Supporting information for

Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies

Li-Long Dang,*‡^{ab} Ting-Ting Li,‡^{ac} Ting-Ting Zhang,^a Ying Zhao,^a Tian Chen,^a Xiang Gao,^b Lu-Fang Ma,^a and

Guo-Xin Jin*b

- a. College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934 (P. R. China).
- b. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- c. College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin 541004 (P. R. China).

*E-mail: gxjin@fudan.edu.cn; danglilong8@163.com

Contents

1.	General considerations	2
2.	Synthesis of complex 1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6, 7, 8, 9a, 9b and 10	5
3.	Single-crystal X-ray structures of 9b and 10	6
4.	NMR spectra	34
5.	ESI-MS spectra	36
6.	Near-infrared photothermal conversion research	39
7.	X-ray crystallography details	45
8.	References	46

1. General considerations

All reagents and solvents were purchased from commercial sources and used as supplied unless otherwise mentioned. The starting materials $[Cp*RhCl_2]_2$ $(Cp*=\eta^5$ -pentamethylcyclopentadienyl)^[1], BiBzIm (BiBzIm = 2, 2'bisbenzimidazole)^[2] were prepared by literature methods. NMR spectra were recorded on Bruker AVANCE I 400 spectrometers at room temperature and referenced to the residual protonated solvent. Proton chemical shifts are reported relative to the solvent residual peak (δ H = 3.31 (CD₃OD), 2.50 (DMSO-D6), 2.75, 2.92 (DMF)) and δ C = 49.00 (CD₃OD), 29.76, 34.89 (DMF)). Coupling constants are expressed in Hertz. Elemental analyses were performed on an Elementar Vario EL III analyzer. ESI-MS spectra were recorded on a Micro TOF II mass spectrometer.

2. Synthesis of complex 1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6, 7, 8, 9a, 9b and 10

Preparation of complex 1

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in a CH₃OH (8 mL) at room temperature. The reaction mixture was stirred in the dark for 24 h and then filtered. BiBzIm (28.1 mg, 0.12 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a yellow solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a yellow solution. Upon the addition of diethyl ether, a yellow solid was precipitated and collected. The product was recrystallized from a CH₃OH/diethyl ether mixture to afford yellow block-shaped crystals (1). 141.83 mg, yield 88.2%. Anal. Calcd for C₁₂₀H₁₁₆N₁₂O₁₂F₁₂S₄Rh₄ (M = 2686.16): C, 53.66; H, 4.35; N, 6.26. Found: C, 53.46; H, 4.30; N, 6.28. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.09 (m, 4H, BiBzIm-aH), δ = 7.76 (d, J = 5.6Hz, 4H, pyridyl-cH), δ = 7.55 (m, 4H, BiBzIm-bH), δ = 6.98 (d, J = 5.6Hz, 4H, pyridyl-cH), δ = 1.91 (s, 30H, Cp*-H).

Preparation of complex 2

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (8 mL) at room temperature. The reaction mixture was stirred in the dark for 24 h and then filtered. BiBzIm (28.1 mg, 0.12 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a yellow solution. **L2** (33.64 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a yellow solution. Upon the addition of diethyl ether, a yellow solid was precipitated and collected. The product was recrystallized from a CH₃OH/diethyl ether mixture to afford block-shaped crystals (**2**). 128.18 mg, yield: 83.4%. Anal. Calcd for $C_{112}H_{100}N_{12}O_{12}F_{12}S_4Rh_4$ (M = 2573.95): C, 52.26; H, 3.92; N, 6.53. Found: C, 52.21; H, 3.89; N, 6.55. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.09 (m, 4H, BiBzIm-aH), δ = 7.77 (d, J = 5.6Hz, 4H, pyridyl-cH), δ = 7.57 (m, 4H, BiBzIm-bH), δ = 6.97 (d, J = 6.0 Hz, 4H, pyridyl-dH), δ = 1.90 (s, 30H, Cp*-H).

Preparation of complex 3a

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in the mixture solution of CH₃OH (4 mL) and DMF (16 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 2,5-Dihydroxy-1,4-benzoquinone (16.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark brown solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. The solvent was concentrated to about 8 mL. Upon addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (3a). 132.63 mg, yield: 88.5%. Anal. Calcd for

 $C_{104}H_{104}F_{12}N_4O_{20}Rh_4S_4$ (M = 2497.83): C, 50.01; H, 4.20; N, 2.24. Found: C, 50.05; H, 4.17; N, 2.27. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.28 (d, J = 5.2Hz, 4H, pyridyl-aH), δ = 7.59 (d, J = 5.2Hz, 4H, pyridyl-bH), δ = 5.67 (s, 2H, phenyl-H of E2), δ = 2.34 (s, 12H, -CH₃), δ = 1.70 (s, 30H, Cp*-H).

