## Supporting Information

Copper-catalyzed radical cascade reaction of cyclobutanes: synthesis of highly functionalized cyclobutene derivatives

Chunyang Liu, Xiaoyan Shangguan, Yan Li,* and Qian Zhang*

## Table of Contents

1. General Information ..... S3
2. Detailed Optimization of Reaction Conditions ..... S3
3. Cyclobutane and Sodium Sulfonate Substrates Synthesis ..... S6
4. General Procedure and Spectral Data of Products ..... S13
5. Gram-Scale Reaction ..... S29
6. Synthetic Application of highly Functionalized Cyclobutene Derivatives ..... S30
7. Mechanism Study ..... S31
8. Single Crystal Structure and Data ..... S34
9. NMR Spectra ..... S37
10. References ..... S116

## 1. General Information

General All reactions were performed under nitrogen atmosphere in flame dried flasks. All reactions were monitored by thin layer chromatography (TLC) using Macherey-Nagel 0.20 mm silica gel 60 plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV- 500/600 NMR spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane ( 0 ppm for ${ }^{1} \mathrm{H}$ ) and $\mathrm{CHCl}_{3}\left(77.0 \mathrm{ppm}\right.$ for ${ }^{13} \mathrm{C}$ ), respectively. High-resolution mass spectra (HRMS) were recorded on Bruck microtof.

Materials Unless otherwise noted, commercial reagents were purchased from Energy-Chemical Limited, Alfa Aesar, and other commercial suppliers and were used as received. Cyclobutane substrates were synthesized according to procedures described in the literature.THF was distilled over sodium and stored under nitrogen atmosphere. $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DCM}$ and DCE were distilled over $\mathrm{CaH}_{2}$ and stored under nitrogen atmosphere.

## 2. Detailed optimization of Reaction Conditions

Table S1. Optimization of conditions for 1,3-diaminocyclobutene synthesis ${ }^{\mathrm{a}}$

|  | $\text { NFSI } \xrightarrow[\text { Solvent, T, } \mathrm{N}_{2}]{\substack{\text { Cu Cat. }(10 \mathrm{mol⿳} \mathrm{\%} \text { ) } \\ \text { Ligand }(12 \mathrm{~mol})}}$ |  | byproduct: |  |  <br> 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | Cu Cat. | Ligand | Solvent | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | Yield (\%) ${ }^{\text {b }}$ |
| 1 | CuBr | L1 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 15 |
| 2 | CuBr | L2 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 8 |
| 3 | CuBr | L3 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 16 |
| 4 | CuBr | L4 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 28 |
| 5 | CuBr | L5 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 42 |
| 6 | CuBr | L6 | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 21 |
| 7 | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 86 |
| 8 | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 20 | 52 |
| 9 | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 30 | 75 |
| 10 | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 93 |
| 11 | CuCl | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 65 |
| 12 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 45 |


| 13 | CuOAc | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 44 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | $\mathrm{CuBr}_{2}$ | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 51 |
| 15 | CuBr | -- | THF | 40 | trace |
| 16 | CuBr | -- | $\mathrm{PhCF}_{3}$ | 40 | 0 |
| 17 | CuBr | -- | DCM | 40 | 0 |
| 18 | CuBr | -- | DCE | 40 | 0 |
| $19^{\text {c }}$ | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 77 |
| $20^{\text {d }}$ | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 61 |
| $21^{\text {e }}$ | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 47 |
| $22^{\text {f }}$ | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 31 |
| 23 | $\mathrm{CuBr}(5 \mathrm{~mol} \%)$ | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 93 |
| 24 | $\mathrm{CuBr}(2 \mathrm{~mol} \%)$ | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 76 |
| 25 | $2 \mathrm{a} \frac{\mathrm{CuBr}(10 \mathrm{~mol} \%), \text { phen }(12 \mathrm{~mol} \%)}{\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}), 50^{\circ} \mathrm{C}, \mathrm{~N}_{2}} 4(60 \%)$ |  |  |  |  |
| 26 | $\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}), 50^{\circ} \mathrm{C}, \mathrm{~N}_{2}]{\mathrm{CuBr}(10 \mathrm{~mol}) \text {, phen }(12 \mathrm{~mol})} \text { 2a(60\%)}+\mathbf{4 ( 2 3 \% )}$ |  |  |  |  |


${ }^{\text {a }}$ Reaction conditions: 1a ( 0.2 mmol ), NFSI ( $0.6 \mathrm{mmol}, 3$ equiv), catalyst ( $10 \mathrm{~mol} \%$ ) in 2 mL anhydrous solvent at $50{ }^{\circ} \mathrm{C}$ for 4 h under $\mathrm{N}_{2}$ atmosphere. ${ }^{\mathrm{b}}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{\mathrm{c}}$ NFSI ( $0.5 \mathrm{mmol}, 2.5$ equiv). ${ }^{\mathrm{d}}$ NFSI ( $0.4 \mathrm{mmol}, 2$ equiv). ${ }^{\mathrm{e}}$ NFSI ( $0.3 \mathrm{mmol}, 1.5$ equiv). ${ }^{\mathrm{f}} \mathrm{NFSI}$ ( $0.2 \mathrm{mmol}, 1$ equiv).

Table S2. Optimization of conditions for 1,3-disulfonylcyclobutene synthesis ${ }^{\text {a }}$


| Entry | Cu Cat. | Ligand | Solvent | T ( $\left.{ }^{\circ} \mathrm{C}\right)$ | Yield (\%) ${ }^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | CuBr | $\mathbf{L} 1$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 6 |
| 2 | CuBr | $\mathbf{L 2}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 4 |
| 3 | CuBr | $\mathbf{L 3}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 7 |
| 4 | CuBr | $\mathbf{L 4}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 9 |
| 5 | CuBr | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 12 |
| 6 | CuBr | $\mathbf{L 6}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | trace |
|  |  |  | S 4 |  |  |


| 7 | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | CuCl | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 11 |
| 9 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 26 |
| 10 | CuOAc | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 5 |
| 11 | CuOTf | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 8 |
| 12 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 30 | 21 |
| 13 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 29 |
| 14 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 60 | 28 |
| 15 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | THF | 50 | trace |
| 16 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | Toluene | 50 | 7 |
| 17 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 48 |
| 18 | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCE | 50 | 42 |
| $19^{\mathrm{c}}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 59 |
| $20^{\mathrm{d}}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 64 |
| $21^{\mathrm{d}, \mathrm{e}}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 78 |
| $22^{\mathrm{d}, \mathrm{f}}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 83 |
| $23^{\mathrm{d}, \mathrm{g}}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | $\mathbf{L 5}$ | DCM | 50 | 81 |

${ }^{\text {a }}$ Reaction conditions: 1a ( 0.2 mmol ), NFSI ( $0.7 \mathrm{mmol}, 3.5$ equiv), $\mathrm{PhSO}_{2} \mathrm{Na}(0.5 \mathrm{mmol}, 2.5$ equiv), catalyst ( $10 \mathrm{~mol} \%$ ) and ligand ( $12 \mathrm{~mol} \%$ ) in 2 mL anhydrous solvent at $40^{\circ} \mathrm{C}$ for 20 h under $\mathrm{N}_{2}$ atmosphere. ${ }^{\mathrm{b}}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{\mathrm{c}}$ $\mathrm{PhSO}_{2} \mathrm{Na}$ ( $0.7 \mathrm{mmol}, 3.5$ equiv). ${ }^{\mathrm{d}} \mathrm{NFSI}\left(0.8 \mathrm{mmol}, 4\right.$ equiv), $\mathrm{PhSO}_{2} \mathrm{Na}\left(0.8 \mathrm{mmol}, 4\right.$ equiv). ${ }^{\mathrm{e}}$ DCM (4 mL). ${ }^{\mathrm{f}} \mathrm{DCM}(6 \mathrm{~mL}) .{ }^{\mathrm{g}} \mathrm{DCM}(8 \mathrm{~mL})$.

Table S3. Optimization of conditions for 1,3,3-tribromocyclobutene synthesis ${ }^{\text {a }}$


| Entry | Cu Cat. | Ligand | Solvent | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | Yield $(\%)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | CuBr | -- | DCE | 50 | 48 |
| $2^{\mathrm{c}}$ | CuBr | -- | DCE | 50 | 65 |
| $3^{\mathrm{c}}$ | CuBr | $\mathbf{L 1}$ | DCE | 50 | 9 |
| $4^{\mathrm{c}}$ | CuBr | $\mathbf{L 2}$ | DCE | 50 | 30 |
| $5^{\mathrm{c}}$ | CuBr | $\mathbf{L 3}$ | DCE | 50 | 60 |
| $6^{\mathrm{c}}$ | CuBr | $\mathbf{L 4}$ | DCE | 50 | 18 |


| $7{ }^{\text {c }}$ | CuBr | L5 | DCE | 50 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $8{ }^{\text {c }}$ | CuBr | L6 | DCE | 50 | 45 |
| $9{ }^{\text {c }}$ | CuBr | -- | DCE | 60 | 84 |
| $10^{\text {c }}$ | CuBr | -- | DCE | 70 | 94 |
| $11^{\text {c }}$ | CuBr | -- | DCE | 80 | 92 |
| $12^{\text {c }}$ | CuCl | -- | DCE | 70 | 68 |
| $13^{\text {c }}$ | $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ | -- | DCE | 70 | 80 |
| $14^{\text {c }}$ | CuOAc | -- | DCE | 70 | 76 |
| $15^{\text {c }}$ | $\mathrm{CuBr}_{2}$ | -- | DCE | 70 | 78 |
| $16^{\text {c }}$ | CuBr | -- | $\mathrm{CH}_{3} \mathrm{CN}$ | 50 | 0 |
| $17^{\text {c }}$ | CuBr | -- | $\mathrm{PhCF}_{3}$ | 70 | 0 |
| $18^{\text {c }}$ | CuBr | -- | DCM | 70 | 81 |
| $19^{\text {c }}$ | CuBr | -- | Toluene | 70 | trace |
| $20^{\text {c }}$ | CuBr ( $5 \mathrm{~mol} \%$ ) | -- | DCE | 70 | 88 |
| $22^{\text {c, d }}$ | CuBr | -- | DCE | 70 | 80 |
| $22^{\text {c, e }}$ | CuBr | -- | DCE | 70 | 87 |

