Rapid Access to *t*-Butylalkylated Olefins Enabled by Ni-Catalyzed Intermolecular Regio- and *trans*-Selective Cross-Electrophile *t*-Butylalkylation of Alkynes

Yi-Zhou Zhan, Huan Meng, and Wei Shu*

Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055, Guangdong, P. R. China *E-mail: <u>shuw@sustech.edu.cn</u>

Table of Contents

1. General Information	S1
2. Optimization of Reaction Conditions	S2
3. General Procedures	S9
3.1. General procedure of the reaction	S9
3.2. Scaled up procedure	S10
3.3. General procedure for the synthesis of tertiary bromides	S11
4. Characterization of New Compounds	S11
5. Mechanistic Investigations and Control Experiments	S37
6. ¹ H, ¹³ C, and ¹⁹ F Spectra of New Compounds	S42
7. X-ray Diffraction Data of 7d	S117
8. References	S119

1. General Information

General Remarks: NMR spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual 1H and 13C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). High-resolution electrospray ionization and electronic impact mass spectrometry was performed on a Thermo Scientific Q Exactive mass spectrometer (mass analyzer type: Orbitrap). A mass accuracy \leq 2 ppm was obtained in the peak matching acquisition mode by using a solution containing 2 <1 PEG200, 2 <1 PPG450, and 1.5 mg NaOAc (all obtained from Sigma-Aldrich, CH-Buchs) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau, E-Barcelona) as internal standard.

Materials and Methods: All reactions were carried out under an inert atmosphere of nitrogen in oven dried or flame dried glassware with magnetic stirring. Unless otherwise stated, starting materials were purchased from Aladdin (KI), Macklin Reagent (DMA), Bide Pharm (NiBr₂·DME), Solvents were purchased in HPLC quality, degassed by purging with nitrogen and dried over activated molecular sieves of appropriate size. DMA was handled by vacuum distillation after dried over CaH₂. Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an ethanolic phosphomolybdic acid solution or an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (300-400 mesh).

2. Optimization of Reaction Conditions

 Entry	He H	NiBr ₂ •DME (10 mol%) Ligand (10 mol%) Zn (3.0 equiv) KI (1.5 equiv) DMF (2.0 mL)	$\frac{1}{Me} + \frac{1}{Me} + \frac{1}{Me} + \frac{1}{Me}$ Yield of 4a ^a
1	L1		58%
2	L2		trace
3	L3		trace
4	L4		trace
5	L5		21%
6	L6		trace
7	L7		26%
8	L8		39%
9	L9		37%
10	L10		13%
11	L11		38%

Table S1. Optimization of ligand

Me 1a 0.1 mmol	+ Br → OEt + Me Me Me L1 (10 mol%) 2a 3a KI (1.5 equiv) 3 equiv 1.8 equiv Solvent (2.0 mL) Me	Me Me L1
Entry	Solvent	Yield of 4a ^a
1	DMF	58%
2	DMA	42%
3	DMSO	53%
4	DMPU	24%
5	DMI	39%
6	NMP	48%
7	CH ₃ CN	trace
8	1,4-dioxane	ND
9	THF	ND
10	Et ₂ O	trace
11	Toluene	ND
12	PhCl	ND
13	DCM	ND

 Table S2. Optimization of solvent

Me 1a 0.1 mmol	+ Br OEt + Me Me NiBr2•DME (10 mol%) 2a 3a L1 (10 mol%) 3 equiv 1.8 equiv DMF (2.0 mL)	
Entry	Reductant	Yield of 4a ^a
1	Zn	58%
2	Mn	53%
3	TDAE	19%

 Table S3. Optimization of reductant

Table S4.	Optimiza	tion of	iodine	sources

Me 1a 0.1 mmol	+ Br O C C C C C C C C C C C C C	OEt N N
Entry	Iodine source	Yield of 4a ^a
1	LiI	55%
2	NaI	54%
3	KI	58%
4	CsI	55%

Me 1a 0.1 mmol	+ Br → OEt + Me Me Br → Br → L1 (10 mol%) 2a 3a 3a ↓ C1 (3.0 equiv) 3 equiv 1.8 equiv DMF (2.0 mL)	OEt Me Me 4a Me L1
Entry	Ni sources	Yield of 4a ^a
1	NiBr ₂ ·DME	58%
2	NiCl ₂ ·DME	48%
3	NiBr ₂	57%
4	NiI2	53%
5	Ni(ClO ₄)2·6H ₂ O	49%
6	Ni(acac) ₂	57%
7	NiCl ₂	35%
8	Ni(OTf) ₂	trace
9	Ni(OAc) ₂ ·4H ₂ O	50%
10	Ni(PPh ₃) ₂ Cl ₂	21%

Table S5. Optimization of Ni sources

Me 1a 0.1 mmol	* Br OEt + Me Me Br Compared to the second secon	OEt N Me L1
Entry	Amount of Ni and L1	Yield of 4a ^a
1	X = 10, Y = 5	42%
2	X = 10, Y = 10	55%
3	X = 10, Y = 15	61%
4	X = 10, Y = 20	63%
5	X = 5, Y = 10	48%
6	X = 8, Y = 16	54%
7	X = 12, Y = 24	51%

Table S6. Optimization of Ni and ligand

Me 1a 0.1 mmol	Br OEt + Me Me Me Br 2a 3a 3 equiv 1.8 equiv	NiBr ₂ •dme (10 mol%) L1 (20 mol%) Zn (3.0 equiv) Kl (1.5 equiv) Co-solvent (2 mL) Me Me 4a	
Entry	Co-	solvent	Yield of 4a ^a
1	DMF (1 mL) -	+ Toluene (1 mL)	65%
2	DMF (1 mL) +	+ Dioxane (1 mL)	67%
3	DMF (1 mL)	+ DCM (1 mL)	3%
4	DMF (1 mL) + THF (1 mL)		64%
5	DMF (1 mL) + DMA (1 mL)		66%
6	DMF (1 mL) + DMSO (1 mL)		58%
7	DMA(1 mL)-	+ Dioxane (1 mL)	69%
8	DMA (1 mL)	+ DCM (1 mL)	13%
9	DMA(1 mL) + THF (1 mL)	64%
10	DMA(1 mL)	+ DMSO (1 mL)	66%

Table S7. Optimization of Co-solvent

Me 1a 0.1 mmol	+ Br OEt + Me Me NiBr2dme (10 mol%) 2a 3a Zn (3.0 equiv) 3 equiv 1.8 equiv DMA + Dioxane (1:1)	
Entry	Concentration	Yield of 4a ^a
1	DMA (0.5 mL) + dioxane (0.5 mL)	61%
2	DMA (0.8 mL) + dioxane (0.8 mL)	66%
3	DMA(1 mL) + dioxane(1 mL)	69%
4	DMA (1.2 mL) + dioxane (1.2 mL)	70%
5	DMA (1.5 mL) + dioxane (1.5 mL)	72%
6	DMA (1.8 mL) + dioxane (1.8 mL)	71%
7	DMA (2 mL) + dioxane (2 mL)	66%

Table S8. Optimization of concentration

Table S9. Optimization of additives

Me 1a 0.1 mmol	Here Me Me Me L1 (20 mol%) 2a 3a DMA (1.5 mL) + dioxane (1.5 mL) Me Me 3 equiv 1.8 equiv Additives (20 mol%) Me 4a	O OEt N Me L1
Entry	Additives	Yield of 4a ^a
1	MgCl ₂	75%
2	CeCl ₃	62%
3	KCl	73%
4	KBr	73%
5	ZnBr ₂	68%
6	MgBr2·Et2O	72%
7	DMAP	60%

Me 1a 0.1 mmol	+ Br OEt + Me Me AL1 () OEt + Me Br Za () 3 equiv 1.8 equiv	ne (10 mol%) 20 mol%) 3.0 equiv) 4.5 equiv) + dioxane (1.5 mL) Me Me Me Kana Kana Kana Kana Kana Kana Kana Kan
Entry	Amount of MgCl ₂ (X	(mol%) Yield of 4a ^a
1	10	72%
2	20	75%
3	40	75%
4	60	77% (75%) ^b
5	80	72%
6	100	67%

Table S10. Optimization the amount of MgCl₂

^a Reaction was run using 0.1 mmol of **1a**, 0.3 mmol of **2a**, and 0.18 mmol of **3a** under indicated conditions for 24 h. Yield was determined by GC analysis using *n*-dodecane as internal standard. ^b Isolated yield.

3. General Procedures

3.1. General procedure of the reaction

The reaction was operated in a nitrogen-filled glove box. Zinc (39.2 mg, 0.6 mmol, 3.0 equiv), MgCl₂ (0.12 mmol, 0.6 equiv), KI (0.3 mmol, 1.5 equiv), L1 (9.33 mg, 0.04 mmol, 20 mol%), NiBr₂·DME (6.17 mg, 0.02 mmol, 10 mol%), and alkyne (if solid, 0.2 mmol, 1.0 equiv) were added to an oven-dried 10 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (0.1 mmol/1.5 mL) and anhydrous 1,4-dioxane (0.1

mmol/1.5 mL) were added and rapid stirring was commenced. Then, alkyne (if liquid, 0.2 mmol, 1.0 equiv), alkyl bromide **3** (0.36 mmol, 1.8 equiv) and alkyl bromide **2** (0.6 mmol, 3.0 equiv) were added in turn via syringe. The resulting mixture was sealed with a screw-cap. The reaction was stirred vigorously at room temperature for 24 h. The reaction was diluted with ethyl acetate (50 mL) and washed with brine (50 mL, three times). The aqueous layer was extracted with ethyl acetate (20 mL). The combined organic layer was dried over magnesium sulfate, evaporated and purified by silica gel chromatography with hexane : ethyl acetate mixtures as eluent to give the corresponding products (**4**-**7**) in pure form.

3.2. Scaled up procedure

The reaction was operated in a nitrogen-filled glove box. Zinc (0.39 g, 6.0 mmol, 3.0 equiv), MgCl₂ (0.11 g, 1.2 mmol, 0.6 equiv), KI (0.49 g, 3.0 mmol, 1.5 equiv), L1 (93.2 mg, 0.4 mmol, 20 mol%) and NiBr₂·DME (61.7 mg, 0.2 mmol, 10 mol%) were added to an oven-dried 100 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (30 mL) and anhydrous 1,4-dioxane (30 mL) were added and rapid stirring was commenced. Then, 4-ethynyltoluene (0.23 g, 2.0 mmol, 0.26 mL), 2-bromo-2-methylpropane (0.49 g, 3.6 mmol, 0.4 mL, 1.8 equiv) and ethyl 4-bromobutyrate (1.17 g, 6.0 mmol, 0.86 mL, 3.0 equiv) were added in turn via syringe and sealed with a screw-cap. The reaction was stirred vigorously at room temperature for 24 h. The reaction was diluted with ethyl acetate (300 mL) and washed with brine (100 mL, three times). The aqueous layer was extracted with ethyl acetate (100 mL). The combined organic layer was dried over magnesium sulfate, evaporated and purified by silica gel chromatography with hexane and ethyl acetate mixtures as eluent (100% hexane ~ 1% ethyl acetate : hexane) to give the product **4a** (0.41 g, 72% yield) as a yellow oil.

3.3. General procedure for the synthesis of tertiary bromides

General procedure A: The tertiary alkyl bromides were prepared according to a literature procedure¹ from the corresponding tertiary alcohols. A mixture of alcohol (5.0 mmol) in the case of solids, which had been powdered for 1-2 min and TMSBr (0.84 g, 5.5 mmol, 0.73 mL, 1.1 equiv) was transferred to a 10 mL screw-capped vial, and stirred at rt for overnight. The progress of the reaction mixture was monitored by TLC. Upon completion of the reaction, the crude reaction mixture was cooled down to the room temperature and volatile product (TMS)₂O was removed by evaporation at 30-35°C under reduced pressure and the residue was purified by column chromatography on dried aluminum oxide to afford the product.

