Supporting Information

Synthesis of Unsymmetrically Tetrasubstituted Pyrroles and

Studies of AIEE in Pyrrolo[1,2-a]pyrimidine Derivatives

Taian Li,^[†,a,b] Mong-Feng Chiou,^[†,b] Yajun Li,^[b] Changqing Ye,^[b] Min Su,^[b] Mengyu Xue,^[b] Xiaobin Yuan,^[b] Chuanchuan Wang,^[b] Wen-Ming Wan,^[b] Daliang Li^{*[a]} and Hongli Bao^{*[b]}

Affiliations:

^[a] College of Chemistry and Material Science, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China.

E-mail: daliangli@fjnu.edu.cn

^[b] Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. of China. E-mail: <u>hlbao@fjirsm.ac.cn</u>

Contents

Materials and methods	3
General procedure A: Synthesis of α,β -unsaturated sulfonimines	4
Characterization data for α , β -unsaturated sulfonimines	7
General procedure B for the synthesis of pyrroles	19
General procedure C for the synthesis of pyrrolo[1,2-a]pyrimidine	20
Characterization data for pyrroles	21
Mechanism experiments	31
Theoretical Study	33
Characterization data for pyrrolo[1,2-a]pyrimidine	35
Supplementary figure of pyrrolo[1,2-a]pyrimidine	40
UV spectrum and PL spectra of pyrrolo[1,2-a]pyrimidine	40
Emission spectra of pyrrolo[1,2-a]pyrimidine in THF and water mixtures	44
Time-dependent emission enhancement after different scan times	45
Crystal packing of pyrrolo[1,2-a]pyrimidine	49
Single crystal data	52
NMR Spectra	62
Coordinate of optimized structures	151
References	166

Materials and methods

All reactions were carried out under an atmosphere of nitrogen in glassware with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by Inert PureSolv MD5. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography. Melting points were measured on a Melt-Temp apparatus and were uncorrected. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on Bruker-BioSpin AVANCE III HD and JEOL ECZ600R. Data for ¹H NMR and ¹³C NMR spectra are reported relative to TMS as an internal standard (0 ppm) and are reported as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), and integration. GC-MS data were recorded on Thermo ISQ QD. IR data were obtained from Bruker VERTEX 70.The UV-visible absorption spectra of samples were dissolved in THF(0.001mg/mL) and recorded on Shimadzu UV2450 UV-Vis spectrophotometer. Photoluminescence (PL) spectra of sample solutions were measured on the Edinburgh Instruments FLS5 fluorescence spectrofluorometer. The absolute fluorescence quantum yield of samples was dissolved in THF (0.1mg/mL) and measured on the Edinburgh Instruments FLS1000 three monochromator spectrophotometer. X-ray diffraction (XRD) measurement was performed on Rigaku XRD MiniFlex 600. HRMS data were recorded on Bruker Impact II UHR-TOF, Waters Micromass GCT Premier, or Thermo Fisher Scientific LTQ FT Ultra.

General procedure A: Synthesis of α , β unsaturated sulfonimines

General procedure A :According to the reported synthetic methods for α , β -unsaturated sulfonimines from chalcone,¹ to a solution of benzenesulfonamide (785 mg, 5 mmol) and chalcone (5 mmol) in DCM (20 mL) at 0 °C, were successively added Et₃N (2.09 mL, 15 mmol) and TiCl₄ (0.6 mL, 5 mmol) under a nitrogen atmosphere. The reaction mixture was heated at reflux overnight. The solution was cooled to room temperature, quenched with water (10 mL), and extracted with DCM. The combined organic phase was dried over MgSO₄ and concentrated. The residue was purified by flash chromatography on silica gel (ethyl acetate and hexane) to afford the corresponding α , β unsaturated sulfonimine.²

19s, 10%

20s

35s,43%

36s,16%

37s,15%

Characterization data for α , β -unsaturated sulfonimines

N-((1*E*,2*E*)-1,3-diphenylallylidene)benzenesulfonamide (1s)

Following the general procedure A, compound **1s** was obtained as a yellow solid (1.42 g, 82% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.26 – 7.82 (m, 3H), 7.77 – 7.37 (m, 13H), 7.09 (d, *J* = 15.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 178.0, 149.3, 141.7, 137.3, 134.6, 132.8, 132.2, 131.3, 130.4, 129.2, 129.0, 128.9, 128.5, 127.3, 122.6. The data matches with the reported value².

N-((1*E*,2*E*)-1-phenyl-3-(*p*-tolyl)allylidene)benzenesulfonamide (2s)

Following the general procedure A, compound **2s** was obtained as a yellow solid (1.39 g, 77% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.57 – 7.78 (m, 3H), 7.74 – 7.40 (m, 10H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 15.9 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.6, 142.0, 141.7, 132.6, 131.8, 130.2, 129.8, 128.9, 128.8, 128.4, 127.1, 21.6. The data matches with the reported value².

N-((1*E*,2*E*)-3-(4-(*tert*-butyl)phenyl)-1-phenylallylidene)benzenesulfonamide (3s)

Following the general procedure A, compound **3s** was obtained as a white solid (1.57 g, 78% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.24 – 7.89 (m, 3H), 7.77 – 7.60 (m, 2H), 7.59 – 7.47 (m, 6H), 7.47 – 7.40 (m, 4H), 7.07 (d, *J* = 15.6 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.1, 149.4, 141.7, 132.6, 131.8, 130.1, 128.8, 128.8, 128.4, 127.1, 126.1, 121.6, 35.0, 31.1. IR (thin film) v 2963, 1615, 1537, 1306, 737 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₅H₂₅NO₂SNa]⁺ ([M+Na]⁺): 426.1498, found: 426.1501.

N-((1*E*,2*E*)-3-(4-methoxyphenyl)-1-phenylallylidene)benzenesulfonamide (4s)

Following the general procedure A, compound **4s** was obtained as a yellow solid (1.56 g, 83% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.16 – 7.76 (m, 3H), 7.75 – 7.58 (m, 2H), 7.58 – 7.46 (m, 6H), 7.43 (t, J = 7.7 Hz, 2H), 7.06 (d, J = 15.8 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 178.3, 162.4, 149.7, 141.9, 132.6, 131.7, 130.9, 130.2, 128.9, 128.4, 127.4, 127.2, 122.6, 114.7, 55.6. The data matches with the reported value².

N-((1E,2E)-3-(4-fluorophenyl)-1-phenylallylidene)benzenesulfonamide (5s)

Following the general procedure A, compound **5s** was obtained as a white solid (1.17 g, 64% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 – 7.80 (m, 3H), 7.79 – 7.61 (m, 2H), 7.61 – 7.47 (m, 6H), 7.43 (t, J = 7.7 Hz, 2H), 7.09 (t, J = 8.3 Hz, 2H), 7.04 (d, J = 15.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.7, 164.5 (d, J = 253.1 Hz), 147.7, 141.5, 136.9, 132.8, 130.8, 130.8 (d, J = 8.6 Hz), 130.8, 130.1, 128.9, 128.5, 127.1, 122.4, 116.3 (d, J = 22.0 Hz). The data matches with the reported value².

N-((1*E*,2*E*)-1-phenyl-3-(4-(trifluoromethyl)phenyl)allylidene)benzenesulfonamide (**6s**) Following the general procedure A, compound **6s** was obtained as a light-yellow solid (1.52 g, 73% yield). ¹H NMR (600 MHz,) δ 8.25 – 7.84 (m, 3H), 7.77 – 7.60 (m, 2H), 7.59 – 7.49 (m, 6H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 15.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 147.3, 141.5, 137.2, 136.9, 133.0, 132.8, 132.2, 130.2, 129.9, 129.4, 128.9, 128.5, 127.2, 123.0. The data matches with the reported value².

N-((1E,2E)-1-phenyl-3-(4-(trifluoromethyl)phenyl)allylidene)benzenesulfonamide (7s)

Following the general procedure A, compound **7s** was obtained as a white solid (1.56 g, 75% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 – 7.95 (m, 3H), 7.82 – 7.59 (m, 6H), 7.58 – 7.48 (m, 4H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.07 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 177.2, 146.2, 141.4, 137.9, 136.9, 133.0. 132.5, 132.3, 130.3, 129.0, 128.9, 128.7, 127.3, 126.1, 126.1, 124.9, 124.7, 122.9. IR (thin film) v 3067, 1618, 1544, 1324, 737 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₆F₃NO₂SNa]⁺ ([M+Na]⁺): 438.0746, found: 438.0746.

N-((1*E*,2*E*)-1-phenyl-3-(*m*-tolyl)allylidene)benzenesulfonamide (8s)

Following the general procedure A, compound **8s** was obtained as a yellow solid (1.26 g, 70% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.23 – 7.87 (m, 3H), 7.75 – 7.48 (m, 6H), 7.46 – 7.34 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 15.7 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 149.6, 141.7, 138.8, 137.2, 134.5, 132.7, 132.2, 132.0, 130.2, 129.3, 129.0, 128.9, 128.4, 127.2, 126.2, 122.4, 21.3. IR (thin film) v 3061, 1616, 1538, 1307, 732 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₉NO₂SNa]⁺ ([M+Na]⁺): 384.1029, found: 384.1031.

N-((1*E*,2*E*)-3-(3-methoxyphenyl)-1-phenylallylidene)benzenesulfonamide (9s)

Following the general procedure A, compound **9s** was obtained as a light-yellow solid (1.45 g, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 7.92 (m, 3H), 7.78 – 7.48 (m, 6H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.9 Hz, 1H), 7.22 – 7.12 (m, 1H), 7.12 – 7.00 (m, 2H), 7.00 – 6.95 (m, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.9, 160.0, 149.1, 141.6, 137.2, 135.9, 132.7, 132.0, 130.3, 130.1, 128.9, 128.5, 127.2, 122.7, 121.5, 117.3, 113.4, 55.4. The data matches with the reported value².

N-((1*E*,2*E*)-3-(3-bromophenyl)-1-phenylallylidene)benzenesulfonamide (10s)

Following the general procedure A, compound **10s** was obtained as a yellow solid (1.70 g, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 7.84 (m, 3H), 7.71 – 7.60 (m, 3H), 7.60 – 7.48 (m, 6H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.22 (m, 1H), 6.98 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.4, 146.8, 141.4, 136.9, 136.6, 133.8, 132.8, 131.5, 130.6, 130.2, 128.9, 128.5, 127.2, 127.0, 123.8, 123.2. The data matches with the reported value².

N-((1*E*,2*E*)-3-(2-methoxyphenyl)-1-phenylallylidene)benzenesulfonamide (**11s**) Following the general procedure A, compound **11s** was obtained as a yellow solid (1.37 g, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 – 7.91 (m, 3H), 7.77 – 7.59 (m, 3H), 7.59 – 7.34 (m, 8H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 178.8, 158.7, 145.1, 141.9, 137.4, 132.7, 132.7, 132.0, 130.5, 129.4, 128.9, 128.4, 127.2, 123.7, 122.9, 121.1, 111.3, 55.7. IR (thin film) v 3067, 1607, 1527, 1305, 735 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₉NO₃SNa]⁺ ([M+Na]⁺): 400.0978, found: 400.0980.

N-((1*E*,2*E*)-3-(3,5-dimethylphenyl)-1-phenylallylidene)benzenesulfonamide (**12s**) Following the general procedure A, compound **12s** was obtained as a yellow solid (1.44 g, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 7.92 (m, 3H), 7.70 – 7.58 (m, 2H), 7.58 – 7.46 (m, 4H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.19 (s, 2H), 7.04 (d, *J* = 16.0 Hz, 2H), 2.33 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 150.0, 141.7, 138.6, 137.2, 134.4, 133.1, 132.6, 131.9, 130.1, 128.8, 128.3, 127.1, 126.7, 122.0, 21.1. IR (thin film) v 2919, 1618, 1528, 1305, 1152 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₂₁NO₂SNa]⁺ ([M+Na]⁺): 398.1185, found: 398.1185.

N-((1*E*,2*E*)-3-(2,3-dihydrobenzofuran-5-yl)-1-phenylallylidene)benzenesulfonamide (**13s**) Following the general procedure A, compound **13s** was obtained as a yellow solid (1.59 g, 82% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.18 – 7.71 (m, 3H), 7.72 – 7.57 (m, 2H), 7.57 – 7.46 (m, 5H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.22 (m, 1H), 7.06 (d, *J* = 15.7 Hz, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 4.63 (t, *J* = 8.7 Hz, 2H), 3.22 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.3, 163.4, 150.3, 141.9, 137.4, 132.5, 131.6, 131.4, 130.0, 128.8, 128.6, 128.3, 127.4, 127.0, 125.0, 119.6, 109.8, 72.1, 29.1. The data matches with the reported value².

N-((1*E*,2*E*)-3-(3,4-dichlorophenyl)-1-phenylallylidene)benzenesulfonamide (14s)

Following the general procedure A, compound **14s** was obtained as a white solid (1.45 g, 70% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 7.87 (m, 3H), 7.75 – 7.59 (m, 3H), 7.58 – 7.49 (m, 4H), 7.48 – 7.36 (m, 4H), 6.95 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 145.5, 141.3, 136.7, 135.0, 134.5, 133.4, 132.9, 132.4, 131.1, 130.3, 130.2, 129.0, 128.6, 127.4, 127.2, 124.2. IR (thin film) v 3067, 1624, 1556, 1306, 1154 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₁H₁₅Cl₂NO₂SNa]⁺ ([M+Na]⁺): 438.0093, found: 438.0091.

N-((1E,2E)-3-(naphthalen-2-yl)-1-phenylallylidene)benzenesulfonamide (15s)

Following the general procedure A, compound **15s** was obtained as a yellow solid (1.83 g, 92% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.34 – 7.99 (m, 3H), 7.94 – 7.78 (m, 5H), 7.76 – 7.62 (m, 2H), 7.60 – 7.50 (m, 6H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 15.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 141.6, 134.7, 133.2, 132.7, 132.1, 132.0, 131.2, 130.2, 129.0, 128.9, 128.8, 128.5, 127.9, 127.8, 127.2, 126.9, 123.9, 122.7. The data matches with the reported value².

N-((1E,2E)-1-phenyl-3-(pyren-1-yl)allylidene)benzenesulfonamide (16s)

Following the general procedure A, compound **16s** was obtained as a red solid (1.67 g, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (d, *J* = 7.9 Hz, 1H), 8.44 – 8.16 (m, 5H), 8.15 – 7.98 (m, 7H), 7.82 (d, *J* = 6.6 Hz, 2H), 7.67 – 7.47 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.8, 141.7, 137.5, 133.4, 132.7, 132.1, 131.3, 130.5, 130.2, 129.1, 129.0, 128.9, 128.6, 128.2, 127.4, 127.2, 126.4, 126.4, 126.1, 125.4, 124.9, 124.8, 124.5, 122.1, 121.9. IR (thin film) v 1634, 1528, 1306, 1152, 818 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₁H₂₁NO₂SNa]⁺ ([M+Na]⁺): 494.1185, found: 494.1189.

N-((1E,2E)-1-phenyl-3-(thiophen-2-yl)allylidene)benzenesulfonamide (17s)

Following the general procedure A, compound **17s** was obtained as a yellow solid (989 mg, 56% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 6.1 Hz, 2H), 7.95 – 7.58 (m, 3H), 7.58 – 7.35 (m, 7H), 7.26 (s, 1H), 7.19 (d, *J* = 15.6 Hz, 1H), 7.13 – 7.03 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 141.8, 141.6, 140.0, 132.7, 132.4, 131.8, 131.0, 129.9, 128.9, 128.6, 128.4, 127.2, 121.5. The data matches with the reported value².

N,*N*'-((1*E*,1'*E*,2*E*,2'*E*)-1,4-phenylenebis(1-phenylprop-2-en-3-yl-1-ylidene))dibenzenesulfonamide (18s)

Following the general procedure A, compound **18s** was obtained as a yellow solid (862 mg, 28% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.52 – 7.87 (m, 6H), 7.83 – 7.31 (m, 20H), 7.17 – 6.98 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.5, 147.3, 141.4, 136.9, 132.8, 132.3, 130.2, 129.3, 128.9, 128.5, 127.2, 123.8. IR (thin film) v 1616, 1535, 1306, 1153, 725 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₆H₂₈N₂O₄S₂Na]⁺ ([M+Na]⁺): 639.1383, found: 639.1387.

N-((1E,2E)-1-phenylbut-2-en-1-ylidene)benzenesulfonamide (19s)

Following the general procedure A, compound **19s** was obtained as a yellow oil (285 mg, 10% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 7.92 (m, 2H), 7.63 – 7.44 (m, 7H), 7.37 (t, *J* = 7.6 Hz, 2H), 6.52 – 6.34 (m, 1H), 2.03 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 150.6, 141.7, 137.4, 132.8, 132.1, 130.3, 128.9, 128.4, 127.2, 125.1, 19.7. IR (thin film) v 3064, 1592, 1568 1448, 1310 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₆H₁₅NO₂SNa]⁺ ([M+Na]⁺): 308.0716, found: 308.0716.

N-((1*E*,2*E*)-3-phenyl-1-(p-tolyl)allylidene)benzenesulfonamide (**21s**)

Following the general procedure A, compound **21s** was obtained as a yellow solid (1.46 g, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 – 7.93 (m, 3H), 7.67 – 7.42 (m, 7H), 7.42 – 7.34 (m, 3H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 16.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*)

δ 178.0, 148.6, 143.1, 141.8, 134.6, 134.3, 132.7, 131.1, 130.4, 129.2, 129.1, 128.9, 128.8, 127.1, 122.9, 21.7. IR (thin film) v 3062, 2921, 1661, 1576, 1316 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₉NO₂SNa]⁺ ([M+Na]⁺): 384.1029, found: 384.1030.

N-((1*E*,2*E*)-1-([1,1'-biphenyl]-4-yl)-3-phenylallylidene)benzenesulfonamide (**22s**)

Following the general procedure A, compound **22s** was obtained as a yellow solid (1.69 g, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 – 7.89 (m, 3H), 7.75 – 7.70 (m, 2H), 7.70 – 7.37 (m, 15H), 7.16 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 148.9, 145.1, 141.7, 139.8, 135.9, 134.6, 132.8, 131.3, 130.9, 129.2, 129.1, 128.9, 128.9, 128.3, 127.3, 127.2, 127.1, 122.6. IR (thin film) v 3060, 1611, 1526, 1317, 1152 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₂₁NO₂SNa]⁺ ([M+Na]⁺): 446.1185, found: 446.1185.

N-((1*E*,2*E*)-1-(4-methoxyphenyl)-3-phenylallylidene)benzenesulfonamide (23s)

Following the general procedure A, compound **23s** was obtained as a yellow solid (1.32 g, 70% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 7.88 (m, 3H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.61 – 7.48 (m, 5H), 7.44 – 7.39 (m, 3H), 7.07 (d, *J* = 16.1 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 163.4, 147.7, 141.9, 134.7, 132.6, 130.9, 129.1, 128.8, 128.6, 127.1, 113.9, 55.6. IR (thin film) v 3061, 1603, 1578, 11521, 1306 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₉NO₃SNa]⁺ ([M+Na]⁺): 400.0978, found: 400.0978.

N-((1E,2E)-1-(4-phenoxyphenyl)-3-phenylallylidene)benzenesulfonamide (24s)

Following the general procedure A, compound **24s** was obtained as a light-yellow solid (1.47 g, 67% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 7.86 (m, 3H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.63 – 7.46 (m, 5H), 7.46 – 7.31 (m, 5H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.15 – 7.04 (m, 3H), 6.99 (d, *J* = 8.7 Hz, 2H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 176.9, 161.7, 155.4, 148.1, 141.7, 134.5, 132.6, 132.4, 131.0, 130.1, 129.0, 128.8, 128.7, 127.1, 124.7, 120.2, 117.3. IR (thin film) v 3062, 1614, 1585, 1529, 1317 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₇H₂₁NO₃SNa]⁺ ([M+Na]⁺): 462.1134, found: 462.1135.