${ }^{\text {a }}$ Reaction conditions: $1 \mathbf{a}(0.2 \mathrm{mmol})$, NFSI ( $0.70 \mathrm{mmol}, 3.5$ equiv), $\mathrm{LiBr}(0.5 \mathrm{mmol}, 2.5$ equiv), catalyst ( $10 \mathrm{~mol} \%$ ) in 2 mL dry solvent at $50{ }^{\circ} \mathrm{C}$ for 4 h under $\mathrm{N}_{2}$ atmosphere. ${ }^{\text {b }}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{\mathrm{c}}$ NFSI ( $0.86 \mathrm{mmol}, 4.3$ equiv), LiBr ( $0.66 \mathrm{mmol}, 3.3$ equiv) ${ }^{\mathrm{d}} \mathrm{KBr}\left(0.66 \mathrm{mmol}, 3.3\right.$ equiv) instead of LiBr . ${ }^{\mathrm{e}} \mathrm{TMSBr}(0.66 \mathrm{mmol}, 3.3$ equiv) instead of LiBr .

## 3. Cyclobutane and Sodium Sulfonate Substrates Synthesis



Following the literature procedure, a flame-dried round bottom flask charged with 10 mmol of aryl bromide in 25 mL THF was cooled to $-78^{\circ} \mathrm{C}$ and 4.8 mL of $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 12 mmol, 1.2 equiv) was added dropwise via syringe. The mixture was stirred for 1.5 h at $-78{ }^{\circ} \mathrm{C}$ before the addition of 841 mg of cyclobutanone ( $12.0 \mathrm{mmol}, 1.2$ equiv), then the mixture was warmed to room temperature and stirred over 3 h . After ammonium chloride solution quenching, the precipitated solid was removed by filtration. The filtrate was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, washed with sodium chloride solution, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by column chromatography. ${ }^{1}$

Following the literature procedure, a solution of 755 mg of $\mathrm{Et}_{3} \mathrm{SiH}(6.5 \mathrm{mmol}, 1.3$ equiv) and 5 mmol of aryl cyclobutanol $\mathbf{1}^{\prime}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$ and a solution of 923 mg
of boron trifluoride diethyl etherate ( 6.5 mmol , 1.3 equiv) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 5 min . The mixture was warmed slowly to $0^{\circ} \mathrm{C}$ and 1.59 g of $\mathrm{K}_{2} \mathrm{CO}_{3}(11.5 \mathrm{mmol}, 2.3$ equiv) was added followed by 10 mL of water. The solution was transferred with ether to a separator funnel and the aqueous phase was separated. The organic phase was washed with water and saturated NaCl solution, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting crude product was purified by flash column chromatography on silica gel (petroleum ether) to obtain product $1 .{ }^{2}$


Following the literature procedure, Sulfonyl chlorides ( 10 mmol ) were added to a solution of sodium sulfites ( 20 mmol ) and sodium bicarbonate $(1.68 \mathrm{~g}, 20 \mathrm{mmol})$ in water $(10 \mathrm{~mL}, 1 \mathrm{M})$ and heated at $80^{\circ} \mathrm{C}$ for 3 h , after cooling to room temperature the volatiles were removed in vacuo. The resultant solids were repeatedly washed with ethanol. The combined ethanol washes were evaporated under reduced pressure to yield the titled sulfinates $\mathbf{6}$ as an amorphous solid. ${ }^{3}$


A solution of 1-(4-methoxyphenyl)cyclobutanol ( 5.0 mmol ) in dry DCM $(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ followed by a dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(1.52 \mathrm{~g}, 15 \mathrm{mmol})$ and methanesulfonyl chloride $(0.69 \mathrm{~g}, 6 \mathrm{mmol})$. The reaction mixture was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ and for 2 h at room temperature. The reaction was diluted with ether $(20 \mathrm{~mL})$ and quenched with water $(10 \mathrm{~mL})$. Organic phase was washed with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting crude product was purified by flash column chromatography on silica gel (petroleum ether) to obtain product $8 .^{4}$

## 1-cyclobutyl-4-methoxybenzene 1a



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ $-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,138.5,127.2,113.6,55.3,39.8,30.1,18.2$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 163.1120$, found 163.1118. This compound is known. ${ }^{5}$

## 1-cyclobutyl-4-ethoxybenzene 1b



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85$
$-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27$
$(\mathrm{m}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.0,138.4,127.2,114.2,63.4,39.8,30.1,18.2,14.9$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 177.1275$, found 177.1276.

## 1-(benzyloxy)-4-cyclobutylbenzene 1c



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}$, $2 \mathrm{H}), 5.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.01$ $-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.9,138.7,137.3,128.5$, 127.8, 127.4, 127.2, 114.6, 114.6, 70.0, 39.7, 30.0, 18.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 239.1435$, found 239.1431.

## 1-cyclobutyl-4-phenoxybenzene 1d



The title compound was isolated by column chromatography with petroleum ether as a white solid. m.p. $38-39{ }^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), $6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.04$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,154.9,141.3,129.6$, 127.5, 122.8, 118.9, 118.5, 39.8, 30.0, 18.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 225.1276$, found 225.1279.

## 1-cyclobutyl-2-methoxybenzene $1 e$



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77$ - $3.70(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}$, 1H). ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.2,134.1,126.7,126.6,120.3,110.1,55.2,35.5,28.9$, 18.7. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 163.1121, found 163.1124 .

## 1-cyclobutyl-2,4-dimethoxybenzene $1 f$



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.44(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 H), 3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.9,158.0,126.8,126.7,103.5,98.3,55.2,55.1$,
34.9, 29.0, 18.6. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 193.1228, found 193.1226.

## 1-cyclobutyl-4-methoxy-2-methylbenzene 1 g



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-$ $1.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.6,137.1,136.0,126.3,115.8,110.5,55.2,37.9$, 29.0, 19.7, 18.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 177.1279$, found 177.1276.

## 2-chloro-1-cyclobutyl-4-methoxybenzene 1h



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{p}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.1,134.9,133.8,127.6,114.7,112.5,55.4,37.6,28.8,18.2$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClO}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 197.0731$, found 197.0729.

## 1-cyclobutyl-2-fluoro-4-methoxybenzene 1 i



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{p}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{q}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{p}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.1,158.9,128.0,124.6,109.3,101.4,55.5,33.9$, 29.1, 18.7. ${ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-115.85,-115.85,-115.86,-115.87,-115.87,-115.89$, -115.90. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FO}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 181.1028$, found 181.1030.

## 4-cyclobutyl-1,2-dimethoxybenzene $1 \mathbf{j}$



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.8,147.1,139.1,118.0,111.1,109.8,56.0,55.8,40.1,30.0,18.1$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 193.1227$, found 193.1230 .

## 4-cyclobutyl-1-methoxy-2-methylbenzene 1 k



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.9,138.1,128.8,126.3,124.3,109.8,55.4,39.8,30.1,18.2$, 16.2. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 177.1278$, found 177.1280.

## 4-cyclobutyl-2-fluoro-1-methoxybenzene 11



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96-6.92(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,145.5,139.7,121.7,114.1,113.3,56.4,39.5,29.9,18.0 .{ }^{19}$ F NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-135.72,-135.75,-135.77,-135.78,-135.79$. HRMS (ESI-TOF) ( $\mathrm{m} / \mathrm{z}$ ): Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FO}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 181.1029$, found 181.1026.

## 1-cyclobutyl-4-methoxynaphthalene 1m



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32-8.26(\mathrm{~m}, 1 \mathrm{H})$, $7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=18.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H})$, $2.27-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.9, 133.7, 132.3, 126.0, 125.8, 124.8, 124.0, 122.5, 122.1, 103.2, 55.4, 37.6, 29.2, 18.7. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 213.1277$, found 213.1279 .

## $N$-(4-cyclobutylphenyl)acetamide 1n



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 10)$ as a white solid. m.p. 78-79 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.60(\mathrm{~d}, J=26.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $2.12-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.5, 142.4, 135.5, 126.7, 120.0, 39.9, 29.8, 24.4, 18.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 212.1046, found 212.1042.

## $N$-(4-cyclobutylphenyl)pivalamide 10



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 10)$ as a white solid. m.p. 152-153 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.05-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,142.3$, 135.7, 126.7, 119.9, 39.9, 39.5, 29.8, 27.6, 18.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 254.1515$, found 254.1525 .