General procedure B: The tertiary alkyl bromides were prepared according to a literature procedure² from the corresponding tertiary alcohols. To a solution of alcohol (10.0 mmol) in CH₂Cl₂ (neat or a solution in a minimal amount of CH₂Cl₂) was added LiBr (1.80 g, 20.0 mmol, 2.0 equiv) in 48 wt% aqueous HBr at 0 °C. The reaction mixture was allowed to warm to rt and stirred for overnight. Then the mixture was diluted with Et₂O, washed with water, saturated NaHCO₃, and brine. The organic phase was dried over MgCl₂, filtrated and concentrated. The residue was purified by column chromatograph to afford the product.

NOTE: **B**₁-**B**₅, **B**₈-**B**₁₀ were synthesized following General procedure A. **B**₆ and **B**₇ were synthesized following General procedure B.

4. Characterization of New Compounds

Ethyl (Z)-7,7-dimethyl-5-(p-tolyl)oct-5-enoate (4a)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4a** (43.2 mg, 75% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.10 – 7.07 (m, 2H), 6.99 – 6.95 (m, 2H), 5.41 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 2.27 (t, J = 7.6 Hz, 2H), 2.22 – 2.18 (m, 2H), 1.65 – 1.59 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.85, 139.00, 138.07, 137.55, 135.81, 128.91, 128.35, 60.23, 41.86, 33.67, 33.39, 31.53, 23.28, 21.23, 14.33; **HR-MS** (ESI) m/z calcd for C₁₉H₂₉O₂[M+H⁺]: 289.2162, found: 289.2154.

Ethyl (Z)-7,7-dimethyl-5-phenyloct-5-enoate (4b)

Me Me

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4b** (35.6 mg, 65% yield) as a yellow oil. ¹H

NMR (600 MHz, CDCl₃) δ 7.22 – 7.18 (m, 2H), 7.16 – 7.12 (m, 1H), 7.02 – 6.99 (m, 2H), 5.35 (t, J = 1.2 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 2.20 (t, J = 7.6 Hz, 2H), 2.17 – 2.12 (m, 2H), 1.58 – 1.52 (m, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.77 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.80, 142.07, 138.11, 137.54, 129.05, 127.65, 126.34, 60.23, 41.76, 33.66, 33.41, 31.49, 23.25, 14.32; **HR-MS** (ESI) m/z calcd for C₁₈H₂₇O₂[M+H⁺]: 275.2006, found: 275.2008.

Ethyl (Z)-5-(4-methoxyphenyl)-7,7-dimethyloct-5-enoate (4c)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4c** (37.1 mg, 61% yield) as a

yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.03 – 6.95 (m, 2H), 6.86 – 6.78 (m, 2H), 5.41 (t, *J* = 1.2 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 2.26 (t, *J* = 7.6 Hz, 2H), 2.23 – 2.15 (m, 2H), 1.65 – 1.56 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.85 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃) δ 173.85, 158.19, 138.37, 137.19, 134.18, 130.00, 113.09, 60.23, 55.22, 41.90, 33.66, 33.38, 31.52, 23.28, 14.32; **HR-MS** (ESI) m/z calcd for C_{19H29O3}[M+H⁺]: 305.2111, found: 305.2113.

Ethyl (Z)-5-([1,1'-biphenyl]-4-yl)-7,7-dimethyloct-5-enoate (4d)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4d** (43.7 mg, 62% yield) as a

yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 2H), 7.55 – 7.51 (m, 2H), 7.46 – 7.41 (m, 2H), 7.36 – 7.30 (m, 1H), 7.18 – 7.14 (m, 2H), 5.47 (t, *J* = 1.2 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.31 (t, *J* = 7.6 Hz, 2H), 2.28 – 2.23 (m, 2H), 1.71 – 1.63 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.89 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.82, 141.16, 140.99, 139.13, 138.42, 137.21, 129.48, 128.80, 127.19, 127.03, 126.33, 60.27, 41.75, 33.68, 33.48, 31.57, 23.33, 14.33; **HR-MS** (ESI) m/z calcd for C₂₄H₃₀NaO₂[M+Na⁺]: 373.2138, found: 373.2143.

Ethyl (Z)-5-(4-(dimethylamino)phenyl)-7,7-dimethyloct-5-enoate (4e)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4e** (37.1 mg, 62% yield) as a

yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 6.96 – 6.92 (m, 2H), 6.68 – 6.67 (m, 2H), 5.39 (t, *J* = 1.2 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.94 (s, 6H), 2.27 (t, *J* = 7.6 Hz, 2H), 2.21 – 2.17 (m, 2H), 1.64 – 1.59 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.95, 149.07, 138.06, 137.71, 129.69, 112.00, 60.19, 42.00, 40.80, 33.69, 33.35, 31.58, 23.37, 14.34; HR-MS (ESI) m/z calcd for C₂₀H₃₂NO₂[M+H⁺]: 318.2428, found: 318.2420.

Ethyl (Z)-5-(4-(tert-butyl)phenyl)-7,7-dimethyloct-5-enoate (4f)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4f** (43.2 mg, 65% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.22 – 7.17 (m, 2H), 6.94 – 6.90 (m, 2H), 5.33 (t, *J* = 1.1 Hz, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.20 (t, *J* =7.6 Hz, 2H), 2.16 – 2.10 (m, 2H), 1.59 – 1.52 (m, 2H), 1.24 (s, 9H), 1.17 (t, *J* = 7.1 Hz, 3H), 0.77 (s, 9H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.92, 149.15, 138.88, 138.04, 137.65, 128.60, 124.43, 60.23, 41.81, 34.49, 33.68, 33.37, 31.52, 23.33, 14.33; **HR-MS** (ESI) m/z calcd for C₂₂H₃₅O₂[M+H⁺]: 331.2632, found: 331.2635.

Ethyl (Z)-7,7-dimethyl-5-(4-(trimethylsilyl)phenyl)oct-5-enoate (4g)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4g** (46.5 mg, 67% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.44 – 7.38 (m, 2H), 7.09 – 7.03 (m, 2H), 5.41 (t, *J* = 1.2 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.28 (t, *J* = 7.6 Hz, 2H), 2.23 – 2.18 (m, 2H), 1.67 – 1.58 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.84 (s, 9H), 0.26 (s, 9H); ¹³**C NMR (151 MHz, CDCl₃)** δ 173.86, 142.51, 138.06, 137.98, 137.62, 132.62, 128.36, 60.25, 41.75, 33.67, 33.40, 31.54, 23.31, 14.33, -0.94; **HR-MS** (ESI) m/z calcd for C₂₁H₃₅O₂Si[M+H⁺]: 347.2401, found: 347.2405.

Ethyl (Z)-5-(4-fluorophenyl)-7,7-dimethyloct-5-enoate (4h)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4h** (35.2 mg, 60% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.06 – 7.01 (m, 2H), 7.00 – 6.94 (m, 2H), 5.43 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 2.27 (t, J = 7.6 Hz, 2H), 2.22 – 2.16 (m, 2H), 1.64 – 1.56 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.74, 161.69 (d, J = 245.4 Hz), 138.81, 137.77 (d, J = 3.0 Hz), 136.50, 130.46 (d, J = 8.0 Hz), 114.58 (d, J = 21.2 Hz), 60.30, 41.75, 33.62, 33.45, 31.49, 23.21, 14.32; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.67 – -116.76 (m, 1F); HR-MS (ESI) m/z calcd for C₁₈H₂₆FO₂[M+H⁺]: 293.1911, found: 293.1907.

Ethyl (Z)-5-(4-chlorophenyl)-7,7-dimethyloct-5-enoate (4i)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 300) to give the product **4i** (35.4 mg, 57% yield) as a yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 7.20 – 7.17 (m, 2H), 6.97 – 6.93 (m, 2H), 5.37 (t, *J* = 1.2 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 2.19 (t, *J* = 7.6 Hz, 2H), 2.14 – 2.10 (m, 2H), 1.56

- 1.50 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H), 0.77 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.68, 140.50, 138.86, 136.30, 132.29, 130.40, 127.92, 60.31, 41.60, 33.61, 33.48, 31.50, 23.21, 14.32; HR-MS (ESI) m/z calcd for C₁₈H₂₆ClO₂[M+H⁺]: 309.1616, found: 309.1608.

Ethyl (Z)-5-(4-bromophenyl)-7,7-dimethyloct-5-enoate (4j)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4i** (40.0 mg, 57% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 – 7.37 (m, 2H), 6.98 – 6.94 (m, 2H), 5.44 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.26 (t, J = 7.5 Hz, 2H), 2.21 – 2.16 (m, 2H), 1.64 – 1.55 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.84 (s, 9H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.66, 141.00, 138.85, 136.27, 130.87, 130.77, 120.38, 60.31, 41.55, 33.60, 33.48, 31.51, 23.20, 14.32; **HR-MS** (ESI) m/z calcd for C₁₈H₂₆BrO₂[M+H⁺]: 353.1111, found: 353.1115.

Ethyl (Z)-7,7-dimethyl-5-(4-(trifluoromethyl)phenyl)oct-5-enoate (4k)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4k** (36.4 mg, 53% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.56 – 7.51 (m, 2H), 7.24 – 7.18 (m, 2H), 5.49 – 5.46 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.64 – 1.56 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.84 (s, 9H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.60, 146.14 (d, *J* = 1.0 Hz), 139.08, 136.21, 129.39, 128.77 (q, *J* = 32.3 Hz), 124.69 (q, *J* = 4.0 Hz), 124.39 (q, *J* = 272.7 Hz), 60.34, 41.46, 33.58, 33.53, 31.48, 23.20, 14.30; ¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.36 (s, 3F); **HR-MS** (ESI) m/z calcd for C₁₉H₂₅F₃NaO₂[M+Na⁺]: 365.1699, found: 365.1704.

Methyl (Z)-4-(8-ethoxy-2,2-dimethyl-8-oxooct-3-en-4-yl)benzoate (41)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **41** (24.5 mg, 37% yield) as

a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.20 – 7.14 (m, 2H), 5.45 (m, J = 1.2 Hz, 1H), 4.10 (q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 2.27 (t, J = 7.5 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.63 – 1.56 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 0.83 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.62, 167.16, 147.46, 138.76, 136.57, 129.15, 129.06, 128.34, 60.30, 52.10, 41.37, 33.58, 33.52, 31.45, 23.21, 14.30; HR-MS (ESI) m/z calcd for C₂₀H₂₈NaO₄[M+Na⁺]: 355.1880, found: 355.1868.

Ethyl (Z)-5-(3-fluorophenyl)-7,7-dimethyloct-5-enoate (4m)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4m** (35.7 mg, 61% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 1H), 7.01 – 6.95 (m, 1H), 6.94 – 6.90 (m, 1H), 6.88 – 6.83 (m, 1H), 5.48 (t, J = 1.2 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.29 – 2.23 (m, 2H), 1.72 – 1.61 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H), 0.91 (s, 9H); ¹³C **NMR (101 MHz, CDCl₃)** δ 173.68, 162.42 (d, J = 252.5 Hz), 144.37 (d, J = 7.1 Hz), 138.69, 136.26 (d, J = 2.0 Hz), 129.13 (d, J = 8.1 Hz), 124.90 (d, J = 3.0 Hz), 115.96 (d, J = 20.2 Hz), 113.28 (d, J = 20.2 Hz), 60.30, 41.47, 33.60, 33.48, 31.40, 23.24, 14.31; ¹⁹F **NMR (376 MHz, CDCl₃)** δ -114.07 – -114.16 (m, 1F); **HR-MS** (ESI) m/z calcd for C₁₈H₂₅FNaO₂[M+Na⁺]: 315.1731, found: 315.1734.

Ethyl (Z)-5-(3-chlorophenyl)-7,7-dimethyloct-5-enoate (4n)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4n** (37.0 mg, 60% yield) as a yellow oil. ¹H

NMR (600 MHz, CDCl₃) δ 7.23 – 7.19 (m, 2H), 7.09 – 7.08 (m, 1H), 6.99 – 6.95 (m, 1H), 5.43 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 2.22 – 2.18 (m, 2H), 1.64 – 1.59 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H);¹³C NMR (151 MHz, CDCl₃) δ 173.67, 144.00, 138.89, 136.11, 133.58, 128.99, 128.97, 127.38, 126.60, 60.32, 41.47, 33.62, 33.53, 31.48, 23.23, 14.32; HR-MS (ESI) m/z calcd for C_{18H26}ClO₂[M+H⁺]: 309.1616, found: 309.1619.

