Electronic Supplementary Information

CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality

Shixin Fa, Takuya Tomita, Keisuke Wada, Kazuma Yasuhara, Shunsuke Ohtani, Kenichi Kato, Masayuki Gon, Kazuo Tanaka, Takahiro Kakuta, Tada-aki Yamagishi and Tomoki Ogoshi*

Table of Contents

General 1
Syntheses 1
Solvent-dependent planar-chiral expression of 1. 5
Complexation of S-1 and R-1 with linear carboxylic acids C4-C9. 9
Assembly of APy in water 14
Two-step complexation of APy with 1 in water. 17
Chirality transfer from chiral 1 to APy 21
Assembly and disassembly of APy triggered by chiral 1 24
CPL of APy upon addition of 1 27
Supplementary discussion. 28
References 29
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra 30

General

All commercially available reagents and solvents were used as received. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and 2D COSY spectra were recorded on JEOL JNM-ECS400, JNM-ECZ500R and JNMECA600P spectrometers at room temperature. UV-vis absorption spectra, circular dichroism (CD) spectra and fluorescence spectra were recorded on a JASCO V-750 spectrophotometer, a JASCO J-1500 CD spectrometer and a Hitachi F-2500 fluorescence spectrophotometer, respectively. The absolute fluorescence quantum yield was measured by using an absolute PL quantum yield spectrometer Hamamatsu Quantamus-QY C11347. Circularly polarized luminescent (CPL) properties were measured on a JASCO J-810 spectrometer. 1 cm quartz cuvets were used. The fluorescence lifetime was performed on a Horiba FluoroCube spectrofluorometer system, and excitation was carried out using a UV diode laser (NanoLED 369 nm). The optical rotations of $R-\mathbf{1}$ and $S-\mathbf{1}$ were recorded on a Rudolph Research AUTOPOL IV Automatic Polarimete with the concentration of 0.1 M in methanol. Highresolution ESI-MS was recorded on Thermo Fisher Scientific Exactive Plus mass spectrometer equipped with UltiMate 3000 HPLC. Morphology of assemblies of APy was studied on a JEOL TEM-3100FEF microscope.

Syntheses

Scheme S1. Synthesis of $S \mathbf{- 1}$ and $R \mathbf{- 1}$. Assignment of the stereo-centers is changed from (S)-
to (R) - and (R) - to (S) - by replacing the bromine atoms with trimethyl amine according to the Cahn-Ingold-Prelog priority rules.

Syntheses of per-alkylamino-substituted pillar[5]arene $R-\mathbf{B r} / S-\mathbf{B r}$ and S - $\mathbf{B r}$-unit were followed our reported procedure. ${ }^{\mathrm{S} 1}$
$\boldsymbol{S} \mathbf{- 1}$. To the solution of $R-\mathbf{B r}(100 \mathrm{mg}, 0.05 \mathrm{mmol})$ in ethanol (5 mL) in a 50 mL round-bottom flask equipped with a condenser, trimethyl amine in ethanol $(25 \%, 5 \mathrm{~mL})$ was added slowly. The reaction mixture was heated to $65^{\circ} \mathrm{C}$ and stirred for 24 hours. The solvent was evaporated. To the residual, DI water (10 mL) was added. The solution was washed thoroughly with chloroform ($20 \mathrm{~mL} \times 2$). The solvent of the aqueous phase was evaporated, and the residual was dried in vacuum. The product was obtained as white solid (127 mg , yield: 98%). $[\alpha]^{23}{ }_{\mathrm{D}}=$ $+26.2^{\circ} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}, \mathrm{ppm}\right): \delta 6.72(\mathrm{br}, 10 \mathrm{H}), 4.11-3.60(\mathrm{~m}, 30 \mathrm{H}), 3.50-3.23(\mathrm{~m}$, 20H) 3.03 (s, 90H), 2.43 (br, 10H), 1.11 (br, 30H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}, \mathrm{ppm}$): $\delta 149.8$, 129.4, 116.0, 72.4, 69.9, 59.6, 53.5, 28.7, 17.8. ESI-HRMS. Calcd for $\mathrm{C}_{105} \mathrm{H}_{190} \mathrm{Br}_{10} \mathrm{~N}_{10} \mathrm{O}_{10}$ [M$2 \mathrm{Br}]^{2+}: 1195.4020$, found $1195.4067 ;[\mathrm{M}-3 \mathrm{Br}]^{3+}: 769.9624$, found 769.9574 .
$\boldsymbol{R} \mathbf{- 1}$. This compound was prepared by the same procedure as $S \mathbf{- 1}$ from $S \mathbf{- B r}(100 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and obtained as white solid (66 mg , yield: 50%). $[\alpha]^{23}{ }_{\mathrm{D}}=-15 \cdot 3^{\circ} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500$ MHz, ppm): $\delta 6.71$ (br, 10H), 4.11-3.56 (m, 30H), 3.53-3.23 (m, 20H), 3.03 (s, 90H), 2.43 (br, 10 H), 1.12 (br, 30H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}, \mathrm{ppm}$): $\delta 149.8,129.4,116.0,72.4,69.9,59.6$, 53.5, 28.7, 17.8. ESI-HRMS. Calcd for $\mathrm{C}_{105} \mathrm{H}_{190} \mathrm{Br}_{10} \mathrm{~N}_{10} \mathrm{O}_{10}[\mathrm{M}-2 \mathrm{Br}]^{2+}$: 1195.4020, found $1195.4349 ;[\mathrm{M}-3 \mathrm{Br}]^{3+}: 769.9624$, found 769.9625.