## $N$-(4-cyclobutylphenyl)benzamide 1p



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 10)$ as a white solid. m.p. 162-163
${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}$, $J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 165.7,142.7,135.6,135.1,131.7,128.7$, 127.0, 126.9, 120.3, 39.9, 29.8, 18.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 274.1202, found 274.1206

## 4-cyclobutyl-1,1'-biphenyl 1q



The title compound was isolated by column chromatography with petroleum ether as a white solid. m.p. $37-38{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H})$, 2.03 - $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 145.3,141.1,138.6,128.7$, 126.9, 126.9, 126.7, 40.1, 29.8, 18.3. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 209.1325, found 209.1326. This compound is known. ${ }^{5}$

## 1-cyclobutyl-4-fluorobenzene $1 \mathbf{r}$



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 3.50(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.04$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,141.9,127.6,114.8$, 39.7, 29.9, 18.1. ${ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-117.95,-117.97,-117.97,-117.98,-118.00$, -118.00, -118.01. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 151.0922, found 151.0921.

## 1-(tert-butyl)-4-cyclobutylbenzene 1s



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.18$ - $7.15(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}$, 2H), $2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5$, 143.2, 126.0, 125.1, 40.0, 34.4, 31.4, 29.9, 18.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{14} \mathrm{H}_{21}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 189.1643$, found 189.1642 . This compound is known. ${ }^{6}$

## 2-cyclobutyl-9,9-dimethyl-9H-fluorene 1t



The title compound was isolated by column chromatography with petroleum ether as a white solid. m.p. $67-68{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-$ $2.69(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.6,153.5,145.5,139.2,136.9,126.8,126.7,125.1,122.4,120.3$, 119.7, 119.6, 46.6, 40.7, 30.1, 27.2, 18.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{19} \mathrm{H}_{21}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 249.1641, found 249.1643 .

## 5-cyclobutyl-2-methoxy-1,3-dimethylbenzene 1u



The title compound was isolated by column chromatography with petroleum ether as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{p}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.13-2.06(\mathrm{~m}$, $2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 154.9, 141.4, 130.3, 126.6, 59.5, 39.9, 29.9, 18.1, 16.0. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 191.1435$, found 191.1433 .

## $N$-(4-cyclobutylphenyl)-4-methylbenzenesulfonamide 1v



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 10)$ as a white solid. m.p. 115-116 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.38$ (s, 3H), 2.29 (dd, $J=16.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=$ $18.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 143.7,143.7,136.3,133.9,129.6,127.3,127.1$, 122.1, 39.8, 29.7, 21.5, 18.1. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 324.1029, found 324.1037.

## 4. General Procedure and Spectral Data of Products



Take 2a as an example: In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(1.4 \mathrm{mg}, 10 \mu \mathrm{~mol})$, $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and Cyclobutane $\mathbf{1 a}(32.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 min and adding NFSI ( $189.2 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) successively. The vial was removed from the glove box, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 4 h . After 4 h the reaction was quenched with water, extracted with DCM $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 6)$ to obtain product $\mathbf{2 a}$. The details and characterization data of the products are stated below.


Take 6a as an example: In a nitrogen-filled glovebox, a mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(7.5 \mathrm{mg}, 10$ $\mu \mathrm{mol}), \mathrm{BC}(\mathbf{L 5})(8.6 \mathrm{mg}, 12 \mu \mathrm{~mol})$ and $\mathrm{DCM}(6 \mathrm{~mL})$ was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 10 min and adding Cyclobutane 1a ( $32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$ ), $\mathrm{PhSO}_{2} \mathrm{Na}(131.2 \mathrm{mg}, 0.8 \mathrm{mmol})$ and NFSI ( $252.3 \mathrm{mg}, 0.8$ mmol) successively. The vial was removed from the glovebox, and the mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 20 h . After 20 h the reaction was quenched with water, extracted with DCM ( $3 \times 5 \mathrm{~mL}$ ), and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 3$ ) to obtain product $\mathbf{6 a}$. The details and characterization data of the products are stated below.


Take 7a as an example: In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(1.4 \mathrm{mg}, 10 \mu \mathrm{~mol})$, DCE ( 2 mL ), Cyclobutane 1a ( $32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) and $\mathrm{LiBr}(57.3 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 5 min and adding NFSI ( $271.2 \mathrm{mg}, 0.86 \mathrm{mmol}$ ) successively. The vial was removed from the glovebox, and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h . After 4 h the reaction was quenched with water, extracted with DCM $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (petroleum ether) to obtain product 7a.The details and characterization data of the products are stated below.
$N, N^{\prime}$-(2-(4-methoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonamid e) 2 a
 This compound was obtained in $92 \%(138.2 \mathrm{mg})$ yield as a white solid by the general procedure after 4 h. m.p. 108-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H})$, $7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.60(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=12.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 160.2,146.6,139.7,134.0,133.6,129.0,128.7,128.4$, 128.1, 128.0, 123.2, 121.8, 113.5, 55.2, 52.9, 42.4. IR (in KBr): 3066, 2930, 1606, 1510, 1449, 1380, 1171, 1086, 855, 754, 722, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 773.0726$, found 773.0747.

## $N, N^{\prime}$-(2-(4-ethoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonamide)

 2b

This compound was obtained in $86 \%(131.6 \mathrm{mg})$ yield as a white solid by the general procedure after 5 h . m.p. 96-97 ${ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,146.7,139.7,134.0,133.6,129.0,128.8,128.6,128.1,128.0,127.9,123.0,121.6$, 114.0, 63.4, 52.9, 42.3, 14.7. IR (in KBr): 3066, 2930, 1605, 1508, 1448, 1378, 1313, 1170, 1086, 858, 757, 721, $686 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 787.0883, found 787.0850.
$N, N^{\prime}$-(2-(4-(benzyloxy)phenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfona mide) 2c


This compound was obtained in $66 \%(109.2 \mathrm{mg})$ yield as a white solid by the general procedure after 6 h. m.p. $170-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-$ $7.25(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{q}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=13.0,2.0 \mathrm{~Hz} 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 159.1,146.5,139.7,136.6,134.0,133.6,128.9,128.6,128.4,128.1$, $127.3,123.3,121.9,114.4,69.6,52.8,42.3$. IR (in KBr): 3065, 1605, 1509, 1449, 1381, 1314, 1171, 1085, 857, 753, 720, $684 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 849.1039$, found 849.1035.
$N, N^{\prime}$-(2-(4-phenoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonamid e) 2 d


This compound was obtained in $65 \%(105.7 \mathrm{mg})$ yield as a white solid by the general procedure after 6 h. m.p. $142-143{ }^{\circ} \mathrm{C} . \mathbf{}^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.06(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38-$ $7.32(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.1,156.0,146.2,139.6,134.0,133.6,129.8,129.1,128.8,128.4,128.2,128.0,125.1,124.0$, 123.2, 119.3, 117.7, 52.8, 42.4. IR (in KBr): 3066, 1606, 1505, 1449, 1384, 1317, 1168, 1085, 855, 753, 721, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 835.0883$, found 835.0848 .
$N, N^{\prime}$-(2-(2-methoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonamid e) 2 e


This compound was obtained in $68 \%$ ( 102.1 mg ) yield as a white solid by the general procedure after $9 \mathrm{~h} . \mathbf{m} . p .130-131^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.59-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9$, $144.2,140.1,139.8,133.8,133.4,130.4,128.7,128.5,128.0,124.4,119.8,110.1,54.6,54.4,43.6$.

IR (in KBr ): 3065, 2933, 1598, 1507, 1448, 1383, 1319, 1171, 1086, 858, 751, 720, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 773.0726, found 773.0741.

## $N, N^{\prime}$-(2-(2,4-dimethoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfona mide) $2 f$



This compound was obtained in $82 \%(128.1 \mathrm{mg})$ yield as a white solid by the general procedure after $4 \mathrm{~h} . \mathbf{m} . \mathrm{p} .146-147{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.95 (dd, $J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.7,158.4,143.8$, $140.3,140.0,133.7,133.3,129.7,128.8,128.5,128.0,121.9,113.3,104.3,97.5,55.3,54.5,54.4$, 43.5. IR (in KBr): 3068, 2939, 1602, 1511, 1449, 1380, 1306, 1172, 1086, 852, 757, 720, 685 $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{10} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 803.0832, found 803.0814.

## $N, N^{\prime}$-(2-(4-methoxy-2-methylphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenes ulfonamide) $\mathbf{2 g}$



This compound was obtained in $90 \%(137.7 \mathrm{mg})$ yield as a white solid by the general procedure after 4 h. m.p. 147-148 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.54(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 8 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,146.1,139.9,139.3,133.9,133.6,130.4,128.7,128.4,128.0,123.2$, 123.0, 116.1, 111.0, 55.2, 54.7, 42.9, 20.6. IR (in KBr): 3065, 2930, 1606, 1497, 1448, 1376, $1314,1169,1086,855,754,720,686 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 787.0883$, found 787.0859.

## $N, N^{\prime}$-(2-(2-chloro-4-methoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesu

## Ifonamide) $\mathbf{2 h}$



This compound was obtained in $78 \%(122.5 \mathrm{mg})$ yield as a white solid by the general procedure after $6 \mathrm{~h} . \mathbf{m} . \mathrm{p} .145-146{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.2,144.2,140.0,139.4,133.9,133.4,131.25$ (s), 128.9, 128.7, 128.3, $128.0,125.3,122.3,115.0,112.5,55.5,55.0,43.5$. IR (in KBr$): 3064,2934,1596,1448,1378$, 1316, 1170, 1087, 856, 753, 721, $686 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 807.0337$, found 807.0310.