N-((1E,2E)-1-(4-fluorophenyl)-3-phenylallylidene)benzenesulfonamide (25s)

Following the general procedure A, compound **25s** was obtained as a white solid (1.30 g, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.1 Hz, 3H), 7.79 – 7.62 (m, 2H), 7.62 – 7.47 (m, 5H), 7.47 – 7.34 (m, 3H), 7.18 – 6.99 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 176.5, 166.1, 164.5, 148.8, 141.4, 134.3, 132.8, 132.7, 131.3, 129.1, 129.0, 128.9, 128.8, 127.1, 122.4, 115.7, 115.6. IR (thin film) v 3065, 1614, 1575, 1537, 1316 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₁H₁₆FNO₂SNa]⁺ ([M+Na]⁺): 388.0778, found: 388.0782.

N-((1E,2E)-1-(4-chlorophenyl)-3-phenylallylidene)benzenesulfonamide (26s)

Following the general procedure A, compound **26s** was obtained as a white solid (1.28 g, 67% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 7.94 (m, 3H), 7.72 – 7.47 (m, 7H), 7.46 – 7.35 (m, 5H), 7.05 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.6, 149.1, 141.4, 138.6, 135.5, 134.3, 131.6, 131.4, 129.2, 129.0, 128.9, 128.8, 127.2, 126.4, 122.2. The data matches with the reported value².

N-((1*E*,2*E*)-1-(4-bromophenyl)-3-phenylallylidene)benzenesulfonamide (27s)

Following the general procedure A, compound **27s** was obtained as a white solid (1.55 g, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 7.97 (m, 3H), 7.75 – 7.47 (m, 9H), 7.42 – 7.37 (m, 3H), 7.06 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.7, 149.2, 141.4, 136.0, 134.3, 132.9, 131.8, 131.4, 129.2, 128.9, 128.9, 127.2, 122.2. IR (thin film) v 3061, 1606, 1585, 1535, 1307 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₁H₁₆BrNO₂SNa]⁺ ([M+Na]⁺): 447.9977, found: 447.9977.

N-((1*E*,2*E*)-3-phenyl-1-(4-(trifluoromethyl)phenyl)allylidene)benzenesulfonamide (**28s**) Following the general procedure A, compound **28s** was obtained as a yellow solid (1.20 g, 58% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 – 7.89 (m, 3H), 7.90 – 7.64 (m, 4H), 7.64 – 7.49 (m, 5H), 7.48 – 7.36 (m, 3H), 7.05 (d, *J* = 14.8 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 176.5, 150.0, 141.2, 140.7, 134.3, 133.1, 131.7, 130.5, 129.3, 129.1, 127.3, 125.5, 123.8 (q, *J* = 272.7 Hz), 122.8, 122.1, 121.0. IR (thin film) v 3067, 1618, 1581, 1514, 1324 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₆F₃NO₂SNa]⁺ ([M+Na]⁺): 438.0746, found: 438.0747.

N-((1*E*,2*E*)-1-(4-(methylsulfonyl)phenyl)-3-phenylallylidene)benzenesulfonamide (**29s**) Following the general procedure A, compound **29s** was obtained as a light-yellow solid (1.45 g, 68% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 – 7.91 (m, 5H), 7.87 – 7.71 (m, 2H), 7.63 – 7.49 (m, 5H), 7.47 – 7.39 (m, 3H), 7.05 (d, *J* = 14.6 Hz, 1H), 3.09 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 150.3, 143.1, 142.2, 141.0, 134.0, 133.1, 131.8, 130.9, 129.2, 129.1, 127.5, 127.2, 121.8, 44.4. IR (thin film) v 3026, 1659, 1601, 1574, 1541 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₉NO₄S₂Na]⁺ ([M+Na]⁺): 448.0648, found: 448.0646.

N-((1*E*,2*E*)-1-(3-chlorophenyl)-3-phenylallylidene)benzenesulfonamide (**30s**)

Following the general procedure A, compound **30s** was obtained as a light-yellow solid (991 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 – 7.86 (m, 3H), 7.85 – 7.47 (m, 8H), 7.46 – 7.35 (m, 4H), 7.07 (d, J = 15.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.3, 149.5, 141.3, 138.8, 134.6, 134.3, 132.9, 131.9, 131.5, 129.7, 129.2, 129.0, 128.9, 128.3, 127.2, 122.2. IR (thin film) v 3065, 1613, 1576 1540, 1316 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₁H₁₆ClNO₂SNa]⁺ ([M+Na]⁺): 404.0482, found: 404.0481.

N-((1*E*,2*E*)-1-(3,5-dimethylphenyl)-3-phenylallylidene)benzenesulfonamide (**31s**)

Following the general procedure A, compound **31s** was obtained as a white solid (1.20 g, 64% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.25 – 7.81 (m, 3H), 7.65 – 7.48 (m, 5H), 7.45 – 7.39 (m, 3H), 7.32 – 7.12 (m, 3H), 7.07 (d, *J* = 16.0 Hz, 1H), 2.34 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.6, 149.0, 141.7, 138.1, 137.2, 134.6, 133.8, 132.7, 131.1, 129.1, 128.9, 128.8, 127.9, 127.2, 122.7, 21.3. IR (thin film) v 2919, 1618, 1528, 1445, 1306 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₂₁NO₂SNa]⁺ ([M+Na]⁺): 398.1185, found: 398.1187.

N-((1*E*,2*E*)-1-(4-fluoro-3-methylphenyl)-3-phenylallylidene)benzenesulfonamide (**32s**) Following the general procedure A, compound **32s** was obtained as a yellow solid (1.01 g, 53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 7.93 (m, 3H), 7.66 – 7.45 (m, 7H), 7.44 – 7.37 (m, 3H), 7.12 – 7.00 (m, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.0, 163.9 (d, *J* = 253.5 Hz), 148.8, 141.5, 134.5, 133.6, 132.8, 131.3, 130.0, 129.1, 128.9, 128.8, 127.2, 125.5 (d, *J* = 17.9 Hz), 122.7, 115.2 (d, *J* = 23.0 Hz), 14.6. IR (thin film) v 3063, 1614, 1538, 1448, 1318 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₈FNO₂SNa]⁺ ([M+Na]⁺): 402.0934, found: 402.0935.

N-((1*E*,2*E*)-1,3-bis(4-(methylthio)phenyl)allylidene)benzenesulfonamide (**33s**)

Following the general procedure A, compound **33s** was obtained as a yellow solid (78% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 – 7.76 (m, 3H), 7.63 – 7.41 (m, 7H), 7.27 – 7.19 (m, 4H), 7.03 (d, *J* = 16.0 Hz, 1H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.2, 148.1, 145.0, 143.6, 141.8, 133.2, 132.6, 130.9, 130.7, 129.1, 128.9, 127.1, 125.8, 125.1, 121.8, 15.0, 14.9. IR (thin film) v 3061, 2920, 1654, 1589, 1316 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₂₁NO₂S₃Na]⁺ ([M+Na]⁺): 462.0627, found: 462.0627.

N-((1E,2E)-1,3-di(naphthalen-2-yl)allylidene)benzenesulfonamide (34s)

Following the general procedure A, compound **34s** was obtained as a yellow solid (85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 – 8.16 (m, 2H), 8.14 – 8.05 (m, 2H), 7.93 – 7.75 (m, 9H), 7.54 (dp, *J* = 23.9, 7.4 Hz, 7H), 7.29 (d, *J* = 15.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.0, 149.3, 144.9, 141.6, 134.9, 134.6, 133.2, 132.7, 132.4, 132.1, 131.1, 129.2, 129.0, 128.9, 128.7, 128.3, 128.2, 127.9, 127.8, 127.2, 126.9, 126.9, 123.8, 122.9. IR (thin film) v 2991, 1628, 1539, 1304, 1152cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₉H₂₁NO₂SNa]⁺ ([M+Na]⁺): 471.1185, found: 471.1185.

N-((1Z,2E)-1-cyclopropyl-3-phenylallylidene)benzenesulfonamide(35s)

Following the general procedure A, compound **35s** was obtained as a white solid (666 mg, 43% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 7.4 Hz, 3H), 7.74 – 7.47 (m, 6H), 7.47 – 7.36 (m, 3H), 2.58 – 2.15 (m, 1H), 1.24 – 1.03 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.2, 144.5, 142.0, 134.6, 132.4, 131.0, 129.0, 128.7, 126.7, 123.4, 29.7, 16.4, 13.2. IR (thin film) v 3056, 1617, 1578, 1530, 1286 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₇NO₂SNa]⁺ ([M+Na]⁺): 334.0782, found: 334.0782.

4-methyl-N-((2Z,3E)-4-phenylbut-3-en-2-ylidene)benzenesulfonamide (36s)

Following the general procedure A, compound **36s** was obtained as a yellow oil (234 mg, 16% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.2 Hz, 2H), 7.53 – 7.50 (m, 2H), 7.43 – 7.37 (m, 4H), 7.33 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 16.3 Hz, 1H), 2.77 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.3, 144.1, 143.6, 138.5, 134.4, 130.8, 129.5, 129.0, 128.3, 127.1, 122.6, 21.6, 20.0. IR (thin film) v 1638, 1478, 1318, 1205, 1146 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₇NO₂SNa]⁺ ([M+Na]⁺):322.0872, found: 322.0872.

N-((1*E*,2*E*)-3-phenylallylidene)benzenesulfonamide (**37s**) Following the general procedure A, compound **37s** was obtained as a white solid (196 mg, 15% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.81 (d, J = 9.5 Hz, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.69 – 7.52 (m, 6H), 7.51 – 7.41 (m, 3H), 7.00 (dd, J = 15.8, 9.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.5, 154.3, 138.5, 134.2, 133.6, 131.9, 129.3 (d, J = 3.8 Hz), 128.8, 128.0, 124.8. IR (thin film) v 3054, 1617, 1579, 1448, 1318 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₅H₁₃NO₂SNa]⁺ ([M+Na]⁺): 294.0559, found: 294.0559.

N-((1E,2E)-4,4-dimethyl-1-phenylpent-1-en-3-ylidene)benzenesulfonamide (38s)

Following the general procedure A, compound **38s** was obtained as a white solid (916 mg, 56% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 7.5 Hz, 2H), 7.59 – 7.35 (m, 9H), 7.09 (d, *J* = 16.5 Hz, 1H), 1.26 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.1, 142.1, 135.1, 132.3, 130.0, 128.9, 128.7, 127.9, 126.9, 121.3, 42.8, 28.4. IR (thin film) v 2974, 1630, 1577, 1447, 1305 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₉H₂₁NO₂SNa]⁺ ([M+Na]⁺): 350.1185, found: 350.1189.

General procedure B for the synthesis of pyrroles

General procedure B: To a 25 mL of Schlenk tube with a stir bar was added the α , β -unsaturated sulfonimine (0.5 mmol), Cs₂CO₃ (1 mmol, 326 mg) and DMSO (4 mL) under a nitrogen atmosphere. Upon dissolution the imine, TMSCN (138 uL, 2.2 equiv) was added, and the mixture was stirred for 10 s - 1 min until the solution turned red. Then, the mixture was heated to 80 °C in an oil bath for 12 h. After cooling to rt, the solution was pooled into 20 mL of ice water until no solid precipitate. The desired pyrrole can be obtained through filtration without further purification.

General procedure C for the synthesis of pyrrolo[1,2-*a*]pyrimidine

General procedure C: A mixture of NH-pyrrole (1 mmol) and 1,3-diketone (1.5-10 mmol) was refluxed in acetic acid (5 mL) overnight. After the reaction solution was cooled to room temperature, 10 mL of DCM was added. The organic layer was washed with water (3×20 mL) and saturated sodium carbonate solution (10 mL), dried over MgSO₄, and concentrated. The crude product was purified by flash chromatography on silica gel (petroleum ether:DCM:EtOAc 20:5:1) to give the pure product.³

Characterization data for pyrroles

Following the general procedure B, compound **1** was obtained as a gray solid (104 mg, 80% yield). Mp > 300 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.40 (s, 1H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.49 – 7.41 (m, 4H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 4.84 (s, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 138.0, 134.0, 131.8, 130.8, 129.6, 129.2, 127.7, 125.8, 125.1, 119.2, 105.2, 87.4. IR (thin film) v 3373, 3267, 2211, 1600, 740 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₃N₃Na]⁺ ([M+Na]⁺): 282.1002, found: 282.1003.

Following the general procedure B, compound **2** was obtained as a gray solid (121 mg, 89% yield). Mp 176.1-177.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.37 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 2H), 4.78 (s, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.6, 134.9, 131.4, 131.0, 130.8, 129.7, 129.5, 127.6, 125.0, 119.1, 105.3, 87.4, 21.2. IR (thin film) v 3373, 3247, 2212, 1609, 1520 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃Na]⁺ ([M+Na]⁺): 296.1158, found: 296.1559.

Following the general procedure B, compound **3** was obtained as a gray solid (106 mg, 67% yield). Mp 250.6-251.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.38 (s, 1H), 7.71 (d, J = 7.6 Hz, 2H), 7.51 – 7.39 (m, 6H), 7.30 (t, J = 7.4 Hz, 1H), 4.82 (s, 2H), 1.31 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 148.1, 137.7, 131.4, 131.0, 130.8, 129.5, 127.6, 127.3, 125.9, 125.0, 119.2, 105.1, 87.4, 34.7, 31.6. IR (thin film) v 3369, 3266, 2211, 1616, 1520 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₁H₂₁N₃Na]⁺ ([M+Na]⁺): 338.1628, found: 338.1628.

Following the general procedure B, compound **4** was obtained as a gray green solid (131 mg, 91% yield). Mp > 300 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.38 (s, 1H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.38 (m, 4H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 8.7 Hz, 2H), 4.73 (s, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.7, 137.2, 131.2, 130.8, 129.5, 129.0, 127.5, 126.2, 124.9, 119.2, 114.6, 105.4, 87.4, 55.6. IR (thin film) v 3370, 3246, 2213, 1611, 1517 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃ONa]⁺ ([M+Na]⁺): 312.1107, found: 312.1107.

Following the general procedure B, compound **5** was obtained as a gray solid (133 mg, 96% yield). Mp 279.2-280.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.42 (s, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.53 – 7.44 (m, 4H), 7.34 – 7.22 (m, 3H), 4.86 (s, 2H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -117.10. ¹³C NMR (101 MHz, DMSO- d_6) δ 160.7 (d, J = 242.4 Hz), 137.8, 131.7, 130.7, 130.3 (d, J = 3.1 Hz), 129.6 (d, J = 8.0 Hz), 129.5, 127.7, 125.1, 119.0, 115.9 (d, J = 21.2 Hz), 104.3, 87.3. IR (thin film) v 3365, 3259, 2212, 1620, 1517 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₂FN₃Na]⁺ ([M+Na]⁺): 300.0907, found: 300.0907.

Following the general procedure B, compound **6** was obtained as a brown solid (143 mg, 72% yield). Mp 261.3-261.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.46 (s, 1H), 7.71 (d, J = 7.7 Hz, 2H), 7.59 – 7.39 (m, 6H), 7.32 (t, J = 7.3 Hz, 1H), 4.97 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.3, 132.9, 132.0, 130.6, 130.1, 129.5, 129.2, 129.0, 127.8, 125.1, 118.9, 103.8, 87.1. IR (thin film) v 3369, 3260, 2211, 1614, 1506 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₂ClN₃Na]⁺ ([M+Na]⁺): 316.0612, found: 316.0612.

Following the general procedure B, compound 7 was obtained as a gray solid (136 mg, 83% yield). Mp 263.8-264.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.53 (s, 1H), 7.79 – 7.67 (m, 6H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 5.16 (s, 2H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.62. ¹³C NMR (101 MHz, DMSO-*d*₆) δ 139.2, 138.4, 132.6, 130.4, 129.5, 128.0, 127.7, 125.9, 125.3, 118.9, 103.1, 87.0. IR (thin film) v 3359, 3232, 2215, 1611, 1523 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₂F₃N₃Na]⁺ ([M+Na]⁺): 350.0876, found: 350.0876.

Following the general procedure B, compound **8** was obtained as a gray green solid (109 mg, 80% yield). Mp 191.3-193.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.40 (s, 1H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.36 – 7.24 (m, 4H), 7.03 (d, *J* = 5.4 Hz, 1H), 4.85 (s, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.1, 137.9, 133.8, 131.6, 130.8, 129.5, 129.0, 128.3, 127.6, 126.5, 125.0, 124.8, 119.1, 105.2, 87.3, 21.7. IR (thin film) v 3348, 2206, 1610, 1536, 693 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃Na]⁺ ([M+Na]⁺): 296.1158, found: 296.1159.

Following the general procedure B, compound **9** was obtained as a brown solid (123 mg, 85% yield). Mp 198.3-199.4 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.41 (s, 1H), 7.69 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.30 – 7.22 (m, 2H), 7.08 – 7.00 (m, 2H), 6.74 (d, J = 7.3 Hz, 1H), 4.87 (s, 2H), 3.74 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.9, 138.1, 135.3, 131.8, 130.7, 130.1, 129.5, 127.7, 125.1, 119.9, 119.2, 113.0, 111.5, 104.9, 87.3, 55.3. IR (thin film) v 3364, 2835, 2210, 1608, 692 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃ONa]⁺ ([M+Na]⁺): 312.1107, found: 312.1107.

Following the general procedure B, compound **10** was obtained as a brown solid (130 mg, 77% yield). Mp 213.3-214.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.46 (s, 1H), 7.78 – 7.63 (m, 3H), 7.55 – 7.44 (m, 3H), 7.42 – 7.27 (m, 3H), 5.03 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.6, 136.5, 132.3, 131.1, 130.5, 129.8, 129.5, 128.3, 127.9, 126.4, 125.2, 122.5, 118.9, 103.3, 87.1. IR (thin film) v 3371, 3276, 2209, 1619, 738 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂N₃BrNa]⁺ ([M+Na]⁺): 360.0107, found: 360.0108.

Following the general procedure B, compound 11 was obtained as a gray solid (134 mg, 93% yield).

Mp 91.2-92.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.35 (s, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.33 – 7.23 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 7.00 (t, J = 7.4 Hz, 1H), 4.48 (s, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.6, 138.2, 131.1, 131.0, 130.9, 129.4, 128.2, 127.4, 124.9, 122.2, 120.9, 118.9, 111.9, 102.7, 89.1, 55.7. IR (thin film) v 3337, 3283, 2209, 1620, 756 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃ONa]⁺ ([M+Na]⁺): 312.1107, found: 312.1107.

Following the general procedure B, compound **12** was obtained as a brown solid (129 mg, 90% yield). Mp 185.1-185.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.37 (s, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.09 (s, 2H), 6.85 (s, 1H), 4.82 (s, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.9, 137.8, 133.7, 131.5, 130.8, 129.5, 127.6, 127.4, 125.5, 125.0, 119.2, 105.3, 87.4, 21.6. IR (thin film) v 3336, 3259, 2212, 1618, 1600 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₉H₁₇N₃Na]⁺ ([M+Na]⁺): 310.1315, found: 310.1316.

Following the general procedure B, compound **13** was obtained as a gray solid (126 mg, 84% yield). Mp 118.5-119.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.34 (s, 1H), 7.79 – 7.66 (m, 2H), 7.60 – 7.41 (m, 2H), 7.37 – 7.24 (m, 2H), 7.17 (d, J = 6.7 Hz, 1H), 6.81 (d, J = 7.0 Hz, 1H), 4.69 (s, 2H), 4.54 (t, J = 8.8 Hz, 2H), 3.21 (t, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.3, 137.1, 131.0, 130.9, 129.5, 128.1, 127.6, 127.4, 126.0, 124.9, 124.8, 119.2, 109.5, 106.0, 87.6, 71.4, 29.7. IR (thin film) v 3353, 3293, 2209, 1612, 1537 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₉H₁₅N₃ONa]⁺ ([M+Na]⁺): 324.1107, found: 324.1109.

