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A Cloning criteria and thresholds

• Criteria #1:

Cloning should take pace in situations where more than one excited state is significantly
populated. This can be monitored by the distribution width Wn[1]:

Wn =
1∑N

I

∣∣∣a(n)I

∣∣∣4 . (S1)

Wn takes values between 1 and the total number of excited states considered N . Values near
1 means that all the population is concentrated in a single state, while values near N means
an even distribution. Therefore, the cloning events were restricted to situations where:

Wn > δ1 = 2.0 . (S2)

The time evolution of the expectation value of Wn might be misleading in the sense that it
has a broad distribution and presents sudden changes after cloning events. Moreover, it only
quantifies whether the electronic populations for a given trajectory spread over the different
states or not. A more decisive criterion is the breaking angle defined in criteria #2: the
populations might be distributed over several states, but if all those states pull the nuclear
system in the same direction of motion there is no need for bifurcating the wavefunction.
Figure S1 depicts the distribution of values of Wn for all time steps and trajectories of the
complete ensemble for the current case. The peak at approximately Wn = 2 is associated to
the threshold δ1 = 2, while the peak at approximately Wn = 1 is associated either to the
subsequent reduction of Wn after each cloning event or to values acquired after electronic
energy relaxation to the S1 state.
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Figure S1: Probability density function (PDF) of Wn defined according to (eq. S1) for all trajec-
tories and time steps of the complete ensemble for the current case.

• Criteria #2:

Cloning should take place in situations where the wavepacket would split in configuration
space. This is monitored by the breaking angle [1]:

θ(n) = arccos

 2F
(n)
M · F(n)

max∣∣∣F(n)
M

∣∣∣2 +
∣∣∣F(n)

max

∣∣∣2
 , (S3)
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where F
(n)
M is the averaged excited state gradient for configuration n:

F
(n)
M = −

∑
I

∣∣∣a(n)I

∣∣∣2∇RnV
(n)
I , (S4)

where Rn represents the nuclear coordinates for configuration n and V
(n)
I represents the

energy corresponding to the excited state I of configuration n. F
(n)
max is minus the gradient

corresponding to the most populated state. By restricting the cloning events to situations in
which:

θ(n) > δ2 = 10◦ , (S5)

we ensure that the two new configurations produced after a cloning event will split in config-
uration space providing the desired bifurcation effect and rectifying the physical meaning of
the mean field.

• Criteria #3:

In order to make the algorithm efficient and avoid a overproduction of cloning events in the
strong coupling regions of configuration space, we avoid cloning when the coupling is to high.
By this way clones are produced once the system leaves strong coupling regions if the two
previous criteria are fulfilled. The coupling is monitored in similar fashion as the quantum
transition probability is calculated for the fewest switches surface hopping algorithm [2, 3]:

∑
I

∣∣∣∣∣∣
2σ

(n)
I cos

(
θ
(n)
I − θ(n)max

)
Ṙn · d(n)

I,max

σmax

∣∣∣∣∣∣ < δ3 , (S6)

where σ
(n)
I and θ

(n)
I are the modulus and phase corresponding to the electronic amplitudes a

(n)
I ,

the index max refers to the most populated state, Ṙn is the nuclear velocity in configuration

n and d
(n)
I,max is the non-adiabatic coupling between excited states I and the one with the

greater population for configuration n:

d
(n)
I,max = 〈φ(n)I |∇Rn |φ(n)max〉 . (S7)

Therefore, by setting δ3 = 0.05 we ensure an efficient clone generation away from the strong
coupling regions of configuration space.

• Criteria #4:

The nuclear amplitude corresponding to each configuration splits after a cloning event. If
the total number of clones is not controlled, an exponential growth, with an exponentially
decreasing weight for the corresponding configurations, would make the algorithm too inef-
ficient. Therefore, we allowed a total of 4 consecutive clones, leading to a maximum of 16
clones per initial condition. Previous convergence tests have shown that there is no a relevant
accuracy improvement after the production of approximately 14 clones per initial condition
[2]. In the current case, an average of approximately 6 clones per initial condition were gen-
erated. These clones take place through out all the simulation time. Figure S2 shows that
cloning events occurs during the simulations in an homogeneous rate.
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Figure S2: Average number of cloning events per initial condition as a function of time.
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B Fraction of transition density

Within the Collective Electronic Oscillator (CEO) approach the Configuration Interaction Singlet
(CIS) eigenstate I for configuration n, written in Atomic Orbitals (AO) basis, is denoted frequently
as transition density matrices [4, 5, 6]:(

ρ
(n)
I

)
i,j

= 〈φ(n)I

∣∣∣ĉ†i ĉj∣∣∣φ(n)g 〉 , (S8)

where |φ(n)g 〉 is the ground state wavefunction, and ĉ†i and ĉj are the electron creation and annhilation

operators with indexes i and j referring to AO basis functions. Diagonal elements
(
ρ
(n)
I

)
i,i

are

relevant to the changes in the distribution of electronic density in the ith orbital in the case of
bound excitonic states caused by excitation [7].

