136.95, 134.69, 133.57, 130.12, 128.35,
128.22, 128.06, 127.90, 125.03, 121.07, 120.70, 111.66, 31.94, 21.30. HRMS-EI (m/z): [M]*
calcd for C4oH3,Zr, 602.1551; found, 602.1549.
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S9. This compound was synthesized according to the procedure outlined above using the
following amounts: 1¢ (3.14 g, 3.43 mmol), Cp,Zr(pyr)(Me;SiC=CSiMe;) (3.39 g, 7.20 mmol),
benzene (70 mL). S7 (3.80 g, 82%) was isolated as a maroon powder. '"H NMR (600 MHz,
CeDg) 6 7.44 (s, 4 H), 7.24-7.28 (m, 8 H), 6.73-6.77 (m, 8 H), 5.95 (s, 20 H), 1.34 (s, 36 H). 13C
NMR (151 MHz, THF-d8) 6 201.5, 147.4, 146.4, 139.2, 133.7, 131.4, 127.5 (q, J = 31 Hz),
126.79, 126.3, 126.0 (q, /=4 Hz), 125.1 (q, /=272 Hz), 113.4, 35.0, 31.9. HRMS-EI (m/z):
[M]* caled for CgoH7FeZr,, 1354.3945; found, 1354.3942.

S10. This compound was synthesized according to the procedure outlined above using the
following amounts: 1d (1.50 g, 1.75 mmol), Cp,Zr(pyr)(Me;SiC=CSiMe;) (1.73 g, 3.68 mmol),
benzene (18 mL). S10 (1.90 g, 83%) was isolated as a dark purple powder. 'H NMR (600 MHz,
C¢Dg) 6 8.20 (s, 2 H), 7.65 (d, J =8.1,2 H), 7.25 (m, 8 H), 7.10 (t, ] = 7.5, 2 H), 6.99 (d, J = 8.1,
2 H), 6.79 (m, 10 H), 6.00 (s, 20 H), 1.34 (s, 18 H), 1.28 (s, 18 H). 3C NMR (151 MHz, C¢Dy) 6
198.10, 196.53, 147.03, 146.21, 146.12, 145.95, 139.59, 139.42, 134.59, 133.74, 132.21, 131.97,
131.44,129.33, 128.88, 126.87, 126.37, 126.35, 126.28, 126.10, 124.96, 112.12, 34.45, 34.38,
31.83, 31.68. HRMS-EI (m/z): [M]" calcd for CggHg,Zr,, 1294.4511; found, 1294.4518.
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S11. This compound was synthesized according to the procedure outlined above using the
following amounts: 1e (1.02 g, 1.00 mmol), Cp,Zr(pyr)(Me;SiC=CSiMe;) (1.60 g, 3.30 mmol),
benzene (10 mL). S11 (1.43 g, 85%) was isolated as an orange powder. 'H NMR (400 MHz,
C¢Dg) 6 9.52 (s, 2H), 9.31 (s, 2H), 8.72 (s, 2H), 8.64 (s, 2H), 8.11-8.09 (d, /= 7.8 Hz, 2H), 7.60-
7.58 (d, J= 7.6 Hz, 2H), 7.50-7.47 (t,J = 7.6 Hz, 2H), 7.39-7.35 (t, /= 7.8 Hz, 2H), 6.07 (s,
10H), 5.99 (s, 20H), 4.09 (s, 6H), 4.09 (s, 6H), 3.44-3.37 (m, 8H), 3.03-3.01 (m, 4H), 1.36-1.32
(m, 12H), 0.98-0.91 (m, 18H). 13C NMR (151 MHz, C¢Dg) 5 200.04, 199.11, 150.34, 145.18,
145.08, 135.67, 135.32, 134.08, 133.78, 133.66, 129.57, 128.89, 128.74, 128.60, 127.05, 124.91,
123.54, 123.35, 123.24, 119.40, 118.93, 118.85, 118.45, 118.33, 114.21, 109.18, 109.07, 61.23,
61.21,44.55,44.40,44.17,27.31, 27.25,27.18, 15.17, 15.15, 15.14. HRMS-EI (m/z): [M]*
calcd for Cyg4H 9904213, 1682.4763; found, 1682.4758.

Synthesis of stannoles:
Me2
O I
\ /)

Stannole 2a.

From isolated zirconacyclopentadiene S7:

A 125 mL round bottom flask flask was charged with zirconacycle S7 (0.400 g, 0.662 mmol, 1.00
equiv), Me,SnCl, (0.160 g, 0.7285 mmol, 1.1 equivs), CuCl (0.066 g, 0.662 mmol, 1.00 equiv),
and LiCl (0.059 g, 1.39 mmol, 2.10 equiv). To the flask was then added toluene (10 mL) and the
reaction mixture was stirred vigorously for ~ 1 h. The solution was filtered through celite,
concentrated to dryness in vacuo, and the crude solid was suspended in acetonitrile (5 mL). The
precipitate was collected on a fritted funnel, washed with acetonitrile (2x3 mL), and dried under
vacuum to yield 2a (0.285 g, 81%) as a bright orange crystalline solid.

From diyne 1a with Cp,Zr(pyr)(Me;SiC=CSiMe;):

A 125 mL round bottom flask was charged with 1a (0.253 g, 0.662 mmol, 1.00 equiv),
Cp2Zr(pyr)(Me;SiC=CSiMes) (0.342 g, 0.728 mmol, 1.10 equivs), and toluene (10 mL). The
reaction mixture was stirred for 10 minutes. Me,SnCl, (0.160 g, 0.7285 mmol, 1.1 equivs), CuCl
(0.066 g, 0.662 mmol, 1.00 equiv), and LiCI (0.059 g, 1.39 mmol, 2.10 equiv) were then added to
the stirred reaction mixture in one portion and the mixture was stirred vigorously for 1 h. The
solution was filtered through celite, concentrated to dryness in vacuo, and the crude solid was
suspended in acetonitrile (5 mL). The precipitate was collected on a fritted funnel, washed with
acetonitrile (2x3 mL), and dried under vacuum to yield 2a (0.246 g, 70%) as an orange solid.