Following the general procedure B, compound **14** was obtained as a gray solid (119 mg, 73% yield). Mp 225.4-226.6 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 1H), 7.77 – 7.62 (m, 4H), 7.54 – 7.43 (m, 3H), 7.33 (t, J = 7.0 Hz, 1H), 5.13 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 139.0, 134.8, 132.5, 131.7, 131.1, 130.4, 129.5, 128.9, 128.0, 127.7, 127.5, 125.2, 118.8, 102.3, 86.9. IR (thin film) v 3424, 3340, 2210, 1616, 1502 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₁Cl₂N₃Na]⁺ ([M+Na]⁺): 350.0222, found: 350.0221.

Following the general procedure B, compound **15** was obtained as a gray solid (139 mg, 90% yield). Mp 211.7-212.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.47 (s, 1H), 7.95 (d, J = 7.7 Hz, 2H), 7.89 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 8.9 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.33 (t, J = 7.3 Hz, 1H), 5.02 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.4, 133.9, 131.9, 131.6, 131.6, 130.7, 129.5, 128.4, 128.1, 127.9, 127.7, 126.6, 125.8, 125.4, 125.1, 119.2, 105.0, 87.4. IR (thin film) v 3373, 3253, 2212, 1608, 1533 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₁H₁₅N₃Na]⁺ ([M+Na]⁺): 332.1158, found: 332.1157.

Following the general procedure B, compound **16** was obtained as a yellow solid (190 mg, 99% yield). Mp 144.3-145.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.64 (s, 1H), 8.35 (d, *J* = 7.9 Hz, 1H), 8.33 – 8.28 (m, 2H), 8.24 – 8.18 (m, 3H), 8.14 – 8.07 (m, 2H), 8.05 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 4.73 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 136.3, 129.2, 128.9, 128.6, 128.4, 127.8, 127.1, 126.9, 126.6, 126.5, 125.3, 125.2, 125.1, 125.0, 124.2, 123.7, 123.0, 122.9, 122.8, 122.5, 122.4, 122.1, 116.4, 101.7, 87.4. IR (thin film) v 3447, 2211, 1617, 1508, 692 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₁₇N₃Na]⁺ ([M+Na]⁺): 406.1315, found: 406.1308.

Following the general procedure B, compound **17** was obtained as a gray solid (93 mg, 70% yield). Mp 175.4-175.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.5 (s, 1H), 7.7 (d, J = 7.0 Hz, 2H), 7.5 – 7.4 (m, 3H), 7.4 – 7.3 (m, 1H), 7.2 (s, 1H), 7.1 (s, 1H), 5.0 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.1, 135.7, 131.9, 130.4, 129.5, 127.9, 125.2, 123.2, 122.9, 118.8, 99.6, 86.9. IR (thin film) v 3356, 3258, 2211, 1616, 1523 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₅H₁₁N₃SNa]⁺ ([M+Na]⁺): 288.0566, found: 288.0566.

Following the general procedure B, compound **18** was obtained as a brown solid (176 mg, 80% yield). Mp >300 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.46 (s, 2H), 7.80 – 7.67 (m, 4H), 7.60 – 7.52 (m, 4H), 7.50 – 7.43 (m, 4H), 7.34 – 7.29 (m, 2H), 4.88 (s, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 137.9, 131.6, 131.0, 130.7, 129.5, 127.7, 127.6, 125.0, 119.2, 105.2, 87.2. IR (thin film) v 3359, 3247, 2212, 1595, 1522 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₈H₂₀N₆Na]⁺ ([M+Na]⁺): 463.1642, found: 463.1642.

Following the general procedure B, compound **21** was obtained as a gray solid (120 mg, 88% yield). Mp 210.3-211.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.35 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 4.82 (s, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.5, 137.2, 134.1, 132.1, 130.0, 129.1, 128.0, 127.6, 125.7, 125.0, 119.2, 104.8, 86.7, 21.3. IR (thin film) v 3461, 3376, 2213, 1617, 1508 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₅N₃Na]⁺ ([M+Na]⁺): 296.1158, found: 296.1158.

Following the general procedure B, compound **22** was obtained as a green solid (159 mg, 95% yield). Mp 236.3-238.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.54 (s, 1H), 7.87 – 7.79 (m, 4H), 7.74 (d, *J* = 7.3 Hz, 2H), 7.54 – 7.47 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.23 (t, *J* = 7.3 Hz, 1H), 4.94 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 139.8, 139.0, 138.2, 133.9, 131.2, 129.7, 129.5, 129.1, 128.0, 127.6, 126.9, 125.8, 125.4, 119.2, 105.3, 87.5. IR (thin film) v 3375, 3254, 2212, 1600, 694 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₁₇N₃Na]⁺ ([M+Na]⁺): 358.1315, found: 358.1314.

Following the general procedure B, compound **23** was obtained as a gray solid (138 mg, 82% yield). Mp 248.3-249.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.27 (s, 1H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 8.6 Hz, 2H), 4.77 (s, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.1, 137.1, 134.2, 132.4, 129.1, 127.5, 126.7, 125.6, 123.4, 119.4, 114.9, 104.6, 86.1, 55.7. IR (thin film) v 3375, 3253, 2212, 1616, 1508 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₄N₃O]⁻ ([M-H]⁻): 288.1131, found: 288.1129.

Following the general procedure B, compound **24** was obtained as a green solid (167 mg, 95% yield). Mp 227.2-228.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.37 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.44 – 7.40 (m, 3H), 7.24 – 7.16 (m, 3H), 7.13 – 7.06 (m, 4H), 4.84 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.3, 156.8, 138.1, 134.5, 132.0, 131.1, 129.5, 128.0, 127.4, 126.6, 126.2, 124.7, 120.0, 119.8, 119.6, 105.4, 87.3. IR (thin film) v 3374, 3258, 2210, 1588, 1508 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₁₇N₃NaO]⁺ ([M+Na]⁺): 374.1264, found: 374.1265.

Following the general procedure B, compound **25** was obtained as a gray solid (126 mg, 91% yield). Mp 233.6-243.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.43 (s, 1H), 7.74 (dd, *J* = 8.2, 5.5 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 8.7 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 4.86 (s, 2H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -114.25. ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.7 (d, *J* = 245.0 Hz), 137.8, 133.9, 131.0, 129.1, 127.6, 127.4 (d, *J* = 3.3 Hz), 127.2 (d, *J* = 8.2 Hz), 125.8, 119.0, 116.5 (d, *J* = 21.8 Hz), 105.1, 87.3. IR (thin film) v 3376, 3262, 2212, 1615, 1509 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂FN₃Na]⁺ ([M+Na]⁺): 300.0907, found: 300.0907.

Following the general procedure B, compound **26** was obtained as a gray solid (145 mg, 99% yield). Mp 233.6-234.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.50 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 4.92 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.3, 133.8, 131.8, 130.2, 129.5, 129.5, 129.1, 127.7, 126.5, 125.9, 118.9, 105.4, 87.9. IR (thin film) v 3376, 3259, 2212, 1614, 1507 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂ClN₃Na]⁺ ([M+Na]⁺): 316.0612, found: 316.0610.

Following the general procedure B, compound **27** was obtained as a gray solid (147 mg, 87% yield). Mp 244.8-245.6 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.52 (s, 1H), 7.71 – 7.63 (m, 4H), 7.49 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 4.94 (s, 2H). ¹³C NMR (101 MHz,

DMSO-*d*₆) δ 138.4, 133.8, 132.4, 130.2, 129.9, 129.1, 127.7, 126.8, 125.9, 120.3, 118.9, 105.4, 87.9. IR (thin film) v 3375, 3244, 2214, 1616, 1508 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂BrN₃Na]⁺ ([M+Na]⁺): 360.0107, found: 360.0107.

Following the general procedure B, compound **28** was obtained as a gray solid (123 mg, 75% yield). Mp 227.3-228.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.43 (s, 1H), 7.74 (dd, *J* = 8.2, 5.5 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 8.7 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 4.86 (s, 2H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -56.09. ¹³C NMR (101 MHz, DMSO-*d*₆) δ 139.2, 134.4, 133.5, 129.2, 129.1, 127.8, 126.5 (q, *J* = 3.9 Hz), 126.1, 125.0, 124.7 (q, *J* = 271.7 Hz), 118.7, 106.1, 89.2. IR (thin film) v 3376, 3260, 2211, 1614, 1510 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₂F₃N₃Na]⁺ ([M+Na]⁺): 350.0876, found: 350.0875.

Following the general procedure B, compound **29** was obtained as a green solid (142 mg, 84% yield). Mp 253.3-254.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.67 (s, 1H), 8.00 – 7.82 (m, 4H), 7.52 – 7.35 (m, 4H), 7.26 – 7.13 (m, 1H), 5.06 (s, 2H), 3.19 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 139.6, 138.5, 135.2, 133.4, 129.2, 128.8, 128.3, 127.8, 126.2, 124.8, 118.6, 106.4, 89.8, 44.0. IR (thin film) v 3422, 2211, 1617, 1590, 1509 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅N₃O₂SNa]⁺ ([M+Na]⁺): 360.0777, found: 360.0776.

Following the general procedure B, compound **30** was obtained as a gray solid (102 mg, 69% yield). Mp 219.9-221.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.70 (s, 1H), 7.81 – 7.67 (m, 2H), 7.54 – 7.46 (m, 3H), 7.42 (t, J = 7.5 Hz, 2H), 7.34 (d, J = 7.7 Hz, 1H), 7.23 (t, J = 7.2 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.7, 134.2, 133.7, 132.6, 131.4, 129.4, 129.1, 127.7, 127.0, 125.9, 124.2, 123.3, 118.8, 105.5, 88.3. IR (thin film) v 3368, 3259, 2211, 1615, 1510 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂ClN₃Na]⁺ ([M+Na]⁺): 316.0612, found: 316.0612.

Following the general procedure B, compound **31** was obtained as a gray solid (98 mg, 68% yield).

Mp 209.6-210.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.31 (s, 1H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.34 (s, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 6.96 (s, 1H), 4.82 (s, 2H), 2.32 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.4, 137.7, 134.1, 131.9, 130.7, 129.2, 129.1, 127.6, 125.7, 122.8, 119.2, 104.9, 87.0, 21.5. IR (thin film) v 3360, 3257, 2213, 1618, 1509 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₉H₁₇N₃Na]⁺ ([M+Na]⁺): 310.1315, found: 310.1314.

Following the general procedure B, compound **32** was obtained as a gray solid (143 mg, 98% yield). Mp 197.5-198.4 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.45 (s, 1H), 7.62 – 7.55 (m, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 9.1 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 4.87 (s, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -118.62. ¹³C NMR (101 MHz, DMSO- d_6) δ 160.3 (d, J = 244.5 Hz), 137.7, 134.0, 131.1, 129.1, 128.4 (d, J = 5.0 Hz), 127.6, 127.1 (d, J = 3.4 Hz), 125.7, 125.3 (d, J = 17.7 Hz), 124.7 (d, J = 8.1 Hz), 119.1, 116.1 (d, J = 22.7 Hz), 104.9, 87.1, 14.8. IR (thin film) v 3375, 3260, 2211, 1618, 1508 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₈H₁₄FN₃Na]⁺ ([M+Na]⁺): 314.1064, found: 314.1064.

Following the general procedure B, compound **33** was obtained as a green solid (87% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 11.37 (s, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.39 – 7.26 (m, 4H), 4.85 (s, 2H), 2.50 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 137.2, 137.1, 134.4, 130.8, 130.1, 127.5, 126.6, 126.5, 126.2, 124.8, 118.5, 104.0, 86.3, 15.0, 14.5. IR (thin film) v 3370, 3243, 2211, 1610, 1507 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₉H₁₇N₃S₂Na]⁺ ([M+Na]⁺): 374.0756, found: 374.0756.

Following the general procedure B, compound **34** was obtained as a green solid (90% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.66 (s, 1H), 8.21 (s, 1H), 8.03 (d, *J* = 8.7 Hz, 1H), 8.01 – 7.86 (m, 7H), 7.73 (d, *J* = 9.5 Hz, 1H), 7.59 – 7.45 (m, 4H), 5.12 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 139.4, 134.4, 134.1, 132.9, 132.2, 132.1, 132.1, 129.6, 128.9, 128.7, 128.7, 128.6, 128.4, 127.9, 127.1, 126.3, 126.0, 124.0, 123.6, 119.8, 105.7, 88.5. IR (thin film) v 3375, 2212, 1613, 1599, 1524 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₅H₁₇N₃Na]⁺ ([M+Na]⁺): 382.1315, found: 382.1315.

Following the general procedure B, compound **35** was obtained as a white solid (48 mg, 43% yield). Mp 130.5-131.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.64 (s, 1H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.14 (t, *J* = 7.2 Hz, 1H), 4.51 (s, 2H), 1.98 – 1.88 (m, 1H), 0.99 – 0.91 (m, 2H), 0.84 – 0.77 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.3, 134.8, 134.6, 129.0, 127.1, 125.1, 118.7, 102.5, 87.1, 8.5, 7.5. IR (thin film) v 3398, 2923, 2207, 1600, 1506 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₁₄H₁₃N₃Na]⁺ ([M+Na]⁺):246.1002, found: 246.1002.

Following the general procedure B, compound **38** was obtained as a white solid (129 mg, 73% yield). Mp 134.8-135.1 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.36 – 7.31 (m, 3H), 7.26 – 7.22 (m, 2H), 6.75 (d, *J* = 16.1 Hz, 1H), 5.91 (d, *J* = 16.1 Hz, 1H), 5.38 (s, 1H), 1.12 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.9, 135.8, 134.9, 133.3, 129.1, 129.0, 128.8, 128.2, 127.1, 121.1, 117.1, 66.6, 40.3, 25.0. IR (thin film) v 3307, 2969, 2245, 1645, 1157 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₀H₂₂N₂NaSO₂]⁺ ([M+Na]⁺): 377.1294, found: 377.1293.

Compound **39** was obtained as a white solid (745 mg, 96% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 7.4 Hz, 2H), 7.61 – 7.53 (m, 3H), 7.43 (t, J = 7.8 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.20 (t, J = 7.8 Hz, 1H), 7.14 – 7.04 (m, 3H), 6.90 – 6.83 (m, 1H), 6.09 (d, J = 15.8 Hz, 1H), 5.37 (s, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.0, 138.4, 136.5, 134.4, 133.3, 133.2, 129.9, 129.6, 129.3, 129.0, 128.6, 128.0, 127.7, 125.9, 125.0, 124.5, 117.1, 62.3, 21.3. IR (thin film) v 3467, 3311, 2247, 1646, 1605 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₃H₂₀N₂O₂SNa]⁺ ([M+Na]⁺): 411.1135, found: 411.1135.

Mechanism experiments

To a 25 mL of Schlenk tube with a stir bar was added the α , β -unsaturated sulfonimine (0.5 mmol), Cs₂CO₃ (1 mmol, 326 mg) and DMSO (4 mL) under a nitrogen atmosphere. Upon dissolution the imine, TMSCN (138 uL, 2.2 equiv) was added, and the mixture was stirred for 10 s - 1 min until the solution turned red. Then, the mixture was heated to 80 °C in an oil bath for 12 h. Then, the mixture was pooled into 20 mL of water then extracted with EA/PE=1:1 (30mL*3). The organic phase was washed three times with a large amount of water, dried over anhydrous magnesium sulfate, evaporated to remove the solvent, and separated with a silica gel column (PE/EA=10:1-PE/EA=3:1). **38s** Not afford the desired pyrrole product but afforded 1,2-cyano addition product **38** in 73% yield.

To a 50 mL of Schlenk tube with a stir bar was added the α , β -unsaturated sulfonimine (2 mmol), Cs₂CO₃ (4 mmol, 1.3 g) and DMSO (16 mL) under a nitrogen atmosphere. Upon dissolution the imine, TMSCN (552 uL, 4.4 equiv) was added, and the mixture was stirred for 1-5 min until complete disappearance of raw materials detected by TLC. Then, the mixture was pooled into 20 mL of water then extracted with EA/PE=1:1 (30mL*3). The organic phase was washed three times with a large amount of water, dried over anhydrous magnesium sulfate, evaporated to remove the solvent, and separated with a silica gel column(PE/EA=10:1-PE/EA=3:1).

To a 25 mL of Schlenk tube with a stir bar was added the 1,2-addtion product **39** (0.2 mmol), Cs_2CO_3 (0.4 mmol, 131 mg) and DMSO (1.5 mL) under a nitrogen atmosphere. Upon dissolution compound **39**, TMSCN (30 uL, 1.2 equiv) was added. Then, the mixture was heated to 80 °C in an oil bath for

1 h. After cooling to rt, the solution was pooled into 5 mL of ice water until no solid precipitate. The desired pyrrole can be obtained through filtration without further purification.

To a 25 mL of Schlenk tube with a stir bar was added the 1,2-addtion product **39** (0.2 mmol), Cs_2CO_3 (0.4 mmol, 131 mg) and DMSO (1.5 mL) under a nitrogen atmosphere. Upon dissolution the compound **39**, TMSCN (30 uL, 1.2 equiv) was added. Then, the mixture was heated to 80 °C in an oil bath for 1 h. After cooling to rt, Then, the mixture was pooled into 20 mL of water then extracted with EA/PE=1:1 (30mL*3). The organic phase was washed three times with a large amount of water, dried over anhydrous magnesium sulfate, evaporated to remove the solvent, and added CH_2Br_2 (0.2 mmol, 14 uL) as an internal standard.

Theoretical Study

Density functional theory (DFT) calculations have also been conducted on the basis of the experimental results to investigate the reaction mechanisms of cyclization and double cyanation. Since the reaction can be carried out starting from **39** without additional TMSCN but much less yields, the calculation of reversible CN elimination from **1SP** was initially considered. Deprotonation of **1SP** should be a readily process in the base reaction condition, and the intermediate **1A** can then eliminate the cyanide ion via **TS1** with a barrier of 13.3 kcal/mol to afford **1s**. The isolated CN⁻ ion therefore can add onto the carbon C4 of **1s** to deliver the intermediate **1B** through the transition state **TS2**, however, with a bit higher barrier of 23.0 kcal/mol indicating that there may be a competition between 1,2- and 1,4-addition of **1s** to reverse to the **1SP** or forward to the pyrrole without external TMSCN at high temperature. Transition state of cyanide addition onto C3 (**TS6**) has also been located but with too high barrier to be achieved.

Next, reaction pathways of rearrangement, desulfurization and second cyanide addition from **1B** were calculated. The rearranged intermediate **int1** with a relative free enthalpy -3.6 kcal/mol was found to be the more favorable conformation than **1B**. In addition, transition states of desulfurization (**TS7**) and second cyanide addition (**TS8**) have been located with barriers of 52.2 and 53.4 kcal/mol, respectively, which result in the less stable intermediates **int7** and **int8**. Transition state of desulfurization from **int1** was then found to be the most possible pathway with only 14.5 kcal/mol of barrier leading to the much stable intermediate **int2** with -11.4 kcal/mol of free enthalpy. Addition of second CN⁻ onto **int1** has also been considered, and as expected, **TS9** with very high barrier of 46.1 kcal/mol was located due to the deconjugation as **TS8**.

Cyclization and second cyanide addition from **int2** were therefore calculated. Transition state of cyclization, **TS4**, with a barrier of 16.6 kcal/mol was located to be the much lower state of reaction pathway. It is noteworthy that transition state of cyclization cannot be located starting from the intermediates **1B** and **int1**. Although the transition state of second cyanide addition, **TS12**, can be found from **int2**, the barrier is larger almost 10 kcal/mol than that of **TS4**. The annulated intermediate **int3** then should perform the proton transfer to afford intermediate **int4** with a free enthalpy of -17.5 kcal/mol. The second cyanide then can add onto **int4** via the transition state **TS5** to deliver the intermediate **int5** which will rearrange to the aromatic conformer **int6** with a much stable free energy of -20.2 kcal/mol.