Preparation of complex 3b

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 2,5-Dihydroxy-1,4-benzoquinone (16.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark brown solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. The solvent was concentrated to about 8 mL. Upon addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (3b). 135.63 mg, yield: 90.5%. Anal. Calcd for C₂₀₈H₂₀₈F₂₄N₈O₄₀Rh₈S₈ (M = 4995.65): C, 50.01; H, 4.20; N, 2.24. Found: C, 50.03; H, 4.24; N, 2.26. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): $\delta = 8.42$ (d, J = 4.8Hz, 8H, pyridyl-a1H), $\delta = 8.34$ (d, J = 4.8Hz, 8H, pyridyl-b2H), $\delta = 5.78$ (s, 8H, phenyl-H of E2), $\delta = 2.10$ (s, 48H, -CH₃), $\delta = 1.74$ (d, J = 4.4Hz, 60H, Cp*-H).

Preparation of complex 4a

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in the mixture solution of CH₃OH (4 mL) and DMF (16 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 5,8-Dihydroxy-1,4-naphthoquinone (22.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark green solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark green solution. The solvent was concentrated to about 8 mL. Upon addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (4a). 124.70 mg, yield: 80%. Anal. Calcd for $C_{112}H_{108}N_4O_{20}F_{12}S_4Rh_4$ (M = 2597.95): C, 51.78; H, 4.19; N, 2.16. Found: C, 51.73; H, 4.15; N, 2.11.

Preparation of complex 5a

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in the mixture solution of CH₃OH (4 mL) and DMF (16 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 6,11-Dihydroxy-5,12-naphthacene dione (34.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark red solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a green red solution. The solvent was concentrated to about 8 mL. Upon addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (5a). 146.07 mg, yield: 87%. Anal. Calcd for $C_{128}H_{116}N_4O_{20}F_{12}S_4Rh_4$ (M = 2798.19): C, 54.94; H, 4.18; N, 2.00. Found: C, 54.90; H, 4.15; N, 2.05. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.74 (d, J = 7.2Hz, 8H, phenyl-cH of E4), δ = 8.46 (d, J = 5.2Hz, 8H, pyridyl-aH), δ = 7.96 (d, J = 7.6Hz, 8H, phenyl-dH of E4), δ = 7.38 (d, J = 2.8Hz, 8H, pyridyl-bH), δ = 2.19 (s, 24H, -CH₃), δ = 1.75 (s, 60H, Cp*-H).

Preparation of complex 5b

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of [Cp*RhCl₂]₂ (74.4 mg, 0.12 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 6,11-Dihydroxy-5,12-naphthacene dione (34.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the

filtrate. The mixture was stirred at room temperature for 12 h to give a dark green solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark green solution. The solvent was concentrated to about 8 mL. Upon addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (**5b**). 151.10 mg, yield: 90.0%. Anal. Calcd for $C_{256}H_{232}N_8O_{40}F_{24}S_8Rh_8$ (M = 5596.37): C, 54.94; H, 4.18; N, 2.00. Found: C, 54.89; H, 4.13; N, 2.10. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.81 (m, 16H, phenyl-cH of E4), δ = 8.55 (d, J = 4.8Hz, 16H, pyridyl-aH), δ = 8.01 (m, 16H, phenyl-dH of E4), δ = 7.38 (d, J = 4Hz, 16H, pyridyl-bH), δ = 1.96 (s, 24H, -CH₃), δ = 1.76 (s, 120H, Cp*-H).

Preparation of complex 6

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (10 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 2,5-Dihydroxy-1,4-benzoquinone (16.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark green solution. L2 (33.64 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark green solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (6). 122.10 mg, yield: 85.3%. Anal. Calcd for C₉₆H₈₈N₄O₂₀F₁₂S₄Rh₄ (M = 2385.61): C, 48.33; H, 3.72; N, 2.35. Found: C, 48.25; H, 3.75; N, 2.33. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.33 (d, J = 4.8Hz, 8H, pyridyl-aH), δ = 7.61 (d, J = 4.8Hz, 8H, pyridyl-bH), δ = 7.55 (d, J = 4.8Hz, 8H, -CH), δ = 5.68 (s, 4H, phenyl-cH of E2), δ = 1.68 (s, 60H, Cp*-H).

Preparation of complex 7

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 5,8-Dihydroxy-1,4-naphthoquinone (22.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark green solution. L2 (33.64 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark green solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (7). 122.89 mg, yield: 82.4%. Anal. Calcd for $C_{104}H_{92}N_4O_{20}F_{12}S_4Rh_4$ (M = 2485.73): C, 50.25; H, 3.73; N, 2.25. Found: C, 50.15; H, 3.70; N, 2.30. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.43 (d, J = 5.2Hz, 8H, pyridyl-aH), δ = 7.55 (d, J = 5.2Hz, 8H, pyridyl-bH), δ = 7.51 (s, 8H, -CH), δ = 7.21 (s, 8H, phenyl-H of E3), δ = 1.61 (s, 60H, Cp*-H).