From diyne 1a via the Negishi protocol:

A 125 mL schlenk flask was charged with 1a (0.253 g, 0.662 mmol, 1.00 equiv), Cp,ZrCl, (0.212
g, 0.728 mmol, 1.10 equivs) and THF (10 mL), and the solution was cooled to -78 °C with a
COx(s)/acetone bath. To this solution was added n-butyllithium (1.60 M in hexanes, 0.894 mL,
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1.43 mmol, 2.20 equiv) by syringe over 20 min, the resulting mixture was stirred for a further 10
min at —78 °C, and then warmed to RT over 1 h. Me,SnCl, (0.160 g, 0.7285 mmol, 1.1 equivs),
CuCl (0.066 g, 0.662 mmol, 1.00 equiv), and LiCl (0.059 g, 1.39 mmol, 2.10 equiv) were then
added to the stirred reaction mixture in one portion and the mixture was stirred vigorously for 1 h.
The solution was filtered through celite, concentrated to dryness in vacuo, and the crude solid was
suspended in acetonitrile (5 mL). The precipitate was collected on a fritted funnel, washed with
acetonitrile (2x3 mL), and dried under vacuum to yield 2a (0.232 g, 68%) as an orange solid.

TH NMR (600 MHz, C¢Dg): 6 7.83 (dd, J= 8.1, 1.1 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.28 (d, J
= 8.0 Hz, 4H), 6.98 (dt, J= 8.1, 1.1 Hz, 2H), 6.96 (d, J = 8.0 Hz, 4H), 6.75 (dt, /= 8.1, 1.2 Hz,
2H), 2.10 (s, 6H), 0.38 (s, Jsuu = 27.8 Hz, 6H). 13C NMR (151 MHz, C¢Dg): 6 146.5, 146.4,
143.0, 135.3,135.2,133.8, 131.4, 130.4, 128.6, 128.4, 127.7, 127.0, 124.5, 21.2, -7.6. HRMS-EI
(m/z): [M]" calcd for C5,H»gSn, 532.1213; found, 532.1212.

Stannole 2b. A teflon stoppered flask was charged with S8 (0.160 g, 0.265 mmol, 1.00 equiv),
Me,SnCl, (0.070 g, 0.318 mmol, 1.10 equivs), CuCl (0.157 g, 1.58 mmol, 6.00 equivs), and
toluene (6 mL), and sealed with a teflon stopper. The vigorously stirred reaction heated at 80 °C
for 24 h. The reaction mixture was then filtered through celite, concentrated to 1 mL, and diluted
with acetonitrile (5 mL). The precipitate was collected on a fritted funnel and washed with
acetonitrile (2x3 mL) to afford 2b (0.132 g, 73%) as a bright yellow powder. 'H NMR (600 MHz,
Benzene-dg) 6 7.83-7.82 (d, J = 7.3 Hz, 2H), 7.58-7.57 (d, J = 8.0 Hz, 4H), 7.13-7.12 (d, J = 8.0
Hz, 2H), 7.03-7.01 (d, J = 7.3 Hz, 2H), 2.95 (s, 4H), 2.22 (s, 6H), 0.38 (s, 6H). 13C NMR (151
MHz, C¢Dg) 0 152.16, 143.85, 142.28, 141.95, 141.24, 139.12, 135.79, 132.12, 129.86, 127.65,
121.24, 120.78, 32.04, 21.32, -7.46. HRMS-EI (m/z): [M]" calcd for C;,H,5Sn, 532.1213; found,
532.1211.

Stannole 2¢. A 125 mL round bottom flask was charged with S9 (1.10 g, 0.900 mmol, 1.00 equiv),
Me,SnCl, (0.435 g, 1.98 mmol, 2.2 equivs), CuCl (0.534 g, 5.40 mmol, 6.00 equivs), ZnCl, (0.245
g, 1.80 mmol, 2.00 equivs),” and toluene (20 mL) and stirred vigorously at RT for 2 h. The reaction
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mixture was then filtered through celite, concentrated to 2 mL, and diluted with acetonitrile (10
mL). The precipitate was collected on a fritted funnel and washed with acetonitrile (2x5 mL) to
afford 2¢ (0.687 g, 70%) as a bright orange/red crystalline solid. "H NMR (600 MHz, Benzene-ds)
5 7.67 (s, 4H), 7.30 — 7.25 (m, 8H), 7.21 — 7.17 (m, 8H), 1.26 (s, 36H), 0.35 (s, 12H). 3C NMR
(151 MHz, C¢Dg) 0 150.68, 149.48, 143.94, 142.61, 133.61, 133.24, 126.98, 126.11, 124.85,
123.48, 115.88, 34.58, 31.36, 0.08, -8.17. HRMS-EI (m/z): [M]" calcd for CgcHggFsSn,,
1214.3269; found, 1214.3273.

*NOTE: it was determined that formation of stannole 2¢ required the presence of a Lewis acid to
proceed, unlike for other stannoles. BPh; (50% yield), AlEt; (75% yield), and ZnCl, (82% yield)
were all found to successfully generate the product.