Ethyl (Z)-7,7-dimethyl-5-(m-tolyl)oct-5-enoate (40)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **40** (39.4 mg, 68% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.18 – 7.12 (m, 1H), 7.05 – 7.01 (m, 1H), 6.90 – 6.85 (m, 2H), 5.39 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 2.27 (t, J = 7.5 Hz, 2H), 2.23 – 2.17 (m, 2H), 1.66 – 1.58 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.86, 142.01, 137.85, 137.65, 137.08, 129.68, 127.47, 127.03, 126.17, 60.23, 41.76, 33.69, 33.42, 31.51, 23.31, 21.54, 14.33; HR-MS (ESI) m/z calcd for C₁₉H₂₈NaO₂[M+Na⁺]: 311.1982, found: 311.1975.

Ethyl (Z)-5-(3-methoxyphenyl)-7,7-dimethyloct-5-enoate (4p)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4p** (37.3 mg, 61% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.21 – 7.15 (m, 1H), 6.79 – 6.74 (m, 1H), 6.70 – 6.66 (m, 1H), 6.65 – 6.62 (m, 1H), 5.39 (t, J = 1.1 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 2.27 (t, J = 7.6 Hz, 2H), 2.23 – 2.18 (m, 2H), 1.67 – 1.58 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C **NMR (101 MHz, CDCl₃)** δ 173.81, 159.01, 143.52, 138.01, 137.33, 128.61, 121.72, 114.91, 111.56, 60.24, 55.22, 41.62, 33.66, 33.44, 31.43, 23.33, 14.32; **HR-MS** (ESI) m/z calcd for C₁₉H₂₈NaO₃[M+Na⁺]: 327.1931, found: 327.1933.

Ethyl (Z)-5-(2-fluorophenyl)-7,7-dimethyloct-5-enoate (4q)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4q** (39.7 mg, 67% yield) as a yellow oil. ¹H

NMR (600 MHz, CDCl₃) δ 7.24 – 7.19 (m, 1H), 7.08 – 7.04 (m, 2H), 7.02 – 6.98 (m, 1H), 5.54 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.30 (t, J = 7.6 Hz, 2H), 2.26 – 2.20 (m, 2H), 1.67 – 1.60 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.81, 159.66 (d, J = 243.9 Hz), 140.25, 131.54 (d, J = 3.0 Hz), 130.79, 129.22 (d, J = 18.2 Hz), 128.48 (d, J = 7.5 Hz), 123.40 (d, J = 3.0 Hz), 115.29 (d, J = 22.8 Hz), 60.25, 40.63, 33.62, 33.48, 30.77, 23.21, 14.32; ¹⁹F NMR (565 MHz,

CDCl₃) δ -114.26 – -114.34 (m, 1F); **HR-MS** (ESI) m/z calcd for C₁₈H₂₆FO₂[M+H⁺]: 293.1911, found: 293.1904.

Ethyl (Z)-7,7-dimethyl-5-(o-tolyl)oct-5-enoate (4r)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4r** (34.7 mg, 60% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.16 – 7.12 (m, 2H), 7.11 – 7.06 (m, 1H), 6.98 – 6.94 (m, 1H), 5.42 (t, *J* = 1.3 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.34 – 2.26 (m, 2H), 2.24 (s, 3H), 2.18 – 2.10 (m, 2H), 1.75 – 1.60 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.82 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.80, 141.33, 137.69, 136.20, 135.16, 129.82, 129.78, 126.60, 124.81, 60.25, 40.15, 33.91, 33.54, 30.80, 23.44, 19.71, 14.32; HR-MS (ESI) m/z calcd for C₁₉H₂₉O₂[M+H⁺]: 289.2162, found: 289.2154.

Ethyl (Z)-5-(2-methoxyphenyl)-7,7-dimethyloct-5-enoate (4s)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4s** (42.9 mg, 68% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 1H), 7.00 – 6.95 (m, 1H), 6.90 – 6.81 (m, 2H), 5.46 (t, J = 1.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 2.30 (t, J = 7.6 Hz, 2H), 2.26 – 2.13 (m, 2H), 1.68 – 1.56 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.03, 156.60, 138.53, 133.97, 130.94, 130.62, 127.90, 119.75, 110.23, 60.14, 55.10, 40.14, 33.76, 33.35, 30.81, 23.37, 14.33; HR-MS (ESI) m/z calcd for C₁₉H₂₉O₃[M+H⁺]: 305.2111, found: 305.2112.

Eethyl (Z)-7,7-dimethyl-5-(naphthalen-2-yl)oct-5-enoate (4t)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4t** (43.5 mg, 67% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.67 (m, 3H), 7.47 – 7.45 (m, 1H), 7.42 – 7.34 (m, 2H), 7.19 – 7.15 (m, 1H), 5.44 (t, *J* = 1.2 Hz, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 2.25 – 2.19 (m, 4H), 1.62 – 1.53 (m, 2H), 1.15 (t, *J* = 7.1 Hz, 3H), 0.79 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.78, 139.66, 138.62, 137.46, 133.03, 132.19, 127.88, 127.85, 127.71, 127.34, 127.19, 125.99, 125.54, 60.26, 41.76, 33.70, 33.52, 31.58, 23.37, 14.32; HR-MS (ESI) m/z calcd for C₂₂H₂₉O₂[M+H⁺]: 325.2162, found: 325.2166.

Ethyl (Z)-5-(benzo[d][1,3]dioxol-5-yl)-7,7-dimethyloct-5-enoate (4u)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **4u** (42.9 mg, 67% yield) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.74 – 6.70 (m, 1H), 6.58 – 6.56 (m, 1H), 6.54 – 6.50 (m, 1H), 5.94 (s, 2H), 5.39 – 5.37 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 2.26 (t, *J* = 7.6 Hz, 2H), 2.20 – 2.14 (m, 2H), 1.64 – 1.57 (m, 2H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.87 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.79, 147.02, 146.05, 138.47, 137.03, 135.61, 122.15, 109.59, 107.67, 100.84, 60.26, 41.80, 33.65, 33.45, 31.46, 23.30, 14.32; HR-MS (ESI) m/z calcd for C₁₉H₂₇O₄[M+H⁺]: 319.1904, found: 319.1908.

Ethyl (Z)-5-(4-acetylphenyl)-7,7-dimethyloct-5-enoate (4v)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 50) to give the product 4v (30.6 mg, 48% yield) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.22 – 7.17 (m, 2H), 5.47 – 5.45 (t, *J* = 1.2 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.59 (s, 3H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.64 – 1.55 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 197.88, 173.55, 147.68, 138.77, 136.43, 135.37, 129.27, 127.81, 60.26, 41.32, 33.51, 33.47, 31.40, 26.57, 23.16, 14.25; HR-MS (ESI) m/z calcd for C₂₀H₂₉O₃[M+H⁺]: 317.2111, found: 317.2115.

Ethyl (Z)-5-(4-aminophenyl)-7,7-dimethyloct-5-enoate (4w)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 10) to give the product **4w** (31.4 mg, 54% yield) as a

yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 6.87 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 8.0 Hz,

2H), 5.38 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.70 (br s, 2H), 2.26 (t, J = 7.6 Hz, 2H), 2.17 (t, J = 7.5 Hz, 2H), 1.63 – 1.58 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H); ¹³C **NMR (101 MHz, CDCl₃)** δ 173.92, 143.91, 138.19, 137.49, 132.71, 129.89, 114.92, 60.22, 41.91, 33.68, 33.36, 31.55, 23.30, 14.33; **HR-MS** (ESI) m/z calcd for C₁₈H₂₈NO₂[M+H⁺]: 290.2115, found: 290.2116.

tert-Butyl (Z)-(4-(2,2-dimethyl-7-phenylhept-3-en-4-yl)phenyl)carbamate (4x)

According to general procedure, the crude mixture was purified by $_{BOCHN}$ flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 20) to give the product **4x** (44.6 mg, 54% yield) as a white solid. ¹H NMR (**600 MHz, CDCl₃**) δ 7.23 – 7.15 (m, 4H), 7.11 – 7.08 (m, 1H), 7.07 – 7.04 (m, 2H), 6.96 – 6.91 (m, 2H), 6.39 (s, 1H), 5.34 (s, 1H), 2.52 – 2.47 (m, 2H), 2.13 (t, *J* = 7.5 Hz, 2H), 1.55 – 1.48 (m, 2H), 1.44 (s, 9H), 0.77 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.83, 142.66, 137.86, 137.72, 137.05, 136.56, 129.54, 128.47, 128.23, 125.60, 117.72, 80.44, 42.10, 35.38, 33.33, 31.54, 29.73, 28.38; HR-MS (ESI) m/z calcd for C₂₆H₃₅NNaO₂[M+Na⁺]: 416.2560, found: 416.2566.

Ethyl (Z)-7,7-dimethyl-5-(quinolin-6-yl)oct-5-enoate (4y)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 50) to give the product **4y** (25.5 mg, 39% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.90 – 8.86 (m, 1H), 8.15 – 8.10 (m, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.40 (dd, *J* = 8.3, 4.3 Hz, 1H), 5.54 (t, *J* = 1.3 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 2.33 – 2.27 (m, 4H), 1.68 – 1.60 (m, 2H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.85 (s, 9H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.67, 149.99, 147.07, 140.66, 139.16, 136.66, 136.15, 131.61, 128.59, 127.81, 127.11, 121.27, 60.30, 41.61, 33.64, 33.56, 31.54, 23.32, 14.30; **HR-MS** (ESI) m/z calcd for C₂₁H₂₈NO₂[M+H⁺]: 326.2115, found: 326.2122.

Ethyl (Z)-7,7-dimethyl-5-(pyridin-2-yl)oct-5-enoate (4z)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 50) to give the product 4z (16.5 mg, 30% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.56 (m, 1H), 7.64 – 7.58 (m, 1H), 7.18 – 7.12 (m, 2H), 5.51 (t, J = 1.3 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 2.35 – 2.28 (m, 4H), 1.68 – 1.60 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.79, 160.62, 148.81, 139.47, 136.40, 135.72, 124.63, 121.63, 60.28, 39.88, 33.69, 33.62, 31.13, 23.32, 14.31; HR-MS (ESI) m/z calcd for C₁₇H₂₆NO₂[M+H⁺]: 276.1958, found: 276.1957.

Ethyl (Z)-5-(1*H*-indol-5-yl)-7,7-dimethyloct-5-enoate (4aa)

N Me Me

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 50) to give the product **4aa** (33.5 mg, 53% yield) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.35 – 7.33 (m, 1H), 7.32 – 7.29 (m, 1H), 7.20 – 7.17 (m, 1H), 6.93 (dd, J = 8.3, 1.6 Hz, 1H), 6.53 – 6.50 (m, 1H), 5.46 (t, J = 1.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.33 – 2.25 (m, 4H), 1.70 – 1.62 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.06, 138.50, 137.92, 134.64, 133.38, 127.38, 124.28, 123.70, 120.71, 110.12, 102.55, 60.22, 42.37, 33.75, 33.42, 31.57, 23.40, 14.31; HR-MS (ESI) m/z calcd for C₂₀H₂₈NO₂[M+H⁺]: 314.2115, found: 314.2117.

Ethyl (Z)-7,7-dimethyl-5-(thiophen-2-yl)oct-5-enoate (4ab)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4ab** (26.1 mg, 46% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 6.95 – 6.91 (m, 1H), 6.76 – 6.72 (m, 1H), 5.58 (t, J = 1.1 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.30 – 2.26 (m, 2H), 2.26 – 2.22 (m, 2H), 1.70 – 1.62 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.74, 142.68, 142.20, 130.12, 126.37, 126.33, 124.51, 60.27, 42.15, 33.61, 33.41, 31.04, 23.54, 14.33; HR-MS (ESI) m/z calcd for C₁₅H₂₅O₂S[M+H⁺]: 281.1570, found: 281.1574.

Ethyl (Z)-5-(cyclohex-1-en-1-yl)-7,7-dimethyloct-5-enoate (4ac)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **4ac** (32.6 mg, 58% yield) as a yellow oil. ¹H

NMR (400 MHz, CDCl₃) δ 5.33 – 5.29 (m, 1H), 5.06 (t, J = 1.2 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.25 (t, J = 7.6 Hz, 2H), 2.07 – 2.00 (m, 2H), 2.00 – 1.94 (m, 4H), 1.67 – 1.61 (m, 4H), 1.60 – 1.53 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.03 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.08, 140.20, 137.11, 136.30, 124.55, 60.20, 37.61, 33.61, 33.35, 31.35, 28.94, 25.19, 23.67, 22.96, 22.20, 14.35; HR-MS (ESI) m/z calcd for C₁₈H₃₁O₂[M+H⁺]: 279.2319, found: 279.2319.