On the other hand, we have also considered the protonation pathway from **1B** despite in the base reaction condition. Although the protonation intermediate **int10** is a stable species, second cyanide addition onto **int10** should overcome a much higher transition state, **TS10**. Besides, intermediate **int11** is less stable, and the relative free enthalpy of desulfurization, **TS11**, is even slightly higher than that of **TS10**. Since the standard reaction is in a base condition, the protonation pathway therefore may not be the favorable pathway.

DFT computational studies were carried out at B3LYP⁴-D3⁵(SMD⁶)/Def2-TZVP⁷//B3LYP-D3/Def2-SVP level of theory, in which the D3 dispersion correction is the original D3 damping function. The integration grid option was required at ultrafine for all of calculations. All of structures were optimized in gas-phase with thermal calculations and frequency analyses at 353 K. Transition state structures were searched by simply performing a crude relaxed potential energy surface (RPES) scan connecting reactants and products, and then optimized by the rational

function optimization (RFO) method of TS.⁸ Imaginary frequencies for all of transition states were verified to be the only one in theirs vibrations and were confirmed the correctness by viewing the normal mode vector or the intrinsic reaction coordinate (IRC)⁹ path calculations. The reported Gibbs free energies were the single point electronic energy in dimethyl sulfoxide (DMSO) with the gas-phase free energy correction. All calculations were performed by the Gaussian 09 package.¹⁰

Figure S1. Gibbs free energy profile of the reaction pathways including various plausible second CN addition and the cyclization pathway.

Characterization data for pyrrolo[1,2*a*]pyrimidine

Following the general procedure C, compound **40** was obtained as a green solid (288 mg, 89% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.57 – 7.41 (m, 7H), 7.32 (t, *J* = 7.4 Hz, 1H), 6.33 (s, 1H), 2.51 (s, 3H), 2.07 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.3, 142.7, 137.7, 132.1, 131.6, 131.1, 129.7, 129.0, 128.9, 128.7, 128.0, 127.0, 116.6, 113.3, 111.7, 100.4, 24.7, 22.0. IR (thin film) v 2219, 1627, 1518, 736, 693 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₂H₁₇N₃Na]⁺ ([M+Na]⁺): 346.1315, found: 346.1317.

Following the general procedure C, compound **41** was obtained as a green solid (260 mg, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 7.7 Hz, 2H), 7.51-7.43 (m, 7H), 7.31 (t, J = 7.4 Hz, 1H), 2.54 (s, 3H), 2.20 (s, 3H), 2.09 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.6, 139.0, 136.5, 132.2, 131.8, 130.8, 129.2, 128.7, 128.5, 128.1, 126.7, 116.9, 116.8, 113.0, 99.9, 24.4, 18.3, 14.4. IR (thin film) v 2218, 1633, 1545, 1511, 697 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₃H₁₉N₃Na]⁺ ([M+Na]⁺): 360.1471, found: 360.1471.

Following the general procedure C, compound **42** was obtained as a green solid (249 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 7.6 Hz, 2H), 7.54 – 7.42 (m, 7H), 7.31 (t, *J* = 7.4 Hz, 1H), 6.41 (s, 1H), 2.80 (q, *J* = 7.5 Hz, 2H), 2.41 (q, *J* = 7.3 Hz, 2H), 1.35 (t, *J* = 7.5 Hz, 3H), 1.03 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.6, 148.3, 137.8, 132.2, 131.4, 131.1, 129.5, 128.8, 128.7, 128.5, 128.0, 126.7, 116.6, 113.3, 107.8, 100.5, 31.2, 26.5, 12.3, 11.2. IR (thin film) v 2974, 2217,

1623, 1548, 1515 cm⁻¹. HRMS (ESI) m/z calcd for $[C_{24}H_{21}N_3Na]^+$ ([M+Na]⁺): 374.1628, found: 374.1628.

Following the general procedure C, compound **43** was obtained as a yellow solid (380 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.18 – 7.11 (m, 1H), 7.10 – 6.94 (m, 9H), 6.53 (s, 1H), 2.60 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.1, 144.5, 138.3, 132.6, 131.9, 129.8, 129.5, 129.4, 129.2, 128.9, 128.6, 127.9, 127.8, 127.6, 127.1, 116.7, 114.3, 113.1, 100.1, 24.7. IR (thin film) v 2222, 1634, 1508, 1492, 695 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₁₉N₃Na]⁺ ([M+Na]⁺): 408.1471, found: 408.1469.

Following the general procedure C, compound **44** was obtained as a green solid (335 mg, 78% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 4H), 7.31 (d, *J* = 8.3 Hz, 2H), 2.55 (s, 3H), 2.54 (s, 3H), 2.52 (s, 3H), 2.20 (s, 3H), 2.12 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.7, 140.5, 139.1, 136.7, 136.6, 131.1, 129.3, 129.0, 128.0, 127.1, 125.4, 117.1, 116.9, 112.6, 99.7, 24.5, 18.5, 16.2, 15.4, 14.5. IR (thin film) v 2921, 2222, 1638, 1508, 1431 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₅H₂₃N₃S₂Na]⁺ ([M+Na]⁺): 452.1226, found: 452.1225.

Following the general procedure C, compound **45** was obtained as an orange solid (353 mg, 74% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.20 (t, *J* = 6.8 Hz, 1H), 7.10 – 6.98 (m, 4H), 6.91–6.84 (m, 4H), 6.52 (s, 1H), 2.59 (s, 3H), 2.54 (s, 3H), 2.41 (s, 3H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 144.5, 138.9, 138.2, 137.1, 132.6, 129.6, 129.3, 129.1, 128.8, 128.7, 128.1, 127.8, 127.0, 126.3, 125.5, 116.7, 113.7, 113.1, 99.6, 24.7, 16.0, 15.7. IR (thin film) v 29117, 2220, 1618, 1505, 1493 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₉H₂₃N₃S₂Na]⁺ ([M+Na]⁺): 500.1226, found: 500.1225.

Following the general procedure C, compound **46** was obtained as a green solid (296 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.3 Hz, 2H), 7.43 – 7.35 (m, 4H), 7.31 (d, J = 8.2 Hz, 2H), 6.33 (s, 1H), 2.55 (s, 3H), 2.52 (s, 3H), 2.50 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 142.7, 141.0, 137.6, 136.8, 131.6, 129.0, 128.4, 127.1, 127.0, 125.1, 116.5, 112.7, 111.7, 100.2, 24.5, 22.0, 16.1, 15.2. IR (thin film) v 2919, 2220, 1629, 1516, 1497 cm⁻¹. HRMS (ESI) m/z calcd for [C₂₄H₂₁N₃S₂Na]⁺ ([M+Na]⁺): 438.1069, found: 438.1070.

Following the general procedure C, compound **47** was obtained as a green solid (148 mg, 39% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 7.6 Hz, 2H), 7.53 – 7.41 (m, 7H), 7.30 (t, *J* = 7.4 Hz, 1H), 6.50 (s, 1H), 3.12 – 2.93 (m, 2H), 1.33 (d, *J* = 6.9 Hz, 6H), 1.01 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3, 153.8, 138.1, 132.3, 131.6, 130.6, 129.5, 128.6, 128.5, 128.4, 128.3, 126.6, 113.3, 104.9, 100.9, 36.2, 28.1, 21.5, 21.1. IR (thin film) v 2968, 2929, 2224, 1621, 1515 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₆H₂₅N₃Na]⁺ ([M+Na]⁺): 402.1941, found: 402.1940.

Following the general procedure C, compound **48** was obtained as a red solid (240 mg, 54% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 – 8.11 (m, 4H), 7.57 (t, *J* = 7.7 Hz, 2H), 7.53 – 7.44 (m, 3H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.21 – 6.99 (m, 11H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 151.7, 145.1, 138.5, 136.9, 133.0, 132.0, 130.2, 129.7, 129.6, 129.5, 129.0, 128.9, 128.6, 128.1, 127.9, 127.6, 127.1, 126.9, 116.6, 116.0, 109.4, 100.7. IR (thin film) v 3059, 2224, 1613, 1547, 1493 cm⁻¹. HRMS (ESI) *m/z* calcd

for $[C_{27}H_{19}N_3Na]^+$ ($[M+Na]^+$): 470.1628, found: 470.1628.

Following the general procedure C, compound **49** was obtained as an orange solid (388 mg, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (s, 1H), 8.30 (dd, J = 8.5, 1.6 Hz, 1H), 7.98 (t, J = 7.9 Hz, 2H), 7.91 – 7.86 (m, 1H), 7.72 – 7.62 (m, 2H), 7.60 (s, 1H), 7.54 – 7.40 (m, 5H), 7.14 – 7.02 (m, 3H), 6.97 – 6.68 (m, 3H), 6.58 (s, 1H), 2.64 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.3, 144.7, 138.7, 133.7, 132.6, 132.4, 132.3, 129.5, 129.4, 129.3, 129.2, 128.4, 128.1, 128.1, 128.0, 127.7, 127.6, 127.5, 127.2, 127.1, 126.6, 126.4, 126.2, 126.0, 125.8, 116.8, 114.4, 113.2, 100.5, 24.8. IR (thin film) v 2222, 1631, 1511, 1488, 697 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₅H₂₃N₃Na]⁺ ([M+Na]⁺): 508.1784, found: 508.1783.

Following the general procedure C, compound **50** was obtained as a orange solid (290 mg, 57% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 – 8.26 (m, 2H), 8.24 – 8.16 (m, 3H), 8.16 – 8.10 (m, 2H), 8.10 – 8.06 (m, 1H), 8.01 (t, *J* = 7.6 Hz, 1H), 7.22 – 6.98 (m, 10H), 6.60 (s, 1H), 2.50 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.4, 144.6, 139.1, 132.7, 131.4, 131.2, 131.2, 129.9, 129.5, 129.0, 128.1, 127.9, 127.9, 127.7, 127.6, 127.5, 127.2, 126.8, 126.1, 125.8, 125.3, 125.0, 125.0, 124.9, 124.9, 116.2, 114.5, 113.2, 103.0, 24.7. IR (thin film) v 2921, 2225, 1633, 1512, 1489 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₇H₂₃N₃Na]⁺ ([M+Na]⁺): 532.1784, found: 532.1784.

Following the general procedure C, compound **51** was obtained as a yellow solid (371 mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 – 8.27 (m, 1H), 8.25 – 8.21 (m, 1H), 8.20 – 8.09 (m, 5H), 8.06 – 8.03 (m, 1H), 7.99 (t, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 6.2 Hz, 1H), 7.58 – 7.46 (m, 4H), 6.36 (s, 1H), 2.38 (s, 3H), 2.14 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.5, 142.8, 138.4, 131.5, 131.5, 131.4, 131.1, 131.0, 129.8, 129.6, 129.4, 128.7, 128.0, 128.0, 127.5, 127.1, 126.9, 126.1, 125.8, 125.3, 125.0, 124.9, 124.9, 116.0, 113.3, 111.7, 103.2, 24.5, 21.9. IR (thin film) v 3049, 2927, 1627, 1601, 1585 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₂H₂₁N₃Na]⁺ ([M+Na]⁺): 470.1628, found: 470.1628.

Supplementary figure of pyrrolo[1,2*a*]pyrimidine

UV spectrum and PL spectra of pyrrolo[1,2-a]pyrimidine

Figure S2. UV spectrum of **40** in THF solution (0.001 mg/mL) a0nd PL spectra of **40** in THF solution (0.1 mg/mL).

Figure S3. UV spectrum of **41** in THF solution (0.001 mg/mL) and PL spectra of **41** in THF solution (0.1 mg/mL).

Figure S4. UV spectrum of **42** in THF solution (0.001 mg/mL) and PL spectra of **42** in THF solution (0.1 mg/mL).

Figure S5. UV spectrum of **43** in THF solution (0.001 mg/mL) and PL spectra of **43** in THF solution (0.1 mg/mL).

Figure S6. UV spectrum of **44** in THF solution (0.001 mg/mL) and PL spectra of **44** in THF solution (0.1 mg/mL).

Figure S7. UV spectrum of **45** in THF solution (0.001 mg/mL) and PL spectra of **45** in THF solution (0.1 mg/mL).

Figure S8. UV spectrum of **46** in THF solution (0.001 mg/mL) and PL spectra of **46** in THF solution (0.1 mg/mL).

Figure S9. UV spectrum of **47** in THF solution (0.001 mg/mL) and PL spectra of **47** in THF solution (0.1 mg/mL).

Figure S10. UV spectrum of **48** in THF solution (0.001 mg/mL) and PL spectra of **48** in THF solution (0.1 mg/mL).

Figure S11. UV spectrum of **49** in THF solution (0.001 mg/mL) and PL spectra of **49** in THF solution (0.1 mg/mL).

Figure S12. UV spectrum of **50** in THF solution (0.001 mg/mL) and PL spectra of **50** in THF solution (0.1 mg/mL).

Figure S13. UV spectrum of **51** in THF solution (0.001 mg/mL) and PL spectra of **51** in THF solution (0.1 mg/mL).

Figure S14. Excitation and emission spectra of 40 powder.

Emission spectra of pyrrolo[1,2-*a*]pyrimidine in THF and

water mixtures

Figure S15. Emission spectra of **40** in THF and water mixtures (0.1 mg/mL) at different f_w , λ_{ex} =437 nm. The emission intensity at 518 nm with different f_w .

Figure S16. Emission spectra of **47** in THF and water mixtures (0.1 mg/mL) at different f_w , λ_{ex} =439 nm. The emission intensity at 538 nm with different f_w .

Figure S17. Emission spectra of **48** in THF and water mixtures (0.1 mg/mL) at different f_w , λ_{ex} =485 nm. The emission intensity at 588 nm with different f_w .

Figure S18. Emission spectra of **49** in THF and water mixtures (0.1 mg/mL) at different f_w , λ_{ex} =448 nm.

The emission intensity at 585 nm with different f_w .

Figure S19. Emission spectra of **50** in THF and water mixtures (0.1 mg/mL) at different f_w , λ_{ex} =478 nm.

The emission intensity at 578 nm with different f_w .

Time-dependent emission enhancement after different scan times

Figure S20. PL spectra of **41** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 8 min under ambient conditions, λ_{ex} =419 nm.

Figure S21. PL spectra of **42** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 170 min under ambient conditions, λ_{ex} =441 nm.

Figure S22. PL spectra of **43** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 11.3 min under ambient conditions, λ_{ex} =465 nm.

Figure S23. PL spectra of **44** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 105 min under ambient conditions, λ_{ex} =428 nm.

Figure S24. PL spectra of **45** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 280 min under ambient conditions, λ_{ex} =462 nm.

Figure S25. PL spectra of **46** in 10% THF and 90% water mixtures (0.2 mg/mL) after different scan times ranging from 0 to 16.8 min under ambient conditions, λ_{ex} =436 nm.

Crystal packing of pyrrolo[1,2-a]pyrimidine

Figure S26. Single-crystal structure and molecular packing of 40.

Figure S27. Single-crystal structure and molecular packing of 41.

Figure S28. Single-crystal structure and molecular packing of 42.

Figure S29. Single-crystal structure and molecular packing of 43.

Figure S30. Single-crystal structure and molecular packing of 45.

Figure S31. Single-crystal structure and molecular packing of 47.

Figure S32. Single-crystal structure and molecular packing of 49.

Figure S33. Single-crystal structure and molecular packing of 50.

Single crystal data

X-ray diffractions for single crystals of 2, 40, 41, 42, 43, 45, 47, 49 and 50 were carried out on Rikagu Synergy Custom (Liquid MetalJet D2 Plus) diffractometer using Ga K α radiation (λ = 1.3405 Å). Data collection and unit cell refinement were executed by using CrysAlisPro software. Data processing and absorption correction, giving minimum and maximum transmission factors, were accomplished with CrysAlisPro. The structure was solved with the SHELXT and refined with the SHELXL using least-squares minimisation. All non-hydrogen atoms were refined with anisotropic displacement parameters. All carbon bound hydrogen atom positions were determined by geometry and refined by a riding model. Crystal data and structure refinements of 2, 40, 41, 42, 43, 45, 47, 49 and 50 are listed in Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, Table S7, Table S8 and Table S9. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/

 Table S1.
 Crystal data and structure refinement for 2.

Identification code	2		
Empirical formula	$C_{18}H_{15}N_3$		
Formula weight	273.33		
Temperature (K)	293(2)		
Wavelength (Å)	1.3405		
Crystal system	monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions (Å, °)	<i>a</i> = 13.5606(15)	α=	90
	<i>b</i> = 14.1429(16)	$\beta =$	93.620(9)
	c = 7.6056(7)	$\gamma =$	90
Volume (Å)	1455.7(3)		
Ζ	4		
Calculated density (g cm ⁻³)	1.247		
Absorption coefficient (mm ⁻¹)	0.375		
F_{000}	576		
Crystal size (mm ³)	$0.23 \times 0.20 \times 0.06$		
θ range for data collection (°)	3.931 to 61.207		
Miller index ranges	$-17 \le h \le 17, -12 \le k \le 18, -9 \le l \le 9$		
Reflections collected	10673		
Independent reflections	$3239 [R_{int} = 0.0262]$		
Completeness to θ_{max} (%)	0.956		
Max. and min. transmission	0.65015 and 1.00000		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3239 / 0 / 200		
Goodness-of-fit on F^2	1.128		
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0458, wR2 = 0.1241		
R indices (all data)	R1 = 0.0671, wR2 = 0.1545		
Extinction coefficient	0.014(2)		
Largest diff. peak and hole (e Å ⁻³)	0.169 and -0.191		

CCDC 2144279

Table S2. Crystal data and structure refinement for**40**. 40 Identification code Empirical formula C₂₂H₁₇N₃ Formula weight 323.38 Temperature (K) 293(2) Wavelength (Å) 1.3405 Crystal system triclinic *P*-1 Space group Unit cell dimensions (Å, °) a = 7.5636(2) $\alpha = 104.037(2)$ b = 10.6070(3) $\beta =$ 99.019(2) c = 11.4880(3) $\gamma = 104.020(3)$ Volume (Å) 844.44(4) Ζ 2 Calculated density (g cm⁻³) 1.272 Absorption coefficient (mm⁻¹) 0.378 340 F_{000} Crystal size (mm³) $0.18 \times 0.16 \times 0.05$ θ range for data collection (°) 5.653 to 60.617 Miller index ranges $-9 \le h \le 9, -13 \le k \le 13, -10 \le l \le 14$ Reflections collected 10297 Independent reflections 3772 [$R_{int} = 0.0226$] 0.970 Completeness to θ_{max} (%) Max. and min. transmission 0.74060 and 1.00000 Refinement method Full-matrix least-squares on F^2 3772 / 0 / 229 Data / restraints / parameters Goodness-of-fit on F^2 1.048 Final *R* indices $[I > 2\sigma(I)]$ R1 = 0.0415, wR2 = 0.1057R indices (all data) R1 = 0.0503, wR2 = 0.1110Extinction coefficient 0.032(3) Largest diff. peak and hole (e Å⁻³) 0.211 and -0.143

CCDC 2144280

Table S3. Crystal data and structure refinement for	r 41 .
Identification code	41
Empirical formula	$C_{23}H_{19}N_3$
Formula weight	337.41
Temperature (K)	293(2)
Wavelength (Å)	1.3405
Crystal system	triclinic
Space group	<i>P</i> -1
Unit cell dimensions (Å, °)	$a = 7.4368(5)$ $\alpha = 107.748(4)$
	$b = 11.5205(6)$ $\beta = 101.471(5)$
	$c = 11.7843(5)$ $\gamma = 103.216(6)$
Volume (Å)	895.98(9)
Ζ	2
Calculated density (g cm ⁻³)	1.251
Absorption coefficient (mm ⁻¹)	0.369
F_{000}	356
Crystal size (mm ³)	$0.20\times0.18\times0.06$
θ range for data collection (°)	3.577 to 61.476
Miller index ranges	$-9 \le h \le 7, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	11963
Independent reflections	4000 [$R_{\rm int} = 0.0321$]
Completeness to θ_{max} (%)	0.947
Max. and min. transmission	0.86643 and 1.00000
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4000 / 0 / 239
Goodness-of-fit on F^2	1.115
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0484, wR2 = 0.1389
R indices (all data)	R1 = 0.0675, wR2 = 0.1573
Extinction coefficient	0.0076(17)
Largest diff. peak and hole (e Å-3)	0.186 and -0.217

CCDC 2144282Table S4. Crystal data and structure refinement for42.