During AIMC simulations, the intramolecular electronic energy redistribution can be followed

using the time-dependent spatial localization of ρ
(n)
I . The fraction of transition density localized

on a specific segment X of the molecule can be defined as [1]:

ρ
(n)
I,X =

∑
i∈X

(
ρ
(n)
I

)2
i,i∑

i

(
ρ
(n)
I

)2
i,i

. (S9)

In order to calculate the corresponding expectation value for the Multiconfigurational Ehrenfest
(MCE) wavefunction we can introduce the operator ρ̂X such that:

ρ̂X |φ(n)I 〉 = ρ
(n)
I,X |φ

(n)
I 〉 , (S10)

which expectation value can be calculated as:

〈ρ̂X〉 = <

∑
n,m

c∗mcn〈χm|χn〉
∑
I,J

(
a
(m)
I

)∗
a
(n)
J 〈φ

(m)
I |φ

(n)
J 〉ρ

(m)
I,X

 , (S11)

where < stands for the real part.
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C Parameters of the fit to eq. (1)

The function in eq. (1) describes the relaxation process to S1 as a superposition of an exponential
decay plus an exponentially damped oscillation, such that both contributions have the same weight
at t = 0. Parameters a and b corresponds to the asymptotic value of S1 population and its initial
value, respectively; τ1 is the S1 decay time, T is the period of the vibronic oscillations and τ2 is the
vibronic decoherence time. R is the corresponding R-squared.

Parameter Estimate Standard error

a 0.81 0.00

b 0.24 0.00

τ1(fs) 5.42 0.04

T (fs) 19.96 0.02

τ2(fs) 23.31 0.12

R 0.9999 −

Table S1: Parameters obtained by fitting the population of S1 in Figure 2(a) to f(t) given by eq.
(1).
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D Pure electronic dephasing

Within linear response theory [8], the correlation between excited states I and J is quantified by
the autocorrelation function:

CIJ = 〈δEIJ(t)δEIJ(0)〉, (S12)

where δEIJ is the corresponding energy gap and the angular brackets means average over the
ensemble. The energy corresponding to a given state K is calculated as the expectation value:

EK = 〈Ψ|ÊK |Ψ〉 =

=
∑
n,m

(cm)∗ cn〈χm|χn〉E(n)
K

∑
IJ

(
a
(m)
I

)∗
a
(n)
J 〈φ

(m)
I |φ

(n)
J 〉, (S13)

where E
(n)
K is the energy corresponding to the adiabatic state K for the center of configuration n.

The pure electronic dephasing DIJ(t) is defined by the second order cumulant approximation
[8]:

DIJ = exp

(
− 1

h̄2

∫ t

0
dt′
∫ t′

0
dt′′CIJ(t)

)
. (S14)

Finally, the pure electronic decoherence time τIJ can be obtained by fitting the pure dephasing
DIJ to a Gaussian function:

DIJ ≈ exp

(
−
(

t

τIJ

))
. (S15)
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Figure S3: Pure electronic dephasing function for the triarylamine trimer D12(t) evaluated from
the AIMC simulations.
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E Surface hopping simulations

NEXMD surface hopping (SH) simulations were performed in order to compare the capability of
the SH method to reproduce the oscillatory behavior of the electronic populations resulting from
vibronic coherences. The same ensemble of initial configurationshas as for AIMC simulations has
been considered . The electronic wavefunction was collapsed to S2 at t = 0 in order to maximize the
appearance of any possible oscillations. Figure (S4) shows the electronic populations, calculated as
the fraction of trajectories evolving on each state at any given time. NEXMD-SH simulations were
performed at a constant energy. Classical time steps of 0.1 fs have been used for the propagation
of nuclei in ground state and a quantum time step of 0.025 fs has been used to propagate the
electronic degrees of freedom. Corrections for decoherence [9], parameters and the methodology of
NEXMD-SH simulations have been extensively discussed elsewhere [10].

Figure S4: Time evolution of the electronic populations for SH dynamics.
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F Transition density matrix snapshots

In order to calculate transition density matrix for the MCE wavefunction |Ψ〉, we first calculate the
expectation value of the transition density matrix from the ground state to a given state K:

ρK = 〈Ψ|ρ̂0K |Ψ〉 =

=
∑
n,m

(cm)∗ cn〈χm|χn〉ρ(n)0K

∑
IJ

(
a
(m)
I

)∗
a
(n)
J 〈φ

(m)
I |φ

(n)
J 〉, (S16)

where ρ
(n)
0K is the transition density matrix [7] from the ground state to excited state K for the

center of configuration n.
The transition density matrix ρ from the ground state to the superposition of excited states is

then calculated as:

ρ =
∑
K

|aK |2ρK , (S17)

where aK is calculated according to [1]:

|aK |2 = <

{∑
n,m

(cm)∗ cn〈χm|χn〉
(
a
(m)
K

)∗∑
I

a
(n)
I 〈φ

(m)
K |φ

(n)
I 〉

}
. (S18)
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Figure S5: Transition density matrices (eq. (S17)) corresponding to the the different snapshots
shown in Figure 3(a).
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G Non-adiabatic coupling analysis