## $N, N^{\prime}$-(2-(2-fluoro-4-methoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesu

## Ifonamide) $\mathbf{2 i}$



This compound was obtained in $90 \%(138.4 \mathrm{mg})$ yield as a white solid by the general procedure after 5 h. m.p. $145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 4 \mathrm{H})$, $7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $3.44(\mathrm{dd}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.5,160.6,140.9,140.1,139.8,133.9,133.5,129.2,128.9,128.7,128.5,128.1,124.2$, 111.8, 109.8, 101.4, 55.6, 53.6, 43.7. ${ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-107.16. IR (in KBr ): 3065, 2930, 1617, 1504, 1447, 1378, 1326, 1171, 1086, 854, 754, 721, $686 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 791.0631$, found 791.0616.
$N, N^{\prime}$-(2-(3,4-dimethoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfona mide) $\mathbf{2 j}$


This compound was obtained in $78 \%(121.8 \mathrm{mg})$ yield as a white solid by the general procedure after 6 h. m.p. $125-126{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.21-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.94(\mathrm{t}, J=12.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.73$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=4.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 149.8,148.2,146.4,139.7,134.0,133.6,129.5,128.6,128.5$, 128.1, 123.3, 122.3, 119.8, 110.3, 109.1, 55.8, 55.4, 52.8, 42.5. IR (in KBr): 3068, 2938, 1610, 1500, 1448, 1375, 1303, 1166, 1086, 862, 751, 720, $683 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{10} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 803.0831$, found 803.0816.

## $N, N^{\prime}$-(2-(4-methoxy-3-methylphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenes ulfonamide) $\mathbf{2 k}$



This compound was obtained in $77 \%(117.8 \mathrm{mg})$ yield as a white solid by the general procedure after $6 \mathrm{~h} . \mathbf{m} . \mathbf{p} .151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H})$,
$7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,146.8,139.8$, $133.9,133.5,129.2,129.0,128.6,128.5,128.2,126.1,125.8,122.8,121.2,109.2,55.3,52.9,42.5$, 15.9. IR (in KBr): 3066, 2924, 1603, 1504, 1448, 1377, 1336, 1171, 1085, 854, 753, 721, 686 $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 787.0881, found 787.0846.
$N, N^{\prime}$-(2-(3-fluoro-4-methoxyphenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesu

## Ifonamide) 21



This compound was obtained in $66 \%(101.5 \mathrm{mg})$ yield as a white solid by the general procedure after 8 h. m.p. $134-135{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.36(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.3,148.3,145.4,139.6,139.5,134.1,133.7$, 129.0, 128.8, 128.3, 128.1, 123.4, 123.4, 122.9, 113.7, 112.4, 56.1, 52.7, 42.4. ${ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-134.37,-134.39,-134.40,-134.40$, -134.41, -134.42. IR (in KBr): 3067, 2939, 1615, 1513, 1449, 1379, 1306, 1172, 1086, 858, 755, $721,685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 791.0627, found 791.0611 .
$N, N^{\prime}$-(2-(4-methoxynaphthalen-1-yl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesu lfonamide) $\mathbf{2 m}$


This compound was obtained in $52 \%(83.3 \mathrm{mg})$ yield as a white solid by the general procedure after 9 h. m.p. $116-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.75(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ $7.15(\mathrm{~m}, 9 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5,144.2,139.9,138.9$, 133.6, 133.3, 131.0, 128.5, 128.3, 128.2, 127.8, 127.3, 127.2, 125.6, 125.4, 125.2, 124.0, 121.8, 121.1, 103.1, 55.6, 53.6, 42.9. IR (in KBr): 3065, 2935, 1618, 1513, 1449, 1379, 1322, 1170, 1085, 852, 753, 720, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 823.0883 , found 823.0872 .


This compound was obtained in $56 \%$ ( 87.1 mg ) yield as a white solid by the general procedure after $8 \mathrm{~h} . \mathbf{m} . \mathrm{p} .134-135{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.11-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.58$ (dd, $J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.4,146.7,139.5,139.4,139.0,134.2,133.8,129.0$, $128.8,128.3,128.1,127.1,125.7,122.6,118.9,52.8,42.4,24.4$. IR (in KBr): 3388, 3065, 2926, 1733, 1589, 1520, 1448, 1384, 1312, 1170, 1086, 855, 754, 720, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 800.0835$, found 800.0821 .

## $N$-(4-(2,4-bis( $N$-(phenylsulfonyl)phenylsulfonamido)cyclobut-1-en-1-yl)phenyl)pivalamide 20

 This compound was obtained in $58 \%$ ( 95.1 mg ) yield as a white solid by the general procedure after $8 \mathrm{~h} . \mathbf{m} . \mathrm{p} .132-133{ }^{\circ} \mathrm{C} . \mathbf{}^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.35 (dd, $J=13.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.5,146.5,139.5,139.5,138.9,134.1,133.7,129.0,128.8,128.3,128.1,127.1$, 125.9 , 122.6 , $119.1,52.8,42.5,39.6$, 27.4. IR (in KBr): 3401, 3068, 2927, 1812, 1606, 1516, 1449, 1378, 1313, 1169, 1086, 859, 755, 721, $686 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 842.1303$, found 842.1317.

## $N$-(4-(2,4-bis( $N$-(phenylsulfonyl)phenylsulfonamido)cyclobut-1-en-1-yl)phenyl)benzamide 2p



This compound was obtained in $62 \%$ ( 104.2 mg ) yield as a white solid by the general procedure after $6 \mathrm{~h} . \mathbf{m} . \mathbf{p} .125-126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.99(\mathrm{~m}, 4 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 5 \mathrm{H}), 7.89-$ $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-$ 7.49 (m, 2H), $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.91 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J$ $=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.5,146.5,139.6,139.6,138.9$, 134.6, $134.2,133.8,132.0,129.1,128.8,128.8,128.4,128.2,127.3,127.1,126.3,123.2,119.4,52.9$, 42.6. IR (in KBr): 3385, 3063, 2924, 1733, 1601, 1519, 1449, 1380, 1316, 1170, 1086, 855, 753, $720,685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 862.0991$, found 862.0979.
$N, N^{\prime}$-(2-([1,1'-biphenyl]-4-yl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonam ide) $\mathbf{2 q}$
 This compound was obtained in $54 \%(86.1 \mathrm{mg})$ yield as a white solid by the general procedure after 9 h. m.p. $163-164{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18-8.08(\mathrm{~m}, 4 \mathrm{H}), 7.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.61-$ $7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 10 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6,141.6,140.3,139.8,134.0,133.6,129.2$, $129.0,128.8,128.5,128.2,127.7,126.8,126.6,124.5,52.8,42.7$. IR (in KBr): 3065, 2925, 1581, 1518, 1448, 1381, 1315, 1170, 1086, 854, 753, 720, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 819.0934$, found 819.0901.

## $N, N^{\prime}$-(2-(4-fluorophenyl)cyclobut-1-ene-1,3-diyl)bis( $N$-(phenylsulfonyl)benzenesulfonamide)

 2r

This compound was obtained in $52 \%(76.8 \mathrm{mg})$ yield as a white solid by the general procedure after $9 \mathrm{~h} . \mathbf{m} . p .97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.16-7.99(\mathrm{~m}, 4 \mathrm{H}), 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.56(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.62(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.8,145.8,139.7,134.1,133.8,129.0,128.8,128.4,128.4$, $128.2,127.5,126.6,124.3,115.2,52.7,42.5 .{ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-110.02,-110.03$, $-110.04,-110.05,-110.06,-110.07,-110.08$. IR (in KBr): 3065, 2929, 1588, 1521, 1448, 1384, 1316, 1170, 1086, 855, 754, 722, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 761.0532$, found 761.0526.

## (2-(4-methoxyphenyl)cyclobut-1-enedisulfonyl)dibenzene 6a



This compound was obtained in $80 \%$ ( 70.4 mg ) yield as a white solid by the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .127-128^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.55$ $(\mathrm{m}, 4 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=$ $5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,147.5,139.3,135.5,134.3,133.8,132.8,131.9,129.4,128.9$, 128.8, 127.3, 121.9, 114.0, 59.8, 55.4, 30.8. IR (in KBr): 3064, 2935, 1774, 1604, 1508, 1445, 1382, 1148, 1078, 930, 727, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 463.0644$, found 463.0646.

## (2-(4-ethoxyphenyl)cyclobut-1-enedisulfonyl)dibenzene 6b



This compound was obtained in $68 \%(61.8 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $120-121^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55$ $(\mathrm{m}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, J=14.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5$, $147.5,139.3,135.5,134.2,133.7,132.5,131.9,129.3,128.9,128.8,127.3,121.7,114.4,63.7$, 59.7, 30.7, 14.6. IR (in KBr): 3066, 2923, 1772, 1604, 1508, 1446, 1395, 1150, 1077, 922, 724, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 477.0801, found 477.0790 .

## (2-(4-phenoxyphenyl)cyclobut-1-enedisulfonyl)dibenzene 6c



This compound was obtained in $53 \%$ ( 53.3 mg ) yield as a white solid by the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .146-147{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}$, $4 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J$ $=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5,155.3$, 147.1, 139.1, 135.7, 134.3, 134.2, 133.9, 131.9, 130.0, 129.4, 128.9, 127.4, 124.6, 123.6, 120.2, 117.5, 59.8, 30.8. IR (in KBr): 3074, 2935, 1772, 1614, 1506, 1447, 1396, 1151, 1082, 923, 726, $683 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 525.0801 , found 525.0792 .

## (2-(2-methoxyphenyl)cyclobut-1-enedisulfonyl)dibenzene 6d



This compound was obtained in $62 \%(54.6 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $133-134{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, 2H). ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.5,147.5,139.3,138.3,137.2,133.9,133.7,132.4,132.0$, $129.4,128.7,128.5,127.7,120.4,117.9,110.4,61.3,54.9,30.8$. IR (in KBr$): 3065,2942,1774$, 1622, 1528, 1455, 1396, 1138, 1058, 912, 744, $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 463.0644$, found 463.0639.