Preparation of complex 8

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. 6,11-Dihydroxy-5,12-naphthacene dione (34.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark red solution. L2 (33.64 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark red solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark red solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (8). 129.73 mg, yield: 80.5%. Anal. Calcd for $C_{120}H_{100}N_4O_{20}F_{12}S_4Rh_4$ (M = 2685.97): C, 53.66; H, 3.75; N, 2.09. Found: C, 53.56; H, 3.70; N, 2.05. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.95 (d, J = 5.2Hz, 8H, pyridyl-aH), δ = 8.60 (d, J = 4.8Hz, 4H, phenyl-cH of E4), δ = 7.62 (m,

4H, phenyl-dH of E4), δ = 7.52 (d, 8H, pyridyl-bH), δ = 4.96 (s, 8H, -CH), δ = 1.74 (s, 60H, Cp*-H).

Preparation of complex 9a

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in the mixture solution of CH₃OH (4 mL) and DMF (16 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. Naphthalenediimide (35.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark brown solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (9a). 148.58 mg, yield: 88.6%. Anal. Calcd for C₁₂₀H₁₀₈N₈O₂₄F₁₂S₄Rh₄ (M = 2814.06): C, 51.22; H, 3.87; N, 3.98. Found: C, 51.18; H, 3.83; N, 3.95. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.94 (4H, phenyl-c¹H of E5), δ = 8.68 (4H, pyridyl-aH), δ = 7.66 (4H, pyridyl-bH), δ = 2.26 (m, 12H, -CH₃), δ = 1.79 (s, 30H, Cp*-H).

Preparation of complex 9b

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (74.4 mg, 0.12 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. Naphthalenediimide (35.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark brown solution. L1 (40.4 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (9b). 151.12 mg, yield: 89.5%. Anal. Calcd for $C_{360}H_{324}N_{24}O_{72}F_{36}S_{12}Rh_{12}$ (M = 8442.18): C, 51.22; H, 3.87; N, 3.98. Found: C, 51.15; H, 3.85; N, 3.95. ¹H NMR (400 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.92 (4H, pyridyl-aH), δ = 8.67 (4H, phenyl-c1H of E5), δ = 8.27 (4H, phenyl-c2H of E5), δ = 7.74 (4H, pyridyl-bH), δ = 0.80 (m, 12H, -CH₃), δ = 1.84 (s, 30H, Cp*-H).

Preparation of complex 10

AgOTf (123.2 mg, 0.48 mmol) was added to a solution of $[Cp*RhCl_2]_2$ (86.8 mg, 0.14 mmol) in CH₃OH (20 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h and then filtered. Naphthalenediimide (35.8 mg, 0.12 mmol) and NaOH (9.6 mg, 0.24 mmol) was added to the filtrate. The mixture was stirred at room temperature for 12 h to give a dark brown solution. L2 (33.64 mg, 0.12 mmol) was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. The solvent was concentrated to about 6 mL. Upon addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture to afford block-shaped crystals (10). 146.73 mg, yield: 85.5%. Anal. Calcd for $C_{350}H_{318}N_{24}O_{76}F_{36}S_{12}Rh_{14}$ (M = 8580.46): C, 48.96; H, 3.73; N, 3.92. Found: C, 48.92; H, 3.79; N, 3.88. ¹H NMR (500 MHz, CD₃CD, ppm, with respect to Cp*Rh): δ = 8.76 (4H, phenyl-cH of E5), δ = 8.66 (d, 4H, J=6, pyridyl-aH), δ = 7.63 (d, 4H, J=6.5, pyridyl-bH), δ = 7.54 (s, 4H, phenyl-dH of L2), δ = 3.35 (m, 1H, -CH₃-gH of guest -CH₃O), δ = 1.76 (s, 30H, Cp*-eH), δ = 1.63 (s, 5H, Cp*-fH).

3. Single-crystal X-ray structures of 9b and 10

Fig. S1. Molecular structure of complex 9b. (a) and (b) Representation showing π - π interactions between L1 and the NDI groups of E5; (c) and (d) simplified representation and space-filling; most hydrogen atoms, anions, solvent molecules and disordered elements are omitted for clarity (N, blue; O, red; C, gray; Rh, Aqua).

Fig. S2. Molecular structure of complex 10. a) The host-guest chemistry of Borromean ring 10; b) Representation showing π - π interactions among NDI group, L1 and Cp* group of the guest molecule. Most hydrogen atoms, anions, solvent molecules and disordered elements are omitted for clarity (N, blue; O, red; C, gray; Rh, Aqua).

Fig. S3. The ¹H NMR (500 MHz, CD₃OD, ppm) for 1 (15.0 mM, with respect to Cp*Rh)

Fig. S4. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 1 (15.0 mM, with respect to Cp*Rh)

Fig. S5. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 1 ($2.81 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (15.0 mM, with respect to Cp*Rh)

Fig. S6. The ¹H NMR (500 MHz, CD₃OD, ppm) for 2 (0.40 mM, with respect to Cp*Rh)

Fig. S7. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 2 (0.40 mM, with respect to Cp*Rh)

Fig. S8. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 2 ($2.49 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (0.40 mM, with respect to Cp*Rh)

Fig. S9. The ¹H NMR (500 MHz, CD₃OD, ppm) for **3a** (1.0 mM, with respect to Cp*Rh)

Fig. S10. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 3a (1 mM, with respect to Cp*Rh)