Stannole 2d. In a glovebox, a round bottom flask was charged with zirconacycle S10 (0.570 g,
0.439 mmol, 1.00 equiv), Me,SnCl, (0.212 g, 0.966 mmol, 2.20 equivs), CuCl (0.086 g, 0.878
mmol, 2.00 equivs), LiCl (0.074 g,1.76 mmol, 4.00 equivs) and toluene (12 mL) and stirred
vigorously at RT for 1 h. The reaction mixture was then filtered through celite, concentrated to 1
mL, and diluted with acetonitrile (7 mL). The precipitate was collected on a fritted funnel and
washed with acetonitrile (2x3 mL) to afford 2¢ (0.349 g, 69%) as a dark red-brown powder. 'H
NMR (600 MHz, C¢Dg) 6 8.28 (s, 2H), 7.85-7.83 (m, 2H), 7.43-7.37 (m, 4H), 7.37-7.32 (m, 4H),
7.27-7.21 (m, 8H), 7.07-7.04 (m, 2H), 6.90-6.89 (m, 2H), 6.73-6.70 (m, 2H), 1.27 (s, 18H), 1.22
(s, 18H), 0.40 (s, 12H).13C NMR (151 MHz, C¢D¢) 6 148.57, 148.51, 147.09, 146.97, 146.78,
146.14, 143.72, 143.18, 135.39, 133.76, 133.68, 133.07, 131.25, 127.18, 126.89, 126.84, 126.64,
124.83, 115.73, 34.58, 34.55, 31.61, 31.46, -7.47. HRMS-EI (m/z): [M]" calcd for C;gH74Sn,,
1154.3834; found, 1154.3834.
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Stannole 2e. In a glovebox, a round bottom flask was charged with zirconacycle S11 (0.240 g,
0.1422 mmol, 1.00 equiv), Me,SnCl, (0.103 g, 0.469 mmol, 3.30 equivs), CuCl (0.042 g, 0.427
mmol, 3.00 equivs), and toluene (15 mL) and stirred vigorously at RT for 15 min.” The reaction
mixture was then filtered through celite, concentrated to dryness in vacuo, and suspended in
acetonitrile (3 mL). The precipitate was collected on a fritted funnel and washed with acetonitrile
(2x1 mL) to afford 2e (0.126 g, 60%) as a bright green-yellow powder. 'TH NMR (400 MHz, C¢Dy)
3 9.59 (s, 2H), 9.44 (s, 2H), 9.01 (s, 2H), 8.92 (s, 2H), 8.25-8.22 (m, 2H), 7.94-7.92 (m, 2H), 7.38-
7.34 (m, 2H), 7.32-7.28 (m, 2H), 3.96 (s, 6H), 3.93 (s, 6H), 3.43-3.39 (m, 4H), 3.37-3.33 (m, 4H),
3.03-2.99 (m, 4H), 1.73-1.66 (m, 8H), 1.58-1.53 (m, 2H), 1.04-0.99 (m, 12H), 0.91-0.87 (m, 6H),
0.51 (s, 6H), 0.48 (s, 12H). 3C NMR (151 MHz, C¢Dy) 5 150.51, 150.07, 147.27, 147.06, 146.84,
145.01, 144.94, 135.12, 134.92, 133.76, 133.54, 133.23, 133.14, 130.53, 129.55, 129.42, 129.32,
128.86, 128.77, 128.47, 127.24, 124.65, 124.45, 119.50, 118.83, 60.92, 60.90, 39.19, 38.97, 38.64,
29.31, 29.02, 14.33, 14.32, 14.21, -7.16, -7.27. HRMS-EI (m/z): [M]* calcd for CgyHgsO,4Sny,
1472.3749; found, 1472.3750.

*NOTE: The reaction length is very important for achieving full conversion and reproducibly high
yields. If the reaction is allowed to stir too long (>20 min) the product begins to decompose,
complicating work up and isolation significantly; however, appreciably shorter reaction times (<10
min) do not facilitate complete consumption of the starting zirconacycle.

Diels-Alder with Benzyne Precursors:
Procedure A (using 1-SiMe;-2-OTf arenes):

A flask was charged with the desired stannole (1.0 equiv), benzyne precursor (1.1 equiv per
stannole), tetrabutylammonium difluorotriphenylsilicate (TBAT) (3.3 equiv per stannole),
dimethylacetylenedicarboxylate (DMAD) (3 equiv per stannole), and benzene. The stirred reaction
mixture was heated to 60 “C for 12 h and then cooled to RT. The solution was then concentrated
to dryness via rotary evaporator and purified by column chromatography.

Procedure B (using 1,2-dihaloarenes):

A flask was charged with the desired stannole (1.0 equiv), benzyne precursor (1.2 equivs per
stannole), and toluene and stirred vigorously®. To this solution was added n-butyllithium (1.3
equivs per stannole) dropwise over 15 min. The reaction mixture was quenched with aqueous
ammonium chloride, extracted with CH,Cl,, dried over MgSQ,, and concentrated to dryness via
rotary evaporation. The crude solid was purified by column chromatography.

*NOTE: complete dissolution of both starting materials prior to the addition of nBuLi is necessary
for achieving full conversion.

0
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PAH 3a.
From procedure A:

This compound was synthesized according to procedure A outlined above using the following
amounts: 2a (0.200 g, 0.376 mmol), 2-(SiMe3)CsH,4(OTY) (0.120 g, 0.414 mmol), TBAT (0.670 g,
1.24 mmol), DMAD (0.160 g, 1.13 mmol), benzene (2 mL). Eluent: 15% CH,Cl, in hexanes. 3a
(0.110 g, 68%, >98% purity) was isolated as a white powder.

From procedure B:

This compound was synthesized according to procedure B outlined above using the following
amounts: 2a (0.200 g, 0.376 mmol), 1,2-dibromobenzene (0.106 g, 0.451 mmol), nBuLi (1.00 M
in hexanes, 0.489 mL, 0.489 mmol), benzene (2 mL). Eluent: 15% CH,Cl, in hexanes. 3a (0.124
g, 72%, >98% purity) was isolated as a white powder.

3a was also synthesized via procedure B on 0.038 mmol scale from 2-chloro-bromobenzene (0.009
g, 0.045 mmol, 83%) and 2-fluoro-bromobenzene (0.008 g, 0.045 mmol, 81%) using identical
conditions to those described for 1,2-dibromobenzene.

In all cases, '"H NMR spectroscopy of 2a matched reported chemical shifts from the literature.’