## (2-(2,4-dimethoxyphenyl)cyclobut-1-enedisulfonyl)dibenzene 6e



This compound was obtained in $73 \%(68.6 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $166-167{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.49$ (m, 5H), $7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.4,159.2,147.3,139.6,137.1,135.5,133.7,133.3,129.3,128.8,128.5,127.5,111.1,104.8$, 97.9, 61.3, 55.5, 54.9, 30.8. IR (in KBr): 3064, 2935, 1774, 1604, 1508, 1445, 1382, 1148, 1078, 930, 727, $687 \mathrm{~cm}^{-1}$. IR (in KBr): 3068, 2937, 1771, 1611, 1505, 1446, 1375, 1148, 1078, 937, 722,
$687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{6} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 493.0746$, found 493.0741.

## (2-(4-methoxy-3-methylphenyl)cyclobut-1-enedisulfonyl)dibenzene $6 f$

This compound was obtained in $77 \%$ ( 70.1 mg ) yield as a white solid by
 the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .180-181{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55$ $(\mathrm{m}, 5 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.4,147.8,139.4$, $135.8,134.2,133.7,132.5,132.0,129.8,129.3,128.9,128.8,127.2,126.8,121.4,109.6,59.7$, 55.4, 30.6, 16.1. IR (in KBr): 3069, 2945, 1772, 1606, 1504, 1448, 1377, 1140, 1085, 929, 731, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 477.0801$, found 477.0799 .

## 1-(2,4-bis(phenylsulfonyl)cyclobut-1-en-1-yl)-4-methoxynaphthalene $\mathbf{6 g}$



This compound was obtained in $55 \%$ ( 53.9 mg ) yield as a white solid by the general procedure after 20 h. m.p. $131-132{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-$ $4.85(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=13.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.4,148.5,139.9,138.8,136.9,133.8,133.4,131.2,129.9,129.1$, $128.3,128.0,127.9,127.1,125.4,125.0,124.2,122.2,119.0,102.9,62.1,55.7,30.0$. IR (in KBr ): 3066, 2925, 1772, 1634, 1518, 1458, 1375, 1150, 1083, 911, 720, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 513.0801$, found 513.0793.

## $\boldsymbol{N}$-(4-(2,4-bis(phenylsulfonyl)cyclobut-1-en-1-yl)phenyl)pivalamide $\mathbf{6 h}$



This compound was obtained in $43 \%(43.8 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $183-184{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.4,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=$ $14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.8,147.2,140.9,139.1,135.5$, $134.6,134.4,133.9,131.0,129.4,128.9,128.9,127.4,124.7,119.3,59.7,39.9,30.9,27.6$. IR (in $\mathrm{KBr}): 3387,3066,2926,1686,1582,1509,1447,1367,1155,1079,915,733,687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NNaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 532.1223, found 532.1231.

## (2-(4-(tert-butyl)phenyl)cyclobut-1-enedisulfonyl)dibenzene $6 \mathbf{i}$



This compound was obtained in $47 \%$ ( 43.8 mg ) yield as a white solid by the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .102-103{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,147.9,139.2,135.8$,
135.1, 134.2, 133.8, 129.6, 129.4, 128.9, 128.8, 127.5, 126.2, 125.6, 59.7, 35.0, 31.0, 30.8. IR (in $\mathrm{KBr}): 3066,2961,1772,1608,1507,1447,1364,1151,1080,912,726,687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 489.1165$, found 489.1159.

## 4-(2,4-bis(phenylsulfonyl)cyclobut-1-en-1-yl)-1,1'-biphenyl 6j



This compound was obtained in $48 \%(46.7 \mathrm{mg})$ yield as a white solid by the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .201-202{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57$ $(\mathrm{m}, 8 \mathrm{H}), 7.49(\mathrm{dd}, J=18.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $4.74-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR (150MHz, $\mathrm{CDCl}_{3}$ ) $\delta 147.4,143.9,139.8,139.0,136.2,135.7,134.3,134.0,130.3$, $129.5,129.0,128.9,128.2,127.9,127.5,127.1,59.8,31.0$. IR (in KBr): 3067, 2935, 1734, 1616, 1511, 1446, 1374, 1154, 1080, 911, 731, $688 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 509.0852$, found 509.0857.

## 2-(2,4-bis(phenylsulfonyl)cyclobut-1-en-1-yl)-9,9-dimethyl-9H-fluorene 6 k



This compound was obtained in $67 \%(70.5 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $175-176{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 4 \mathrm{H})$, $7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.6,153.7,148.3,142.5,139.3,138.0,135.6,135.0,134.3,133.9$, $129.4,129.1,128.9,128.8,128.5,127.9,127.4,127.2,124.4,122.8,120.8,120.0,60.0,47.0,31.1$, 27.0, 26.8. IR (in KBr): 3065, 2925, 1772, 1592, 1508, 1448, 1362, 1157, 1080, 910, 736, 687 $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 549.1165$, found 549.1149.

## 4,4'-(2-(4-methoxyphenyl)cyclobut-1-enedisulfonyl)bis(methoxybenzene) 61



This compound was obtained in $67 \%(67.2 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h . m.p. $151-152{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=11.0,9.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.0,163.8,161.9,146.4$, $133.5,131.8,131.2,130.8,129.5,126.6,122.1,114.5,114.0,59.8$, 55.6, 55.6, 55.4, 30.7. IR (in KBr): 3064, 2924, 1772, 1605, 1508, 1446, 1375, 1149, 1077, 929 , $723,689 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{7} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 523.0853, found 523.0847.

## 4,4'-(2-(4-methoxyphenyl)cyclobut-1-enedisulfonyl)bis(tert-butylbenzene) $\mathbf{6 m}$



This compound was obtained in $64 \%(70.8 \mathrm{mg})$ yield as a white solid by the general procedure after $20 \mathrm{~h} . \mathbf{m} . p .151-152{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J$
$=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=$ $14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.8,158.3,157.8,147.1,136.3,133.6,133.2,131.8,128.8,127.3,126.4,126.0,122.2$, $113.9,59.8,55.4,35.3,35.3,31.0,31.0,30.7$. IR (in KBr): 2955, 2597, 1800, 1623, 1515, 1466, 1336, 1155, 1063, 911, 744, $677 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) ( $\mathrm{m} / \mathrm{z}$ ): Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NaO}_{5} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 575.1896$, found 575.1888.

4,4'-(2-(4-methoxyphenyl)cyclobut-1-enedisulfonyl)bis(methylbenzene) $\mathbf{6 n}$


This compound was obtained in $76 \%(71.2 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $146-147{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.92 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (dd, $J$ $=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.9,147.0,145.2,144.8,136.3$, $133.1,132.5,131.8,129.9,129.4,128.9,127.4,122.0,113.9,59.8$, 55.4, 30.7, 21.7, 21.6. IR (in KBr): 3027, 2915, 1772, 1654, 1508, 1453, 1376, 1160, 1079, 945, 725, $682 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) ( $\mathrm{m} / \mathrm{z}$ ): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{5} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 491.0958$, found 491.0953.

## 4,4'-(2-(4-methoxyphenyl)cyclobut-1-enedisulfonyl)bis(chlorobenzene) $\mathbf{6 0}$



This compound was obtained in $56 \%(56.8 \mathrm{mg})$ yield as a white solid by the general procedure after 20 h. m.p. $138-139{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=15.0,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.4$, $147.7,141.3,140.8,137.7,133.8,132.4,131.9,130.4,129.8,129.2$, 128.7, 121.6, 114.2, 59.9, 55.5, 30.7. IR (in KBr): 3086, 2924, 1772, 1606, 1508, 1448, 1395, 1148, 1085, 910, $730,667 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 530.9867$, found 530.9861.

## 1-methoxy-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7a



This compound was obtained in $92 \%$ ( 73.0 mg ) yield as a white solid by the general procedure after 4 h . m.p. $96-97{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( ~} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.7,148.2,127.7,121.1,114.1,107.8,62.2,55.3,46.3$. IR (in KBr): 2928, 2839, 1746, 1623, 1507, 1457, 1310, 1178, 1060, 829, $657 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 416.8101$, found 416.8092.

## 1-ethoxy-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7b


general procedure after $5 \mathrm{~h} . \mathbf{m} . p .92-93{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,148.2,127.7,121.0,114.6,107.6,63.6,62.3,46.3,14.7$. IR (in KBr ): 2926, 2835, 1747, 1623, 1507, 1457, 1315, 1178, 1061, 829, $658 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 430.8255$, found 430.8248 .

## 1-(benzyloxy)-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7c



This compound was obtained in $53 \%$ ( 50.0 mg ) yield as a white solid by the general procedure after $6 \mathrm{~h} . \mathbf{m} . p .125-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, Chloroform-d) $\delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}$, 2H), $7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( 150 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 159.9,148.2,136.5,128.7,128.1,127.8,127.5,121.4,115.0,70.1,62.3,46.2$. IR (in KBr): 2930, 1716, 1629, 1502, 1457, 1310, 1168, 1070, 834, $691 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 492.8409$, found 492.8401 .

## 1-phenoxy-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7d

 general procedure after 6 h. m.p. $121-122{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ $7.04(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.0,156.0,148.0,129.9,127.9$, 124.2, 123.1, 119.8, 118.1, 109.1, 62.3, 46.0. IR (in KBr): 2930, 1716, 1629, 1502, 1457, 1374, 1168, 1070, 834, $691 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 478.8249, found 478.8254.