Identification code	42		
Empirical formula	$C_{24}H_{21}N_3$		
Formula weight	351.44		
Temperature (K)	293(2)		
Wavelength (Å)	1.3405		
Crystal system	monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions (Å, °)	<i>a</i> = 10.9544(12)	$\alpha =$	90
	<i>b</i> = 15.4590(15)	$\beta =$	113.683(12)
	c = 12.2647(13)	$\gamma =$	90
Volume (Å)	1902.0(4)		
Ζ	4		
Calculated density (g cm ⁻³)	1.227		
Absorption coefficient (mm ⁻¹)	0.360		
F_{000}	744		
Crystal size (mm ³)	$0.18 \times 0.15 \times 0.14$		
θ range for data collection (°)	4.230 to 60.800		
Miller index ranges	$-14 \le h \le 13, -19 \le k \le 19, -15 \le l \le 15$		
Reflections collected	14592		
Independent reflections	$4270 [R_{int} = 0.0534]$		
Completeness to θ_{max} (%)	0.971		
Max. and min. transmission	0.84312 and 1.00000		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	4270 / 0 / 247		
Goodness-of-fit on F^2	1.377		
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0802, wR2 = 0.2643		
R indices (all data)	R1 = 0.1215, wR2 = 0.3583		
Extinction coefficient	0.015(5)		
Largest diff. peak and hole (e Å-3)	0.344 and -0.479		

Table S5. Crystal data and structure refinement for**43**.

Identification code	43		
Empirical formula	$C_{27}H_{19}N_3$		
Formula weight	385.45		
Temperature (K)	293(2)		
Wavelength (Å)	1.3405		
Crystal system	monoclinic		
Space group	$P2_{1}/n$		
Unit cell dimensions (Å, °)	$a = 7.4603(7)$ $\alpha = 90$		
	$b = 14.0260(12)$ $\beta = 98.7$	36(9)	
	$c = 19.2722(15)$ $\gamma = 90$		
Volume (Å)	1993.2(3)		
Ζ	4		
Calculated density (g cm ⁻³)	1.284		
Absorption coefficient (mm ⁻¹)	0.378		
F_{000}	808		
Crystal size (mm ³)	$0.20\times0.08\times0.06$		
θ range for data collection (°)	4.880 to 61.269		
Miller index ranges	$-7 \le h \le 9, -17 \le k \le 18, -25 \le l \le 25$		
Reflections collected	15293		
Independent reflections	4475 [$R_{\rm int} = 0.0811$]		
Completeness to θ_{max} (%)	0.956		
Max. and min. transmission	0.64115 and 1.00000		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	4475 / 0 / 273		
Goodness-of-fit on F^2	1.059		
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0911, wR2 = 0.2560		
R indices (all data)	R1 = 0.1169, wR2 = 0.2871		
Extinction coefficient	0.0103(16)		
Largest diff. peak and hole (e Å-3)	0.365 and -0.398		

Table S6. Crystal data and structure refinement for**45**.

Identification code	45		
Empirical formula	$C_{29}H_{23}N_3S_2$		
Formula weight	477.62		
Temperature (K)	293(2)		
Wavelength (Å)	1.3405		
Crystal system	monoclinic		
Space group	$P2_{1}/n$		
Unit cell dimensions (Å, °)	a = 17.7692(18)	$\alpha = 90$	
	b = 7.5870(6)	$\beta = 91.248(8)$	
	c = 17.8377(14)	$\gamma = 90$	
Volume (Å)	2404.2(4)		
Ζ	4		
Calculated density (g cm ⁻³)	1.319		
Absorption coefficient (mm ⁻¹)	1.429		
F_{000}	2010		
Crystal size (mm ³)	$0.20\times0.06\times0.05$		
θ range for data collection (°)	3.019 to 61.341		
Miller index ranges	$-22 \le h \le 23, -9 \le k \le 5, -23 \le l \le 22$		
Reflections collected	18194		
Independent reflections	5419 [$R_{\rm int} = 0.0380$]	5419 [$R_{int} = 0.0380$]	
Completeness to θ_{max} (%)	0.959		
Max. and min. transmission	0.63518 and 1.00000		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5419 / 0 / 311		
Goodness-of-fit on F^2	1.155		
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0787, wR2 = 0.2282		
R indices (all data)	R1 = 0.1065, wR2 = 0.2975		
Extinction coefficient	0.0075(13)		
Largest diff. peak and hole (e Å-3)	0.542 and -0.733	0.542 and -0.733	

Table S7. Crystal data and structure refinement for47.

Identification code	47	
Empirical formula	$C_{26}H_{25}N_3$	
Formula weight	379.49	
Temperature (K)	293(2)	
Wavelength (Å)	1.3405	
Crystal system	orthorhombic	
Space group	Pbcn	
Unit cell dimensions (Å, °)	$a = 19.753(2)$ $\alpha = -9$	0
	$b = 10.6344(12)$ $\beta = -90$	0
	$c = 20.535(3)$ $\gamma = -90$)
Volume (Å)	4313.7(9)	
Ζ	8	
Calculated density (g cm ⁻³)	1.169	
Absorption coefficient (mm ⁻¹)	0.339	
F_{000}	1616	
Crystal size (mm ³)	$0.23\times0.03\times0.02$	
θ range for data collection (°)	3.743 to 61.322	
Miller index ranges	$-23 \le h \le 25, -10 \le k \le 13, -23 \le l \le 26$	
Reflections collected	18140	
Independent reflections	4878 [$R_{\rm int} = 0.0429$]	
Completeness to θ_{max} (%)	0.963	
Max. and min. transmission	0.56368 and 1.00000	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	4878 / 0 / 267	
Goodness-of-fit on F^2	1.135	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0596, wR2 = 0.1549	
R indices (all data)	R1 = 0.0911, wR2 = 0.2038	
Extinction coefficient	0.0017(3)	
Largest diff. peak and hole (e Å-3)	0.249 and -0.245	

Identification code	49	
Empirical formula	$C_{35}H_{23}N_3$	
Formula weight	485.56	
Temperature (K)	293(2)	
Wavelength (Å)	1.3405	
Crystal system	monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions (Å, °)	a = 9.7978(12)	$\alpha = 90$
	<i>b</i> = 27.007(2)	$\beta = 116.236(16)$
	c = 10.7502(14)	$\gamma = 90$
Volume (Å)	2551.5(6)	
Ζ	4	
Calculated density (g cm ⁻³)	1.264	
Absorption coefficient (mm ⁻¹)	0.367	
F_{000}	1016	
Crystal size (mm ³)	$0.22\times0.05\times0.04$	
θ range for data collection (°)	2.845 to 61.289	
Miller index ranges	$-11 \le h \le 12, -33 \le k \le 34, -13$	$\leq l \leq 9$
Reflections collected	22817	
Independent reflections	5767 [$R_{\rm int} = 0.0378$]	
Completeness to θ_{max} (%)	0.964	
Max. and min. transmission	0.42123 and 1.00000	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5767 / 0 / 345	
Goodness-of-fit on F^2	1.090	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0883, wR2 = 0.2547	
R indices (all data)	R1 = 0.1109, wR2 = 0.2749	
Extinction coefficient	0.0011(4)	
Largest diff. peak and hole (e Å-3)	0.841 and -0.328	

Table S8.Crystal data and structure refinement for49.

Table S9. Crystal data and structure refinement for**50**.

Identification code	50			
Empirical formula	$C_{38}H_{25}Cl_2N_3$			
Formula weight	594.51			
Temperature (K)	293(2)			
Wavelength (Å)	1.3405			
Crystal system	monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions (Å, °)	$a = 11.6662(4)$ $\alpha =$	90		
	$b = 23.9537(7)$ $\beta =$	115.611(4)		
	$c = 12.5820(4)$ $\gamma =$	90		
Volume (Å)	3170.6(2)			
Ζ	4			
Calculated density (g cm ⁻³)	1.245			
Absorption coefficient (mm ⁻¹)	1.367			
F_{000}	1232			
Crystal size (mm ³)	× ×			
θ range for data collection (°)	3.748 to 60.706			
Miller index ranges	$-15 \le h \le 15, -30 \le k \le 29, -11 \le l \le$	$-15 \le h \le 15, -30 \le k \le 29, -11 \le l \le 16$		
Reflections collected	28166	28166		
Independent reflections	7132 [$R_{\rm int} = 0.0266$]	7132 [$R_{\rm int} = 0.0266$]		
Completeness to θ_{max} (%)	0.975	0.975		
Max. and min. transmission	0.86075 and 1.00000	0.86075 and 1.00000		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2		
Data / restraints / parameters	7132 / 0 / 408	7132 / 0 / 408		
Goodness-of-fit on F^2	1.755			
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.1166, wR2 = 0.3977	R1 = 0.1166, wR2 = 0.3977		
R indices (all data)	R1 = 0.1305, wR2 = 0.4111	R1 = 0.1305, wR2 = 0.4111		
Largest diff. peak and hole (e Å-3)	1.047 and -0.477	1.047 and -0.477		

NMR Spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

400 MHz CDC1₃ 400 MHz CDC1₃ 400 MHz 50 S 50 S 50 S 51 S

CDCl³ 8822 CDCl³ 882 C

f1 (ppm)

f1 (ppm)

).5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

f1 (ppm)

Table S10. Electronic potential energies and correction to zero point energies, thermal energies, enthalpies, free energies (in Hartree) and imaginary frequencies (cm⁻¹) of optimized structures calculated at the B3LYP-D3/Def2-TZVP/(SMD-DMSO)//B3LYP-D3/Def2-SVP.

Entry	Structure	Eel,sol	E _{el,gas}	cZPE _{gas}	cU _{353,gas}	cH _{353,gas}	cG _{353,gas}	Imaginary Frequency
1	1SP	-1507.776911	-1506.336978	0.349340	0.381476	0.382594	0.275755	
2	⁻ SO ₂ Ph	-780.598768	-779.886120	0.097049	0.107498	0.108617	0.055690	
3	HSO ₂ Ph	-781.067749	-780.446585	0.109587	0.120608	0.121727	0.067874	
4	1A	-1507.296365	-1505.793686	0.335618	0.367261	0.368380	0.263638	
5	TS1	-1507.272975	-1505.762705	0.333687	0.365736	0.366854	0.261443	-142.2036
6	1 s	-1414.292661	-1412.963548	0.328292	0.357209	0.358327	0.259726	
7	CN ⁻	-92.998758	-92.763823	0.004942	0.007740	0.008858	-0.018278	
8	TS2	-1507.273792	-1505.761701	0.333801	0.365968	0.367086	0.260568	-150.8187
9	1B	-1507.313429	-1505.815812	0.336645	0.368002	0.369121	0.265101	
10	int1	-1507.318409	-1505.830647	0.337182	0.368354	0.369473	0.268384	
11	TS3	-1507.291662	-1505.809139	0.334903	0.366358	0.367476	0.264648	-150.7898
12	int2	-726.699669	-725.890984	0.236214	0.256473	0.257591	0.180188	
13	TS4	-726.674824	-725.859719	0.235577	0.254592	0.255711	0.181836	-262.7868
14	int3	-726.676378	-725.860103	0.236602	0.255983	0.257101	0.182787	
15	int4	-726.713605	-725.912891	0.238500	0.257419	0.258537	0.184454	
16	TS5	-819.687054	-818.703896	0.243939	0.266082	0.267201	0.186195	-267.8221
17	int5	-819.718467	-818.739459	0.245517	0.267198	0.268316	0.189580	
18	int6	-819.740845	-818.767902	0.246601	0.268437	0.269555	0.190322	
19	TS6	-1507.249116	-1505.740724	0.333239	0.365385	0.366504	0.260750	-249.2426
20	TS7	-1507.225244	-1505.740898	0.332107	0.364322	0.365440	0.260091	-368.9274
21	int7	-726.662278	-725.856063	0.235634	0.255819	0.256938	0.179559	
22	TS8	-1600.249204	-1598.481388	0.341756	0.376026	0.377145	0.268894	-427.7573
23	int8	-1600.260897	-1598.501294	0.342479	0.376760	0.377878	0.269953	
24	TS9	-1600.261741	-1598.499069	0.341494	0.376125	0.377244	0.268037	-373.0715
25	int9	-1600.273395	-1598.519667	0.342741	0.377344	0.378462	0.269511	
26	int10	-1507.792024	-1506.355489	0.350625	0.382379	0.383497	0.278152	
27	TS10	-1600.762520	-1599.152000	0.355553	0.390633	0.391751	0.279803	-263.5716
28	int11	-1600.777390	-1599.177853	0.356708	0.391631	0.392749	0.281833	
29	TS11	-1600.764930	-1599.176030	0.356105	0.390381	0.391499	0.283004	-200.3615
30	int12	-820.199765	-819.278550	0.258126	0.281287	0.282406	0.198378	

31	TS12	-819.677132	-818.694317	0.242448	0.265769	0.266888	0.182888	-170.3237
32	int13	-819.709713	-818.730196	0.244027	0.267008	0.268126	0.184537	

Coordinate of optimized

structures

Structu E(RB3L 1506.336	re S1. YP)sol = 97826	1SP -150	7.7769112	24	E(RB3LYP)gas =
6	6.2440	56	-2.19215	3	0.102681
6	5.5479	94	-2.25343	8 -	1.107203
6	4.2410	99	-1.76783	4 -	1.187297
6	3.6016	60	-1.20778	2 -	0.064425
6	4.3170	93	-1.15725	5	1.149450
6	5.6209	31	-1.64240	2	1.230391
1	7.2664	52	-2.57209	7	0.170282
1	6.0235	39	-2.68117	8 -	1.993393
1	3.7030	20	-1.81800	4 -	2.138209
1	3.8494	38	-0.73952	8	2.043564
1	6.1571	47	-1.59430	0	2.181575
6	2.2266	75	-0.70589	3 -	0.212679
1	1.7851	61	-0.86438	0 -	1.201890
6	1.5010	03	-0.06406	3	0.716184
1	1.9158	19	0.16876	57	1.699815
6	0.0945	16	0.50389	90	0.507257
7	-0.53560)4	-0.16793	3-(0.627058
6	0.2566	03	2.02054	10	0.257793
6	0.5804	50	2.46381	L8 ·	-1.031040
6	0.1680	05	2.94244	19	1.304496
6	0.8084	28	3.81847	71	-1.267746
1	0.6293	45	1.74470	00	-1.850079
6	0.4022	09	4.30086	56	1.064925
1	-0.09899	98	2.60945	6	2.309814
6	0.7226	77	4.74272	21	-0.219810
1	1.0478	92	4.15646	59	-2.279011
1	0.3237	13	5.01461	L6	1.888714
1	0.8990	44	5.80466	55	-0.408065
16	-2.10797	75	0.16531	.3 -	1.189323
8	-2.43858	38	1.51099	4 -	0.727642
8	-2.07907	78	-0.207993	1 -2	2.601112
6	-3.17226	53	-1.010608	8 -(0.349820
6	-3.80924	40	-0.63258	1	0.834922
6	-3.34342	10	-2.28223	6 -(0.909195
6	-4.62037	73	-1.565354	4	1.485949
1	-3.66686	56	0.37166	1	1.233932
6	-4.15464	40	-3.204043	3-(0.245146
1	-2.86295	58	-2.527484	4 -:	1.858366

6	-4.788453	-2.846645	0.951197
1	-5.120434	-1.287473	2.416410
1	-4.301129	-4.200897	-0.667840
1	-5.423467	-3.571528	1.466575
7	-1.264751	0.024208	2.728559
6	-0.667616	0.253373	1.763045
1	-0.319711	-1.159460	-0.708698

Struct E(RB 779.886	ure S2. -SC 3LYP)sol = -780 5120382	9 ₂ Ph).598768184	E(RB3LYP)gas = -
16	1.798807	0.000100	-0.351794
8	2.169379	-1.290273	0.373218
8	2.169362	1.290119	0.373867
6	-0.094995	0.000037	-0.123514
6	-0.790514	-1.209278	-0.062769
6	-0.790606	1.209305	-0.063003
6	-2.186954	-1.212665	0.037346
1	-0.201786	-2.132927	-0.066436
6	-2.187058	1.212608	0.037093
1	-0.201946	2.132996	-0.066973
6	-2.889155	-0.000050	0.081475
1	-2.734884	-2.160680	0.092803
1	-2.735048	2.160597	0.092389
1	-3.981483	-0.000099	0.160478

Struct	ture S3. HS	O₂Ph	_/`
E(RB	3LYP)sol = -782	1.067749243	E(RB3LYP)gas =
780.44	6585051		
16	-1.697194	-0.021501	-0.418301
8	-2.173223	1.322113	0.009362
8	-1.945874	-1.169311	0.814770
6	0.102378	-0.025343	-0.158663
6	0.723418	1.196984	0.095644
6	2.114170	1.231743	0.238917
6	2.861231	0.055542	0.119471
6	2.222809	-1.164039	-0.139365
6	0.834492	-1.210293	-0.282155
1	0.108919	2.095586	0.188684
1	2.614993	2.180804	0.445924
1	3.948208	0.087033	0.229222
1	2.809010	-2.082419	-0.224899
1	0.322430	-2.157695	-0.465395
1	-2.846666	-1.509269	0.683130

Structure S4. 1A

E(RB3LYP)sol = -1507.29636505 E(RB3LYP)gas = -1505.79368563

6	5.944139	-2.525682	-0.058799
6	4.945816	-3.047630	-0.886527
6	3.675066	-2.468188	-0.906995
6	3.360260	-1.354110	-0.101847
6	4.383576	-0.839209	0.723497
6	5.652587	-1.416042	0.745329
1	6.940738	-2.975464	-0.040350
1	5.157368	-3.912463	-1.522169
1	2.898450	-2.881101	-1.556677
1	4.181143	0.029995	1.353081
1	6.425619	-0.994690	1.394790
6	2.003534	-0.793029	-0.164089
1	1.309181	-1.223341	-0.892970
6	1.508585	0.201179	0.585985
1	2.103383	0.703901	1.354803
6	0.079214	0.745202	0.425526
7	-0.579426	0.021334	-0.619980
6	0.254564	2.271761	0.164468
6	0.203478	2.744305	-1.152827
6	0.542741	3.170850	1.199178
6	0.442205	4.092173	-1.427681
1	-0.053471	2.039988	-1.945896
6	0.779578	4.521748	0.924413
1	0.562021	2.816237	2.233443
6	0.734000	4.987928	-0.392516
1	0.388646	4.448791	-2.460609
1	0.991704	5.213167	1.745603
1	0.913135	6.045100	-0.610186
16	-2.123720	0.305072	-0.908876
8	-2.671691	1.466042	-0.157908
8	-2.371225	0.241684	-2.366512
6	-3.002098	-1.147137	-0.250688
6	-3.578403	-1.099718	1.021828
6	-3.061735	-2.316149	-1.017821
6	-4.205418	-2.240193	1.534854
1	-3.521367	-0.172270	1.593136
6	-3.689469	-3.450825	-0.499377
1	-2.622785	-2.308661	-2.017640
6	-4.261481	-3.416331	0.779385
1	-4.652343	-2.208441	2.532967
1	-3.739083	-4.366807	-1.096392
1	-4.753021	-4.306103	1.184318
7	-1.014876	0.335732	2.816469
6	-0.551800	0.547385	1.773490