Fig. S11. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 3a (2.94 × 10⁻¹⁰ m²s⁻¹) (1.0 mM, with respect to Cp*Rh)

Fig. S12. The ¹H NMR (500 MHz, CD₃OD, ppm) for 3a and 3b (7.0 mM, with respect to Cp*Rh)

Fig. S13. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 3a and 3b (7.0 mM, with respect to Cp*Rh)

Fig. S14. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for **3a** ($2.73 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$) and **3b** ($2.42 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$) (7.0 mM, with respect to Cp*Rh)

Fig. S15. The ¹H NMR (500 MHz, CD₃OD, ppm) for **3b** (20.0 mM, with respect to Cp*Rh)

Fig. S16. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 3b (20.0 mM, with respect to Cp*Rh)

Fig. S17. ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for **3b** ($2.32 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (15.0 mM, with respect to Cp*Rh)

Fig. S18. The ¹H NMR (500 MHz, CD₃OD, ppm) for **3a** and **3b**, showing that an increase in concentration induced the transformation of tetranuclear macrocycle **3a** into the [2] catenane **3b** (1.0-20.0 mM, with respect to Cp*Rh).

Fig. S19. The full ¹H NMR spectra showing the interconversion between [2] catenane **3b** and tetranuclear macrocycle **3a** upon changing solvent ratio (CD₃OD/DMF-d7 [20.0 mM, with respect to Cp*Rh], 500 MHz).

Fig. S20. The partial ¹H NMR spectra showing the interconversion between [2] catenane **3b** and tetranuclear macrocycle **3a** upon changing solvent ratio (CD₃OD/DMF-d7 [20.0 mM, with respect to Cp*Rh], 500 MHz).

Fig. S21. The ¹H NMR (500 MHz, CD₃OD, ppm) for 4a (0.8 mM, with respect to Cp*Rh)

Fig. S22. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 4a (0.8 mM, with respect to Cp*Rh)

Fig. S23. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 4a ($2.86 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (0.8 mM, with respect to Cp*Rh)

Fig. S24. The ¹H NMR (500 MHz, CD₃OD, ppm) for **4a** and **4b**, showing that an increase in concentration induced the transformation of tetranuclear macrocycle **4a** into the [2] catenane **4b** (0.8-20.5 mM, with respect to Cp*Rh).

Fig. S25. The ¹H NMR (500 MHz, CD₃OD, ppm) for **4b**, these weak small peaks (a₁, b₁, c₁, e₁, f₁) are attributed to the single ring signals (20.5 mM, with respect to Cp*Rh)

Fig. S26. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 4b (0.5 mM, with respect to Cp*Rh)

Fig. S27. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 4b ($2.22 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (20.5 mM, with respect to Cp*Rh)

Fig. S28. The ¹H NMR (500 MHz, CD₃OD, ppm) for 5a (0.5 mM, with respect to Cp*Rh)

Fig. S29. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 5a (0.5 mM, with respect to Cp*Rh)

Fig. S30. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 5a ($2.24 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (0.5 mM, with respect to Cp*Rh)

Fig. S31. The ¹H NMR (500 MHz, CD₃OD, ppm) for **5a** and **5b**, showing that an increase in concentration induced the transformation of tetranuclear macrocycle **5a** into the [2] catenane **5b** (0.5-18.0 mM, with respect to Cp*Rh).

Fig. S32. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 5a $(2.92 \times 10^{-10} \text{ m}^2 \text{ s}^{-1})$ and 5b $(2.44 \times 10^{-10} \text{ m}^2 \text{s}^{-1})$ (7.0 mM, with respect to Cp*Rh)

Fig. S33. The ¹H NMR (500 MHz, CD₃OD, ppm) for 5b (18.0 mM, with respect to Cp*Rh)

Fig. S34. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 5b (18.0 mM, with respect to Cp*Rh)

Fig. S35. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 5b ($2.44 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (18.0 mM, with respect to Cp*Rh)

Fig. S36. The ¹H NMR (500 MHz, CD₃OD, ppm) for 6 (14.0 mM, with respect to Cp*Rh)

Fig. S37. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 6 (14 mM, with respect to Cp*Rh)

Fig. S38. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 6 ($3.03 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (14.0 mM, with respect to Cp*Rh)

Fig. S39. The ¹H NMR (500 MHz, CD₃OD, ppm) for **6**, showing no appearance of new signals and disappearance of initial signals of **6** with an increase of concentration in CD₃OD. (4.0-15.0 mM, with respect to Cp*Rh).

Fig. S40. The ¹H NMR (500 MHz, CD₃OD, ppm) for 7 (16.0 mM, with respect to Cp*Rh)

Fig. S41. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 7 (16 mM, with respect to Cp*Rh)

Fig. S42. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 7 ($3.00 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (16.0 mM, with respect to Cp*Rh)

Fig. S43. The ¹H NMR (500 MHz, CD₃OD, ppm) for 7, showing no appearance of new signals and disappearance of initial signals of **6** with an increase of concentration in CD₃OD. (6.0-16.0 mM, with respect to Cp*Rh).