## 4-methoxy-2-methyl-1-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7e

 $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.6,151.7,139.5,128.8,121.5,116.2,115.8,111.1,61.9$, 55.2, 51.3, 20.6. IR (in KBr): 2924, 2869, 1735, 1628, 1505, 1454, 1310, 1176, 1079, 832, 697 $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 430.8247$, found 430.8255 .

## 2-chloro-4-methoxy-1-(2,4,4-tribromocyclobut-1-en-1-yl)benzene $7 f$


$1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.2,148.6,134.9,129.6,120.9$, 118.4, 115.4, 112.8, 62.1, 55.6, 50.1. IR (in KBr ): 2938, 2837, 1746, 1643, 1458, 1297, 1192, 1073, 839, $677 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{ClNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 450.7702$, found 450.7707 .

## 2-fluoro-4-methoxy-1-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7g

Br This compound was obtained in $80 \%(66.4 \mathrm{mg})$ yield as a white solid by the general procedure after $6 \mathrm{~h} . \mathbf{m . p . ~} 90-91{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.97(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=12.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.2$, $161.4,145.4,128.5,113.1,110.1,109.3,102.4,62.9,55.7,47.5 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-102.49,-102.49,-102.50,-102.51,-102.52,-102.54$. IR (in KBr): 2935, 2839, 1716, 1626, 1504, 1464, 1330, 1165, 1080, 836, $670 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) ( $\mathrm{m} / \mathrm{z}$ ): Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{FNaO}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 434.8001$, found 434.8792.

## 1-methoxy-2-methyl-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7h



This compound was obtained in $78 \%$ ( 64.1 mg ) yield as a white solid by the general procedure after $5 \mathrm{~h} . \mathbf{m} . p .71-72{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.87-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{C} \mathrm{DCl}_{3}$ ) $\delta 159.0,148.3$, $128.3,127.1,125.4,120.69,109.8,107.4,62.3,55.4,46.5,16.4,16.4$. IR (in KBr$): 2916,2830$, 1716, 1628, 1498, 1457, 1330, 1168, 1078, 846, $667 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 430.8249$, found 430.8242 .

## 2-fluoro-1-methoxy-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7i

This compound was obtained in $93 \%$ ( 77.2 mg ) yield as a white solid by the general procedure after 4 h. m.p. $82-83{ }^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.1,149.0,147.2,122.8,121.4,113.8,113.2$, 109.6, 62.2, 56.2, 45.7. ${ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-133.60,-133.60,-133.62,-133.62$, -133.62, -133.64, -133.64. IR (in KBr): 2936, 2840, 1716, 1632, 1510, 1473, 1318, 1168, 1061, 849, $674 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) ( $\mathrm{m} / \mathrm{z}$ ): Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{FNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 434.8798$, found 434.8791.

2-methoxy-1,3-dimethyl-5-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7j

general procedure after $5 \mathrm{~h} . \mathbf{m} . p .65-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.4,148.2,131.4,126.7,124.0$, 109.2, 62.3, 59.6, 46.3, 16.3. IR (in KBr): 2934, 2855, 1716, 1631, 1507, 1457, 1317, 1161, 1086, 837, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 444.8405$, found 444.8411.

## $\boldsymbol{N}$-(4-(2,4,4-tribromocyclobut-1-en-1-yl)phenyl)acetamide 7k



This compound was obtained in $45 \%(38.2 \mathrm{mg})$ yield as a white solid by the general procedure after $8 \mathrm{~h} . \mathbf{m} . p .151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.4,148.0$, 139.2, 127.1, 124.3, 119.5, 109.6, 62.3, 45.9, 24.7. IR (in KBr): 3239, 2929, 2849, 1628, 1509 , 1321, 1182, 1077, 829, $697 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 443.8205 , found 443.8200 .

## $N$-(4-(2,4,4-tribromocyclobut-1-en-1-yl)phenyl)pivalamide 71



This compound was obtained in $55 \%(51.3 \mathrm{mg})$ yield as a white solid by the general procedure after $8 \mathrm{~h} . \mathbf{m} . p .155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.6,148.0$, 139.4, 127.0, 124.1, 119.6, 109.5, 62.3, 46.0, 39.8, 27.6. IR (in KBr): 3307, 2932, 2869, 1666, 1509, 1320, 1187, 1082, 837, $669 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{NNaO}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 485.8674$, found 485.8685.

## 4-methyl-N-(4-(2,4,4-tribromocyclobut-1-en-1-yl)phenyl)benzenesulfonamide $\mathbf{7 m}$

This compound was obtained in $80 \%$ ( 85.8 mg ) yield as a white solid by the general procedure after 6 h . m.p. $175-176{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.6,144.3,137.9,136.1,129.9,127.3,127.3,124.9,120.1,110.3,62.3,45.7,21.6$. IR (in KBr ): $3231,2924,2852,1634,1504,1304,1184,1086,839,667 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{3} \mathrm{NNaO}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 555.8188$, found 555.8179.

## 9,9-dimethyl-2-(2,4,4-tribromocyclobut-1-en-1-yl)-9H-fluorene 7n



This compound was obtained in $55 \%(53.1 \mathrm{mg})$ yield as a white solid by the general procedure after 9 h. m.p. $144-145{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ( 600 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.2,153.8,148.8,140.9,138.4,128.0,127.2,127.1,125.2,122.7$, 120.5, 120.3, 120.1, 109.8, 62.3, 47.0, 46.2, 27.1. IR (in KBr ): 2923, 2865, 1716, 1616, 1507, 1457, 1312, 1170, 1079, 833, $689 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Br}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 502.8614$, found 502.8606.

## 1-(tert-butyl)-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 70

Br ${\underset{\sim}{r}}_{\mathrm{Br}}$ This compound was obtained in $42 \%(35.5 \mathrm{mg})$ yield as a white solid by the general procedure after 9 h. m.p. $64-65{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,148.5,125.9,125.6,125.6,109.8,62.4,46.1,35.0,31.1$. IR (in KBr ): 2927, 2861, 1716, 1631, 1507, 1459, 1319, 1161, 1081, 839, $667 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Br}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 442.8617$, found 442.8611 .

## 4-(2,4,4-tribromocyclobut-1-en-1-yl)-1,1'-biphenyl 7p

## Br This compound was obtained in $66 \%(58.5 \mathrm{mg})$ yield as a white solid by the

 general procedure after 8 h . m.p. $71-72{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.3,142.5,140.3$, $128.9,127.8,127.3,127.3,127.1,126.5,110.9,62.4,45.9$. IR (in KBr): 2934, 1716, 1625, 1507 , 1457, 1319, 1080, 840, $685 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 462.8302, found 462.8311 .
## 1-fluoro-4-(2,4,4-tribromocyclobut-1-en-1-yl)benzene 7q

Br This compound was obtained in $36 \%$ ( 27.7 mg ) yield as a white solid by the general procedure after 9 h. m.p. $77-78{ }^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.02-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.4,147.6,128.2,124.7,115.9,110.4,62.3,45.7 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-108.96,-108.96,-108.97,-108.98,-108.99,-109.00,-109.01,-109.02$. IR (in KBr ): 2923, 1716, 1619, 1503, 1457, 1376, 1157, 1081, 829, $657 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{FNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 404.7895$, found 404.7889.

## $N$-(2-(4-methoxyphenyl)cyclobut-1-en-1-yl)- $N$-(phenylsulfonyl)benzenesulfonamide 3



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 15)$ as a white solid in $8 \%(10.9 \mathrm{mg})$ yield. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.99(\mathrm{~m}$,
$4 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.1$, 149.4, 140.1, 133.8, 128.9, 128.4, 128.0, 124.9, 119.3, 113.4, 55.2, 31.1, 24.3. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}_{5} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 478.0752$, found 478.0759.

## 5. Gram-scale Reactions



In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(20.0 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ and Cyclobutane $1 \mathrm{a}(1.14 \mathrm{~g}, 7 \mathrm{mmol})$ was added into a 50 mL flame-dried reaction tube containing a magnetic stirring bar. The resulting mixture was stirred for 5 min and adding NFSI $(6.62 \mathrm{~g}, 21$ mmol) successively. The tube was removed from the glovebox, and the mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 5 h . After 5 h the reaction was quenched with water, extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 6$ ) to obtain product $2 \mathbf{a}(4.46 \mathrm{~g}, 85 \%)$.


In a nitrogen-filled glovebox, a mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(93.2 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathbf{L 2}$ (108 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{DCM}(100 \mathrm{~mL})$ was added into a 250 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 10 min and adding Cyclobutane 1a ( $0.81 \mathrm{~g}, 5 \mathrm{mmol}$ ), $\mathrm{PhSO}_{2} \mathrm{Na}(3.28 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{NFSI}(6.31 \mathrm{~g}, 20 \mathrm{mmol})$ successively. The vial was removed from the glovebox, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . After 24 h the reaction was quenched with water, extracted with $\operatorname{DCM}(3 \times 100 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 3$ ) to obtain product $\mathbf{6 a}(1.50 \mathrm{~g}$, $68 \%)$.


In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(50.1 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{DCE}(20 \mathrm{~mL})$, Cyclobutane $1 \mathrm{a}(1.14 \mathrm{~g}, 7 \mathrm{mmol})$ and $\mathrm{LiBr}(1.82 \mathrm{~g}, 21 \mathrm{mmol})$ was added into a 50 mL flame-dried reaction tube containing a magnetic stirring bar. The resulting mixture was stirred for 10 min and adding NFSI ( $8.83 \mathrm{~g}, 28 \mathrm{mmol}$ ) successively. The tube was removed from the glovebox, and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 6 h . After 6 h the reaction was quenched with water, extracted with DCM $(3 \times 30 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (petroleum ether) to obtain product $7 \mathbf{a}(2.44 \mathrm{~g}, 88 \%)$.