Structure S5. TS1

E(RB3LYP)sol = -1507.27297462 E(RB3LYP)gas = -1505.76270527

6	6.243188	-1.935581	-0.251178
6	5.319942	-2.544195	-1.106968
6	3.992495	-2.111907	-1.131000
6	3.545719	-1.056998	-0.307023
6	4.491157	-0.463003	0.558620
6	5.816639	-0.893570	0.582760
1	7.283072	-2.273015	-0.227072
1	5.635031	-3.363619	-1.759730
1	3.275789	-2.594033	-1.801879
1	4.174843	0.335919	1.232429
1	6.525387	-0.417166	1.266478
6	2.144422	-0.634763	-0.380923
1	1.467436	-1.270303	-0.960203
6	1.607055	0.458200	0.193316
1	2.215132	1.164438	0.760811
6	0.172721	0.831361	0.064346
7	-0.599215	-0.045110	-0.532280
6	-0.075374	2.325137	0.054996
6	-0.540521	2.899446	-1.140785
6	0.271313	3.171451	1.118525
6	-0.659112	4.285781	-1.265632
1	-0.823684	2.252804	-1.973630
6	0.155399	4.556443	0.990617
1	0.588625	2.713254	2.056562
6	-0.309501	5.121772	-0.202170
1	-1.033341	4.711418	-2.201049
1	0.415598	5.199312	1.836694
1	-0.408410	6.207256	-0.297214
16	-2.226060	0.165986	-0.749559
8	-2.832298	1.173567	0.136313
8	-2.498369	0.249824	-2.200691
6	-2.813707	-1.444553	-0.189942
6	-2.684749	-1.782720	1.162101
6	-3.419765	-2.301992	-1.108982
6	-3.173498	-3.020634	1.586635
1	-2.188624	-1.107896	1.866430
6	-3.912096	-3.534528	-0.666365
1	-3.493624	-1.989999	-2.152464
6	-3.788553	-3.893572	0.679786
1	-3.065755	-3.302605	2.637410
1	-4.390838	-4.215777	-1.375942
1	-4.170118	-4.859507	1.024096
7	-0.509367	-0.217916	3.241812

Frequencies	-142.2036
Red. masses	10.2542
Frc consts	0.1222
IR Inten	95.3380

Structure S6. 1s

E(RB3LYP)sol = -1414.29266090 E(RB3LYP)gas = -1412.96354785

6	-6.342143	-1.291591	0.001858
6	-5.380158	-2.305271	0.029936
6	-4.024050	-1.978776	0.073872
6	-3.597880	-0.634245	0.089907
6	-4.584337	0.376101	0.062925
6	-5.937442	0.050187	0.019008
1	-7.405179	-1.543002	-0.031872
1	-5.687393	-3.353941	0.018128
1	-3.273704	-2.773744	0.096178
1	-4.289017	1.427186	0.079781
1	-6.686100	0.846172	-0.000352
6	-2.163780	-0.355051	0.133180
1	-1.503645	-1.227805	0.182953
6	-1.560909	0.855854	0.118267
1	-2.148979	1.774282	0.066878
6	-0.097313	1.027150	0.180921
7	0.616166	-0.030909	0.411225
6	0.409005	2.419422	-0.003462
6	-0.113228	3.221097	-1.034628
6	1.377097	2.960552	0.861232
6	0.342830	4.527259	-1.215961
1	-0.860346	2.808573	-1.717037
6	1.811836	4.275116	0.691016
1	1.789848	2.350753	1.665881
6	1.302818	5.059089	-0.348865
1	-0.052995	5.132191	-2.035491
1	2.559595	4.686809	1.373059
1	1.653784	6.085382	-0.483984
16	2.305774	-0.066407	0.363416
8	2.845037	0.713081	-0.758536
8	2.801891	0.154444	1.730325
6	2.521999	-1.804982	-0.023362
6	2.725978	-2.182618	-1.351800
6	2.498026	-2.738962	1.015447
6	2.895603	-3.538298	-1.646749
1	2.759336	-1.417256	-2.129225
6	2.667943	-4.090290	0.707169
1	2.358640	-2.398764	2.043088

6	2.863678	-4.488933	-0.620813
1	3.058696	-3.852154	-2.680717
1	2.654165	-4.835139	1.506701
1	2.998882	-5.547728	-0.856105

Structure S7.	CN^{-}	
	02 0007502002	

E(RB3LYP)sol = -92.9987583882 92.7638229989			E(RB3LYP)gas =	-
7	0.000000	0.000000	0.544137	
6	0.000000	0.000000	-0.634826	

-

S

Struc E(RI 1505.7	eture S8. TS2 B3LYP)sol = -150 76170084	2)7.27379179	E(RB3LYP)gas =
6	6.293527	-0.674351	-0.648563
6	5.429377	-1.776930	-0.675768
6	4.057653	-1.597366	-0.511622
6	3.506530	-0.314128	-0.323344
6	4.386370	0.782970	-0.302840
6	5.764037	0.605055	-0.459028
1	7.371378	-0.813520	-0.772342
1	5.831594	-2.784426	-0.815429
1	3.385839	-2.458384	-0.490192
1	3.991151	1.792132	-0.174168
1	6.427125	1.474931	-0.437792
6	2.040794	-0.169425	-0.211340
1	1.450427	-1.000824	-0.594415
6	1.381622	1.037786	-0.079219
1	1.926937	1.937643	0.207453
6	-0.039732	1.154940	-0.215488
7	-0.731616	0.107529	-0.611622
6	-0.636960	2.500815	0.064956
6	-0.228845	3.243154	1.185750
6	-1.589691	3.056970	-0.806882
6	-0.762648	4.510100	1.433201
1	0.490711	2.806476	1.881876
6	-2.108093	4.329770	-0.567612
1	-1.933632	2.477793	-1.665857
6	-1.698808	5.060968	0.552774
1	-0.449386	5.066830	2.320940
1	-2.846233	4.749444	-1.256637
1	-2.114565	6.054685	0.743194
16	-2.374863	-0.039985	-0.514106
8	-2.956755	0.659381	0.646880
8	-2.991586	0.192288	-1.839275

6	-2.474090	-1.807446	-0.178906	
6	-1.680066	-2.359526	0.829065	
6	-3.384112	-2.581541	-0.901264	
6	-1.790786	-3.722688	1.107650	
1	-0.943898	-1.763708	1.370952	
6	-3.500199	-3.943364	-0.601526	
1	-3.972838	-2.112596	-1.692090	
6	-2.703676	-4.513430	0.398884	
1	-1.131849	-4.144676	1.870563	
1	-4.207131	-4.563205	-1.160953	
1	-2.787947	-5.582111	0.618183	
7	1.172876	-2.271872	2.441585	
6	1.739136	-1.515612	1.744763	
Frequencies150.8187				
Red masses 9 3110				

neur masses		010110
Frc consts		0.1248
IR Inten		178.9041

Structure S9. 1B

E(RB3LYP)sol =	-1507.31342909	E(RB3LYP)gas = -	
1505.81581222			

703 2.62	2887 0.	019080
479 1.76	7925 0.	716445
187 1.23	3884 0.	087704
728 1.56	5262 -1.2	255150
681 2.41	3786 -1.9	946933
335 3.61	3854 -1.8	359992
173 3.03	3138 0.	524473
662 1.51	0810 1.	757387
501 1.14	4969 -1.7	728897
248 2.66	1419 -2.9	91481
502 0.31	9675 0.	795596
888 -0.550	0474 0.1	L39594
260 0.97	7036 0.	994817
643 1.68	1074 1.	824044
0.769	9499 0.2	L19580
411 0.099	9682 -1.0	72422
933 1.395	5209 0.3	383412
959 1.626	5476 1.6	586753
909 1.783	3338 -0.6	97130
2.248	3694 1.9	904559
934 1.286	5806 2.5	537733
127 2.407	7913 -0.4	81988
335 1.574	429 -1.7	07288
096 2.648	3017 0.8	320403
	187 1.23 728 1.56 681 2.41 335 3.61 173 3.03 662 1.51 501 1.14 248 2.66 502 0.31 888 -0.550 260 0.97 643 1.68 014 0.769 933 1.399 959 1.626 909 1.783 934 1.286 127 2.407 335 1.574 096 2.648	187 1.233884 0.7 728 1.565262 -1.2 681 2.413786 -1.9 335 3.613854 -1.8 173 3.033138 $0.$ 662 1.510810 1.7 501 1.144969 -1.7 248 2.661419 -2.9 502 0.319675 0.7 248 2.661419 -2.9 502 0.319675 0.7 260 0.977036 0.7 260 0.977036 0.7 260 0.977036 0.7 243 1.681074 1.7 260 0.977036 0.7 643 1.681074 1.7 2014 0.769499 0.3 411 0.099682 -1.0 933 1.395209 0.3 959 1.626476 1.6 909 1.783338 -0.6 934 1.286806 2.5 127 2.407913 -0.4 335 1.574429 -1.7 926 2.648017 0.8

1	-4.776375	2.702802	-1.338059
1	-5.583921	3.129805	0.988817
16	-1.380280	-1.241260	-1.413242
8	-2.759138	-1.298505	-0.869706
8	-1.180163	-1.570921	-2.836380
6	-0.449576	-2.485818	-0.468448
6	-0.716000	-2.649197	0.895554
6	0.621372	-3.152356	-1.072271
6	0.115017	-3.468654	1.664756
1	-1.566802	-2.124248	1.334063
6	1.440601	-3.979461	-0.299190
1	0.793343	-3.000543	-2.140062
6	1.195040	-4.131942	1.071239
1	-0.072751	-3.580961	2.736022
1	2.281161	-4.502547	-0.765164
1	1.849442	-4.763010	1.678826
7	2.498200	-0.584224	3.093842
6	2.103028	-0.196786	2.074162

St

Structure S10. int1 E(RB3LYP)sol = -1507.31840878 E(RB3LYP)gas = - 1505.83064681				
6	-4.690755	2.453421	-0.406738	
6	-4.686205	1.624533	0.724376	
6	-3.499411	1.085644	1.213802	
6	-2.248808	1.339368	0.589671	
6	-2.278993	2.171229	-0.560761	
6	-3.469039	2.720099	-1.036883	
1	-5.623886	2.875355	-0.790022	
1	-5.626658	1.395860	1.236576	
1	-3.524723	0.442201	2.096707	
1	-1.357389	2.357081	-1.115253	
1	-3.443145	3.352181	-1.930793	
6	-1.013880	0.738616	1.084803	
1	1.033871	-1.179615	1.926364	
6	0.269017	1.105552	0.592039	
1	0.302697	2.084668	0.105010	
6	1.476654	0.427253	0.635196	
7	1.525255	-0.945784	1.061484	
6	2.756306	1.045205	0.263307	
6	2.893433	2.443244	0.064659	
6	3.928090	0.266713	0.094935	
6	4.107751	3.015731	-0.313125	
1	2.039032	3.101255	0.234485	
6	5.142366	0.845633	-0.269585	
1	3.863349	-0.811015	0.228822	
6	5.249683	2.225119	-0.485552	

1	4.165425	4.099749	-0.455869
1	6.020199	0.203742	-0.395020
1	6.204014	2.675563	-0.772916
16	1.245808	-2.189841	-0.046113
8	2.193471	-2.020327	-1.155237
8	1.218393	-3.422996	0.749889
6	-0.395687	-1.940837	-0.736080
6	-0.543999	-1.118321	-1.856716
6	-1.497721	-2.501871	-0.085509
6	-1.830767	-0.833784	-2.318059
1	0.343898	-0.705131	-2.336869
6	-2.777927	-2.211753	-0.561002
1	-1.342728	-3.118185	0.800235
6	-2.945123	-1.373327	-1.667859
1	-1.966839	-0.168692	-3.174240
1	-3.651052	-2.620680	-0.046624
1	-3.950700	-1.118137	-2.011183
7	-1.193244	-1.051497	2.941443
6	-1.117869	-0.244329	2.095198

Structure S11. TS3

E(RB3LYP)sol =	-1507.29166243	E(RB3LYP)gas =
1505.80913899		

6	5.310164	-1.438468	-0.486500
6	5.297496	-0.632109	0.657861
6	4.092317	-0.208641	1.217224
6	2.847485	-0.577289	0.654870
6	2.881616	-1.370889	-0.516551
6	4.089037	-1.800197	-1.067084
1	6.255631	-1.767780	-0.926130
1	6.239853	-0.328917	1.124127
1	4.105055	0.418742	2.111440
1	1.950237	-1.619540	-1.026424
1	4.074432	-2.408626	-1.976586
6	1.574290	-0.133868	1.254541
1	-0.546842	1.358883	2.137797
6	0.359357	-0.750199	0.963860
1	0.450836	-1.669679	0.382368
6	-0.978263	-0.366111	1.277996
7	-1.343477	0.824222	1.785580
6	-2.089166	-1.280777	0.901707
6	-1.912735	-2.672070	0.740952
6	-3.387254	-0.760976	0.693748
6	-2.972783	-3.502051	0.368187
1	-0.936207	-3.121933	0.934607
6	-4.443562	-1.593695	0.323539
1	-3.545481	0.313318	0.795600

6	-4.248334	-2.970150	0.153412
1	-2.800756	-4.577242	0.256402
1	-5.433017	-1.157111	0.156510
1	-5.079048	-3.619133	-0.138781
16	-1.567373	2.362229	0.073512
8	-3.007864	2.421677	-0.328614
8	-0.822261	3.646403	0.250883
6	-0.719965	1.466516	-1.289957
6	-1.406677	0.475191	-1.990152
6	0.635206	1.710873	-1.520229
6	-0.722387	-0.280652	-2.949090
1	-2.463442	0.304263	-1.775257
6	1.308945	0.966174	-2.490743
1	1.142533	2.476155	-0.928399
6	0.630746	-0.032658	-3.202079
1	-1.248213	-1.070306	-3.493443
1	2.370142	1.148079	-2.678158
1	1.166054	-0.628237	-3.947345
7	1.797583	1.808737	2.956008
6	1.660878	0.948388	2.178857

-150.7898
12.0207
0.1610
221.6585

Structure S12. int2

-

E(RB3LYP)sol =	-726.699668746
725.890983808	

E(RB3LYP)gas = -

6	4.848948	-1.465761	-0.052371
6	4.671855	-0.368577	0.794759
6	3.472238	0.345514	0.780300
6	2.420718	-0.033077	-0.075554
6	2.617645	-1.130820	-0.935976
6	3.817623	-1.840713	-0.921026
1	5.790064	-2.021002	-0.044890
1	5.473055	-0.062317	1.471664
1	3.347309	1.203630	1.444374
1	1.836956	-1.418658	-1.643078
1	3.953603	-2.684973	-1.601395
6	1.133131	0.713510	-0.062410
1	-0.660098	2.526540	-1.176729
6	-0.052676	0.180783	-0.456057
1	-0.054307	-0.873308	-0.743366
6	-1.370804	0.867777	-0.526810
7	-1.543276	2.075598	-0.921659
6	-2.569629	0.053808	-0.153484
6	-2.459724	-1.123044	0.607289

6	-3.848722	0.488427	-0.547651
6	-3.599052	-1.851956	0.960954
1	-1.481658	-1.467856	0.951204
6	-4.983123	-0.242398	-0.200137
1	-3.926019	1.409228	-1.128074
6	-4.862611	-1.416468	0.554490
1	-3.497417	-2.760626	1.559592
1	-5.969935	0.103505	-0.518378
1	-5.753562	-1.988274	0.826565
7	1.307305	3.148662	0.838448
6	1.196482	2.067043	0.431182

Structure S13. TS4

E(RB3	LYP)sol = -	726.674824006	5 E(RB3LYP)gas	= -
725.859				
6	5.11606	4 -1.132467	0.141266	

0	0.1100001	11102 107	01111200
6	4.883648	0.240336	0.015459
6	3.580594	0.736135	-0.044108
6	2.477277	-0.141066	0.021511
6	2.728000	-1.525334	0.148170
6	4.030552	-2.014967	0.207345
1	6.138409	-1.516904	0.187862
1	5.725874	0.935051	-0.037011
1	3.379647	1.805167	-0.143003
1	1.897451	-2.231813	0.201056
1	4.202415	-3.089859	0.305626
6	1.100866	0.371981	-0.041939
1	-1.479425	2.513752	-0.275229
6	-0.047355	-0.375153	0.017178
1	-0.114688	-1.452735	0.141281
6	-1.219379	0.473503	-0.055603
7	-0.857978	1.718998	-0.157017
6	-2.612229	-0.008599	-0.007810
6	-2.933867	-1.304172	-0.452499
6	-3.641514	0.819939	0.477461
6	-4.255108	-1.753192	-0.426023
1	-2.149505	-1.954295	-0.844915
6	-4.959364	0.365557	0.511971
1	-3.403122	1.817746	0.853705
6	-5.269978	-0.921140	0.057248
1	-4.494141	-2.756713	-0.786026
1	-5.747442	1.014988	0.900433
1	-6.303353	-1.275676	0.082295
7	1.386928	2.886916	-0.268097
6	0.795997	1.826954	-0.171339

Red. m Frc con IR Inter	asses ists n	6.7421 0.2743 22.0422		
Structu E(RB3 725.860	ure S14. int LYP)sol = -72 103341	: 3 :6.676378113	E(RB3LYP)gas =	-
6	5.144345	-1.067533	0.136335	
6	4.876251	0.299305	0.010683	
6	3.561006	0.760746	-0.048332	
6	2.482103	-0.147079	0.018464	
6	2.767981	-1.524486	0.145296	
6	4.083300	-1.979304	0.203485	
1	6.176618	-1.424782	0.181917	
1	5.700583	1.015203	-0.042384	
1	3.323650	1.823280	-0.146609	
1	1.955143	-2.251440	0.199787	
1	4.284603	-3.049071	0.301938	

6	1.097500	0.332052	-0.043307
1	-1.400927	2.481883	-0.273827
6	-0.043800	-0.437297	0.008884
1	-0.108457	-1.516277	0.126079
6	-1.203596	0.412327	-0.059294
7	-0.813354	1.662283	-0.159587
6	-2.605814	-0.026895	-0.009215
6	-2.958352	-1.324716	-0.424667
6	-3.617015	0.838491	0.450750
6	-4.289982	-1.740247	-0.392857
1	-2.188485	-2.002939	-0.797595
6	-4.945897	0.417958	0.488263
1	-3.357664	1.838683	0.806170
6	-5.286411	-0.871500	0.063954
1	-4.552056	-2.746328	-0.728818
1	-5.719318	1.096420	0.855945
1	-6.328426	-1.199441	0.091851
7	1.318887	2.855074	-0.252110
6	0.717714	1.777061	-0.163871

Structure S15. int4

E(RB3LYP)sol = -726.713605392 E(RB3LYP)gas = -725.912891489

6	5.177988	-1.007979	0.039550
6	4.863314	0.344469	0.196322
6	3.534129	0.771620	0.173258
6	2.484834	-0.154040	-0.005469
6	2.820484	-1.516508	-0.170479