Ethyl (Z)-5-(3,4-dihydronaphthalen-2-yl)-7,7-dimethyloct-5-enoate (4ad)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 150) to give the product **4ad** (31.6 mg, 48% yield) as

a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.12 (m, 1H), 7.12 – 7.09 (m, 2H), 7.03 – 6.99 (m, 1H), 6.16 (s, 1H), 5.24 (t, *J* = 1.1 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.86 (t, *J* = 8.1 Hz, 2H), 2.38 – 2.32 (m, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 2.13 – 2.06 (m, 2H), 1.74 – 1.66 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.09 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.83, 140.32, 138.56, 137.53, 134.54, 134.48, 127.35, 126.64, 126.57, 125.97, 125.64, 60.27, 37.81, 33.59, 33.37, 31.54, 28.06, 27.96, 23.71, 14.35.

Ethyl (Z)-7,7-dimethyl-5-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)oct-5-enoate (4ae)

a yellow oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 5.47 – 5.37 (m, 1H), 5.12 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.90 – 2.65 (m, 1H), 2.41 – 2.31 (m, 1H), 2.31 – 2.25 (m, 2H), 2.24 – 2.18 (m, 2H), 2.16 – 2.07 (m, 1H), 2.06 – 1.98 (m, 2H), 1.98 – 1.94 (m, 1H), 1.85 – 1.74 (m, 1H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.08 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.08, 147.27, 139.71, 137.12, 136.75, 128.49, 127.01, 126.12, 124.26, 60.29, 39.89, 37.74, 33.66, 33.47, 31.45, 30.18, 29.77, 23.77, 14.42.

(Z)-4-(5,5-Dimethylhex-3-en-3-yl)phenyl acetate (5a)

According to general procedure, the crude mixture was purified by flash $_{ACO}$ $\stackrel{Me}{}_{Me}$ $\stackrel{Me}{}_{Me}$ chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5a** (29.7 mg, 60% yield) as a yellow oil. ¹H NMR (600 MHz, **CDCl₃**) δ 7.10 – 7.06 (m, 2H), 7.03 – 6.99 (m, 2H), 5.41 (s, 1H), 2.29 (s, 3H), 2.18 (q, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.48, 149.17, 140.18, 139.56, 136.45, 130.00, 120.56, 35.26, 33.26, 31.59, 21.26, 13.19; **HR-MS** (ESI) m/z calcd for C₁₆H₂₃O₂[M+H⁺]: 247.1693, found: 247.1695.

(Z)-4-(2,2-Dimethyloct-3-en-4-yl)phenyl acetate (5b)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5b** (35.6 mg, 65% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.09 – 7.06 (m, 2H), 7.02 – 6.99 (m, 2H), 5.41 (s, 1H), 2.29 (s, 3H), 2.16 (t, *J* = 7.1 Hz, 2H), 1.30 – 1.24 (m, 4H), 0.86 (t, *J* = 6.7 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.48, 149.14, 140.20, 137.94, 137.59, 129.96, 120.54, 42.19, 33.36, 31.59, 30.24, 22.28, 21.27, 14.04; HR-MS (ESI) m/z calcd for C₁₈H₂₆NaO₂[M+Na⁺]: 297.1825, found: 297.1829.

(Z)-4-(2,2-Dimethyldodec-3-en-4-yl)phenyl acetate (5c)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5c** (46.3 mg, 68% yield) as a yellow oil. ¹H NMR (**600 MHz, CDCl₃**) δ 7.10 – 7.05 (m, 2H), 7.02 – 6.98 (m, 2H), 5.41 (s, 1H), 2.29 (s, 3H), 2.15 (t, *J* = 6.9 Hz, 2H), 1.30 – 1.22 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.46, 149.14, 140.21, 137.96, 137.60, 129.95, 120.53, 42.44, 33.36, 31.95, 31.59, 29.53, 29.40, 29.17, 28.02, 22.73, 21.26, 14.18; HR-MS (ESI) m/z calcd for C₂₂H₃₄NaO₂[M+Na⁺]: 353.2451, found: 353.2454. (**Z**)-4-(2,2,7-Trimethyloct-3-en-4-yl)phenyl acetate (5d) According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5d** (34.0 mg, 59% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 7.03 – 6.99 (m, 2H), 5.41 (t, *J* = 1.3 Hz, 1H), 2.29 (s, 3H), 2.19 – 2.13 (m, 2H), 1.55 – 1.46 (m, 1H), 1.21 – 1.15 (m, 2H), 0.85 (s, 3H), 0.84 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 169.48, 149.13, 140.25, 138.23, 137.35, 129.96, 120.53, 40.33, 37.33, 33.34, 31.59, 27.67, 22.63, 21.28; HR-MS (ESI) m/z calcd for C₁₉H₂₉O₂[M+H⁺]: 289.2162, found: 289.2163.

(Z)-4-(2,2-Dimethyl-7-phenylhept-3-en-4-yl)phenyl acetate (5e)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5e** (45.7 mg, 68% yield) as a yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 7.20 – 7.16 (m, 2H), 7.10 – 7.05 (m, 3H), 7.03 – 7.00 (m, 2H), 6.95 – 6.92 (m, 2H), 5.36 (t, J = 1.2 Hz, 1H), 2.52 – 2.49 (m, 2H), 2.21 (s, 3H), 2.17 – 2.12 (m, 2H), 1.57 – 1.52 (m, 2H), 0.77 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 169.45, 149.21, 142.59, 139.93, 138.16, 137.36, 129.94, 128.52, 128.32, 125.71, 120.64, 41.99, 35.43, 33.43, 31.56, 29.78, 21.26; HR-MS (ESI) m/z calcd for C_{23H28}NaO₂[M+Na⁺]: 359.1982, found: 359.1980.

(Z)-4-(1-(4-Chlorophenyl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5f)

According to general procedure, the crude mixture was purified by $_{ACO}$ flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5f** (42.8 mg, 60% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 2H), 7.13 – 7.08 (m, 2H), 7.08 – 7.02 (m, 4H), 5.40 (t, *J* = 1.2 Hz, 1H), 2.61 – 2.55 (m, 2H), 2.49 – 2.43 (m, 2H), 2.30 (s, 3H), 0.82 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.45, 149.36, 140.47, 139.58, 138.82, 136.59, 131.43, 130.03, 129.91, 128.33, 120.78, 43.89, 34.00, 33.43, 31.45, 21.28; HR-MS (ESI) m/z calcd for C₂₂H₂₅ClNaO₂[M+Na⁺]: 379.1435, found: 379.1427.

(Z)-4-(1-(4-Fluorophenyl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5g)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5g** (42.1 mg, 62% yield) as a colorless oil. ¹H **NMR (600 MHz, CDCl₃)** δ 7.13 – 7.10 (m, 2H), 7.10 – 7.06 (m, 2H), 7.06 – 7.03 (m, 2H), 6.96 – 6.91 (m, 2H), 5.40 (t, *J* = 1.2 Hz, 1H), 2.61 – 2.57 (m, 2H), 2.48 – 2.44 (m, 2H), 2.30 (s, 3H), 0.82 (s, 9H); ¹³C **NMR (151 MHz, CDCl₃)** δ 169.46, 162.25 (d, *J* = 243.1 Hz), 149.33, 139.67, 138.73, 137.60 (d, *J* = 3.0 Hz), 136.66, 129.95 (d, *J* = 21.1 Hz), 129.83, 120.75, 114.94 (d, *J* = 21.1 Hz), 44.11, 33.80, 33.41, 31.45, 21.27; ¹⁹F **NMR (565 MHz, CDCl₃)** δ -118.04 - -117.99 (m, 1F); **HR-MS** (ESI) m/z calcd for C₂₂H₂₆FO₂[M+H⁺]: 341.1911, found: 341.1910.

(Z)-4-(1-(2,3-Dihydrobenzofuran-5-yl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5h)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 70) to give the product **5h** (45.9 mg, 63% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 7.07 – 6.99 (m, 2H), 6.97 (m, 1H), 6.90 – 6.83 (m, 1H), 6.67 (m, 1H), 5.42 (t, *J* = 1.2 Hz, 1H), 4.53 (t, *J* = 8.7 Hz, 2H), 3.15 (t, *J* = 8.7 Hz, 2H), 2.59 – 2.50 (m, 2H), 2.47 – 2.38 (m, 2H), 2.30 (s, 3H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.62, 158.33, 149.42, 140.07, 138.50, 137.32, 134.28, 130.19, 128.03, 126.98, 125.17, 120.83, 109.02, 71.33, 44.88, 34.36, 33.56, 31.66, 30.04, 21.44; HR-MS (ESI) m/z calcd for C₂₄H₂₈NaO₃[M+Na⁺]: 387.1931, found: 387.1930.

(Z)-9-(9,9-Dimethyl-7-(p-tolyl)dec-7-en-1-yl)-9H-carbazole (5i)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5i** (45.7

mg, 54% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.07 (t, *J* = 7.3 Hz, 2H), 6.92 (d, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 7.6 Hz, 2H), 5.20 (s, 1H), 4.11 (t, *J* = 7.3 Hz, 2H), 2.18 (s, 3H), 1.98 (t, J = 7.3 Hz, 2H), 1.72 – 1.65 (m, 2H), 1.23 – 1.11 (m, 6H), 0.69 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 140.48, 139.44, 138.55, 137.14, 135.62, 128.90, 128.25, 125.62, 122.88, 120.40, 118.75, 108.71, 43.11, 42.56, 33.30, 31.58, 28.98, 28.95, 27.86, 27.18, 21.24; HR-MS (ESI) m/z calcd for C₃₁H₃₈N[M+H⁺]: 424.2999, found: 424.2999. (*Z*)-4-(7-(Furan-2-yl)-2,2-dimethylhept-3-en-4-yl)phenyl acetate (5j)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5j** (33.5 mg, 51% yield) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.13 – 7.06 (m, 2H), 7.05 – 6.99 (m, 2H), 6.29 – 6.24 (m, 1H), 5.96 – 5.91 (m, 1H), 5.44 (s, 1H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.29 (s, 3H), 2.26 – 2.19 (m, 2H), 1.69 – 1.60 (m, 2H), 0.85 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.45, 156.25, 149.24, 140.77, 139.78, 138.43, 137.02, 129.95, 120.67, 110.10, 104.82, 41.77, 33.44, 31.54, 27.32, 26.26, 21.26; HR-MS (ESI) m/z calcd for C₂₁H₂₆NaO₃[M+Na⁺]: 349.1774, found: 349.1779.

(Z)-2-(5,5-Dimethyl-3-(p-tolyl)hex-3-en-1-yl)-1,3-dioxolane (5k)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5k** (40.6 mg, 72% yield) as a yellow oil. ¹H NMR (400 **MHz, CDCl₃**) δ 7.14 – 7.04 (m, 2H), 7.02 – 6.93 (m, 2H), 5.45 (s, 1H), 4.83 (t, *J* = 1.2 Hz, 1H), 3.99 – 3.86 (m, 2H), 3.88 – 3.77 (m, 2H), 2.33 (s, 3H), 2.32 – 2.22 (m, 2H), 1.71 – 1.61 (m, 2H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 138.96, 137.71, 137.32, 135.69, 128.94, 128.27, 104.32, 64.84, 36.89, 33.27, 32.66, 31.44, 21.16; HR-MS (ESI) m/z calcd for C₁₈H₂₇O₂[M+H⁺]: 257.2006, found: 257.2008.