## 6. Synthetic Application of highly Functionalized Cyclobutene Derivatives



In a nitrogen-filled glovebox, a mixture ofcyclobutene $\mathbf{2 a}(0.1 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . Finally, the residue was directly purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 6$ ) to afford the desired product 4 ( $67.5 \mathrm{mg}, 90 \%$ ). ${ }^{7}$

## (E)-N,N'-(2-(4-methoxyphenyl)buta-1,3-diene-1,3-diyl)bis(N-(phenylsulfonyl)benzenesulfona mide) 4



The title compound was isolated by column chromatography with ethyl acetate and petroleum ether $(\mathrm{EA} / \mathrm{PE}=1: 6)$ as a white solid in $90 \%$ $(67.5 \mathrm{mg})$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 8 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.8,146.9,141.1,138.2,137.9,134.1,133.7$, 131.5, 129.3, 129.1, 128.8, 128.5, 126.2, 121.3, 113.9, 55.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{9} \mathrm{~S}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 773.0728, found 773.0741.


In a nitrogen-filled glovebox, a mixture of cyclobutene $7 \mathbf{a}(0.1 \mathrm{mmol}), \operatorname{InBr}_{3}(35.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added into a 10 mL screw-capped vial containing a magnetic stirring bar. $48 \%$
hydrobromic acid ( $25 \mathrm{mg}, 0.15 \mathrm{mmol}$, ) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 36 h . Finally, the residue was directly purified by flash column chromatography on silica gel (petroleum ether) to afford the desired product $9(16.4 \mathrm{mg}, 65 \%) .{ }^{8}$

## 3-bromo-2-(4-methoxyphenyl)cyclobut-2-enone 9



The title compound was isolated by column chromatography with petroleum etheras a colorless oil in $65 \%(16.4 \mathrm{mg})$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( 5 0 0 ~ M H z , ~ C D C l 3 ) ~}$ $\delta 7.92(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 186.6,160.6,147.6,140.7,128.2,121.0,114.1,55.4,55.3$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$ : Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 274.9678, found 274.9670.

## 7. Mechanism Study

## (1) Radical inhibitor experiments



| Radical inhibitors (3.0 equiv) | Yield (\%) of 2a |
| :---: | :---: |
| TEMPO | not detected |
| BHT | not detected |

In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(1.4 \mathrm{mg}, 10 \mu \mathrm{~mol}), \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and Cyclobutane 1a ( $32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 min and adding NFSI ( $189.2 \mathrm{mg}, 0.6$ mmol) successively. Then BHT ( $0.6 \mathrm{mmol}, 3$ equiv) or TEMPO ( $0.6 \mathrm{mmol}, 3$ equiv) was added. The vial was removed from the glovebox, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 4 h .

## (2) Transformation of 8 to 2a.



In a nitrogen-filled glovebox, a mixture of $\mathrm{CuBr}(1.4 \mathrm{mg}, 10 \mu \mathrm{~mol}), \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and 1-(cyclobut-1-en-1-yl)-4-methoxybenzene $\mathbf{8 a}(32 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) was added into a 10 mL screw-capped vial containing a magnetic stirring bar. The resulting mixture was stirred for 2 min and adding NFSI ( $189.2 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) successively. The vial was removed from the glovebox,
and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 4 h . After 4 h the reaction was quenched with water, extracted with DCM ( $3 \times 5 \mathrm{~mL}$ ), and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1: 6)$ to obtain product $\mathbf{2 a}(42 \mathrm{mg}, 28 \%)$.

## (3) A possible mechanism of the formation of 1,3-disulfonylcyclobutene

 derivatives 6.As depicted in Supplementary Fig. S1, initially, the oxidation of $\mathrm{Cu}^{\mathrm{I}}$ and NFSI formed $\mathrm{Cu}^{\mathrm{II}}$-coordinated nitrogen-centered radical species $\mathbf{A}$ or $\mathrm{Cu}^{\mathrm{III}}$ species $\mathbf{A}^{\prime}$. $\mathbf{A}^{\prime}$ selectively abstracted the benzylic hydrogen atom from cyclobutane 1 followed by $\beta-\mathrm{H}$ elimination to generate cyclobutene 8. Alternatively, B might rebound with $\mathrm{Cu}^{\text {II }}$ species to generate $\mathrm{Cu}^{\mathrm{III}}$ species followed by $\beta-\mathrm{Cu}-\mathrm{H}$ elimination to generate 8. ${ }^{9,10}$ Meanwhile, the oxidation of $\mathrm{RSO}_{2} \mathrm{Na}$ and nitrogen-centered radical species A produced sulfonyl radical, which added to $\mathbf{8}$ followed by $\beta$ - H elimination afforded 1 -sulfonylcyclobutene derivative 10. Then, the highly regio-selective allylic hydrogen atom abstraction form allylic radical $\mathbf{H}$ and $\mathrm{Cu}^{\text {II }}$ species $\mathbf{C}$ or $\mathbf{C}^{\prime}$. Subsequently, the ligand exchange between $\mathrm{RSO}_{2} \mathrm{Na}$ and $\mathbf{C}$ or $\mathbf{C}^{\prime}$ led $\mathrm{Cu}^{\mathrm{II}}-\mathrm{SO}_{2} \mathrm{R}$ species $\mathbf{I}$. The combination of $\mathbf{H}$ and I resulted in $\mathrm{Cu}^{\text {III }}$ species $\mathbf{J}$, which underwent a reductive elimination to afford 1,3-disulfonylcyclobutene 6, along with the regeneration of $\mathrm{Cu}^{\mathrm{I}}$ catalyst. An alternative out-sphere direct ligand-transfer between $\mathbf{H}$ and $\mathbf{I}$ could not be exclude at the current stage. ${ }^{11,12}$


Figure S1. A proposed mechanism of the formation of 6.

## (4) A possible mechanism of the formation of 1,3,3-tribromocyclobutene

 derivatives 7.As depicted in Supplementary Fig. S2, initially, the oxidation of $\mathrm{Cu}^{\mathrm{I}}$ and NFSI formed $\mathrm{Cu}^{\text {III }}$-coordinated nitrogen-centered radical species $\mathbf{A}$ or $\mathrm{Cu}^{\text {III }}$ species $\mathbf{A}^{\prime}$. $\mathbf{A}^{\prime}$ selectively abstracted the benzylic hydrogen atom from cyclobutane $\mathbf{1}$ followed by $\beta-H$ elimination to generate cyclobutene 8. Alternatively, B might rebound with $\mathrm{Cu}^{\text {II }}$ species to generate $\mathrm{Cu}^{\text {III }}$ species followed by $\beta-\mathrm{Cu}-\mathrm{H}$ elimination to generate $\mathbf{8} .^{9,10}$ Meanwhile, the oxidation of LiBr and nitrogen-centered radical species $\mathbf{A}$ produced bromine radical, which added to $\mathbf{8}$ followed by $\beta-\mathrm{H}$ elimination afforded 1-bromocyclobutene derivative 11. Then, the highly regio-selective allylic hydrogen atom abstraction form allylic radical $\mathbf{L}$ and $\mathrm{Cu}^{\mathrm{II}}$ species $\mathbf{C}$ or $\mathbf{C}^{\prime}$. Subsequently, the ligand exchange between LiBr and $\mathbf{C}$ or $\mathbf{C}^{\boldsymbol{\prime}}$ led $\mathrm{Cu}^{\text {II }}-\mathrm{Br}$ species $\mathbf{M}$. The combination of $\mathbf{L}$ and $\mathbf{M}$ resulted in $\mathrm{Cu}^{\text {III }}$ species $\mathbf{N}$, which underwent a reductive elimination to afford 1,3-dibromocyclobutene 12, along with the regeneration of $\mathrm{Cu}^{1}$ catalyst. An alternative out-sphere direct ligand-transfer between $\mathbf{L}$ and $\mathbf{M}$ could not be exclude at the current stage. ${ }^{13}$ Next, the highly selective allylic $\mathrm{C}-\mathrm{H}$ bromination of $\mathbf{1 2}$ occurred, affording the desired product 7 .


Figure S2. A proposed mechanism of the formation of 7.

## 8. Single Crystal Structure and Data



Figure S3. Crystal structure of 2a ( CCDC 1935659).

Table S4. Crystal data of 2a

| CCDC number | 1935659 |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}_{4}$ |
| Formula weight | 744.65 |
| Temperature | $293(2) \mathrm{K}$ |
| Wavelength | 0.71073 A |
| Crystal system, Space group | $\mathrm{a}=12.807 \mathrm{~A} \quad$ alpha $=90 \mathrm{deg}$. <br> $\mathrm{b}=13.731 \mathrm{~A} \quad$ beta $=110.60 \mathrm{deg}$. <br> $\mathrm{c}=20.965 \mathrm{~A} \quad$ gamma $=90 \mathrm{deg}$. |
| Unit cell dimensions | $3450.9 \mathrm{~A}^{\wedge} 3$ |
| Volume | $4, \quad 1.433 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$ |
| Reflections collected / unique | $26169 / 6432[\mathrm{R}(\mathrm{int})=0.0404]$ |


| $\mathrm{F}(000)$ | 1536 |
| :---: | :---: |
| Absorption correction | Semi-empirical from equivalents |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$ |
| Data / restraints / parameters | $6432 / 0 / 451$ |
| Goodness-of-fit on $\mathrm{F}^{\wedge} 2$ | 1.038 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0550, \mathrm{wR} 2=0.1255$ |
| R indices (all data) | $\mathrm{R} 1=0.0743, \mathrm{wR} 2=0.1402$ |
| Largest diff. peak and hole | 0.437 and $-0.408 \mathrm{e} . \mathrm{A}^{\wedge}-3$ |
| ${ }^{a} \mathrm{R}_{1}=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\|-\|\mathrm{Fc}\| / \Sigma\| \mathrm{Fo} \mid{ }^{b}{ }^{\mathrm{w}} \mathrm{wR}_{2}=\Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]^{1 / 2}$ |  |



Figure S4. Crystal structure of 7b ( CCDC 2039202).