A further insight into the vibronic dynamics can be achieved by analyzing the nonadiabatic coupling
vector (NACR) in regions of strong coupling near conical intersection seams. The strong coupling
regime is defined as situations where the absolute value of NACR is higher than its mean value
plus 10 times the standard deviation during each AIMC trajectory. Figure S6(a) shows a real-space
representation of a typical NACR. We find that NACR involves antisymmetric nuclear motions on
two of the three branches. This behavior involving antisymmetric motions on different branches of
a dendrimer has been reported previously [11] and was associated to the fact that the molecular
wavefunction adopts a standing wave pattern according to the particle (exciton) in a box model
and the S2 → S1 transition can be associated with a transition where symmetry between states
changes. That is, the vibronic excitation has an antisymmetric form where the two branches
experience structural deformations with opposite phases (i.e. expansion and compression). Figure
S6(b) depicts the probability density function of the fraction of NACR absolute values localized on
the three branches, denoted as I, II, and III according to their corresponding contribution values in
a decreasing order. We can observe that the NACRs are not equally distributed among the three
branches but localized mainly in two of them. The distribution of the projections of NACR onto
the normal modes basis, calculated at the S1 minimum energy configuration, is shown in Figure
S6(c). The peak at ∼ 19 fs (∼ 1750 cm−1) matches the period T of the vibronic oscillations (∼ 20
fs) obtained by fitting the evolution in time of the S1 population (see Figure 2(a) and Table S1).
Vibronic dynamics are thus assisted by a reduced set of high-frequency normal modes.
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Figure S6: (a) Representation of a typical NACR in real space during a region of strong coupling
between states. (b) Probability density function of the fraction of NACR absolute values during
strong coupling regime. For each AIMC trajectory, branches I, II, and III are sorted according to
their corresponding fractions of NACR absolute value in decreasing order. (c) Distribution of the
overlap between nuclear normal modes, calculated at the S1 minimum energy configuration, and
the NACR at configurations of strong coupling.
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H Additional Trajectories

Only trajectory 2 is discussed in the main text. This trajectory is representative of a large fraction
of trajectories in the ensemble, with only minor differences especially in the signal. Here, we discuss
a few interesting trajectories to give a better impression about the range of properties during the
dynamics.

• Figure S7 shows a trajectory that is similar to trajectory 2 in the main text, but where the
transition density is located in branches A and C instead of B and C. This exemplifies that
most trajectories are quite similar and the three branches of the molecule are equal, while
the transition density is localized in two of them simultaneously.

• Figure S8 depicts a trajectory where the ρ13 contribution to the signal is equally strong to
the usually dominating ρ12 contribution. Thus, they are both well visible in the total signal
of this trajectory and well distinguishable at different Raman shifts.

• In Figure S9, trajectory 5 exhibits much larger and more frequent population oscillations,
especially between S1 and S2. This does not considerably affect the relative magnitudes and
persistence of the individual signal contributions, however.
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Figure S7: Dynamics and TRUECARS signal in trajectory 3. a) Populations in the S1 (blue), S2

(red) and S3 (yellow) states. b) Fraction of transition density in branch A (purple), B (yellow), C
(red) and around the central Nitrogen (blue). c) Frequency-dispersed TRUECARS signal (eq. 2)
for the coherence ρ12 between S1 and S2. d–e) same as c) for ρ13 and ρ23. f) Total TRUECARS
signal for trajectory 2 given by the sum of c–e.
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Figure S8: Dynamics and TRUECARS signal in trajectory 4. a) Populations in the S1 (blue), S2

(red) and S3 (yellow) states. b) Fraction of transition density in branch A (purple), B (yellow), C
(red) and around the central Nitrogen (blue). c) Frequency-dispersed TRUECARS signal (eq. 2)
for the coherence ρ12 between S1 and S2. d–e) same as c) for ρ13 and ρ23. f) Total TRUECARS
signal for trajectory 2 given by the sum of c–e.
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Figure S9: Dynamics and TRUECARS signal in trajectory 5. a) Populations in the S1 (blue), S2

(red) and S3 (yellow) states. b) Fraction of transition density in branch A (purple), B (yellow), C
(red) and around the central Nitrogen (blue). c) Frequency-dispersed TRUECARS signal (eq. 2)
for the coherence ρ12 between S1 and S2. d–e) same as c) for ρ13 and ρ23. f) Total TRUECARS
signal for trajectory 2 given by the sum of c–e.
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I Frenkel exciton model

In the Frenkel exciton model, the excited states of the trimer are considered as a linear combination
of the solutions for the individual branches. In the perfect symmetry regime, and using the first
solution E on each identical branch and a unique common coupling V between them as a basis,
the Frenkel exciton Hamiltonian can be expressed as:

H =

 E V V
V E V
V V E

 , (S19)

with eignevalues:
E − V
E − V
E + 2V

(S20)

and eigenvectors:
(−1 0 1)
(−1 1 0)
( 1 1 1)

(S21)

If we associate the S1 and S2 to the degenerate states with energies E−V , and S3 with energy
E + 2V , the coupling V can be estimated as one third of the energy splitting between S1/S2 and
S3.
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