S-Br-unit

R-unit

Scheme S2. Synthesis of R-unit.
\boldsymbol{R}-unit. This compound was prepared by the same procedure as S - $\mathbf{1}$ from S - $\mathbf{B r}$-unit (57 mg , 0.15 mmol) and obtained as white solid (73 mg , yield: 98%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}, \mathrm{ppm}$): $\delta 6.86(\mathrm{~s}, 4 \mathrm{H}), 3.91\left(\mathrm{dd}, J_{1}=9.9 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.45\left(\mathrm{dd}, J_{1}=13.6\right.$ $\mathrm{Hz}, J_{2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.19\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.02(\mathrm{br}, 18 \mathrm{H}), 2.40(\mathrm{br}, 2 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}, \mathrm{ppm}\right)$: $\delta 152.6,116.0,71.4,70.1,53.3$, 28.7, 17.0. ESI-HRMS. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-2 \mathrm{Br}]^{2+}$: 169.1461 , found 169.1461.

$\begin{array}{rll}\begin{array}{ll}\mathrm{NaOH}, \text { THF/water } \\ 60^{\circ} \mathrm{C} \text {, overnight }\end{array} & \square & \text { MePy } \\ \mathrm{NH}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right), \mathrm{rt} & \square & \mathrm{R}=\mathrm{Me}, 42 \% \\ \text { HPy } & \mathrm{R}=\mathrm{H}, \quad 89 \% \\ \text { APy } & \mathrm{R}=\mathrm{NH}_{4}, \quad 100 \%\end{array}$

Scheme S3. Synthesis of APy.

Compound $\mathbf{2}$ was synthesized according to a reported procedure. ${ }^{\mathrm{S} 2}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, ppm): $\delta 8.67$ (s, 4H), $8.36(\mathrm{~s}, 2 \mathrm{H}), 3.65$, (s, 4H).

Compound $\mathbf{3}$ was synthesized according to a reported procedure. ${ }^{\mathrm{S3} 1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, ppm): $\delta 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.43-$ 1.27 (m, 4H).

MePy. To the solution of $\mathbf{2}(149 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{3}(463 \mathrm{mg}, 2.5 \mathrm{mmol})$ in the mixture of THF (50 mL) and water $(20 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(499 \mathrm{mg}, 2.0 \mathrm{mmol})$ and sodium ascorbate (792 $\mathrm{mg}, 4.0 \mathrm{mmol}$) was added. The reaction mixture was stirred vigorously at $70^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The solution was cooled to room temperature and extracted with dichloromethane ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed after filtration. The residual was chromatographed on silica gel column using a mixture of n-hexane, acetone and dichloromethane ($1: 1: 0.2, \mathrm{v} / \mathrm{v} / \mathrm{v}$) as the mobile phase to afford yellowish solid (220 mg , yield: 42%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): ~ \delta 8.75(\mathrm{~s}, 4 \mathrm{H}), 8.56(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 4 \mathrm{H}), 4.52$ (t, $J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.65(\mathrm{~s}, 12 \mathrm{H}), 2.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 8 \mathrm{H}), 1.72-1.62(\mathrm{~m}$, $8 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right): \delta 174.1,147.1,128.7,128.5$, 126.0, 125.7, 123.3, 51.6, 50.5, 34.0, 30.3, 28.6, 26.4, 24.7. ESI-HRMS. Calcd for $\mathrm{C}_{56} \mathrm{H}_{70} \mathrm{~N}_{12} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1061.5332$, found 1061.5324 .