3b. This compound was synthesized according to procedure B outlined above using the following
amounts: 2b (0.200 g, 0.376 mmol), 1,2-dibromobenzene (0.106 g, 0.451 mmol), nBuLi (1.00 M
in hexanes, 0.489 mL, 0.489 mmol), benzene (2 mL). Eluent: 15% CH,Cl, in hexanes. 3b (0.133
g, 75%, >98% purity) was isolated as a pale yellow powder. 'H NMR (400 MHz, CDCl;) 6 7.72-
7.70 (m, 2H), 7.47 (apparent s, 8H), 7.39-7.37 (m, 2H), 7.17-7.16 (d, J = 7.1 Hz, 2H), 6.73-6.71
(d, J=17.1 Hz, 2H), 3.44 (s, 4H), 2.59 (s, 6H). 13C NMR (151 MHz, CDCl3) 5 145.11, 137.49,
136.83, 136.33, 134.89, 134.37, 132.76, 132.63, 130.16, 129.90, 126.89, 125.48, 123.96, 120.94,
32.25,21.69. HRMS-EI (m/z): [M]" calcd for C36H,e, 458.2035; found, 458.2035.
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3c¢. This compound was synthesized according to procedure A outlined above using the
following amounts: 2¢ (0.250 g, 0.206 mmol), 2-(SiMe;3)CcH,4(OTf) (0.147 g, 0.495 mmol),
TBAT (0.534 g, 0.990 mmol), DMAD (0.087 g, 0.617 mmol), benzene (5 mL). Eluent: 33%
CH,Cl, in hexanes. 3¢ (0.088 g, 40%, 94% purity) was isolated as a pale-yellow powder. 'H
NMR (600 MHz, CDCl;) 6 8.00-7.97 (m, 4H), 7.58 (s, 4H), 7.57-7.55 (d, J = 8.3 Hz, 8H), 7.50-
7.47 (m, 4H), 7.37-7.35 (d, J = 8.3 Hz, 8H), 1.43 (s, 36H). 3C NMR (151 MHz, CDCl;) §
151.26, 137.86, 137.22, 132.59, 131.19, 130.08, 129.68, 128.01, 127.27, 126.60, 126.43, 126.38,
125.70, 125.49, 125.05, 125.02, 124.79, 122.98, 34.87, 31.52. HRMS-EI (m/z): [M]* calcd for
C14HegsF6, 1066.4912; found, 1066.4914.

3d. This compound was synthesized according to procedure A outlined above using the
following amounts: 2d (0.150 g, 0.130 mmol), 2-(SiMe;3)CsH4(OTY) (0.093 g, 0.312 mmol),
TBAT (0.337 g, 0.625 mmol), DMAD (0.055 g, 0.390 mmol), benzene (5 mL). Eluent: 33%
CH,Cl, in hexanes. 3d (0.121 g, 70%, 95% purity) was isolated as a pale-yellow powder. "H
NMR (600 MHz, CDCl;) 6 8.64 (s, 2H), 7.99-7.98 (m, 2H), 7.93-7.92 (m, 2H), 7.73-7.70 (d, J =
8.3 Hz, 4H), 7.67-7.65 (d, J = 8.3 Hz, 4H), 7.48-7.43 (overlapped m, 8H), 7.40-7.38 (d, ] = 8.27
Hz, 4H), 7.34-7.32 (m, 2H) 7.14-7.10 (m, 2H), 7.02-7.00 (m, 2H), 6.86-6.82 (m, 2H), 1.50 (s,
18H), 1.40 (s, 18H). 3C NMR (151 MHz, CDCl;) 6 150.73, 139.38, 138.56, 135.60, 135.19,
135.17, 135.15, 132.84, 132.49, 132.37, 132.07, 131.72, 130.98, 130.74, 130.55, 130.17, 129.53,
129.03, 128.23, 127.06, 126.97, 126.55, 126.53, 126.48, 125.89, 125.65, 125.61, 125.52, 124.44,
31.83, 31.62. HRMS-EI (m/z): [M]" calcd for C;3H79, 1006.5478; found, 1006.5480.
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3e. This compound was synthesized according to procedure B outlined above using the following
amounts: 2e (0.200 g, 0.136 mmol), 1,2-dibromobenzene (0.114 g, 0.489 mmol), nBuLi (1.00 M
in hexanes, 0.476 mL, 0.476 mmol), benzene (2 mL). Eluent: 35% CH,Cl, in hexanes. 3e (0.094
g, 55%, 92% purity) was isolated as a yellow powder. 'H NMR (600 MHz, CDCl3) 6 10.08 (s,
2H), 10.00 (s, 2H), 9.02 (s, 2H), 8.97 (s, 2H), 8.93-8.91 (m, 2H), 8.35-8.32 (m, 4H), 8.31-8.28
(m, 2H), 8.11-8.09 (m, 2H), 7.66-7.60 (overlapped m, 8H), 7.57-7.55 (m, 2H), 4.21 (s, 6H), 4.19
(s, 6H), 3.90-3.80 (overlapped m, 12H), 2.30-2.23 (overlapped m, 8H), 1.96 (b, 4H), 1.29-1.26
(m, 6H), 1.24-1.22 (m, 6H), 1.08-1.05 (m, 6H). 13C NMR (151 MHz, CDCl3) 5 144.37, 144.30,
132.81, 132.69, 132.54, 132.43, 132.42, 132.31, 132.23, 131.98, 131.56, 130.91, 130.87, 130.57,
130.42, 130.35, 130.10, 128.66, 128.38, 128.28, 127.86, 127.64, 126.78, 125.99, 125.94, 125.89,
125.58, 125.50, 125.47, 124.06, 123.82, 123.63, 118.17, 117.72, 61.13, 61.13, 34.38, 34.34,
34.26, 25.49,25.21, 25.16, 14.82, 14.77, 14.70. HRMS-EI (m/z): [M]" calcd for Co,Hg,Oy,
1250.6213; found, 1250.6212.
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PAH 4. This compound was synthesized according to procedure A outlined above using the
following amounts: 2a (0.100 g, 0.188 mmol), 2-(SiMe;)-3-(OTf)naphthalene (0.079 g, 0.226
mmol), TBAT (0.335 g, 0.621 mmol), DMAD (0.080 g, 0.564 mmol), benzene (6 mL). Eluent:
10% CH,Cl, in hexanes. 4 (0.073 g, 76%, >98% purity) was isolated as a bright yellow powder.
'TH NMR (500 MHz, CDCl3) 5 8.53 (s, 2H), 8.21-8.19 (m, 2H), 7.93-7.91 (m, 2H), 7.56-7.52 (m,
4H), 7.50-7.48 (overlapped m, 4H), 7.44-7.42 (m, 2H), 7.41-7.39 (m, 4H), 7.35-7.32 (m, 2H),
7.00-6.97 (m, 2H), 2.56 (s, 6H). 13C NMR (151 MHz, CDCl3) & 138.80, 137.62, 135.34, 135.06,
132.86, 132.43, 132.04, 131.54, 130.86, 130.02, 128.54, 127.84, 127.05, 126.08, 125.79, 125.51,
123.53, 21.63. HRMS-EI (m/z): [M]" calcd for C4oH,s, 508.2191; found, 508.2190.
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PAH 8. This compound was synthesized according to procedure A outlined above using the
following amounts: 2a (0.150 g, 0.130 mmol), 2,5-(SiMe;)-1,4-(OT)CcH4 (0.093 g, 0.312
mmol)*, TBAT (0.337 g, 0.625 mmol), DMAD (0.055 g, 0.390 mmol), benzene (5 mL). Eluent:
33% CH,Cl, in hexanes. 8 (0.132 g, 76%)* was isolated as a pale-yellow powder. 'H NMR (600
MHz, C¢Dg): 6 8.28 (dd, /= 8.0 Hz, 2H), 8.17 (s, 1H), 7.88 (s, 1H), 7.60 (t,J = 7.5 Hz, 2H), 7.48
(d, J=7.1 Hz, 2H), 7.43-7.31 (m, 11H), 7.28-7.24 (m, 4H), 7.02 (t, J= 7.7 Hz, 2H), 2.51 (s, 3H),
2.50 (s, 3H), 0.34 (s, 9H). 3C NMR (151 MHz, C¢Dg): 8 152.8, 138.0, 137.9, 137.8, 137.7, 137.2,
135.6, 135.5, 135.4, 135.3, 133.0, 132.4, 132.3, 132.1, 131.3, 131.1, 130.9, 130.7, 130.6, 130.5,
130.2, 130.04, 130.02, 129.93, 129.88, 127.8, 127.4, 127.2, 126.09, 126.06, 123.49, 123.46, 118.6
(9, Jcr=320.5Hz, CF3),116.0,21.6, 21.6, -0.6. HRMS-EI (m/z): [M]" caled for C4oH33F;05SSi,
678.1872; found, 678.1875.