Fig. S44. The ¹H NMR (500 MHz, CD₃OD, ppm) for Borromean ring 8 (25.0 mM, with respect to Cp*Rh)

Fig. S45. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for Borromean ring **8** (25 mM, with respect to Cp*Rh)

Fig. S46. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 8 ($2.07 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (16.0 mM, with respect to Cp*Rh)

Fig. S47. The ¹H NMR (500 MHz, CD₃OD, ppm) for Borromean ring **8**, showing no appearance of new signals and disappearance of initial signals of **8** with an increase of concentration in CD₃OD. (2.0-22.0 mM, with respect to Cp*Rh).

Fig. S48. The ¹H NMR (500 MHz, CD₃OD, ppm) for 9a (0.5 mM, with respect to Cp*Rh)

Fig. S49. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 9a (0.5 mM, with respect to Cp*Rh)

Fig. S50. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD and DMF-d7, ppm) for 9a (2.17 × 10⁻¹⁰ m²s⁻¹) (16.0 mM, with respect to Cp*Rh)

Fig. S51. The ¹H NMR (500 MHz, CD₃OD, ppm) for borromean ring 9b (15.0 mM, with respect to Cp*Rh)

Fig. S52. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 9b ($7.94 \times 10^{-11} \text{ m}^2\text{s}^{-1}$) (16.0 mM, with respect to Cp*Rh)

Fig. S53. The ¹H NMR (500 MHz, CD₃OD, ppm) for **9a** and **9b**, showing that an increase in concentration induced the transformation of tetranuclear macrocycle **9a** into the borromean ring **9b** (0.5-22.0 mM, with respect to Cp*Rh).

Fig. S54. The full ¹H NMR spectra showing the interconversion between [2] borromean ring 9b and tetranuclear macrocycle 9a upon changing solvent ratio (CD₃OD/DMF-d7 [20.0 mM, with respect to Cp*Rh], 500 MHz).

Fig. S55. The ¹H NMR (500 MHz, CD₃OD, ppm) for Borromean ring 10 (30.0 mM, with respect to Cp*Rh)

Fig. S56. The ¹H-¹H COSY NMR (500 MHz, CD₃OD, ppm) for 10 (30.0 mM, with respect to Cp*Rh)

Fig. S57. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 10 ($2.69 \times 10^{-10} \text{ m}^2\text{s}^{-1}$) (30.0 mM, with respect to Cp*Rh)

Fig. S58. The ¹H NMR (500 MHz, CD₃OD, ppm) for Borromean ring **10**, showing no appearance of new signals and disappearance of initial signals of **10** with an increase of concentration in CD₃OD. (2.0-15.0 mM, with respect to Cp*Rh).

Fig. S59. The ¹H NMR (500 MHz, CD₃OD, ppm) for Borromean ring **10**, showing no appearance of new signals and disappearance of initial signals of **10** with an addition of DMF-d₇ in CD₃OD. (6:0-6:7).

Fig. S60. The ¹H-¹H DOSY NMR (500 MHz, CD₃OD, ppm) for 10 in a 1:1 mixture of CD₃OD and DMF-d₇ $(2.19 \times 10^{-10} \text{ m}^2\text{s}^{-1})$ (25.0 mM, with respect to Cp*Rh).

5. ESI-MS spectra

Fig. S61. Full ESI-MS spectra (**a**) of complex **3b**, experimental ESI-MS spectra of [**3b-3OTf**-]³⁺ in CH₃OD solvent.

Fig. S62. Full ESI-MS spectra (**a**) of complex **5b**, experimental ESI-MS spectra of [**5b-2OTf**-]³⁺ in CH₃OD solvent.

6. Near-infrared photothermal conversion research

1. Experimental details.

(a) Details in solution.

To guarantee same amount of conjugated- π area, the applied molar ratio of the four topologies 1/3b/4b/5b was 2:1:1:1. Compound 1 (14.50 mg, 0.0054mmol) was added into a solvent of CH₃OH (0.5 ml). After the solid dissolved absolutely, 1.0 ml of this solution was taken into quartz spectrophotometer cell (1×1×5 cm) and put into the bright spot of a laser with 660 nm wavelength at 0.6 W/cm². Temperature variation of the solution was detected by an infrared camera. Compound **3b** (15.12 mg, 0.0027 mmol), compound **4b** (14.02 mg, 0.0027 mmol) and compound **5b** (13.52 mg, 0.0027 mmol), Compound **6** (12.88 mg, 0.0054 mmol), compound **7** (13.42 mg, 0.0054 mmol) and compound **8** (13.50 mg, 0.0027 mmol), were detected with the same procedure as compound 1.

(b) Details in solid state.

