Supporting Information

Advancing Homogeneous Catalysis for Parahydrogen-Derived Hyperpolarisation and its NMR Applications

Ben. J. Tickner^{a,b*} and Vladimir V. Zhivonitko^{a*}

 ^a NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
^b Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel.

* Corresponding authors: <u>ben.tickner@alumni.york.ac.uk</u> and <u>vladimir.zhivonitko@oulu.fi</u>

A range of SABRE active complexes with different NHC auxiliary ligands have been reported (see Figure 12 and 13 of the manuscript) which exhibit a variety of steric and electronic properties. These can be quantified by use of % Buried Volumes (%BurV) or Tolman Electronic Parameters (TEP) respectively (Table S1). We provide here a comparison of the different %BurV and TEP parameters for IMes-derived ligands used in SABRE hyperpolarisation experiments.

No.	Abbreviation	R1	R ₂	R ₃	R 4	R ₅	TEP /cm ⁻¹	BurV	Ref.
								/%	
5	IMe	CH₃	н	CH₃	-	-	2054.1 [¤]	26.3¤	[48]
6	ImNPr ⁱ 2	CH(CH ₃) ₂	н	CH(CH ₃) ₂	-	-	2050.4%	26.4 [@]	[154],[155]
7	ImMe ₂ NPr ⁱ 2	CH(CH ₃) ₂	CH₃	CH(CH ₃) ₂	-	-	2049.6¤	38.4¤	[48]
8	ItBu	^t Bu	н	^t Bu	-	-	2048.9%	35.5 [@]	[155]
9	Icy	Cyclohexyl	н	Cyclohexyl	-	-	2049.5%	27.1 [@]	[154],[155]
					-	-	2049.6¤	27.4¤	[48]
10	Iad	Adamantyl	н	Adamantyl	-	-	2048.3%	36.1 [@]	[155]
11	-	Ph	н	CH₃	-	-	-	-	[163]
12	-	Mesityl	н	CH₃	-	-	-	-	[163]
13	-	Mesityl	н	CH₂Ph	-	-	-	-	[163]
14	-	Mesityl	н	CH ₂ CH ₂ Ph	-	-	-	-	[163]
15	SImNPr ⁱ 2	CH(CH ₃) ₂	н	CH(CH ₃) ₂	-	-	2050.8%	28.5 [@]	[154],[155]
16	ipr-NHC	Mesityl	Н	CH(CH ₃) ₂	-	-	-	-	[156]
17	Si-NHC	Mesityl	Н	(CH ₂) ₃ Si(OEt) ₃	-	-	-	-	[156]
18	tzNHC	Mesityl	CH₃	Ph	-	-	-	-	[156]
19	CAAC-NHC	CH(CH ₃) ₂	-	-	-	-	-	-	[156]
20	IMes	CH₃	н	CH₃	н	н	2049.6%	31.6 [@]	[154],[155]
							2049.6#	31.6	[153]
							2050.7¤	36.5¤	[48]
21	-	CH₃	н	Н	н	н	2050.5#	30.5	[153]
22	-	н	н	CH₃	н	н	2050.6#	31.6	[153]
23	-	н	н	CH ₂ CH ₃	н	н	2049.8#	31.7	[153]
24	IPr	Н	н	CH(CH ₃) ₂	н	Н	2050.1#	32.6	[153]
							2050.2%	33.6 [@]	[154],[155]
							2051.5 [¤]	44.5¤	[48]
25	-	н	CH₃	Н	н	н	2049.6#	30.5	[153]
26	-	CH₃	CH₃	Н	н	н	2048.9#	30.5	[153]
27	-	F	н	CH₃	н	Н	2051.4#	31.7	[153]
28	-	Cl	н	CH₃	н	н	2051.7#	31.7	[153]
29	-	Br	н	CH₃	н	н	2051.9#	31.7	[153]
30	-	I	н	CH₃	н	н	2051.9#	31.7	[153]
31	-	CO ₂ Me	н	CH₃	н	н	2052.2#	31.8	[153]
32	-	OTf	н	CH₃	н	н	2053.2#	31.8	[153]
33	-	OAc	н	CH₃	н	н	2051.3#	31.7	[153]
34	-	Ph	н	CH₃	н	н	2050.4#	31.7	[153]
35	-	^t Bu	н	CH₃	Н	Н	2049.6#	31.7	[153]
36	-	OMe	н	CH₃	н	н	2049.3#	31.5	[153]
37	-	NMe ₂	н	CH₃	н	н	2047.6*	31.6	[153]
38	-	CH₃	н	CH₃	CH₃	CH₃	2047.2#	31.4	[153]
39	-	CH₃	н	CH₃	CH ₂ CH ₃	CH ₂ CH ₃	2047.8#	31.6	[153]
40	-	CH₃	н	CH₃	Cl	Cl	2052.8#	31.7	[153]
41	-	CH₃	н	CH₃	Br	Br	2052.4#	31.8	[153]
42	-	CI	н	CH₃	Cl	Cl	2054.9#	31.8	[153]
43	-	Н	Н	CH(Et) ₂	н	Н	2048.3%	-	[154]
44	-	CH₃	н	CH₃	NMe ₂	н	-	-	[212]
45	SIMes	CH₃	н	CH₃	н	н	2050.8%	32.7@	[154],[155]
							2051.5×	36.9¤	[48]
46	SIPr	н	н	CH(CH ₃) ₂	н	н	2051.1%	35.7@	[154],[155]
							2052.2×	47.0¤	[48]
47-51	-	-	-		-	-	-	-	[161]-[163]

Table S1: Summary of electronic and steric properties of SABRE polarisation transfer catalysts with a variety of NHC ligands.

^aThese values were calculated using density functional theory involving [Ni(CO)₃(NHC)] and were originally reported in Ref. no. [151]

[%]Ref. no. [154] presented average infrared carbonyl stretching frequencies ($v_{CO,av}$) of [Ir(NHC)(CO)₂Cl]. TEP values were calculated from these in our work according to the established equation TEP = 0.847 $v_{CO,av}$ + 336 consistent with other works.^{152,153}

[®]These values were calculated in Ref. no. [155] from X-ray crystal structures of [Ir(NHC)(CO)₂Cl] reported in Ref. no. [152]. [#]Values determined from average infrared carbonyl stretching frequencies ($v_{CO,av}$) of [Ir(NHC)(CO)₂Cl]

Note that reference numbers correspond to those that appear in the main manuscript