*NOTE: use of a larger excess of 2,5-(SiMes)-1,4-(0OTf)CcH, (0.169 g, 0.567 mmol) while keeping
all other parameters constant moderately improved the yield of 8 (0.147 g, 85%).

BrBr
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PAH 9. A flask was charged with 2a (0.250 g, 0.470 mmol, 1.00 equiv), 1,2,4,5-
tetrabromobenzene (0.370 g, 0.940 mmol, 2.00 equivs), and benzene (5 mL) and stirred vigorously
until all components were fully dissolved. To this solution was added n-butyllithium (1.00 M in
hexanes, 0.517 mL, 0.517 mmol, 1.1 equivs) dropwise over 15 min. The reaction mixture was
quenched with aqueous ammonium chloride, extracted with CH,Cl,, dried over MgSQO,, and
concentrated to dryness via rotary evaporation. The excess 1,2,4,5-tetrabromobenzene was
removed from the crude product by sublimation in vacuo. The remaining crude product was
dissolved in CH,Cl, (5 mL) and precipitated from solution by the addition of MeOH (15 mL). The
precipitate was collected on a fritted funnel to afford 3a (0.191 g, 66%) as a light peach-colored
powder. 'H NMR (400 MHz, CDCl;) 6 8.26-8.24 (d, J= 8.5 Hz, 2H), 8.20 (s, 2H), 7.51-7.49 (d,
J=28.5Hz, 2H), 7.37-7.35 (overlapped m, 10H), 7.01-7.00 (m, 2H), 2.50 (s, 6H). 13C NMR (151
MHz, C¢Dg) 6 138.03, 137.96, 134.82, 132.72, 132.69, 132.43, 131.82, 131.64, 131.03, 130.97,
130.36, 128.22, 128.06, 127.90, 127.66, 126.37, 123.92, 122.75, 21.28. HRMS-EI (m/z): [M]*
calcd for CssH,4Br,, 678.1872; found, 678.1875.
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PAH 10.

From 8: A teflon stoppered flask was charged with 2b (0.053 g, 0.100 mmol, 1.00 equiv), 8 (0.075
g, 0.110 mmol, 1.1 equivs), TBAT (0.178 g, 0.330 mmol, 3.30 equivs), DMAD (0.021 g, 0.150
mmol, 1.50 equivs), benzene (2 mL). The flask was sealed and heated to 60 °C for 24 h. The
reaction mixture was cooled to RT and concentrated via rotary evaporation. The crude solid was
purified by preparatory thin layer chromatography (25% CH,Cl, in hexanes) to afford 10 (0.060
g, 72%, 90% purity) was isolated as an orange powder.

From 9: A flask was charged with 2b (0.053 g, 0.100 mmol, 1.00 equiv), 9 (0.074 g, 0.120 mmol,
1.20 equivs), and benzene (1 mL) and stirred vigorously until all components were fully dissolved.
To this solution was added n-butyllithium (1.00 M in hexanes, 0.120 mL, 0.120 mmol, 1.20 equivs)
dropwise over 15 min. The reaction mixture was quenched with aqueous ammonium chloride,
extracted with CH,Cl,, dried over MgSQO,, and concentrated to dryness via rotary evaporation. The
crude product was purified by preparatory thin layer chromatography (25% CH,Cl, in hexanes) to
afford 3a (0.050 g, 60%) as an orange powder.