The crystalline compounds **1**, **3b**, **4b**, **5b** were grinded well. After that, same weight (30.0 mg) were taken in crystalline state. All these were put a sample cell. And then, they were put under a laser and temperature variation were detected by a same infrared camera as solution compounds. Equations used to calculate near-infrared photothermal conversion efficiency were exhibited as follows:

 $\eta = hS(\Delta T_{sample} - \Delta T_{solvent}) / I(1-10^{-A}) (1)$ $hS = \sum mC_p / \tau_s (2)$ $\tau_s = -t/ln\theta (3)$ $\theta = (T_{amb} - T) / (T_{amb} - T_{max})(4)$

Thereinto, a solvent containing 1.0 ml methanol was used in all samples. Thus, $\Sigma mCp = m$

(methanol) $Cp_{(methanol)} = \rho_{(methanol)} V_{(methanol)} Cp_{(methanol)} = 0.791 \times 0.7 \times 2.51 = 1.3898 \text{ J} \cdot \text{K}^{-1}$. $\Delta T_{solvent} = 0.791 \times 10^{-1} \text{ M}^{-1}$

$2.2^{\circ}C.I = 0.6 \text{ W/cm}^2$

Strictly speaking, volume of mixed solvent was not simple addition of two component. However, the deviation was small enough to ignore it.

2. [2] catenane 3b (with treble π - π stacking interactions).

Fig. S63. (a) Heating and cooling curve of [2]catenane **3b** (with treble π - π stacking interactions); (b) Fitting linear of ln θ -t.

Near-infrared photothermal conversion efficiency η of **3b** was calculated by equations above. A fitting linear of $\ln\theta$ -t was obtained by Eqs (3) and (4), by which τ_s was calculated as 149.48 s.

Thus, hS = $1.3898/149.48 = 9.298 \times 10^{-3} \text{J} \cdot \text{K}^{-1} \cdot \text{S}^{-1}$. $\Delta T_{\text{sample}} = 11.1 \,^{\circ} \text{C} \, (31.5 - 20.4, \text{ Fig. S56(a)})$. A1 = $0.1669 \,(\text{Fig. 12(b) in main text})$. Eventually, $\eta I = 9.297 \times 10^{-2} \times (11.1 - 2.2)/[0.6 \times (1 - 10^{-0.1669}) = 48.28 \,^{\circ}$.

3. [2] catenane 4b (with treble $\pi - \pi$ stacking interactions).

Fig. S64. (a) Heating and cooling curve of [2]catenane 4b (with treble π - π stacking interactions); (b) Fitting linear of ln θ -t.

Near-infrared photothermal conversion efficiency η of **4b** was calculated by equations above. A fitting linear of ln θ -t was obtained by Eqs (3) and (4), by which τ_s was calculated as 101.32 s.

Thus, hS = $1.38985/101.32 = 1.3717 \times 10^{-2} \text{J} \cdot \text{K}^{-1} \cdot \text{S}^{-1}$. $\Delta T_{\text{sample}} = 13.7 \,^{\circ}\text{C} \,(35.2-20.5, \text{ Fig. S30(a)})$. A1 = 0.24684 (Fig. 12(b) in main text). Eventually, $\eta I = 1.3717 \times 10^{-2} \times (13.7 - 2.2)/[0.6 \times (1-10^{-0.24684})] = 60.62\%$.

4. [2] catenane 5b (with treble π - π stacking interactions).

Fig. S65. (a) Heating and cooling curve of [2]catenane **5b** (with treble π - π stacking interactions); (b) Fitting linear of ln θ -t.

Near-infrared photothermal conversion efficiency η of **5b** was calculated by equations above. A fitting linear of ln θ -t was obtained by Eqs (3) and (4), by which τ_s was calculated as 130.2 s. Thus,

hS = $1.3898/130.2 = 1.067 \times 10^{-2}$ J·K⁻¹·S⁻¹. $\Delta T_{sample} = 19.8$ °C (40.3-20.5, Fig. S57(a)). A1 = 0.24684 (Fig. 13(a) in main text). $\eta I = 1.067 \times 10^{-2} \times (19.8 - 2.2)/[0.6 \times (1 - 10^{-0.24684}) = 72.21$ %. 5. Metallarectangle 7 (with single $\pi - \pi$ stacking interaction).

Fig. S66. (a) Heating and cooling curve of Metallarectangle 7 (with a single π - π stacking); (b) Fitting linear of ln θ -t.

Near-infrared photothermal conversion efficiency η of 7 was calculated by equations above. A fitting linear of ln θ -t was obtained by Eqs (3) and (4), by which τ_s was calculated as 126 s. Thus, hS=1.3898/120= 1.1030×10⁻² J·K⁻¹·S⁻¹. $\Delta T_{sample} = 7.8$ °C (28.2-20.4, Fig. S57(a)). A1 = 0.734 (Fig. 13(a) in main text). Eventually, $\eta_1 = 1.1030 \times 10^{-2} \times (7.8-2.2)/[0.6 \times (1-10^{-0.734}) = 12.64$ %.

6. Borromean ring 8 (with six sets of π - π stacking interactions).

Fig. S67. (a) Heating and cooling curve of Borromean ring **8** (with six sets of π - π stacking); (b) Fitting linear of ln θ -t.

Near-infrared photothermal conversion efficiency η of **8** was calculated by equations above. A fitting linear of ln θ -t was obtained by Eqs (3) and (4), by which τ_s was calculated as 120.0 s. Thus,

hS=1.3898/120= 1.1581×10^{-2} J·K⁻¹·S⁻¹. $\Delta T_{\text{sample}} = 13.2$ °C (33.6-20.4, Fig. S57(a)). A1 = 0.517 (Fig. 13(a) in main text). Eventually, $\eta_1 = 1.1581 \times 10^{-2} \times (13.2 - 2.2)/[0.6 \times (1 - 10^{-0.517}) = 30.53$ %.