(Z)-1-(2,2-Dimethyl-8-phenoxyoct-3-en-4-yl)-4-methylbenzene (5l)

According to general procedure, the crude mixture was purified by $Me \longrightarrow Me \longrightarrow Me}$ flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **51** (42.5 mg, 66% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.16 (m, 2H), 7.04 - 6.99 (m, 2H), 6.93 - 6.88 (m, 2H), 6.87 - 6.78 (m, 3H), 5.35 (t, J = 1.2 Hz, 1H), 3.84 (t, J = 6.6 Hz, 2H), 2.27 (s, 3H), 2.19 - 2.14 (m, 2H), 1.73 – 1.65 (m, 2H), 1.41 – 1.32 (m, 2H), 0.78 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 159.15, 139.29, 138.26, 137.55, 135.72, 129.46, 128.96, 128.30, 120.51, 114.57, 67.86, 42.29, 33.35, 31.59, 28.77, 24.42, 21.25; HR-MS (ESI) m/z calcd for C₂₃H₃₀NaO[M+Na⁺]: 345.2189, found: 345.2180.

(Z)-9,9-Dimethyl-1-phenyl-7-(p-tolyl)dec-7-en-1-one (5m)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 80) to give the product **5m** (33.4 mg, 48% yield) as

a yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.98 – 7.91 (m, 2H), 7.59 – 7.52 (m, 1H), 7.49 – 7.42 (m, 2H), 7.10 – 7.04 (m, 2H), 6.98 – 6.93 (m, 2H), 5.39 (s, 1H), 2.96 – 2.88 (m, 2H), 2.33 (s, 3H), 2.22 – 2.14 (m, 2H), 1.75 – 1.66 (m, 2H), 1.41 – 1.28 (m, 4H), 0.84 (s, 9H); ¹³**C NMR (101 MHz, CDCl₃)** δ 200.65, 139.44, 138.55, 137.21, 137.17, 135.63, 132.92, 128.94, 128.61, 128.25, 128.14, 42.42, 38.67, 33.31, 31.59, 28.82, 27.82, 24.31, 21.24; **HR-MS** (ESI) m/z calcd for C₂₅H₃₃O[M+H⁺]: 349.2526, found: 349.2526.

(Z)-4-(7-Chloro-2,2-dimethylhept-3-en-4-yl)phenyl acetate (5n)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **5n** (34.2 mg, 58% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 7.04 – 7.00 (m, 2H), 5.49 (t, *J* = 1.2 Hz, 1H), 3.51 (t, *J* = 6.6 Hz, 2H), 2.35 – 2.30 (m, 2H), 2.29 (s, 3H), 1.79 – 1.71 (m, 2H), 0.85 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.42, 149.37, 139.34, 139.12, 135.91, 129.93, 120.83, 44.46, 39.41, 33.50, 31.47, 30.79, 21.25; HR-MS (ESI) m/z calcd for C₁₇H₂₃ClNaO₂[M+Na⁺]: 317.1279, found: 317.1278.

(Z)-4-(8-Cyano-2,2-dimethyloct-3-en-4-yl)phenyl acetate (50)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the product **50** (31.1 mg, 52% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 7.05 (m, 2H), 7.04 – 7.00 (m, 2H), 5.44 (t, J = 1.2) Hz, 1H), 2.32 – 2.28 (m, 5H), 2.23 – 2.18 (m, 2H), 1.68 – 1.59 (m, 2H), 1.48 – 1.39 (m, 2H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.44, 149.34, 139.38, 138.69, 136.58, 129.88, 120.81, 119.82, 41.47, 33.45, 31.49, 27.01, 24.92, 21.24, 17.09; HR-MS (ESI) m/z calcd for C₁₉H₂₆NO₂[M+H⁺]: 300.1958, found: 300.1951.

(Z)-4-(2,2-Dimethylnona-3,8-dien-4-yl)phenyl acetate (5p)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5p** (33.5 mg, 62% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.05 (m, 2H), 7.03 – 6.99 (m, 2H), 5.83 – 5.72 (m, 1H), 5.43 (t, J = 1.2 Hz, 1H), 5.01 – 4.90 (m, 2H), 2.29 (s, 3H), 2.21 – 2.15 (m, 2H), 2.06 – 2.00 (m, 2H), 1.43 – 1.34 (m, 2H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.46, 149.19, 139.99, 138.89, 138.04, 137.47, 129.95, 120.61, 114.56, 41.80, 33.40, 33.25, 31.56, 27.23, 21.26; HR-MS (ESI) m/z calcd for C₁₉H₂₆NaO₂[M+Na⁺]: 309.1825, found: 309.1818.

(Z)-4-(2,2-Ddimethyloct-3-en-7-yn-4-yl)phenyl acetate (5q)

According to general procedure, the crude mixture was purified by flash $_{ACO}$ $M_{M_{e}M_{e}}$ chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5q** (30.0 mg, 55% yield) as a yellow oil. ¹H NMR (400 MHz, **CDCl**₃) δ 7.14 – 7.09 (m, 2H), 7.04 – 6.99 (m, 2H), 5.52 (t, *J* = 1.2 Hz, 1H), 2.41 – 2.36 (m, 2H), 2.29 (s, 3H), 2.17 – 2.12 (m, 2H), 1.95 (t, *J* = 2.6 Hz, 1H), 0.85 (s, 9H); ¹³C **NMR (101 MHz, CDCl**₃) δ 169.42, 149.44, 139.66, 138.83, 135.38, 130.07, 120.81, 83.93, 68.87, 40.98, 33.53, 31.44, 21.25, 17.56; **HR-MS** (ESI) m/z calcd for C₁₈H₂₂NaO₂[M+Na⁺]: 293.1512, found: 293.1515.

(Z)-1-(2,2-Dimethyl-9-phenylnon-3-en-8-yn-4-yl)-4-methylbenzene (5r)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product 5r (31.6 mg, 50% yield) as a

yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.39 – 7.34 (m, 2H), 7.28 – 7.23 (m, 3H), 7.08 (d, *J* = 7.6 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 5.45 (s, 1H), 2.36 (t, *J* = 7.2 Hz, 2H),

2.33 (s, 3H), 2.32 – 2.29 (m, 2H), 1.61 – 1.55 (m, 2H), 0.84 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 139.16, 138.00, 137.64, 135.80, 131.62, 128.96, 128.35, 128.25, 127.53, 124.18, 90.35, 80.79, 41.75, 33.41, 31.57, 27.08, 21.25, 18.83; HR-MS (ESI) m/z calcd for C₂₄H₂₉[M+H⁺]: 317.2264, found: 317.2260.

tert-Butyl (Z)-(6,6-dimethyl-4-(p-tolyl)hept-4-en-1-yl)carbamate (5s)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 60) to give the product **5s** (44.4 mg, 67% yield) as a

yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 6.98 – 6.94 (m, 2H), 5.42 (t, *J* = 1.2 Hz, 1H), 4.46 (br s, 1H), 3.08 (t, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 2.19 (t, *J* = 7.5 Hz, 2H), 1.48 – 1.44 (m, 2H), 1.43 (s, 9H), 0.84 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 155.95, 147.15, 138.96, 137.77, 135.84, 128.93, 128.35, 79.05, 40.35, 39.95, 33.35, 31.51, 28.50, 28.33, 21.22; HR-MS (ESI) m/z calcd for C₂₁H₃₃NNaO₂[M+Na⁺]: 354.2404, found: 354.2393.

(Z)-6,6-Dimethyl-4-(p-tolyl)hept-4-en-1-ol (5t)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the product **5t** (28.3 mg, 61% yield) as a colorless oil. ¹H NMR (600 **MHz, CDCl₃**) δ 7.11 – 7.07 (m, 2H), 7.00 – 6.95 (m, 2H), 5.45 (s, 1H), 3.62 (t, *J* = 6.6 Hz, 2H), 2.34 (s, 3H), 2.25 (t, *J* = 7.6 Hz, 2H), 1.59 – 1.53 (m, 2H), 0.85 (s, 9H); ¹³C **NMR (151 MHz, CDCl₃)** δ 139.05, 138.10, 137.64, 135.83, 128.97, 128.35, 62.79, 38.88, 33.36, 31.52, 31.08, 21.23; **HR-MS** (ESI) m/z calcd for C₁₆H₂₅O[M+H⁺]: 233.1900, found: 233.1899.

(Z)-9,9-Dimethyl-7-(*p*-tolyl)dec-7-en-1-ol (5u)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the product **5u** (36.7 mg, 67% yield) as a colorless oil. ¹H **NMR (600 MHz, CDCl₃)** δ 7.08 (d, J = 7.5 Hz, 2H), 6.96 (d, J = 7.5 Hz, 2H), 5.38 (t, J = 1.6 Hz, 1H), 3.61 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.18 – 2.12 (m, 2H), 1.56 – 1.50 (m, 2H), 1.34 – 1.27 (m, 6H), 0.84 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 139.53, 138.69, 137.07, 135.60, 128.93, 128.23, 63.14, 42.54, 33.30, 32.84, 31.59, 28.93, 28.00, 25.64, 21.24; HR-MS (ESI) m/z calcd for C₁₉H₃₁O[M+H⁺]: 275.2369, found: 275.2370.

(Z)-4-(1-Cyclopentyl-3,3-dimethylbut-1-en-1-yl)phenyl acetate (5v)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **5v** (29.7 mg, 52% yield) as a colorless oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.07 – 7.03 (m, 2H), 7.02 – 6.98 (m, 2H), 5.45 (d, J = 1.2 Hz, 1H), 2.51 – 2.41 (m, 1H), 2.29 (s, 3H), 1.69 – 1.61 (m, 2H), 1.58 – 1.48 (m, 4H), 1.32 – 1.26 (m, 2H), 0.82 (s, 9H); ¹³C **NMR (151 MHz, CDCl₃)** δ 169.46, 149.13, 140.56, 139.18, 136.23, 130.71, 120.23, 50.93, 33.26, 31.65, 31.50, 24.44, 21.29; **HR-MS** (ESI) m/z calcd for C₁₉H₂₇O₂[M+H⁺]: 287.2006, found: 287.2005.

Ethyl (Z)-7,7-dimethyl-8-phenyl-5-(p-tolyl)oct-5-enoate (6a)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **6a** (36.4 mg, 50% yield) as a

yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.22 – 7.17 (m, 2H), 7.16 – 7.12 (m, 1H), 7.06 – 7.01 (m, 2H), 6.91 – 6.87 (m, 2H), 6.57 – 6.53 (m, 2H), 5.28 (s, 1H), 4.04 (q, J = 7.1 Hz, 2H), 2.46 (s, 2H), 2.22 (s, 3H), 2.18 (t, J = 7.5 Hz, 2H), 2.15 – 2.11 (m, 2H), 1.54 – 1.49 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.69 (s, 6H); ¹³**C NMR (151 MHz, CDCl₃)** δ 173.82, 139.39, 138.72, 138.28, 136.16, 135.68, 130.78, 128.65, 128.15, 127.62, 125.91, 60.23, 50.59, 42.16, 38.16, 33.75, 28.98, 23.20, 21.19, 14.34; **HR-MS** (ESI) m/z calcd for C₂₅H₃₃O₂[M+H⁺]: 365.2475, found: 365.2465.

Ethyl (Z)-7,7-dimethyl-9-phenyl-5-(p-tolyl)non-5-enoate (6b)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **6b** (39.4 mg, 52% yield) as a

yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.21 – 7.15 (m, 2H), 7.11 – 7.07 (m, 1H), 7.07 – 7.02 (m, 3H), 7.01 – 6.99 (m, 1H), 6.94 – 6.90 (m, 2H), 5.31 (t, *J* = 1.2 Hz, 1H),

4.04 (q, J = 7.1 Hz, 2H), 2.51 – 2.45 (m, 2H), 2.27 (s, 3H), 2.22 (t, J = 7.6 Hz, 2H), 2.20 - 2.15 (m, 2H), 1.61 - 1.52 (m, 2H), 1.45 - 1.39 (m, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.78 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 173.80, 143.46, 138.85, 138.71, 136.48, 135.93, 128.81, 128.41, 128.38, 128.31, 125.55, 60.25, 46.83, 42.09, 36.69, 33.66, 31.64, 29.30, 23.32, 21.23, 14.33; **HR-MS** (ESI) m/z calcd for C₂₆H₃₄NaO₂[M+Na⁺]: 401.2451, found: 401.2444.