IH NMR (400 MHz, CsDy) & 9.59 (s, 2H), 9.44 (s, 2H), 9.01 (s, 2H), 8.92 (s, 2H), 8.25-8.22 (m,
2H), 7.94-7.92 (m, 2H), 7.38-7.34 (m, 2H), 7.32-7.28 (m, 2H), 3.96 (s, 6H), 3.93 (s, 6H), 3.43-
3.39 (m, 4H), 3.37-3.33 (m, 4H), 3.03-2.99 (m, 4H), 1.73-1.66 (m, 8H), 1.58-1.53 (m, 2H), 1.04-
0.99 (m, 12H), 0.91-0.87 (m, 6H), 0.51 (s, 6H), 0.48 (s, 12H). HRMS-EI (m/z): [M]" calcd for
CesHus, 838.3600; found, 838.3603.

PAH 11. A flask was charged with 2a (0.250 g, 0.470 mmol, 1.00 equiv), 1,2,4,5-
tetrabromobenzene (0.093 g, 0.235 mmol, 0.50 equivs), and benzene (5 mL) and stirred vigorously
until all components were fully dissolved. To this solution was added »-butyllithium (1.00 M in
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hexanes, 0.517 mL, 0.517 mmol, 1.1 equivs) dropwise over 15 min. Over the course of the reaction
a bright orange crystalline solid precipitated from the reaction mixture. Upon completion, the
precipitate was collected on a fritted funnel and washed with THF (5x5 mL) to afford 11 (0.078 g,
40%) as a bright orange crystalline solid. Anal. Caled for CgHye: C, 94.5; H, 5.5. Found: C, 94.6;
H, 5.4. HRMS-EI (m/z): [M]* calcd for C¢sHys, 838.3600; found, 838.3606.

Diels Alder cycloaddition with alkynes:

Procedure: A flask was charged with stannole 2a (1.0 equiv), the desired alkyne (1.1 equivs), and
toluene. The flask was sealed, and the stirred reaction mixture was heated to 100 "C for 24 h. The
solution was cooled to RT and concentrated to dryness via rotary evaporation. The crude product
was purified by column chromatography.

PAH 5. This compound was synthesized according to the procedure outlined above using the
following amounts: 2a (0.100 g, 0.188 mmol), cyclooctyne (0.022 g, 0.206 mmol), toluene (2 mL).
Eluent: 5% CH,Cl, in hexanes. 5 (0.085 g, 97%, >98% purity) was isolated as an off-white powder.
'TH NMR (600 MHz, C¢Dg): 6 8.36 (dd, J= 8.1 Hz, 2H), 7.72 (d, /= 8.5 Hz, 2H), 7.33 (t, /= 7.5
Hz, 2H), 7.27 (d,J="7.4 Hz, 4H), 7.21 (d, J= 7.8 Hz, 4H), 7.02 (t,J= 7.8 Hz, 2H), 2.97-2.89 (m,
4H), 2.44 (s, 6H), 1.56 (br m, 4H), 1.48 (br m, 4H). 3C NMR (151 MHz, C¢Dg): 6 140.9, 139.8,
137.5, 136.4, 131.6, 131.30, 131.27, 130.4, 129.8, 129.3, 125.8, 125.3, 123.0, 31.8, 28.9, 26.0,
21.4. HRMS-EI (m/z): [M]" calcd for CsgH34, 490.2661; found, 490.2662.

M902 COzMG
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PAH 6. This compound was synthesized according to the procedure outlined above using the
following amounts: 2a (0.100 g, 0.188 mmol), dimethylacetylenedicarboxylate (0.029 g, 0.206
mmol), toluene (2 mL). Eluent: 30% CH,Cl, in hexanes. 6 (0.088 g, 89%, 97% purity) was isolated
as an off-white powder. 'H NMR (600 MHz, CDCl;): 5 8.40 (dd, J = 8.3, 0.7 Hz, 2H), 7.58 (dd,
J=28.5,0.9 Hz, 2H), 7.44 (dt, J= 7.5, 1.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 4H), 7.20 (d, J = 8.0 Hz,
4H), 7.06 (dt, J = 7.7, 1.2 Hz, 2H), 3.57 (s, 6H), 2.41 (s, 6H). 13C NMR (151 MHz, CDCl;): 5
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169.6, 138.5,137.8, 136.2, 132.9, 132.0, 131.4, 130.00, 129.97, 129.95, 127.5, 125.9, 123.3, 52.5,
21.5. HRMS-EI (m/z): [M]* calcd for C34H»304, 524.1988; found, 524.1985.
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PAH 7. This compound was synthesized according to the procedure outlined above using the
following amounts: 2a (0.100 g, 0.188 mmol), 4-ethynyltoluene (0.024 g, 0.206 mmol), toluene (2
mL). Eluent: 10% CH,Cl, in hexanes. 7 (0.039 g, 42%, 96% purity) was isolated as an off-white
powder. 'TH NMR (600 MHz, CDCly): 6 8.41 (dd, J=7.6, 3.7 Hz, 2H), 7.75 (d, J = 8.4 Hz, 1H),
7.61 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.43 (dt,J= 7.5, 1.0 Hz, 1H), 7.40-7.36 (m, 3H), 7.20 (d, J
=8.0 Hz, 2H), 7.10 (td, J= 7.6, 1.1 Hz, 1H), 7.03-6.94 (m, 9H), 2.42 (s, 3H), 2.33 (s, 3H), 2.32 (s,
3H). 13C NMR (151 MHz, C¢Dy): 6 141.7, 140.2, 139.2, 139.0, 138.0, 137.0, 136.5, 136.2, 135.8,
132.7,132.1,132.1,131.7, 131.5, 131.2, 130.5, 130.2, 130.0, 129.92, 129.87, 129.8, 129.7, 129.3,
128.6, 126.6, 126.4, 125.6, 125.3, 123.3, 21.43, 21.39, 21.3. HRMS-EI (m/z): [M]" calcd for
C;9H30, 498.2348; found, 498.2346.