Table S5. Crystal data of 7b

| CCDC number | 2039202 |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}$ |
| Formula weight | 410.94 |
| Temperature | 293(2) K |
| Wavelength | 1.54184 A |
| Crystal system, Space group | Monoclinic, P 1 21/m 1 |
| Unit cell dimensions | $\begin{gathered} \mathrm{a}=7.6142 \mathrm{~A} \quad \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=7.1461 \mathrm{~A} \quad \text { beta }=106.526 \mathrm{deg} . \\ \mathrm{c}=12.6645 \mathrm{~A} \quad \text { gamma }=90 \mathrm{deg} . \end{gathered}$ |
| Volume | 660.63 A^3 |
| Z, Calculated density | 2, $2.066 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$ |
| Reflections collected / unique | $2611 / 1269[\mathrm{R}($ int $)=0.0714]$ |
| F(000) | 392 |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 1.0000 and 0.09601 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$ |
| Data / restraints / parameters | 1269 / 0 / 95 |
| Goodness-of-fit on $\mathrm{F}^{\wedge} 2$ | 1.076 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0747, \mathrm{wR} 2=0.1920$ |
| R indices (all data) | $\mathrm{R} 1=0.0801, \mathrm{wR} 2=0.2058$ |
| Largest diff. peak and hole | 1.249 and -1.334 e. ${ }^{\wedge}$-3 |
| ${ }^{a} \mathrm{R}_{1}=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\|-\|\mathrm{Fc}\|\| / \Sigma\|\mathrm{Fo}\| ;{ }^{b} \mathrm{wR}_{2}=\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ |  |

## 9. NMR Spectra




Figure S5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2a.




Figure S6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 b}$.



Figure S7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2 c .



##  

| $\stackrel{1}{\sim}$ | O |
| :--- | :--- |
|  | 广 |
|  |  |



Figure S8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2d.



Figure S9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 e}$.




Figure S10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $2 \mathbf{f}$.
$\stackrel{\infty}{\stackrel{\circ}{7}}$









Figure S11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 g}$.





Figure S12. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 h}$.



$\underbrace{-10}$





Figure S13. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{2 i}$.



Figure S14. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 j}$.



Figure S15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 k}$.

##  <br> 



##  <br> 


$\begin{array}{lllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$




Figure S16. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{2 l}$.




Figure S17. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 m}$.







Figure S18. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 n}$.


Figure S19. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2 o .



Figure S20. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 p}$.




Figure S21. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2q.


```
<M%
```



```
    m~NNNN
```



 -




[^0]$\qquad$


Figure S22. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{2 r}$.



Figure S23. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 a}$.


$\stackrel{\sim}{*}$
Ni
1




Figure S24. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 b}$.



Figure S25. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 c}$.



Figure S26. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 d}$.





Figure S27. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 e}$.





Figure S28. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 f}$.



Figure S29. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 g}$.



Figure S30. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 h}$.



Figure S31. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 i}$.




Figure S32. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 j}$.



Figure S33. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 k}$.



Figure S34. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6}$.



Figure S35. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 m}$.





Figure S36. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 n}$.





Figure S37. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 0}$.






Figure S38. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7a.
(


Figure S39. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7b.





Figure S40. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 c}$.

## 





Figure S41. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 d}$.

##  <br> テ-ivirs $\underbrace{\infty}$

$$
\begin{aligned}
& \text { J্ } \\
& \text { ふi } \\
& \text { लi }
\end{aligned}
$$

$\stackrel{m}{\stackrel{m}{j}}$


$\infty-\frac{2}{n}$
$\frac{0}{i} \underset{\sim}{i}$



Figure S42. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 e}$.




Figure S43. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7 f .





Figure S44. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{7 g}$.







Figure S45. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 h}$.






[^1]

Figure S46. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $7 \mathrm{7i}$.






Figure S47. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 j}$.



Figure S48. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 k}$.



Figure S49. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 71.



Figure S50. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 m}$.





Figure S51. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $7 \mathbf{n}$.



Figure S52. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7 o .

$\stackrel{9}{9}$






Figure S53. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{7 p}$.







Figure S54. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{7 q}$.





$\stackrel{\underset{\sim}{n}}{\underset{\sim}{n}} \stackrel{\cdots}{\underset{1}{\sim}} \stackrel{\infty}{\underset{\sim}{\sim}}$



Figure S55. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 .


Figure S56. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4.


Figure S57. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 .







Figure S58. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 a}$.






Figure S59. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 b}$.



| $\begin{aligned} & \text { ৪ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$ | $\begin{aligned} & \therefore \stackrel{\sim}{N} \\ & \stackrel{\infty}{\infty} \stackrel{0}{\omega} \end{aligned}$ |  | $\begin{aligned} & \stackrel{-}{\mathrm{O}} \\ & \hline \end{aligned}$ | $\stackrel{N}{N}$ | $\stackrel{\circ}{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |



Figure S60. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 c}$.



| Nす | $\stackrel{\square}{\text { ¢ }}$ |  |  | ${ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| N0 | $\stackrel{\text { J }}{ }$ | ¢ ${ }^{\text {¢ }}$ N ${ }^{\text {N }}$ | $\stackrel{\infty}{\infty}$ | $\stackrel{\sim}{\sim}$ |
| T\% | \| | ¢5\% | $\cdots$ | N |




Figure S61. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1 d .




Figure S62. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 e}$.


Figure S63. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 f}$.






Figure S64. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 g}$.



Figure S65. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 h}$.


[^2]





Figure S66. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{1 i}$.






Figure S67. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 j}$.



| \% | $\stackrel{N}{\sim}$ | 앙 | $\cdots$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{10}{6}$ | $\stackrel{\sim}{\text { ® }}$ | - | $\stackrel{\infty}{\sim} \stackrel{\square}{\circ}$ |
|  | 1 | 1 | $1 /$ |




Figure S68. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 k}$.






Figure S69. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 11.


Figure S70. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 m}$.



$\stackrel{\otimes}{\infty}$



Figure S71. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 n}$.




Figure S72. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$.




| $\widehat{\varrho}$ | 下 | $N$ | $\cdots$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{¢}{6}$ |  | $\stackrel{\text { O }}{0}$ | $\stackrel{\infty}{\sim}$ |
| - | Frror | ल | N |




Figure S73. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 p}$.

##  <br> 





Figure S74. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 q}$.



$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\underset{\sim}{\infty}} \underset{\sim}{\underset{\sim}{\infty}}$






Figure S75. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{1 r}$.





Figure S76. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1 s .



Figure S77. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 t}$.



Figure S78. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 u}$.



Figure S79. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 v}$.

## 10. References

(1) K.-F. Jia, F.-Y. Zhang, H.-C. Huang and Y.-Y. Chen, J. Am. Chem. Soc. 2016, 138, 1514-1517.
(2) Z. J. Garlets, B. D. Wertz, W.-B. Liu, E. A. Voight and H. M. L. Davies, Chem 2020, 6, 304-313.
(3) K. Liu and A. Studer, J. Am. Chem. Soc. 2021, 143, 4903-4909.
(4) P. Polák and T. Tobrman, Eur. J. Org. Chem. 2019, 957-968.
(5) P. C. Too, G. H. Chan, Y. L. Tnay, H. Hirao and S. Chiba, Angew. Chem. Int. Ed. 2016, 55, 3719-3723.
(6) H. Chen, L. Hu, W.-Z. Ji, L.-C. Yao and X.-B. Liao, ACS Catal. 2018, 8, 10479-10485.
(7) X.-N. Wang, E. H. Krenske, R. C. Johnston, K. N. Houk and R. P. Hsung, J. Am. Chem. Soc. 2015, 137, 5596-5601.
(8)L. Shen, K. Zhao, K. Doitomi, R. Ganguly, Y.-X. Li, Z.-L. Shen, H. Hirao and T.-P. Loh, J. Am. Chem. Soc. 2017, 139, 13570-13578.
(9) L. M. Stateman, R. M. Dare, A. N. Paneque and D. A. Nagib, Chem. 2022, 8, 210-224.
(10) N. L. Reed, G. A. Lutovsky and T. P. Yoon, J. Am. Chem. Soc. 2021, 143, 6065-6070.
(11) X.-S. Zhou, Y. Cheng, J. Chen, X.-Y. Yu, W.-J. Xiao and J.-R. Chen, ChemCatChem. 2019, 11, 5300-5305.
(12) J.-Y. He, G.-L. Chen, B.-X. Zhang, Y. Li, J.-R. Chen, W.-J. Xiao, F. Liu and C.-Z. Li, Chem 2020, 6, 1149-1159.
(13) B. Chen, C. Fang, P. Liu and J. M. Ready, Angew. Chem. Int. Ed. 2017, 56, 8780-8784.


[^0]:    ! 0
    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ \text { fl }\end{array} 100 \\ (\mathrm{ppm})\end{array}$

[^1]:    

[^2]:    
    