Ethyl (Z)-7,7-diethyl-5-(*p*-tolyl)non-5-enoate (6c)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 300) to give the product **6c** (39.7 mg, 60% yield) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 7.04 (m, 2H), 6.99 – 6.94 (m, 2H), 5.09 (t, J = 1.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 2.31 – 2.21 (m, 4H), 1.66 – 1.57 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.13 (q, J = 7.5 Hz, 6H), 0.70 (t, J = 7.5 Hz, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.86, 139.27, 139.24, 135.79, 135.68, 128.30, 128.25, 60.21, 42.80, 42.69, 33.71, 28.96, 23.51, 21.23, 14.30, 8.29; HR-MS (ESI) m/z calcd for C₂₂H₃₄NaO₂[M+Na⁺]: 353.2451, found: 353.2443.

Ethyl (*Z*)-7-ethyl-7,9-dimethyl-5-(*p*-tolyl)dec-5-enoate (6d)

According to general procedure, the crude mixture was purified by Me_{Me} flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **6d** (34.4 mg, 50% yield) as a

colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 7.05 (m, 2H), 6.99 – 6.94 (m, 2H), 5.23 (t, J = 1.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 2.27 (t, J = 7.6 Hz, 2H), 2.25 - 2.20 (m, 2H), 1.73 - 1.59 (m, 3H), 1.23 (m, 4H), 1.20 - 1.17 (m, 1H), 1.16 -1.07 (m, 2H), 0.92 (d, J = 6.7 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H), 0.78 (t, J = 7.4 Hz, 3H),0.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.85, 139.20, 138.12, 136.46, 135.67, 128.76, 128.24, 60.22, 52.66, 42.44, 40.62, 36.31, 33.78, 25.49, 25.09, 24.75, 24.18, 23.36, 21.23, 14.32, 8.99; HR-MS (ESI) m/z calcd for C₂₃H₃₇O₂[M+H⁺]: 345.2788, found: 345.2787.

Eethyl (Z)-10-chloro-7,7-dimethyl-5-(p-tolyl)dec-5-enoate (6e)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **6e** (39.7 mg, 56% yield) as a

colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.09 (d, J = 7.6 Hz, 2H), 6.96 (d, J = 7.7 Hz, 2H), 5.29 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 2.34 (s, 3H), 2.27 (t, J = 7.5 Hz, 2H), 2.21 (t, J = 7.5 Hz, 2H), 1.75 – 1.69 (m, 2H), 1.65 – 1.59 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.91 – 0.84 (m, 2H), 0.81 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 173.75, 138.89, 138.70, 136.09, 136.01, 128.67, 128.43, 60.25, 45.90, 42.02, 41.51, 36.22, 33.65, 29.43, 28.64, 23.32, 21.22, 14.33; HR-MS (ESI) m/z calcd for C₂₁H₃₁ClNaO₂[M+Na⁺]: 373.1905, found: 373.1897.

Ethyl (Z)-9-(4-methoxyphenyl)-7,7-dimethyl-5-(p-tolyl)non-5-enoate (6f)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **6f** (43.3 mg, 53% yield)

as a colorless oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.12 – 7.07 (m, 2H), 7.06 – 7.03 (m, 2H), 7.02 – 6.99 (m, 2H), 6.84 – 6.79 (m, 2H), 5.38 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 2.53 – 2.48 (m, 2H), 2.35 (s, 3H), 2.30 (t, *J* = 7.6 Hz, 2H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.67 – 1.62 (m, 2H), 1.50 – 1.45 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.85 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 173.81, 157.61, 138.87, 138.61, 136.53, 135.91, 135.52, 129.20, 128.81, 128.40, 113.76, 60.25, 55.33, 47.08, 42.08, 36.65, 33.65, 30.66, 29.30, 23.31, 21.22, 14.33; HR-MS (ESI) m/z calcd for C₂₇H₃₇O₃[M+H⁺]: 409.2737, found: 409.2738.

(Z)-9-Ethoxy-3,3-dimethyl-9-oxo-5-(p-tolyl)non-4-en-1-yl benzoate (6g)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 100) to give the product **6g** (43.1 mg, 51% yield) as

a colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.03 – 7.98 (m, 2H), 7.57 – 7.52 (m, 1H), 7.46 – 7.40 (m, 2H), 7.09 – 7.04 (m, 2H), 6.99 – 6.95 (m, 2H), 5.39 (t, *J* = 1.2 Hz, 1H), 4.31 (t, *J* = 7.3 Hz, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 2.26 (t, *J* = 7.6 Hz, 2H), 2.23 – 2.18 (m, 2H), 1.69 – 1.64 (m, 2H), 1.63 – 1.57 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.90 (s, 6H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.75, 166.74, 139.34, 138.51, 136.06, 135.56, 132.84, 130.58, 129.59, 128.64, 128.50, 128.36, 62.98, 60.27, 42.09, 42.03, 35.65, 33.69, 29.76, 23.29, 21.21, 14.31; **HR-MS** (ESI) m/z calcd for C₂₇H₃₅O4[M+H⁺]: 423.2530, found: 423.2528.

Ethyl (Z)-9-hydroxy-7,7-dimethyl-5-(p-tolyl)non-5-enoate (6h)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the product **6h** (29.9 mg, 47% yield) as a

colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.11 – 7.06 (m, 2H), 6.99 – 6.94 (m, 2H), 5.35 (t, *J* = 1.3 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.64 (t, *J* = 7.4 Hz, 2H), 2.33 (s, 3H), 2.26 (t, *J* = 7.6 Hz, 2H), 2.23 – 2.18 (m, 2H), 1.65 – 1.57 (m, 2H), 1.51 – 1.46 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.82 (s, 6H); ¹³**C NMR (101 MHz, CDCl₃)** δ 173.76, 138.86, 138.57, 136.18, 136.11, 128.65, 128.47, 60.49, 60.29, 46.73, 41.98, 35.59, 33.65, 29.74, 23.27, 21.22, 14.31; **HR-MS** (ESI) m/z calcd for C₂₀H₃₁O₃[M+H⁺]: 319.2268, found: 319.2267.

Ethyl (Z)-6-(1-methylcyclohexyl)-5-(p-tolyl)hex-5-enoate (6i)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **6i** (35.5 mg, 54% yield) as a

colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.05 (m, 2H), 7.00 – 6.95 (m, 2H), 5.33 (m, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.33 (s, 3H), 2.29 (m, 2H), 2.26 – 2.21 (m, 2H), 1.67 – 1.59 (m, 2H), 1.47 – 1.29 (m, 8H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.01 – 0.91 (m, 2H), 0.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.88, 139.17, 138.70, 136.81, 135.83, 128.52, 128.41, 60.24, 42.11, 39.53, 36.55, 33.64, 26.26, 23.39, 22.89, 21.24, 14.33; HR-MS (ESI) m/z calcd for C₂₂H₃₂NaO₂[M+Na⁺]: 351.2295, found: 351.2298.

Methyl (*S*,*Z*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-(5,5-dimethylhex-3-en-3yl)phenyl)propanoate (7a)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the product **7a** (43.8 mg, 56% yield) as

a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 6.96 (m, 4H), 5.38 (t, *J* = 1.4 Hz, 1H), 5.10 – 4.87 (m, 1H), 4.65 – 4.50 (m, 1H), 3.66 (s, 3H), 3.12 – 2.98 (m, 2H), 2.22 – 2.12 (m, 2H), 1.42 (s, 9H), 0.91 (t, *J* = 7.4 Hz, 3H), 0.82 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.58, 155.11, 141.38, 140.06, 135.98, 133.84, 129.28, 128.40, 79.94, 54.62, 52.14, 38.46, 35.23, 33.21, 31.56, 28.37, 13.19; HR-MS (ESI) m/z calcd for C_{23H35}NNaO4[M+Na⁺]: 412.2458, found: 412.2462.

4-((*Z*)-8-Ethoxy-2,2-dimethyl-8-oxooct-3-en-4-yl)benzyl (2*S*,5*R*)-3,3-dimethyl-7oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (7b)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 5) to give the product **7b** (50.0

mg, 48% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.13 – 7.09 (m, 2H), 5.44 (t, J = 1.2 Hz, 1H), 5.32 (d, J = 11.8 Hz, 1H), 5.13 (d, J = 11.9 Hz, 1H), 4.60 – 4.57 (m, 1H), 4.40 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.53 – 3.39 (m, 2H), 2.27 (t, J = 7.6 Hz, 2H), 2.23 – 2.18 (m, 2H), 1.63 – 1.57 (m, 2H), 1.54 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H), 1.20 (s, 3H), 0.82 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.69, 170.79, 166.88, 143.17, 138.63, 136.68, 132.52, 129.55, 128.53, 68.08, 63.17, 62.86, 61.12, 60.31, 41.57, 38.36, 33.59, 33.48, 31.47, 23.20, 20.12, 18.61, 14.32; HR-MS (ESI) m/z calcd for C₂₇H₃₇NNaO₇S[M+Na⁺]: 542.2183, found: 542.2193.

(*IS*,*2R*,*5S*)-2-Isopropyl-5-methylcyclohexyl (*Z*)-7,7-dimethyl-5-(*p*-tolyl)oct-5enoate (7c)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 50) to give the product **7c** (51.0 mg, 64% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.08 (d, *J* = 7.6 Hz,

2H), 6.96 (d, J = 7.8 Hz, 2H), 5.41 (s, 1H), 4.70 - 4.63 (m, 1H), 2.34 (s, 3H), 2.29 -

2.23 (m, 2H), 2.20 (t, J = 7.5 Hz, 2H), 2.00 – 1.93 (m, 1H), 1.89 – 1.81 (m, 1H), 1.71 – 1.63 (m, 2H), 1.65 – 1.57 (m, 2H), 1.53 – 1.44 (m, 1H), 1.39 – 1.31 (m, 1H), 1.10 – 1.00 (m, 1H), 0.97 – 0.91 (m, 2H), 0.91 – 0.87 (m, 6H), 0.85 (s, 9H), 0.75 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.36, 138.97, 138.09, 137.60, 135.76, 128.90, 128.34, 73.94, 47.09, 41.78, 41.04, 34.37, 33.89, 33.37, 31.53, 31.44, 26.31, 23.48, 23.41, 22.11, 21.23, 20.84, 16.36; HR-MS (ESI) m/z calcd for C₂₇H₄₃O₂[M+H⁺]: 399.3258, found: 399.3250.

(Z)-1-(6,6-Dimethyl-4-(*p*-tolyl)hept-4-en-1-yl)-3,7-dimethyl-3,7-dihydro-1*H*purine-2,6-dione (7d)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 1) to give the product **7d** (45.8 mg, 58% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.09 –

7.04 (m, 2H), 7.03 – 6.98 (m, 2H), 5.41 (t, J = 1.4 Hz, 1H), 4.01 – 3.95 (m, 5H), 3.55 (s, 3H), 2.31 (s, 3H), 2.28 – 2.22 (m, 2H), 1.70 – 1.61 (m, 2H), 0.82 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.32, 151.49, 148.71, 141.32, 139.14, 137.68, 137.45, 135.64, 129.00, 128.26, 107.73, 41.37, 40.01, 33.62, 33.32, 31.49, 29.74, 26.35, 21.21; HR-MS (ESI) m/z calcd for C₂₃H₃₁N₄O₂[M+H⁺]: 395.2442, found: 395.2435.

(Z)-5-(4-Acetoxyphenyl)-7,7-dimethyloct-5-en-1-yl-2-(11-oxo-6,11-

dihydrodibenzo[*b*,*e*]oxepin-2-yl)acetate (7e)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 10) to give the product

7e (61.1 mg, 58% yield) as a colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.11 (d, *J* = 2.4 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.60 – 7.53 (m, 1H), 7.50 – 7.44 (m, 1H), 7.43 – 7.39 (m, 1H), 7.38 – 7.34 (m, 1H), 7.09 – 7.04 (m, 2H), 7.03 – 6.99 (m, 3H), 5.41 (t, *J* = 1.3 Hz, 1H), 5.18 (s, 2H), 4.07 (t, *J* = 6.7 Hz, 2H), 3.62 (s, 2H), 2.29 (s, 3H), 2.21 – 2.15 (m, 2H), 1.65 – 1.58 (m, 2H), 1.37 – 1.29 (m, 2H), 0.83 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 190.92, 171.57, 169.46, 160.51, 149.25, 140.56, 139.70, 138.31, 137.14,
136.43, 135.65, 132.82, 132.52, 129.93, 129.57, 129.33, 128.04, 127.87, 125.19, 121.09, 120.68, 73.71, 65.05, 41.87, 40.29, 33.41, 31.54, 28.01, 24.19, 21.27; **HR-MS** (ESI) m/z calcd for C₃₄H₃₆NaO₆[M+Na⁺]: 563.2404, found: 563.2413.