PAH 12. A flask was charged with stannole 2e (0.060 g, 0.040 mmol, 1.00 equiv), 9 (0.083 g,
0.135 mmol, 3.30 equivs), and 1-chloronaphthalene (1 mL) and stirred vigorously until all
components were dissolved. To this solution was added zn-butyllithium (1.00 M in hexanes, 0.128
mL, 0.128 mmol, 3.20 equivs) dropwise over 15 min. To the reaction mixture was added 10 mL
pentane, and the precipitate was collected on a fritted funnel and washed with pentane (3x3 mL).
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The crude solid was purified by preparatory thin layer chromatography (35% DCM in Hexanes)
to afford 12 (0.025 g, 27%) as a bright orange powder. 'TH NMR (600 MHz, C¢D¢) 6 10.13 (s,
1H), 10.02 (s, 1H), 9.28 (d, /= 6.9 Hz, 2H), 9.20 (d, /= 3.3 Hz, 3H), 9.11 (s, 1H), 8.30 (d, /= 8.6
Hz, 1H), 8.20 — 8.01 (m, 18H), 7.56 (d, /= 8.1 Hz, 10H), 7.48 (d, J= 8.1 Hz, 3H), 7.36 (d, /= 8.3
Hz, 4H), 7.32 (d, J = 7.4 Hz, 4H), 7.29 (s, 11H), 7.27 — 7.23 (m, 6H), 6.93 — 6.88 (m, 3H), 3.85
(d, J=3.4 Hz, 6H), 2.30 — 2.24 (m, 16H), 2.11 (s, 7H), 1.17 — 1.01 (m, 22H). HRMS-EI (m/z):
[M]* caled for Cig,H 4,04, 2392.0942; found, 2392.0942".

*NOTE: There is an additional small peak in the MALDI spectrum at 2426.1199 (Figure S54).
This corresponds to 12 + 34 amu, which we tentatively attribute to the addition of oxygen across
one tetrabenzopentacene unit and subsequent protonation under MALDI conditions. Due to the
high light and oxygen sensitivity of the compound, we believe this occurs during spotting the
sample and/or loading of the plate rather than as a function of an impurity present in the bulk
material.

COT 13. A flask was charged with stannole 2b (0.150 g, 0.282 mmol) and mesitylene (4 mL). The
flask was sealed, and the stirred reaction mixture was heated to 160 °C for 72 h. The solution was
cooled to RT and concentrated to dryness via rotary evaporator to afford 13 (0.105 g, 98%, >98%
purity) as a pale-yellow solid. Single crystals suitable for x-ray diffraction were grown by slow
evaporation of a saturated CH,Cly/hexanes solution. 'TH NMR (600 MHz, CDCls) 5 8.80-8.77 (m,
2H), 8.64 (d, J= 8.3 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.86-7.83 (overlapped m, 2H), 7.80-7.78
(m, 1H), 7.56-7.55 (d, J = 8.3 Hz, 1H), 7.40-7.35 (overlapped m, 2H), 7.14-7.13 (overlapped m,
3H), 7.09-7.06 (overlapped m, 3H), 6.89-6.88 (d, J = 7.9 Hz, 2H), 6.84-6.82 (d, J = 8.2 Hz, 2H),
6.75-6.74 (d, J = 7.9 Hz, 2H), 6.67-6.65 (d, J = 8.1 Hz, 2H), 6.60-6.55 (m, 5H), 6.51 (m, 2H),
6.10-6.09 (d, /= 7.5 Hz, 1H), 2.22 (s, 3H), 2.14 (s, 6H), 2.13 (s, 6H), 2.04 (s, 3H). 13C NMR (151
MHz, CDCl;) 6 143.35, 141.44, 140.33, 139.04, 138.08, 137.98, 137.33, 137.24, 136.85, 136.26,
136.23, 136.20, 136.12, 136.02, 135.78, 135.45, 135.36, 134.86, 134.31, 131.76, 131.72, 131.07,
130.78, 130.73, 130.68, 130.43, 130.35, 130.12, 128.80, 128.56, 128.52, 128.49, 128.45, 128.12,
128.07, 127.96, 127.51, 127.47, 126.96, 126.86, 126.73, 126.64, 126.45, 126.42, 126.38, 125.73,
124.14, 123.36, 122.90, 122.33, 21.32, 21.25, 21.23, 21.18. HRMS-EI (m/z): [M]" calcd for
CeoHyg, 764.3443; found, 764.3444.

General Considerations for Reproducible Stannole Svnthesis

We have found that several reaction parameters are particularly important to ensure reproducible
results for the generation of stannoles and their subsequent cycloadditions which are highlighted
here.
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Due to the heterogeneous nature of the reaction, vigorous, efficient stirring is absolutely necessary
to ensure reliable results from stannole generation. The reaction vessel used to run these reactions
should be ~5x the volume of solvent and the stir bar should be an appropriate size for the reaction
vessel, resulting in a powerful vortex that evenly disperses the insoluble components. It is
important that stirring remain strong for the duration of the reaction.

Commercial CuCl can contain a wide range of impurities that may adversely impact the reaction.
While some batches appeared to work appropriately as-received, others gave significantly
decreased yields, and in some cases no product formation at all. Notably, during the synthesis of
stannole 2a, impure CuCl appears to mediate the formation of COT 13 as a major side product.
To avoid this issue, commercial CuCl was recrystallized by dissolution in concentrated HCI and
precipitation by addition of deionized H,O. It was subsequently filtered, washed with ethanol
followed by diethyl ether, dried under vacuum at 200 °C overnight, and stored in a glovebox.

Optimization of [4+2] Cycloaddition with 0-SiMe;-OTf arenes

Optimization of cycloaddition conditions was carried out using model system 2a and 2-
(SiMe;)CgHy(OTHY). Stannole 2a was held at a constant concentration of 18.8 mM and equivalents
of other reagents are stated in reference to this. All reactions were run for 24 h. All yields were
determined in-situ via '"H NMR spectroscopy using dimethyl sulfone as an internal standard.