6		4 000007	0.4.46700	
6	4.14/66/	-1.938027	-0.146/08	
1	6.219791	-1.338267	0.057465	
1	5.660673	1.078587	0.337983	
1	3.288517	1.827190	0.284631	
1	2.033084	-2.255399	-0.332572	
1	4.382322	-2.997312	-0.279208	
6	1.078455	0.265912	-0.012994	
1	0.596202	3.551702	-0.136796	
6	-0.034646	-0.512721	0.021323	
1	-0.072999	-1.597944	0.079702	
6	-1.209975	0.387658	-0.013856	
7	-0.871992	1.645850	-0.063587	
6	-2.612801	-0.050628	0.007097	
6	-2.960837	-1.413431	0.057771	
6	-3.640803	0.913891	-0.024701	
6	-4.301798	-1.802722	0.076285	
1	-2.184228	-2.179564	0.082625	
6	-4.976904	0.522972	-0.006061	
1	-3.358612	1.967281	-0.064060	
6	-5.311990	-0.836982	0.044525	
1	-4.558886	-2.864043	0.115635	
1	-5.765480	1.279232	-0.030980	
1	-6.361395	-1.142456	0.059091	
7	1.235371	2.747214	-0.107136	
6	0.539109	1.679775	-0.065605	
Struct E(RB 818.703	sure S16. TS5 3LYP)sol = -819 3896246	5 9.687054118	E(RB3LYP)gas =	-
	E 400725		0 500074	
ь С	5.188735	-0.704952	-0.592374	
0 C	4.803893	1.05000	-0.459505	
ь С	3.544833	1.050099	-0.255919	
0 C	2.492004	1 20021	-0.187421	
0 C	2.841558	-1.200951	-0.292078	
0	4.104280	-1.054770	-0.497276	
1	0.225350	-1.017309	-0.751495	
1	2 207050		-0.512403	
1	3.297050	2.111540	-0.131277	
1	2.069424	-2.021/50	-0.159024	
I C	4.399728	-2./21/89	-0.566///	
6	1.104703	0.503971	-0.013903	
1	0.529137	3.595031	0.949809	
6	-0.008996	-0.320769	-0.1/43//	
1	-0.044698	-1.169654	-0.8555//	
6 -7	-1.19/164	0.559456	0.074217	
/	-0.858125	1.748464	0.449366	
~	0 0000 00	0 4 7 9 5 5 5	0 407640	

6	-2.985137	-1.154259	-0.399651
6	-3.609531	1.163373	-0.078885
6	-4.325318	-1.478692	-0.624092
1	-2.227600	-1.939082	-0.391879
6	-4.946841	0.836673	-0.300462
1	-3.301733	2.188865	0.134297
6	-5.310869	-0.487212	-0.577272
1	-4.602195	-2.517216	-0.826042
1	-5.711917	1.617680	-0.259594
1	-6.359763	-0.745086	-0.751130
7	1.224846	2.876854	0.716761
6	0.581848	1.799760	0.428872
7	0.093411	-2.774583	1.755991
6	-0.313958	-1.750310	1.355256
Freque Red. m Frc cor IR Inte	encies26 nasses nsts n 44	57.8221 10.5702 0.4467 46.1321	
E(RB3 818.739	3LYP)sol = -819 9458604	9.718466522	E(RB3LYP)ga
6	5.247696	-0.755995	-0.430503
6	4.909873	0.583256	-0.173147
6	3.587880	0.983387	-0.008782
6	2.511021	0.045997	-0.100007
6	2.878750	-1.309553	-0.359328
6	4.209148	-1.692683	-0.518731
1	6.291237	-1.060729	-0.553983
1	5.703549	1.335657	-0.097064
1	3.330268	2.025170	0.189146
1	2.103754	-2.077799	-0.426082
1	4.439772	-2.746309	-0.713262
6	1.149235	0.455030	0.039335
1	0.537444	3.650909	0.417835
6	-0.032850	-0.474901	-0.089404
1	-0.076801	-1.008912	-1.064031
6	-1.205895	0.512618	-0.007338
7			
6	-0.815841	1.724792	0.148181
	-0.815841 -2.626991	1.724792 0.139463	0.148181 -0.128594
6	-0.815841 -2.626991 -3.040622	1.724792 0.139463 -1.186472	0.148181 -0.128594 -0.362214

6

1 6

1

6

-4.396003

-2.299765

-4.967717

-3.286484

-5.367141

-1.500582

-1.984565

0.824005

2.164498

-0.499532

-0.489805 -0.433941

-0.156340

0.153244

-0.388986

as = -

1	-4.694121	-2.537882	-0.666776	1505.74	072430		
1	-5.719497	1.614737	-0.074445				
1	-6.427746	-0.747309	-0.488776	6	-5.884347	-2.342855	-0.553157
7	1.249076	2.916125	0.363855	6	-4.934436	-2.571047	-1.559218
6	0.627786	1.782243	0.205523	6	-3.644056	-2.060311	-1.446056
7	-0.193831	-2.333972	1.771847	6	-3.239803	-1.289960	-0.322495
6	-0.129554	-1.509012	0.957274	6	-4.214024	-1.087080	0.692825
				6	-5.504044	-1.600616	0.573187
				1	-6.897908	-2.743900	-0.641150
Struct	ture S18. int	6		1	-5.206462	-3.157022	-2.443316
E(RB	3LYP)sol = -81	9.740845297	E(RB3LYP)gas =	- 1	-2.914079	-2.249249	-2.239277
818.76	7901997			1	-3.937255	-0.541854	1.597835
				1	-6.224704	-1.428863	1.379378
6	-5.303556	-0.687592	0.052431	6	-1.897343	-0.770725	-0.237662
6	-4.909039	0.655177	-0.001767	1	-1.158972	-1.157924	-0.944887
6	-3.562456	1.014505	-0.028097	6	-1.441933	0.096891	0.755938
6	-2.530380	0.033297	0.000048	1	-2.186455	0.697318	1.280138
6	-2.954708	-1.322718	0.054108	6	-0.216285	0.857810	0.380744
6	-4.304988	-1.669023	0.079481	7	0.866543	0.162194	0.287198
1	-6.362315	-0.963656	0.072534	6	-0.381592	2.319750	0.130096
1	-5.668316	1.444894	-0.025016	6	-1.545100	2.778893	-0.518780
1	-3.260323	2.061777	-0.074176	6	0.580758	3.258831	0.544935
1	-2.220303	-2.125638	0.077509	6	-1.735116	4.139945	-0.757735
1	-4.579433	-2.728511	0.121452	1	-2.285292	2.049287	-0.854151
6	-1.129599	0.429550	-0.027464	6	0.378177	4.621094	0.312984
1	1.327572	2.509136	-0.267967	1	1.485619	2.919786	1.049574
6	0.048236	-0.399467	-0.015103	6	-0.774399	5.067794	-0.339698
6	1.207891	0.404595	-0.044570	1	-2.636975	4.477677	-1.275867
7	0.741907	1.714916	-0.051140	1	1.132917	5.338792	0.646005
6	2.620464	0.109007	-0.013096	1	-0.923715	6.135468	-0.524826
6	3.156678	-1.177274	-0.304620	16	2.380564	0.628711	-0.200137
6	3.564855	1.129696	0.299534	8	2.410288	1.203987	-1.556230
6	4.527356	-1.412218	-0.285448	8	3.066770	1.355801	0.886619
1	2.484371	-1.995794	-0.557605	6	3.120035	-1.010992	-0.264074
6	4.936386	0.884452	0.306924	6	4.039640	-1.272905	-1.281117
1	3.211374	2.125737	0.577376	6	2.825513	-1.953912	0.729529
6	5.440294	-0.388377	0.014248	6	4.693855	-2.508668	-1.303478
1	4.894152	-2.416841	-0.518765	1	4.219741	-0.514554	-2.045894
1	5.622712	1.699804	0.558371	6	3.485797	-3.184592	0.689543
1	6.516492	-0.580814	0.021575	1	2.069217	-1.746284	1.494283
7	-1.334167	2.926213	-0.155296	6	4.418598	-3.462058	-0.317956
6	-0.655223	1.810392	-0.082826	1	5.413526	-2.728563	-2.097034
1	-0.689066	3.722815	-0.171591	1	3.256467	-3.935434	1.450064
7	0.186585	-2.976379	0.156867	1	4.926068	-4.430852	-0.339920
6	0.108255	-1.815025	0.085097	7	-0.047183	-1.658312	2.965695
				6	-0.758685	-0.866733	2.474625

Structure S19. TS6

Structure S19.	TS6		Frequencies	-249.2426
E(RB3LYP)sol =	-1507.24911595	E(RB3LYP)gas = -	Red. masses	11.0438

Frc cons	sts	0.4042		7	-1.846691	-2.848918
IR Inten	3	373.2481		6	-1.759902	-2.066641
Structu	re S20. TS	57		Freque	ncies36	58.9274
E(RB3L	YP)sol = -15	507.22524392	E(RB3LYP)gas = -	Red. m	asses	5.2109
1505.740	89811			Frc con	sts	0.4179
				IR Inter	n 3	66.5893
6	-5.471237	0.217696	-1.052267			
6	-5.369223	-1.032537	-0.437620	Structu	re S21. int	7
6	-4.140873	-1.461381	0.079172	E(RB3	LYP)sol = -72	6.66227827
6	-3.001628	-0.651512	-0.020130	725.856	062557	
6	-3.106478	0.605171	-0.643126			
6	-4.335889	1.032071	-1.149246	6	-5.212827	-0.564150
1	-6.430590	0.558015	-1.453397	6	-4.792741	0.76480
1	-6.248425	-1.678286	-0.352450	6	-3.440611	1.08888
1	-4.071236	-2.433847	0.574275	6	-2.497629	0.08430
1	-2.224197	1.240498	-0.758341	6	-2.924123	-1.251645
1	-4.401124	2.013166	-1.627758	6	-4.273170	-1.572106
6	-1.630875	-1.107800	0.497030	1	-6.269013	-0.816102
1	-1.119701	-0.225038	0.911832	1	-5.518424	1.55891
6	-0.705052	-1.712057	-0.546216	1	-3.121553	2.13158
1	-1.026939	-2.659032	-0.999313	1	-2.189565	-2.040049
6	0.460956	-1.018579	-1.013203	1	-4.592832	-2.615156
7	-0.174212	-0.034447	-1.537020	6	-1.008463	0.37498
6	1.885397	-1.385545	-0.994554	1	-0.706194	0.04650
6	2.300914	-2.507023	-0.256755	6	-0.137366	-0.393449
6	2.844249	-0.616436	-1.681522	1	-0.468204	-0.284758
6	3.649356	-2.864645	-0.210236	6	1.220001	-0.79374
1	1.547408	-3.077116	0.294102	7	0.406673	-1.75749
6	4.193821	-0.966538	-1.614444	6	2.616127	-0.44279
1	2.533231	0.275203	-2.229496	6	3.012430	0.89988
6	4.601372	-2.091760	-0.886505	6	3.570727	-1.43692
1	3.962721	-3.739124	0.367475	6	4.357028	1.24294
1	4.934945	-0.352312	-2.133621	1	2.260474	1.66459
1	5.660570	-2.361749	-0.840053	6	4.911033	-1.08601
16	0.755777	2.078296	-1.023759	1	3.245929	-2.47488
8	2.048240	2.624476	-1.582173	6	5.304072	0.25268
8	-0.443819	2.990268	-1.038231	1	4.667156	2.28549
6	1.094910	1.824158	0.778723	- 1	5.655779	-1.85419
6	2.342583	1.346568	1.187116	- 1	6.356461	0.52405
6	0.052948	1.972556	1.698185	7	-0.340810	2.90852
6	2,543990	0.999964	2.526550	6	-0.667998	1.80180
1	3.140670	1.252757	0.447367			
6	0.257390	1.624479	3.037772			
1	-0.901697	2,369223	1.342192	Structu	ıre S22. тя	3
-	1.500825	1.131483	3.451691	FIRRS	LYP)sol = -16	- 00.2492040
1	3.517457	0.619005	2.849760	1598 48	138817	
- 1	-0.555936	1,734402	3.761417			
-	4.656047					

278279 E(RB3LYP)gas = -

2.466690

1.613808

6	-5.212827	-0.564150	0.109010
6	-4.792741	0.764805	0.195189
6	-3.440611	1.088886	0.035180
6	-2.497629	0.084307	-0.212424
6	-2.924123	-1.251645	-0.296002
6	-4.273170	-1.572106	-0.136744
1	-6.269013	-0.816101	0.233414
1	-5.518424	1.558917	0.388418
1	-3.121553	2.131586	0.103845
1	-2.189565	-2.040049	-0.476415
1	-4.592832	-2.615156	-0.204027
6	-1.008463	0.374982	-0.392201
1	-0.706194	0.046504	-1.402919
6	-0.137366	-0.393449	0.614036
1	-0.468204	-0.284758	1.656480
6	1.220001	-0.793740	0.308291
7	0.406673	-1.757493	0.206940
6	2.616127	-0.442797	0.157948
6	3.012430	0.899889	0.295031
6	3.570727	-1.436928	-0.131176
6	4.357028	1.242940	0.143632
1	2.260474	1.664592	0.505308
6	4.911033	-1.086016	-0.276901
1	3.245929	-2.474881	-0.235204
6	5.304072	0.252682	-0.139622
1	4.667156	2.285498	0.245220
1	5.655779	-1.854195	-0.498754
1	6.356461	0.524052	-0.256197
7	-0.340810	2.908525	-0.192632
6	-0.667998	1.801803	-0.299801

920401 E(RB3LYP)gas = -

35431 -1.488841

6	-4.752384	-1.702386	-0.274017		
6	-3.624859	-1.432678	0.507144		
6	-2.667731	-0.493361	0.092239		
6	-2.856578	0.171413	-1.129626		
6	-3.986549	-0.102027	-1.908757		
1	-5.819149	-1.247550	-2.106668		
1	-5.481912	-2.444170	0.067161		
1	-3.477651	-1.963309	1.448956		
1	-2.107602	0.875328	-1.497714		
1	-4.109748	0.420366	-2.862688		
6	-1.442510	-0.187333	0.960795		
1	-1.102459	0.824419	0.695509		
6	-0.200182	-1.103731	0.812716		
1	0.266578	-1.316257	1.777935		
6	0.722552	-0.790584	-0.226145		
7	0.239474	-0.033040	-1.320604		
6	2.033970	-1.408001	-0.213903		
6	2.417866	-2.406404	0.737555		
6	3.029572	-1.051149	-1.175063		
6	3.706013	-2.937599	0.761917		
1	1.679740	-2.810654	1.430212		
6	4.311175	-1.593793	-1.136888		
1	2.773124	-0.318484	-1.940319		
6	4.681922	-2.536311	-0.162938		
1	3.946651	-3.702976	1.510280		
1	5.042033	-1.273132	-1.889848		
1	5.692929	-2.957595	-0.137077		
16	0.641769	1.447426	-1.671640		
8	1.954616	1.662530	-2.354195		
8	-0.498041	2.113234	-2.376875		
6	0.832033	2.355834	-0.095599		
6	1.855511	1.979354	0.789501		
6	-0.128529	3.294466	0.297678		
6	1.900955	2.544894	2.068761		
1	2.612672	1.263666	0.463586		
-	-0.065089	3.871138	1.570167		
1	-0 919736	3 544347	-0 413571		
-	0.946882	3.490260	2.462951		
1	2.686313	2.237554	2.766942		
-	-0.811845	4.613133	1.872601		
1	0.984719	3.923136	3.467803		
- 7	-2,156091	-0.023049	3.489966		
6	-1.839434	-0.107934	2.376350		
7	-0.625859	-4.026784	0.875280		
6	-0.931473	-2,894075	0.812201		
Frequen	Frequencies427 7573				
Red. masses 10.6036					
Frc cons	ts	1.1431			

IR Inten	 764.3115
in intern	/04.5115

Structure S23. int8

E(RB	3LYP)sol = -16	00.26089718	E(RB3LYP)gas =	-
1598.50	0129417			
 C	4 002252	0.025605	1 420212	
6	-4.965555	-0.955095	-1.420212	
6	-4.795654	-1.054149	0.223341	
6	-3.040341	-1.415129	0.340030	
6	-2.007401	-0.495051	1.02255	
6	-2.855422	0.197529	-1.082555	
1	5 881206	1 105525	-1.840205	
1	-5.881290	2 250064	-2.024230	
1	-3.542000	1 065706	1 471618	
1	2 000225	0.886610	1.471018	
1	-2.090525	0.000019	-1.452647	
1 6	-4.133001	0.321047	-2.773335	
1	-1.412857	0.200001	0.370313	
1	-0.996462	1 200522	0.721045	
1	-0.215040	-1.200555	1 71/166	
1	0.515495	-1.551029	1.714100	
0	0.791213	-0.005001	-0.310371	
	0.231499	-0.010255	-1.319392	
6	2.105190	-1.329230	-0.253054	
6	2.559309	-2.281403	0.740549	
6	3.122517	-0.931372	-1.2019/1	
6	3.878014	-2./18206	0.804042	
1	1.851878	-2.707308	1.456157	
6	4.427774	-1.391536	-1.119688	
1	2.841745	-0.231476	-1.989004	
6	4.852339	-2.28/0/3	-0.113595	
1	4.152329	-3.43/663	1.58/941	
1	5.150443	-1.040625	-1.868861	
1	5.887632	-2.639440	-0.057431	
16	0.605856	1.491090	-1.6/3422	
8	1.8/2398	1./08/39	-2.431183	
8	-0.583743	2.134585	-2.318830	
6	0.834466	2.324979	-0.083291	
6	1.857696	1.851094	0.767730	
6	-0.1//9/4	3.150667	0.430197	
6	1.843293	2.213440	2.120967	
1	2.667435	1.244406	0.357905	
6	-0.165840	3.528487	1.774168	
1	-0.974612	3.464460	-0.249642	
6	0.842944	3.047159	2.630839	
1	2.623751	1.827779	2.785786	
1	-0.947071	4.189838	2.164701	
1	0.834818	3.312586	3.692913	
7	-2.060740	-0.213275	3.520448	

6	-1.767077	-0.232571	2.396669	1
7	-1.087549	-3.737353	0.325957	1
6	-0.730050	-2.645655	0.507820	7
				6
				7
Struct	ture S24. TSS)		6
E(RB	3LYP)sol = -160	00.26174116	E(RB3LYP)gas = -	
1598.4	9906858			Frequenc
				Red. mas
6	4.455718	-2.143954	-1.177879	Frc consts
6	4.532802	-1.521123	0.080720	IR Inten
6	3.390451	-1.159122	0.781793	
6	2.070977	-1.380404	0.266378	Structur
6	2.023358	-2.046421	-0.999188	E(RB3LY
6	3.175863	-2.408497	-1.690176	1598.5196
1	5.358156	-2.426768	-1.728986	
1	5.514264	-1.310473	0.523581	6
1	3.489849	-0.667752	1.752508	6
1	1.055417	-2.246822	-1.461892	6
1	3.072340	-2.900914	-2.664977	6
6	0.900855	-0.917336	0.961731	6
1	-0.984619	0.968845	2.056154	6
6	-0.469114	-1.239932	0.527068	1
1	-0.475616	-1.942515	-0.305189	1
6	-1.518925	-0.254349	0.419216	1
7	-1.397511	0.987289	1.121600	1
6	-2.786177	-0.565657	-0.182467	1
6	-3.084613	-1.862947	-0.710110	6
6	-3.841876	0.394559	-0.289622	1
6	-4.306883	-2.149259	-1.31/165	6
1	-2.356388	-2.66/6/1	-0.604845	1
6	-5.056/81	0.0915/1	-0.891089	6
1	-3.662318	1.399978	0.088239	/
6	-5.316348	-1.183455	-1.426/38	6
1	-4.4/9/6/	-3.163042	-1.699513	6
1	-5.825056	0.8/2/61	-0.951831	6
10	-6.274398	-1.414/20	-1.904282	6
10	-0.828941	2.381289	0.359691	I C
ð	-1./41923	2.705615	-0.750944	6
ð	-0.603081	3.371890	1.429105	I C
0	0.755781	2.030971	-0.421612	0
0	1 027086	1.450415	-1.091555	1
6	2.001459	1 120205	0.270901	1
1	2.001438	1 2/0507	-2.271040	16
۲ ۲	-0.1/4432	1 000162	-5.132210	0
1	3.130319	1.333403 2 710040	1 280649	0
5	2 102161	2.719940 1 /10016/	-1 597876	0 6
1	2 029613	0 632762	-3 245067	6
-	02J01J	0.002/02	J.L 1900/	