HPy. To the solution of MePy ($150 \mathrm{mg}, 0.144 \mathrm{mmol}$) in THF (5 mL), 5 mL of NaOH (aq., 0.4 M) was slowly added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. The organic solvent was evaporated under reduced pressure. HCl (aq., 1.0 M) was added dropwise until pH 1 . The yellowish precipitate was collected by filtration, and washed with DI water (100 mL), dried in vacuum. The product was obtained as orange solid (126 mg , yield: 89%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $500 \mathrm{MHz}, \mathrm{ppm}): \delta 8.92(\mathrm{~s}, 4 \mathrm{H}), 8.84(\mathrm{~s}, 4 \mathrm{H}), 8.61(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 2.18(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 8 \mathrm{H}$), 2.02-1.88 (m, 8H), 1.54-1.45 (m, 8H), 1.39-1.27 (m, 16H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}, \mathrm{ppm}): \delta 175.0,146.2,128.7,127.9,126.5,126.2,126.0,125.3,50.2,34.1,30.1$,

APу. Hpy ($69 \mathrm{mg}, 0.07 \mathrm{mmol}$) was dissolved in 1 mL of ammonia (28%). The solution was stirred for 1 min , and the solvent was removed under reduced pressure. The product was obtained as yellow solid (74 mg , yield: 100%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}, 353 \mathrm{~K}, \mathrm{ppm}$): $\delta 8.38$ (s, 4H), $8.28(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 4 \mathrm{H}), 4.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 2.46-2.38$ $(\mathrm{m}, 8 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 8 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}, 353 \mathrm{~K}, \mathrm{ppm}\right): \delta$ $182.5,146.3,127.8,127.4,125.0,124.7,124.6,124.4,51.2,37.2,30.0,28.8,26.3,26.0$. ESIHRMS. Calcd for $\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{~N}_{16} \mathrm{O}_{8}\left[\mathrm{M}-\mathrm{NH}_{4}\right]^{-}: 987.4741$, found 987.4727; $\left[\mathrm{M}-2 \mathrm{NH}_{4}\right]^{2-:}$ 490.2334, found 490.2329; [M-3NH $\left.\mathrm{NH}_{4}\right]^{3-}: 326.4865$, found $326.4867 ;\left[\mathrm{M}-4 \mathrm{NH}_{4}\right]^{4}: 244.6131$, found 244.6154.

4
$+$

3
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$,
sodium ascorbate,
THF/water, $70^{\circ} \mathrm{C}, 12 \mathrm{~h}$

$\begin{array}{rlll}\begin{array}{l}\mathrm{NaOH}, \text { THF/water } \\ 60^{\circ} \mathrm{C} \text {, overnight }\end{array} & \square & \text { MePh } & \mathrm{R}=\mathrm{Me}, \quad 80 \% \\ \mathrm{NH}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right), \text { rt } & \square & \mathrm{HPh} & \mathrm{R}=\mathrm{H}, \quad 95 \% \\ \text { APh } & \mathrm{R}=\mathrm{NH}_{4}, \quad 100 \%\end{array}$

Scheme S4. Synthesis of APh.
MePh. To the solution of $\mathbf{4}(232 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathbf{3}(185 \mathrm{mg}, 1.0 \mathrm{mmol})$ in the mixture of THF (10 mL) and water $(10 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(250 \mathrm{mg}, 1.0 \mathrm{mmol})$ and sodium ascorbate (396 $\mathrm{mg}, 2.0 \mathrm{mmol}$) was added. The reaction mixture was stirred vigorously at $70^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The solution was cooled to room temperature and extracted with dichloromethane ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed after filtration. The residual was chromatographed on silica gel column using a mixture of dichloromethane and ethyl acetate ($3: 1, \mathrm{v} / \mathrm{v}$) as the mobile phase to afford white solid (242 mg , yield: 80%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \mathrm{ppm}\right): \delta 174.1,147.9$, 138.0, 129.6, 128.0, 125.7, 119.2, 51.6, 50.3, 33.9, 30.2, 28.5, 26.2, 24.7, 21.4. APCI-HRMS. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 302.1863$, found 302.1865 .