(*8R*,*9S*,*13S*,*14S*)-13-Methyl-17-oxo-7,*8*,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[a]phenanthren-3-yl (*Z*)-7,7-dimethyl-5-(*p*-tolyl)oct-5-enoate (7f)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 40) to give the product **7f** (59.4 mg, 58% yield) as a colorless oil. ¹H NMR (600

MHz, **CDCl**₃) δ 7.29 – 7.26 (m, 1H), 7.10 (d, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.84 – 6.80 (m, 1H), 6.80 – 6.76 (m, 1H), 5.46 (s, 1H), 2.93 – 2.88 (m, 2H), 2.54 – 2.48 (m, 3H), 2.43 – 2.38 (m, 1H), 2.34 (s, 3H), 2.31 – 2.27 (m, 3H), 2.19 – 2.11 (m, 1H), 2.09 – 1.99 (m, 2H), 1.99 – 1.94 (m, 1H), 1.77 – 1.71 (m, 2H), 1.67 – 1.57 (m, 3H), 1.55 – 1.45 (m, 3H), 0.91 (s, 3H), 0.87 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 220.88, 172.54, 148.68, 138.86, 138.33, 137.99, 137.37, 137.29, 135.88, 128.90, 128.40, 126.40, 121.65, 118.83, 50.49, 48.01, 44.21, 41.76, 38.07, 35.92, 33.63, 33.41, 31.61, 31.52, 29.45, 26.41, 25.81, 23.28, 21.65, 21.23, 13.89; HR-MS (ESI) m/z calcd for C₃₅H₄₄NaO₃[M+Na⁺]: 535.3183, found: 535.3194.

(Z)-7-(4-Methoxyphenyl)-9,9-dimethyldec-7-en-1-yl 2-(1-(4-chlorobenzoyl)-5methoxy-2-methyl-1*H*-indol-3-yl)acetate (7g)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 20) to give the product **7g** (69.7 mg, 53% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.68 – 7.63 (m, 2H), 7.50 – 7.44 (m, 2H), 7.09 – 7.04 (m, 2H), 7.03 – 6.98 (m, 2H), 6.97 – 6.95 (m, 1H), 6.89 – 6.85 (m, 1H), 6.69 – 6.64 (m, 1H), 5.40 (t, J = 1.2 Hz, 1H), 4.07 (t, J = 6.7 Hz, 2H), 3.82 (s, 3H), 3.65 (s, 2H), 2.38 (s, 3H), 2.29 (s, 3H), 2.16 – 2.09 (m, 2H), 1.61 – 1.55 (m, 2H), 1.29 – 1.21 (m, 6H), 0.84 (s, 9H); ¹³**C NMR (151 MHz, CDCl₃)** δ 171.00, 169.46, 168.33, 156.09, 149.16,

139.99, 139.28, 137.76, 137.69, 135.92, 134.02, 131.23, 130.86, 130.74, 129.90, 129.17, 120.59, 114.99, 112.82, 111.73, 101.37, 65.21, 55.73, 42.31, 33.35, 31.55, 30.48, 28.79, 28.68, 27.89, 25.81, 21.25, 13.43; **HR-MS** (ESI) m/z calcd for C₃₉H₄₅ClNO₆[M+H⁺]: 658.2930, found: 658.2929.

Eethyl (Z)-7-ethyl-7,11-dimethyl-5-(p-tolyl)dodec-5-enoate (7h)

According to general procedure, the crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 300) to give the product **7h** (41.9 mg, 56% yield) as

a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.05 (m, 2H), 6.98 – 6.93 (m, 2H), 5.19 (t, *J* = 1.2 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 2.28 (t, *J* = 7.6 Hz, 2H), 2.25 – 2.20 (m, 2H), 1.67 – 1.57 (m, 2H), 1.55 – 1.46 (m, 1H), 1.29 – 1.20 (m, 5H), 1.19 – 1.00 (m, 6H), 0.86 (d, *J* = 6.6 Hz, 6H), 0.78 (t, *J* = 7.4 Hz, 3H), 0.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.87, 139.09, 138.69, 136.07, 135.69, 128.68, 128.25, 60.21, 42.77, 42.30, 39.90, 39.86, 35.36, 33.65, 28.03, 24.43, 23.35, 22.81, 22.76, 22.24, 21.23, 14.31, 8.93; HR-MS (ESI) m/z calcd for C₂₅H₄₀NaO₂[M+Na⁺]: 395.2921, found: 359.2911.

5. Mechanistic Investigations and Control Experiments

5.1 Radical clock reaction

The reaction was setup in a nitrogen-filled glove box. Zinc (39.2 mg, 0.6 mmol, 3.0 equiv), MgCl₂ (11.4 mg, 0.12 mmol, 0.6 equiv), KI (49.8 mg, 0.3 mmol, 1.5 equiv), terpyridine (9.33 mg, 0.04 mmol, 20 mol%), **1b** (32.0 mg, 0.2 mmol) and NiBr₂·DME (6.17 mg, 0.02 mmol, 10 mol%) were added to an oven-dried 10 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (3.0 mL) and anhydrous 1,4-dioxane (3.0 mL) were added and rapid stirring was commenced. Then, **8** (81.0 mg, 0.6 mmol,

58.3 µL, 3.0 equiv) and **3a** (49.3 mg, 0.36 mmol, 40.4 µL, 1.8 equiv) were added in turn via syringe and sealed with a screw-cap. The reactions were removed from the glove box and placed in a magnetic stir bar to stir vigorously for 24 h. The reaction was diluted with ethyl acetate (50 mL) and washed with brine (50 mL, three times), aqueous layer was extracted with ethyl acetate (20 mL). The combined organic layers were dried over magnesium sulfate and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 200) to give the product **9** (17.4 mg, 32% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.09 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 8.2 Hz, 2H), 5.82 – 5.74 (m, 1H), 5.44 (s, 1H), 5.01 – 4.91 (m, 2H), 2.29 (s, 3H), 2.26 (t, *J* = 7.8 Hz, 2H), 2.08 – 2.02 (m, 2H), 0.84 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 169.48, 149.24, 139.78, 138.44, 138.30, 136.97, 130.03, 120.65, 114.64, 41.68, 33.42, 32.29, 31.55, 21.28; HR-MS (ESI) m/z calcd for C₁₈H₂₄NaO₂[M+Na⁺]: 295.1669, found: 295.1675.

The reaction was setup in a nitrogen-filled glove box. Zinc (39.2 mg, 0.6 mmol, 3.0 equiv), MgCl₂ (11.4 mg, 0.12 mmol, 0.6 equiv), KI (49.8 mg, 0.3 mmol, 1.5 equiv), terpyridine (9.33 mg, 0.04 mmol, 20 mol%), **1b** (32.0 mg, 0.2 mmol) and NiBr₂·DME (6.17 mg, 0.02 mmol, 10 mol%) were added to an oven-dried 10 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (3.0 mL) and anhydrous 1,4-dioxane (3.0 mL) were added and rapid stirring was commenced. Then, **10** (0.17 g, 0.6 mmol, 3.0 equiv) and **3a** (49.3 mg, 0.36 mmol, 40.4 μ L, 1.8 equiv) were added in turn via syringe and sealed with a screw-cap. The reactions were removed from the glove box and placed in a magnetic stir bar to stir vigorously for 24 h. The reaction was diluted with ethyl acetate (50 mL) and washed with brine (50 mL, three times), aqueous layer was extracted with ethyl acetate (20 mL). The combined organic layers were dried over magnesium sulfate and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the

product **11** (40.0 mg, 48% yield) as a colorless oil. ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.07 (d, *J* = 8.2 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 5.42 (s, 1H), 3.72 (s, 3H), 3.68 (s, 3H), 2.42 – 2.37 (m, 1H), 2.32 – 2.26 (m, 4H), 2.23 – 2.15 (m, 2H), 2.13 – 2.07 (m, 1H), 1.97 – 1.88 (m, 1H), 1.79 – 1.72 (m, 2H), 1.34 – 1.27 (m, 1H), 0.83 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.46, 173.25, 169.59, 149.41, 139.77, 139.19, 136.69, 130.02, 120.84, 60.20, 52.86, 52.83, 48.34, 40.30, 37.23, 34.11, 33.62, 31.78, 31.65, 21.41; **HR-MS** (ESI) m/z calcd for C₂₄H₃₂NaO₆[M+Na⁺]: 439.2091, found: 439.2100.

5.2 Control experiments

The reaction was setup in a nitrogen-filled glove box. Zinc (39.2 mg, 0.6 mmol, 3.0 equiv), MgCl₂ (11.4 mg, 0.12 mmol, 0.6 equiv), KI (49.8 mg, 0.3 mmol, 1.5 equiv), terpyridine (9.33 mg, 0.04 mmol, 20 mol%) and NiBr₂·DME (6.17 mg, 0.02 mmol, 10 mol%) were added to an oven-dried 10 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (3.0 mL) and anhydrous 1,4-dioxane (3.0 mL) were added and rapid stirring was commenced. Then, **1c** (26.4 mg, 0.2 mmol, 26.1 μ L) and **3a** (49.3 mg, 0.36 mmol, 40.4 μ L, 1.8 equiv) were added in turn via syringe and sealed with a screw-cap. The reactions were removed from the glove box and placed in a magnetic stir bar to stir vigorously for 24 h. The reaction was diluted with ethyl acetate (50 mL) and washed with brine (50 mL, three times), aqueous layer was extracted with ethyl acetate (20 mL). The combined organic layers were dried over magnesium sulfate and evaporated. The crude mixture was purified by flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give **12** as a colorless oil (15.1 mg, 20% yield) and **13** a colorless oil (4.1 mg, 10% yield).

5.3 Detection of zinc reagent

The reaction was setup in a nitrogen-filled glove box. Zinc (39.2 mg, 0.6 mmol), MgCl₂ (11.4 mg, 0.12 mmol), KI (49.8 mg, 0.3 mmol), terpyridine (9.33 mg, 0.04 mmol) and NiBr₂·DME (6.17 mg, 0.02 mmol) were added to an oven-dried 10 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (3.0 mL) and anhydrous 1,4-dioxane (3.0 mL) were added and rapid stirring was commenced. Then **2a** (0.12 g, 0.6 mmol, 86.1 μ L) was added in turn via syringe and sealed with a screw-cap. The reactions were run in the glove box and placed in a magnetic stir bar to stir vigorously. After 24 h, 60 μ L of the reaction mixture was taken out and filtered through a syringe filter using CDCl₃ as solvent in glove box, the sample was then analyzed by ¹H NMR of the crude mixture and the organic zinc species **14** was not detected.³

5.4 Identification of byproducts of the reaction

The reaction was setup in a nitrogen-filled glove box. Zinc (0.19 g, 3.0 mmol, 3.0 equiv), MgCl₂ (57.0 mg, 0.6 mmol, 0.6 equiv), KI (0.25 g, 1.5 mmol, 1.5 equiv), terpyridine (46.6 mg, 0.2 mmol, 20 mol%) and NiBr₂·DME (30.8 mg, 0.1 mmol, 10 mol%) were added to an oven-dried 100 mL Schlenk tube containing a magnetic stir bar. Anhydrous DMA (15.0 mL) and anhydrous 1,4-dioxane (15.0 mL) were added and rapid stirring was commenced. Then, **2a** (0.58 g, 3.0 mmol, 0.43 mL, 3.0 equiv), **1c** (0.13 g, 1.0 mmol, 130.5 μ L) and **3a** (0.25 g, 1.8 mmol, 0.2 mL, 1.8 equiv) were added in turn via syringe and sealed with a screw-cap. The reaction was removed from the glove box and stirred vigorously at room temperature for 24 h. The reaction was diluted with ethyl acetate (100 mL) and washed with brine (100 mL, three times). Aqueous layer was extracted with ethyl acetate (100 mL, three times). The combined organic layer was dried over magnesium sulfate and evaporated. The residue was purified by

flash chromatography on silica gel (eluted with ethyl acetate : hexanes = 1 : 30) to give the desired product **4c** as a yellow oil (155.2 mg, 51% yield).