4.09	0316	2.181493	0.213342	
. 4.14	19385	1.115000	-2.037455	
1.27	7813	0.451527	3.118075	
1.09	92543	-0.183919	2.146590	
-1.37	6755	-3.412782	2.652170	
-1.06	4543	-2.690843	1.785243	
equencies	-37	3.0715		
d. masses	-	12.0212		
c consts		0.9858		
Inten	40)5.6994		
ucture S25	5. int9)		
(RB3LYP)sol :	-160	0.27339475	E(RB3LYP)gas =	-
8.51966685				
4.00	0275	-2.410467	-1.376705	
4.28	8288	-1.794914	-0.144375	
3.28	30552	-1.334815	0.690720	
5 1.88	39094	-1.458877	0.357472	
1.62	26151	-2.096473	-0.899305	
2.64	8209	-2.552588	-1.726581	
4.79	8653	-2.769170	-2.033978	
5.33	82694	-1.666185	0.166984	
. 3.54	12244	-0.852477	1.635867	
0.59	94307	-2.188018	-1.245512	
2.38	31266	-3.016476	-2.684253	
0.85	59231	-0.970858	1.220782	
-0.98	5398	1.144659	2.002592	
-0.61	6806	-1.308625	1.004489	
-0.64	0144	-2.131942	0.274729	
-1.55	4832	-0.211013	0.504940	
-1.35	9040	1.083939	1.052923	
-2.76	9310	-0.525205	-0.157662	
-3.12	8270	-1.865442	-0.551620	
-3.74	8527	0.475465	-0.503368	
-4.30	6983	-2.152225	-1.235328	
-2.47	1715	-2.699456	-0.293313	
-4.92	1334	0.165020	-1.173299	
-3.52	7785	1.512301	-0.252849	
-5.23	4922	-1.153227	-1.566613	
-4.51	3904	-3.196542	-1.504955	
-5.61	9831	0.979158	-1.408625	
-6.16	0964	-1.386580	-2.102160	
-0.66	0171	2.385381	0.207261	
-1.52	4024	2.693641	-0.947757	
-0.40	8322	3.427409	1.223860	
0.92	20727	1.920181	-0.511617	
0.93	37474	1.286159	-1.758532	

6	2.100800	2.171666	0.195864
6	2.166451	0.911110	-2.309464
1	-0.005265	1.102385	-2.274731
6	3.319081	1.807316	-0.375965
1	2.039985	2.612219	1.191886
6	3.355352	1.182613	-1.630268
1	2.193726	0.380537	-3.264698
1	4.247852	1.979740	0.175066
1	4.308919	0.854575	-2.051035
7	1.504298	0.515641	3.227434
6	1.205701	-0.177245	2.323521
7	-1.628991	-2.403362	3.206071
6	-1.167568	-1.935347	2.246080

Structure S26. int10

E(RB3LYP)sol =	-1507.79202358	E(RB3LYP)gas =	-
1506.35548936			

6	-2.182779	-4.754972	-1.146076
6	-2.475293	-4.506671	0.196880
6	-2.120979	-3.285968	0.783093
6	-1.469897	-2.305156	0.026583
6	-1.175236	-2.559972	-1.322084
6	-1.531431	-3.775990	-1.906050
1	-2.461997	-5.708043	-1.602162
1	-2.985115	-5.264962	0.796522
1	-2.360723	-3.095782	1.831920
1	-0.659535	-1.795765	-1.910079
1	-1.301173	-3.961431	-2.958297
6	-1.019088	-0.961926	0.612430
1	-1.318090	-0.168280	-0.088826
6	0.488626	-0.946863	0.757856
1	0.899116	-1.648610	1.486764
6	1.340640	-0.203491	0.023805
7	0.853377	0.784838	-0.883468
6	2.814639	-0.386630	0.086147
6	3.372804	-1.669957	0.237159
6	3.681258	0.717926	-0.019959
6	4.756196	-1.842366	0.302616
1	2.714413	-2.540822	0.277659
6	5.064628	0.541902	0.045436
1	3.272418	1.724166	-0.120617
6	5.607515	-0.736467	0.208408
1	5.172158	-2.846893	0.414302
1	5.721709	1.412243	-0.025151
1	6.691010	-0.871644	0.255110
16	0.516266	2.385290	-0.339069
8	1.056447	2.555783	1.010403

8	0.941031	3.226235	-1.461834
6	-1.267885	2.438784	-0.235273
6	-1.876556	2.419902	1.020167
6	-2.009348	2.492493	-1.421364
6	-3.273290	2.429461	1.087728
1	-1.264666	2.376685	1.921605
6	-3.401326	2.505141	-1.337642
1	-1.497009	2.530376	-2.384381
6	-4.031109	2.469167	-0.085416
1	-3.762403	2.387448	2.062905
1	-3.999308	2.545219	-2.251146
1	-5.122309	2.471691	-0.027401
7	-2.162823	-0.413537	2.913942
6	-1.665752	-0.655970	1.895941
1	1.429521	0.900252	-1.717799

Structure S27. TS10

E(RB3LYP)sol = -1600.76251971 E(RB3LYP)gas = - 1599.15199981				
6	1.733536	4.286279	-1.479175	
6	0.832663	4.427421	-0.415965	
6	0.603273	3.363111	0.456970	
6	1.270304	2.141199	0.283711	
6	2.174618	2.008863	-0.778951	
6	2.403829	3.074033	-1.657843	
1	1.907595	5.118491	-2.166695	
1	0.301256	5.371820	-0.270244	
1	-0.105383	3.474413	1.280961	
1	2.693785	1.057752	-0.922718	
1	3.105845	2.950177	-2.486874	
6	1.010145	0.964818	1.227494	
1	1.550309	0.087989	0.842407	
6	-0.476371	0.600696	1.315560	
1	-1.034355	1.202672	2.034334	
6	-1.163296	0.273595	0.136194	
7	-0.441337	0.012763	-1.059807	
6	-2.617867	0.174015	0.092979	
6	-3.398487	0.144355	1.276227	
6	-3.315899	0.101782	-1.138056	
6	-4.792219	0.095416	1.222962	
1	-2.904017	0.111399	2.248656	
6	-4.706647	0.052422	-1.182932	
1	-2.740897	0.077027	-2.064879	
6	-5.464475	0.058320	-0.003613	
1	-5.360343	0.066634	2.158360	
1	-5.209149	0.002416	-2.154433	
1	-6.556746	0.014302	-0.041215	

16	-0.079289	-1.474641	-1.727883	
8	-1.178957	-2.401266	-1.460872	
8	0.380780	-1.179341	-3.095307	
6	1.350215	-2.062745	-0.805247	
6	1.142655	-2.669012	0.434105	
6	2.636785	-1.787834	-1.283380	
6	2.249410	-2.969793	1.232737	
1	0.132349	-2.855441	0.798303	
6	3.736600	-2.115132	-0.486554	1
1	2.752229	-1.324171	-2.265023	
6	3.541885	-2.694688	0.774981	
1	2.078568	-3.386582	2.227362	
1	4.748803	-1.907483	-0.844795	
1	4.404435	-2.923351	1.406898	
7	2.090383	1.611030	3.536574	
6	1.592311	1.275201	2.545004	
1	0.040591	0.756235	-1.561768	
7	-0.538230	-1.992286	3.115141	
6	-0.330727	-0.921613	2.688386	
E(RB 1599.17	3LYP)sol = -160	00.77739038		
	7785287			
6	7785287 0.111516	4.180219	-1.857962	 St
6 6	7785287 0.111516 -0.920751	4.180219 3.856010	-1.857962 -0.970144	St
6 6 6	7785287 0.111516 -0.920751 -0.721302	4.180219 3.856010 2.894918	-1.857962 -0.970144 0.025935	 St 15
6 6 6	7785287 0.111516 -0.920751 -0.721302 0.514673	4.180219 3.856010 2.894918 2.244329	-1.857962 -0.970144 0.025935 0.140537	 St 15
6 6 6 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811	4.180219 3.856010 2.894918 2.244329 2.565578	-1.857962 -0.970144 0.025935 0.140537 -0.757508	St 15
6 6 6 6 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688	St
6 6 6 6 6 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641	 St 15
6 6 6 6 6 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906	St 15
6 6 6 6 1 1 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383	 St 15
6 6 6 6 1 1 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260	St 15
6 6 6 1 1 1 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936	 St 15
6 6 6 1 1 1 1 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018	 St
6 6 6 1 1 1 1 1 1 1	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602	 St 15
6 6 6 1 1 1 1 6 1 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861	St 15
6 6 6 1 1 1 1 6 1 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891 -1.213765	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722 0.971604	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861 2.076819	St 15
6 6 6 1 1 1 1 6 1 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891 -1.213765 -1.160287	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722 0.971604 -0.203766	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861 2.076819 0.271383	St 15
6 6 6 1 1 1 1 6 1 6 1 6 7	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891 -1.213765 -1.160287 -0.349981	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722 0.971604 -0.203766 -0.334843	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861 2.076819 0.271383 -0.862650	 St 15
6 6 6 1 1 1 1 6 1 6 7 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891 -1.213765 -1.160287 -0.349981 -2.561418	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722 0.971604 -0.203766 -0.334843 -0.450879	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861 2.076819 0.271383 -0.862650 0.206484	St 15
6 6 6 1 1 1 1 6 1 6 7 6	7785287 0.111516 -0.920751 -0.721302 0.514673 1.540811 1.345441 -0.050362 -1.893959 -1.541222 2.496132 2.155400 0.762885 1.533315 -0.504891 -1.213765 -1.160287 -0.349981 -2.561418 -3.443251	4.180219 3.856010 2.894918 2.244329 2.565578 3.533433 4.928760 4.346064 2.638376 2.038365 3.770771 1.182785 0.497726 0.322722 0.971604 -0.203766 -0.334843 -0.450879 -0.278575	-1.857962 -0.970144 0.025935 0.140537 -0.757508 -1.748688 -2.638641 -1.057906 0.698383 -0.686260 -2.443936 1.208018 0.822602 1.526861 2.076819 0.271383 -0.862650 0.206484 1.321656	 St 15

	6	-4.821585	-0.447738	1.203536
	1	-3.034835	-0.035426	2.305792
	6	-4.565155	-1.026704	-1.113315
	1	-2.563764	-1.050327	-1.888378
	6	-5.412589	-0.815580	-0.012031
	1	-5.448604	-0.301988	2.090569
	1	-4.991230	-1.337798	-2.073880
	1	-6.493799	-0.955295	-0.095600
	16	0.347062	-1.778639	-1.417324
	8	-0.303919	-2.944463	-0.813992
	8	0.491822	-1.627199	-2.878616
	6	2.004916	-1.685597	-0.713020
	6	2.230516	-2.203040	0.565073
	6	2.992820	-0.964583	-1.392663
	6	3.463966	-1.971912	1.181954
	1	1.436051	-2.748158	1.076204
	6	4.225144	-0.749344	-0.771185
	1	2.777666	-0.581725	-2.392154
	6	4.458353	-1.245016	0.518779
	1	3.635727	-2.349054	2.192989
	1	5.005897	-0.187323	-1.291413
	1	5.417629	-1.058973	1.009238
	7	1.747564	2.319125	3.366666
	6	1.315465	1.806180	2.420284
	1	-0.433832	0.291327	-1.667837
	7	0.165698	-1.624519	3.185969
= -	6	-0.130367	-0.745963	2.486265

Structure S29. TS11

E(RB	E(RB3LYP)sol = -1600.76493040 E(RB3LYP)gas =					
1599.1	7602950					
6	-5.187955	0.860315	1.028268			
6	-4.851655	1.312029	-0.251248			
6	-3.745041	0.772603	-0.914166			
6	-2.959703	-0.212945	-0.304083			
6	-3.298658	-0.662051	0.980503			
6	-4.409451	-0.129347	1.639174			
1	-6.053703	1.279425	1.549187			
1	-5.452561	2.085469	-0.737692			
1	-3.493517	1.118055	-1.920899			
1	-2.660959	-1.404201	1.465784			
1	-4.662488	-0.483767	2.642398			
6	-1.758890	-0.816730	-1.029835			
1	-1.326220	-1.595389	-0.382577			
6	-0.629375	0.226991	-1.326218			
1	-1.075214	1.021577	-1.957682			
6	-0.052025	0.818438	-0.052048			

-

7	-0.402307	0.187943	1.124155	
6	0.807765	1.958290	-0.083066	
6	1.096115	2.690556	-1.279830	
6	1.421145	2.467192	1.109663	
6	1.890892	3.831845	-1.270044	
1	0.699551	2.345009	-2.236842	
6	2.214662	3.611121	1.100222	
1	1.279735	1.935664	2.054689	
6	2.462110	4.319761	-0.084081	
1	2.078808	4.351477	-2.216127	
1	2.658042	3.952817	2.042056	
1	3.091010	5.213893	-0.086719	
16	0.577943	-1.216871	1.879219	
8	1.054538	-0.803574	3.222720	
8	-0.297848	-2.415186	1.783277	
6	1.980226	-1.532448	0.779176	
6	2.954731	-0.547107	0.607879	
6	2.017679	-2.729553	0.059498	
6	3.986320	-0.769951	-0.306003	
1	2.897788	0.391377	1.162295	
6	3.063247	-2.948483	-0.838663	
1	1.223747	-3.463626	0.208259	
6	4.040890	-1.966812	-1.027081	
1	4.737415	0.007126	-0.468818	
1	3.100535	-3.877873	-1.412765	
1	4.840048	-2.127785	-1.755587	
7	-2.604554	-1.973795	-3.236159	
6	-2.214078	-1.471573	-2.266605	
1	-0.435536	0.804629	1.938151	
7	1.261641	-0.849330	-2.827984	
6	0.415955	-0.396739	-2.175191	
Frequ	iencies20	0.3615		
Red.	masses	9.1766		
Frc co	onsts	0.2171		
IR Int	en 24	1.0007		
Struc	ture S30. int	12		
E(RE	33LYP)sol = -820	.199765206	E(RB3LYP)gas =	-
819.27	8550472			
6	-2.656933	-3.024980	0.446883	
6	-2.501296	-2.120382	1.502099	
6	-2.192/42	-0.783924	1.238252	
6	-2.032333	-0.3386//	-0.082147	
b	-2.192082		-1.135/10	
0 1	-2.504499	-2.585338	-0.8/1350	
1	-2.902110	-4.070024	0.052237	
T	-2.02/05/	-2.433995	2.334970	

1	-2.092787	-0.077200	2.066992
1	-2.054383	-0.907784	-2.163532
1	-2.630281	-3.285742	-1.700897
6	-1.646188	1.111165	-0.367687
1	-1.768995	1.317831	-1.441010
6	-0.138374	1.360410	-0.028030
1	0.022125	1.081231	1.025146
6	0.779562	0.502874	-0.927902
7	0.410863	0.339184	-2.134738
6	2.008565	-0.065651	-0.303905
6	2.742236	0.648572	0.660792
6	2.453250	-1.343655	-0.688073
6	3.906082	0.104411	1.207926
1	2.425630	1.648592	0.965511
6	3.608703	-1.890901	-0.129356
1	1.870363	-1.924525	-1.407518
6	4.340725	-1.165871	0.816905
1	4.476637	0.677206	1.942858
1	3.934523	-2.890617	-0.426707
1	5.246844	-1.593169	1.253361
7	-3.170742	2.761415	0.994536
6	-2.501794	2.044717	0.377929
1	1.092805	-0.211932	-2.665808
7	0.576196	3.875485	-0.280188
6	0.242628	2.772167	-0.165435

Structure S31. TS12

E(RB3LYP)sol =	-819.677132478
818.694316548	

E(RB3LYP)gas = -

010.094310340	
	-

6	4.702952	-1.458995	-0.900243
6	4.686307	-0.074240	-1.107994
6	3.562408	0.679708	-0.772863
6	2.406547	0.074796	-0.226129
6	2.448805	-1.320590	0.003849
6	3.578109	-2.068786	-0.334980
1	5.584953	-2.050425	-1.162424
1	5.559972	0.426017	-1.537577
1	3.568512	1.759849	-0.938860
1	1.615499	-1.814321	0.506166
1	3.581736	-3.144516	-0.134304
6	1.207722	0.873425	0.098373
1	-0.670840	2.671619	0.942069
6	-0.039019	0.268526	0.282413
1	-0.108866	-0.726938	-0.150626
6	-1.353404	0.990045	0.338650
7	-1.542978	2.209146	0.674692
6	-2.563257	0.210893	-0.109244

6	-2.663511	-1.186448	0.011843	6	2.691798	-2.541299	0.636587
6	-3.647023	0.914863	-0.664675	1	4.729215	-3.290098	0.487242
6	-3.812166	-1.856369	-0.421249	1	5.626900	-1.047231	-0.206740
1	-1.862624	-1.748507	0.495136	1	4.134006	0.894474	-0.428826
6	-4.788440	0.244275	-1.105224	1	0.769612	-1.604975	0.680554
1	-3.566202	2.000990	-0.736882	1	2.269093	-3.509059	0.929009
6	-4.875709	-1.147973	-0.987370	6	1.451146	0.991529	0.002094
1	-3.875914	-2.942048	-0.305207	1	0.480291	0.370341	-1.910443
1	-5.615834	0.810207	-1.543853	6	-0.003416	0.880329	0.406349
1	-5.770325	-1.676189	-1.330458	1	-0.077368	0.228011	1.298562
7	1.645415	3.406685	0.414508	6	-0.920290	0.224943	-0.686328
6	1.413523	2.267840	0.292218	7	-0.494675	0.027709	-1.867037
7	0.089981	-1.791551	2.702324	6	-2.301242	-0.225246	-0.317316
6	-0.228343	-0.800251	2.161984	6	-2.844912	-0.057040	0.968353
				6	-3.089564	-0.864812	-1.294700
Freque	encies17	0.3237		6	-4.133594	-0.513517	1.266349
Red. m	asses	11.0237		1	-2.277023	0.448515	1.749456
Frc con	ists	0.1884		6	-4.372829	-1.318703	-0.998092
IR Inter	n 30	50.2726		1	-2.656028	-0.992312	-2.288097
				6	-4.902550	-1.146022	0.287564
Structu	ure S32. int	13		1	-4.536988	-0.367142	2.272137
E(RB3	LYP)sol = -819	9.709712887	E(RB3LYP)gas = -	1	-4.966903	-1.812314	-1.772849
818.730	196076			1	-5.910023	-1.501608	0.522178
				7	2.406276	3.238188	-0.831950
6	4.064012	-2.427823	0.388825	6	1.957900	2.224608	-0.445331
6	4.557705	-1.170708	-0.001014	7	-1.087379	3.148060	1.181147
6	3.718681	-0.071103	-0.129016	6	-0.583446	2.164165	0.829914
6	2.314963	-0.155454	0.128120				
6	1.836582	-1.446232	0.506427				

References

- (a) B.-C. Da, Q.-J. Liang, Y.-C. Luo, T. Ahmad, Y.-H. Xu and T.-P. Loh, ACS Catalysis, 2018, 8, 6239; (b) Z. Shi, P. Yu, T. P. Loh and G. Zhong, Angew Chem Int Ed Engl, 2012, 51, 7825.
- 2. Z. Shi, Q. Tong, W. W. Leong and G. Zhong, *Chemistry*, 2012, **18**, 9802.
- 3. E. E. Galenko, S. A. Linnik, O. V. Khoroshilova, M. S. Novikov and A. F. Khlebnikov, *J Org Chem*, 2019, **84**, 11275.
- 4. (a) A. D. Becke, *The Journal of Chemical Physics*, 1993, **98**, 5648; (b) C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785.
- (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of Chemical Physics*, 2010, **132**, 154104; (b) S. Grimme, S. Ehrlich and L. Goerigk, *Journal of Computational Chemistry*, 2011, **32**, 1456.
- 6. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *The Journal of Physical Chemistry B*, 2009, **113**, 6378.
- (a) F. Weigend and R. Ahlrichs, *Physical Chemistry Chemical Physics*, 2005, 7, 3297; (b) F.
 Weigend, *Physical Chemistry Chemical Physics*, 2006, 8, 1057.
- 8. E. Besalú and J. M. Bofill, *Theoretical Chemistry Accounts*, 1998, **100**, 265.
- 9. K. Fukui, *Accounts of Chemical Research*, 1981, **14**, 363.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Journal*, 2013.