7. X-ray crystallography details

Single crystals of 1, 3b, 5b, 7, 8, 9b and 10, suitable for X-ray diffraction study were obtained at room temperature. X-ray intensity data of them were collected at 250, 173, 150, 173, 150, 173 K and 193K on a CCD-Bruker SMART APEX system. In these data, the disordered solvent molecules which could not be restrained properly were removed using the PLATON Squeeze routine.

In asymmetric unit of 1, a solvent mask was calculated and 722 electrons were found in a volume of $2146\%A^3$ in 1 void per unit cell. This is consistent with the presence of $5[CF_3SO_3]$ per Asymmetric Unit which account for 730 electrons per unit cell.

In asymmetric unit of **3b**, a solvent mask was calculated and 462 electrons were found in a volume of $2665\%A^3^$ in 4 voids per unit cell. This is consistent with the presence of $3.5[CH_3OH]$, $1[C_6H_{14}O]$ per Asymmetric Unit which account for 484 electrons per unit cell.

In asymmetric unit of **5b**, a solvent mask was calculated and 5774 electrons were found in a volume of $15988 \times A^3$ in 1 void per unit cell. This is consistent with the presence of $20[CF_3SO_3]$ per Asymmetric Unit which account for 5840 electrons per unit cell.

In asymmetric unit of 7, a solvent mask was calculated and 260 electrons were found in a volume of $1098\%A^3^{-1}$ in 3 voids per unit cell. This is consistent with the presence of $2.96[CF_3SO_3]$, $1.04[CF_3SO_3]$ per Asymmetric Unit which account for 292 electrons per unit cell.

In asymmetric unit of **8**, a solvent mask was calculated and 1389 electrons were found in a volume of $6341\%A^3^$ in 1 void per unit cell. This is consistent with the presence of $5[CF_3SO_3]$ per Asymmetric Unit which account for 1460 electrons per unit cell.

In asymmetric unit of **10**, a solvent mask was calculated and 2548 electrons were found in a volume of $14290\%A^3$ in 1 void per unit cell. This is consistent with the presence of $9[CF_3SO_3]$ per Asymmetric Unit which account for 2628 electrons per unit cell.

Table 1 Crystal data and structure refinement for 1.

$C_{123}H_{116}F_{21}N_{12}O_{21}Rh_4S_7$
3133.33
249.99(10)
Monoclinic
$P2_{1}/c$
24.6083(8)
12.7106(5)
23.5913(8)
90
114.206(4)
90

Volume/Å ³	6730.2(5)
Z	2
pcalcg/cm ³	1.546
μ/mm^{-1}	5.766
F(000)	3174.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54178$)
20 range for data collection/°	7.516 to 148.622
Index ranges	-28 \leq h \leq 30, -15 \leq k \leq 15, -29 \leq l \leq 20
Reflections collected	28919
Independent reflections	13295 [Rint = 0.0698, Rsigma = 0.0861]
Data/restraints/parameters	13295/1143/681
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	R1 = 0.0737, wR2 = 0.2033
Final R indexes [all data]	R1 = 0.0945, wR2 = 0.2326
Largest diff. peak/hole / e Å ⁻³	1.39/-1.16

Table 2 Crystal data and structure refinement for 3b

Empirical formula	$C_{113.5}H_{132}F_{12}N_4O_{24.5}Rh_4S_4$
Formula weight	2712.10
Temperature/K	173(2)
Crystal system	monoclinic
Space group	$P2_1$
a/Å	15.5383(4)
b/Å	19.2201(5)
c/Å	41.5739(12)
α/°	90
β/°	94.273(2)
γ/°	90
Volume/Å ³	12381.4(6)
Z	4
pcalcg/cm ³	1.455
µ/mm ⁻¹	0.677
F(000)	5556.0
Crystal size/mm ³	$0.110\times0.080\times0.080$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	2.948 to 51.448
Index ranges	$-18 \le h \le 17, -23 \le k \le 23, -50 \le l \le 50$
Reflections collected	158418
Independent reflections	46905 [Rint = 0.0664, Rsigma = 0.0697]
Data/restraints/parameters	46905/7618/2617
Goodness-of-fit on F ²	1.013
Final R indexes [I>=2 σ (I)]	R1 = 0.0834, wR2 = 0.2272
Final R indexes [all data]	R1 = 0.1100, wR2 = 0.2525
Largest diff. peak/hole /eÅ ⁻³	2.62/-0.68