12 was isolated as a colorless oil (53.0 mg, 14% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 8.6 Hz, 4H), 6.82 (d, J = 8.6 Hz, 4H), 5.12 (s, 2H), 3.83 (s, 6H), 0.73 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 158.14, 143.32, 141.20, 133.02, 131.58, 112.74, 55.21, 33.46, 31.42, 29.80; HR-MS (ESI) m/z calcd for C₂₆H₃₅O₂[M+H⁺]: 379.2632, found: 379.2625.

13 was isolated as a colorless oil (20.5 mg, 10% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.08 (m, 2H), 6.84 – 6.79 (m, 2H), 6.35 (d, *J* = 12.5 Hz, 1H), 5.56 (d, *J* = 12.5 Hz, 1H), 3.80 (s, 3H), 0.99 (m, 9H). The data was in accordance with the literature.⁴

15 was determined to be 66% yield by GC analysis using n-dodecane as internal standard and compared with commercially available ethyl butyrate.

16 was determined to be 29% yield by GC analysis using *n*-dodecane as internal standard. ¹H NMR (400 MHz, CDCl₃) δ 4.11 (q, J = 7.1 Hz, 4H), 2.27 (t, J = 7.5 Hz, 4H), 1.66 – 1.58 (m, 4H), 1.37 – 1.30 (m, 4H), 1.24 (t, J = 7.1 Hz, 6H). The data was in accordance with the literature.⁵

6. ¹H, ¹³C, and ¹⁹F Spectra of New Compounds

Ethyl (Z)-7,7-dimethyl-5-(p-tolyl)oct-5-enoate (4a)

Ethyl (Z)-7,7-dimethyl-5-phenyloct-5-enoate (4b)

Ethyl (Z)-5-(4-methoxyphenyl)-7,7-dimethyloct-5-enoate (4c)

Ethyl (Z)-5-([1,1'-biphenyl]-4-yl)-7,7-dimethyloct-5-enoate (4d)

Ethyl (Z)-5-(4-(dimethylamino)phenyl)-7,7-dimethyloct-5-enoate (4e)

Ethyl (Z)-5-(4-(tert-butyl)phenyl)-7,7-dimethyloct-5-enoate (4f)

Ethyl (Z)-7,7-dimethyl-5-(4-(trimethylsilyl)phenyl)oct-5-enoate (4g)

Ethyl (Z)-5-(4-fluorophenyl)-7,7-dimethyloct-5-enoate (4h)

Ethyl (Z)-5-(4-chlorophenyl)-7,7-dimethyloct-5-enoate (4i)

Ethyl (Z)-5-(4-bromophenyl)-7,7-dimethyloct-5-enoate (4j)

Ethyl (Z)-7,7-dimethyl-5-(4-(trifluoromethyl)phenyl)oct-5-enoate (4k)

Methyl (Z)-4-(8-ethoxy-2,2-dimethyl-8-oxooct-3-en-4-yl)benzoate (4l)

Ethyl (Z)-5-(3-fluorophenyl)-7,7-dimethyloct-5-enoate (4m)

Ethyl (Z)-5-(3-chlorophenyl)-7,7-dimethyloct-5-enoate (4n)

Ethyl (Z)-7,7-dimethyl-5-(m-tolyl)oct-5-enoate (40)

Ethyl (Z)-5-(3-methoxyphenyl)-7,7-dimethyloct-5-enoate (4p)

Ethyl (Z)-5-(2-fluorophenyl)-7,7-dimethyloct-5-enoate (4q)

Ethyl (Z)-7,7-dimethyl-5-(o-tolyl)oct-5-enoate (4r)

Ethyl (Z)-5-(2-methoxyphenyl)-7,7-dimethyloct-5-enoate (4s)

Ethyl (Z)-7,7-dimethyl-5-(naphthalen-2-yl)oct-5-enoate (4t)

Ethyl (Z)-5-(benzo[d][1,3]dioxol-5-yl)-7,7-dimethyloct-5-enoate (4u)

Ethyl (Z)-5-(4-acetylphenyl)-7,7-dimethyloct-5-enoate (4v)

Ethyl (Z)-5-(4-aminophenyl)-7,7-dimethyloct-5-enoate (4w)

tert-Butyl (Z)-(4-(2,2-dimethyl-7-phenylhept-3-en-4-yl)phenyl)carbamate (4x)

Ethyl (Z)-7,7-dimethyl-5-(quinolin-6-yl)oct-5-enoate (4y)

Ethyl (Z)-7,7-dimethyl-5-(pyridin-2-yl)oct-5-enoate (4z)

Ethyl (Z)-5-(1H-indol-5-yl)-7,7-dimethyloct-5-enoate (4aa)

Ethyl (Z)-7,7-dimethyl-5-(thiophen-2-yl)oct-5-enoate (4ab)

Ethyl (Z)-5-(cyclohex-1-en-1-yl)-7,7-dimethyloct-5-enoate (4ac)

Ethyl (Z)-5-(3,4-dihydronaphthalen-2-yl)-7,7-dimethyloct-5-enoate (4ad)

Ethyl (Z)-7,7-dimethyl-5-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)oct-5-enoate (4ae)

(Z)-4-(5,5-Dimethylhex-3-en-3-yl)phenyl acetate (5a)

(Z)-4-(2,2-Dimethyloct-3-en-4-yl)phenyl acetate (5b)

(Z)-4-(2,2-Dimethyldodec-3-en-4-yl)phenyl acetate (5c)

(Z)-4-(2,2,7-Trimethyloct-3-en-4-yl)phenyl acetate (5d)

(Z)-4-(2,2-Dimethyl-7-phenylhept-3-en-4-yl)phenyl acetate (5e)

(Z)-4-(1-(4-Chlorophenyl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5f)

(Z)-4-(1-(4-Fluorophenyl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5g)

(Z)-4-(1-(2,3-Dihydrobenzofuran-5-yl)-5,5-dimethylhex-3-en-3-yl)phenyl acetate (5h)

(Z)-9-(9,9-Dimethyl-7-(p-tolyl)dec-7-en-1-yl)-9H-carbazole (5i)

(Z)-4-(7-(Furan-2-yl)-2,2-dimethylhept-3-en-4-yl)phenyl acetate (5j)

(Z)-2-(5,5-Dimethyl-3-(p-tolyl)hex-3-en-1-yl)-1,3-dioxolane (5k)

(Z)-1-(2,2-Dimethyl-8-phenoxyoct-3-en-4-yl)-4-methylbenzene (5l)

(Z)-9,9-Dimethyl-1-phenyl-7-(*p*-tolyl)dec-7-en-1-one (5m)

(Z)-4-(7-Chloro-2,2-dimethylhept-3-en-4-yl)phenyl acetate (5n)

(Z)-4-(8-Cyano-2,2-dimethyloct-3-en-4-yl)phenyl acetate (50)

(Z)-4-(2,2-Dimethylnona-3,8-dien-4-yl)phenyl acetate (5p)

(Z)-4-(2,2-Dimethyloct-3-en-7-yn-4-yl)phenyl acetate (5q)

(Z)-1-(2,2-Dimethyl-9-phenylnon-3-en-8-yn-4-yl)-4-methylbenzene (5r)

tert-Butyl (Z)-(6,6-dimethyl-4-(p-tolyl)hept-4-en-1-yl)carbamate (5s)

(Z)-6,6-Dimethyl-4-(p-tolyl)hept-4-en-1-ol (5t)

(Z)-9,9-Dimethyl-7-(p-tolyl)dec-7-en-1-ol (5u)

(Z)-4-(1-Cyclopentyl-3,3-dimethylbut-1-en-1-yl)phenyl acetate (5v)

Ethyl (Z)-7,7-dimethyl-8-phenyl-5-(p-tolyl)oct-5-enoate (6a)

Ethyl (Z)-7,7-dimethyl-9-phenyl-5-(p-tolyl)non-5-enoate (6b)

Ethyl (Z)-7,7-diethyl-5-(p-tolyl)non-5-enoate (6c)

Ethyl (Z)-7-ethyl-7,9-dimethyl-5-(p-tolyl)dec-5-enoate (6d)

S100

Ethyl (Z)-10-chloro-7,7-dimethyl-5-(p-tolyl)dec-5-enoate (6e)

Ethyl (Z)-9-(4-methoxyphenyl)-7,7-dimethyl-5-(p-tolyl)non-5-enoate (6f)

(Z)-9-Ethoxy-3,3-dimethyl-9-oxo-5-(p-tolyl)non-4-en-1-yl benzoate (6g)

Ethyl (Z)-9-hydroxy-7,7-dimethyl-5-(p-tolyl)non-5-enoate (6h)

Ethyl (Z)-6-(1-methylcyclohexyl)-5-(p-tolyl)hex-5-enoate (6i)

Methyl (S,Z)-2-((tert-butoxycarbonyl)amino)-3-(4-(5,5-dimethylhex-3-en-3-

yl)phenyl)propanoate (7a)

4-((Z)-8-Ethoxy-2,2-dimethyl-8-oxooct-3-en-4-yl)benzyl (2S,5R)-3,3-dimethyl-7-

oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (7b)

(1S,2R,5S)-2-Isopropyl-5-methylcyclohexyl (Z)-7,7-dimethyl-5-(p-tolyl)oct-5-

(Z)-1-(6,6-Dimethyl-4-(p-tolyl)hept-4-en-1-yl)-3,7-dimethyl-3,7-dihydro-1H-

(Z)-5-(4-Acetoxyphenyl)-7,7-dimethyloct-5-en-1-yl 2-(11-oxo-6,11-

dihydrodibenzo[b,e]oxepin-2-yl)acetate (7e)

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl (*Z*)-7,7-dimethyl-5-(*p*-tolyl)oct-5-enoate (7f)

(Z)-7-(4-Methoxyphenyl)-9,9-dimethyldec-7-en-1-yl 2-(1-(4-chlorobenzoyl)-5-

Ethyl (Z)-7-ethyl-7,11-dimethyl-5-(p-tolyl)dodec-5-enoate (7h)

(Z)-4-(2,2-Dimethylocta-3,7-dien-4-yl)phenyl acetate (9)

Dimethyl (*S*,*Z*)-3-(2-(4-acetoxyphenyl)-4,4-dimethylpent-2-en-1-yl)cyclopentane-1,1-dicarboxylate (11)

¹³C NMR of **12** (101 MHz, CDCl₃)

7. X-ray Diffraction Data of 7d

Table S11 Crystal data and structure refinement for 7d (CCDC 2061399).

Identification code cxy1538_0ma

Empirical formula C₂₃H₃₀N₄O₂

Formula weight	394.51
Temperature/K	100
Crystal system	monoclinic
Space group	P21/c
a/Å	16.0767(6)
b/Å	12.9097(5)
c/Å	10.9767(4)
$\alpha/^{\circ}$	90
β/°	99.7120(10)
γ/°	90
Volume/Å ³	2245.51(15)
Z	4
$\rho_{calc}g/cm^3$	1.167
μ/mm^{-1}	0.076
F(000)	848.0
Crystal size/mm ³	$0.38 \times 0.34 \times 0.29$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.912 to 55.176
Index ranges	$-20 \le h \le 18, -16 \le k \le 16, -14 \le l \le 14$
Reflections collected	21610
Independent reflections	5190 [$R_{int} = 0.0390$, $R_{sigma} = 0.0373$]
Data/restraints/parameters	5190/0/269
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0445, \mathrm{wR}_2 = 0.1064$
Final R indexes [all data]	$R_1 = 0.0680, \mathrm{wR_2} = 0.1204$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.22

S118

8. References

- (1) N. Ajvazi and S. Stavber, *Tetrahedron Lett.* 2016, **57**, 2430-2433.
- (2) A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc. 2012, 134, 10693-10697.
- (3) Y.-Z. Zhan, N. Xiao and W. Shu, Nat. Commun. 2021, 12, 928.
- (4) C. Zheng, W.-M, Cheng, H.-L. Li, R.-S. Na and R. Shang, *Org. Lett.* 2018, **20**, 2559-2563.
- (5) M. R. Prinsell, D. A. Everson and D. J. Weix, Chem. Commun. 2010, 46, 5743-5745.