Scheme S1. Cycloaddition of model stannole 2a for optimization.

|\/|e2 O
¢ L) Me38|© [4+2] a=ave

cycloaddmon

Q.O “aryne ale

2a 3a
Aryne F- F- Stannylene Trap Solvent | Temperature | Yield
equivs Source equivs Trap equivs (48] (%)
1 TBAT 1.1 none - THF 23 71
1 TBAT 3 none - THF 23 73
1.1 TBAT 33 none - THF 23 76
1.1 TBAT 33 none - DCM 23 15
1.1 TBAT 33 none - Toluene 60 78
1.1 CsF 33 none - THF 50 37
1.1 TMAF 33 none - THF 23 52
1.1 KF/NBu,Cl 33 none - THF 23 4
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1.1 TBAT 3.3 DMAD 1.5 Toluene 60 88
1.1 TBAT 33 DMAD 3 Toluene 60 87
1.1 TBAT 3.3 DMAD 5 Toluene 60 84
1.1 TBAT 33 diphenyldisulfide 3 Toluene 60 78
1.1 TBAT 33 butylbromide 10 Toluene 60 76
1.1 TBAT 33 diacetyl 3 Toluene 60 76

Table S1. Optimization of [4+2] cycloaddition of 2a with 0-SiMe;-OTT arenes.
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Figure S31. '"H NMR Spectrum (600 MHz, CDCl;) of 3c.
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Figure S32. BC{'H} NMR Spectrum (151 MHz, CDCl;) of 3c.
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Figure S33. '"H NMR Spectrum (600 MHz, CDC]l5) of 3d.
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Figure S34. 3C{'H} NMR Spectrum (151 MHz, CDCl;) of 3d.
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Figure S36. 3C{'H} NMR Spectrum (151 MHz, CDCl;) of 3e.
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Figure S42. BC{'H} NMR Spectrum (151 MHz, CDCl;) of 6.
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Figure S43. '"H NMR Spectrum (600 MHz, CDCl5) of 7.
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Figure S46. 3C{'H} NMR Spectrum (151 MHz, CDCl;) of 8.
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Figure S48. 3C{'H} NMR Spectrum (151 MHz, C¢D) of 9.
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Figure S49. '"H NMR Spectrum (400 MHz, C¢Dg) of 10.
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Figure S50. "H NMR Spectrum (600 MHz, C¢Dg) of 12.
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Figure S51. "H NMR Spectrum (600 MHz, CDCl;) of 13.
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Figure S52. BC{'H} NMR Spectrum (101 MHz, CDCl;) of 13.

MALDI-TOF Spectrometry

Mass spectrometry of all compounds was performed via matrix-assisted laser desorption ionization
— time of flight (MALDI-TOF) at the LBNL Catalysis Lab at UC Berkeley, using TCNQ as the
matrix. Isotope patterns were calculated with Adaptas Solutions’ Isotope Distribution Calculator
(https://www.sisweb.com/mstools/isotope.htm).
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Figure S53. MALDI-TOF spectra of 11 from a) 500-1500 amu, and b) 830-870 amu. Inset depicts
the calculated masses and isotope pattern of 11.
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Figure S54. MALDI-TOF spectra of 12 from a) 500-3000 amu, and b) 2380-2440 amu. Inset
depicts the calculated masses and isotope pattern of 12.

Steady-State Spectroscopy

UV-Vis and fluorescence spectroscopies were performed on a Varian 5000 UV-Vis-NIR
spectrometer and Nanolog Spectrofluorimeter respectively using quartz cuvettes with a path
length of 1 cm. Dry, degassed THF was used as the solvent for 3b, 3¢, 3d, 3e, 4, and 12, and 1-
chloronaphthalene was used as the solvent for 11. UV-vis and fluorescence spectra for all

compounds were acquired at 5x10°° M and acquired in duplicate. Molar absorptivity (g) was
calculated using the Beer-Lambert Law.

X-ray Crystallography

X-ray diffraction data for 13 was collected at the UC Berkeley CheXRay crystallographic facility
on a Rigaku Pilatus 200K diffractometer using Cu Ka radiation with a wavelength of 1.5418 A.
Crystals of 13 were kept at 100 K throughout collection. Data collection, integration, scaling, and
space group determination for 13 was performed with Rigaku CrysAlis Pro (v. 40 _64.84a)
software. Structures were solved by SHELXT-2014!° and refined with SHELXL-2014,'! with
refinement of F? on all data by full-matrix least squares, using the OLEX2 interface.'> The 3D
molecular structure figures were visualized with Mercury 3.7.

Details of structure solution and refinement for 13:
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All non-hydrogen atoms in the solid-state molecular structure of 13 were refined anisotropically.
Hydrogen atoms were placed in calculated positions using a riding model and refined
isotropically. The asymmetric unit contains one molecule of chloroform which was disordered
across two positions. The relative occupancies of these components were modeled using free
variables. The anisotropic displacement parameters of atoms C13 and CI3A were fixed to be
equal using the EADP constraint. A disordered, partially occupied (occu = 0.66) molecule of
chloroform occupying a special position was accounted for with SQUEEZE.

Empirical formula Ce1H45Cl3+0.66[ CHCI;]
Formula weight 884.32
Temperature/K 100
Crystal system Triclinic
Space group P-1
alA 13.13230(10)
b/A 14.2033(2)
c/A 14.70790(10)
a/° 94.6060(10)
/° 111.0410(10)
y/° 97.9730(10)
Volume/A3 2510.43(5)
Z 2
Dealcg/cm’ 1.170
w/mm'! 1.931
F(000) 924.0
Crystal size/mm3 0.11 x 0.08 x 0.065
Radiation CuKo (A=1.54184 A)
20 range for data collection/° | 6.346 to 149.004
Index ranges —-16<h<16,-17<k<17,
-18<I<18
Reflections collected 100149

Table S2. Crystal data and structure refinement for 13.
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