Table 3. Crystal data and structure refinement for 5b

Empirical formula	$C_{268}H_{233}F_{60}N_8O_{76}Rh_8S_{20}$
Formula weight	7386.09
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	Pna21
a/Å	29.3957(12)
b/Å	27.2297(11)
c/Å	40.625(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	32518(3)
Ζ	4
pcalcg/cm ³	1.509
µ/mm ⁻¹	5.368
F(000)	14900.0
Crystal size/mm ³	$0.14 \times 0.11 \times 0.08$
Radiation	Cu Ka ($\lambda = 1.54178$)
20 range for data collection/°	7.48 to 149.664
Index ranges	$-27 \le h \le 36, -33 \le k \le 17, -50 \le l \le 39$
Reflections collected	81531
Independent reflections	48239 [Rint = 0.0906, Rsigma = 0.1696]
Data/restraints/parameters	48239/7595/2259
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	R1 = 0.0973, $wR2 = 0.1601$
Final R indexes [all data]	R1 = 0.2019, wR2 = 0.2025
Largest diff. peak/hole / e Å ⁻³	0.74/-0.57

Table 4. Crystal data and structure refinement for 7

Empirical formula	$C_{232}H_{240}F_{24}N_8O_{44}Rh_8S_8$
Formula weight	5380.07
Temperature/K	193.00
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /c
a/Å	21.381(12)
b/Å	15.550(6)
c/Å	19.181(6)
α/°	90
β/°	98.216(15)
γ/°	90
Volume/Å ³	6312(5)
Z	1
pcalcg/cm ³	1.415
µ/mm ⁻¹	3.681
F(000)	2744.0
Crystal size/mm ³	0.24 imes 0.22 imes 0.2
Radiation	$GaK\alpha \ (\lambda = 1.34139)$
2Θ range for data collection/°	6.178 to 107.802
Index ranges	$-25 \le h \le 25, -18 \le k \le 12, -22 \le l \le 23$
Reflections collected	44523
Independent reflections	11489 [$R_{int} = 0.0479, R_{sigma} = 0.0424$]
Data/restraints/parameters	11489/1514/841
Goodness-of-fit on F ²	1.089
Final R indexes [I>=2σ (I)]	R1 = 0.0705, wR2 = 0.2208
Final R indexes [all data]	R1 = 0.0890, $wR2 = 0.2402$
Largest diff. peak/hole /eÅ ⁻³	1.61/-0.98

Table 5. Crystal data and structure refinement for 8

Empirical formula	$C_{366}H_{300}F_{54}N_{12}O_{78}Rh_{12}S_{18}$
Formula weight	8952.16
Temperature/K	173.00
Crystal system	monoclinic
Space group	$P2_{l}/n$
a/Å	23.670(2)
b/Å	36.843(3)
c/Å	25.731(2)
α/°	90
β/°	112.251(4)
γ/°	90
Volume/Å ³	20768(3)
Z	2
pcalcg/cm ³	1.432
µ/mm ⁻¹	3.586
F(000)	9036.0
Crystal size/mm ³	$0.24\times0.22\times0.20$
Radiation	$GaK\alpha \ (\lambda = 1.34138)$
2Θ range for data collection/°	5.974 to 107.278
Index ranges	$-27 \le h \le 28, -29 \le k \le 43, -30 \le l \le 23$
Reflections collected	125192
Independent reflections	36699 [Rint = 0.1129, Rsigma = 0.1269]
Data/restraints/parameters	36699/4485/2086
Goodness-of-fit on F ²	1.093
Final R indexes [I>=2 σ (I)]	R1 = 0.1207, wR2 = 0.2638
Final R indexes [all data]	R1 = 0.1800, wR2 = 0.2901
Largest diff. peak/hole/eÅ ⁻³	2.04/-1.65

Table 6. Crystal data and structure refinement for 10

Empirical formula	$C_{366}H_{318}F_{54}N_{24}O_{94}Rh_{14}S_{18}$
Formula weight	9600.25
Temperature/K	193.00
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	20.474(5)
b/Å	34.090(9)
c/Å	38.801(10)
α/°	90
β/°	105.086(12)
γ/°	90
Volume/Å ³	26149(11)
Z	2
pcalcg/cm ³	1.219
µ/mm ⁻¹	3.256
F(000)	9676.0
Crystal size/mm ³	0.23 imes 0.22 imes 0.2
Radiation	Ga Ka ($\lambda = 1.34139$)
2Θ range for data collection/°	4.496 to 108.818
Index ranges	$-24 \le h \le 24, -41 \le k \le 41, -46 \le l \le 45$
Reflections collected	137431
Independent reflections	47779 [Rint = 0.0699, $R_{sigma} = 0.0776$]
Data/restraints/parameters	47779/5532/1793
Goodness-of-fit on F ²	1.146
Final R indexes [I>=2σ (I)]	R1 = 0.1024, wR2 = 0.2124
Final R indexes [all data]	R1 = 0.1552, wR2 = 0.2336
Largest diff. peak/hole/eÅ-3	1.38/-1.37

8. References

- 1. C. White, A. Yates and P. M. Maitlis, η5 -Pentamethylcyclopentadienyl) rhodium and -iridium compounds. *Inorg. Synth.*, **1992**, *29*, 228–234.
- T. Wu, L. H. Weng and G. X. Jin, Sunlight induced cycloaddition and host-guest property of selfassembled organometallic macrocycles based on a versatile building block. *Chem. Comm.*, 2012, 48, 4435–4437.