HPh. To the solution of MePh ($226 \mathrm{mg}, 0.75 \mathrm{mmol}$) in THF (5 mL), 5 mL of NaOH (aq., 0.4 M) was slowly added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. The organic solvent was evaporated under reduced pressure. HCl (aq., 1.0 M) was added dropwise until pH 1 . The white precipitate was collected by filtration, and washed with DI water (100 mL), dried in vacuum. The product was obtained as orange solid (273 mg , yield: 95%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $600 \mathrm{MHz}, \mathrm{ppm}): \delta 12.00(\mathrm{br}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.36$ (t, $J=7.1 \mathrm{~Hz}, 8 \mathrm{H}$), 2.32 (s, 3H), 2.18 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.88-1.80 (m, 2H), 1.52$1.44(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}, \mathrm{ppm}\right): \delta 175.0,146.9,137.6$,
130.0, 128.6, 125.6, 121.3, 49.9, 34.1, 30.0, 28.4, 26.1, 24.8, 21.4. APCI-HRMS. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 288.1707$, found 288.1706.

APh. HPh ($144 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in the mixture of 5 mL of ammonia (28%) and 5 mL of THF. The solution was stirred for 1 min , and the solvent was removed under reduced pressure. The product was obtained as white solid (151 mg , yield: 100%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 600\right.$ MHz, ppm): $\delta 8.15$ (s, 1H), 7.57 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32$ (t, $J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.11$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}, \mathrm{ppm}\right): \delta 184.1,147.5,139.3,129.8,126.8,125.7,121.9$, 50.5, 37.4, 29.2, 28.0, 25.6, 25.3, 20.3. ESI-HRMS. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{NH}_{4}\right]^{-}$: 286.1561 , found 286.1561 .

Solvent-dependent planar-chiral expression of 1

Fig. S1 (a) UV-vis and (b) CD spectra of $S \mathbf{- 1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in various solvents recorded at room temperature.

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $S-1$ in DMSO- $d_{6}\left(400 \mathrm{MHz}, 1 \times 10^{-3} \mathrm{M}\right)$ at room temperature. The diastereomeric excess obtained by integrating H_{a} and H_{d} was $c a .60 \%$.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $S-1$ in acetonitrile- $d_{3}(400 \mathrm{MHz}$, saturated) at room temperature. The diastereomeric excess obtained by integrating H_{a} and H_{f} was $c a .26 \%$. Acetonitrile is special for $S \mathbf{- 1}$, because it works as a guest molecule of the cavity of pillar[5]arenes according to previous reports. ${ }^{54}$ Complexation of $S \mathbf{- 1}$ with acetonitrile could inhibit the swing of the pillar[5]arene units bridged via flexible methylene groups, which increased the CD intensity of $S-1$ even with low de\% value in acetonitrile (Fig. S1b).

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of $S-\mathbf{1}$ in methanol- $d_{4}\left(400 \mathrm{MHz}, 1 \times 10^{-3} \mathrm{M}\right)$ at room temperature. Only one set of resonance signals was observed, indicating that $S-1$ was also diastereomerically pure in methanol- d_{4}.

Fig. S5 Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of $S-\mathbf{1}\left(1 \times 10^{-3} \mathrm{M}, 400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$. Upon heating, all protons became sharp and downfield shift. No split of proton H_{a} was observed even at $80^{\circ} \mathrm{C}$. Proton H_{b}, in proximity to the pillar[5]arene core of $S-\mathbf{1}$, show clear AB quartet-type split even at $80^{\circ} \mathrm{C}$, indicating that the unit flip of $S-\mathbf{1}$ was difficult.

Fig. S6 Calculated dissymmetry value (g) of $S-\mathbf{1}$ and $R \mathbf{- 1}$ in water.

Table S1. g values of S - $\mathbf{1}$ and representative pillar[5]arenes with 100% planar-chiral purity. ${ }^{a}$

	$g\left(\times 10^{-3}\right)$
$S-\mathbf{1}$	5.9
$\mathbf{5}^{\text {S5 }}$	2.9
$\mathbf{6}^{\text {S6 }}$	7.4
$\mathbf{7}^{\mathrm{S} 7}$	9.9
$S-\mathbf{1}+\mathbf{C 8}$	10.2

[^0]

Scheme S5. Structures of planar chiral pillar[5]arenes 5, 6, and 7.

Complexation of \boldsymbol{S}-1 and \boldsymbol{R}-1 with linear carboxylic acids C4-C9

Dicarboxylic acids C4-C9 were able to increase the CD intensity of both $S \mathbf{- 1}$ and $R-$ 1 (Fig. 3a and S7-S12). As the length of the molecule increased, the CD intensity increased more efficiently, meaning that the equilibration reached with less dicarboxylic acids, and the final CD signal was more intensive. For example, upon addition of 200 equiv. of $\mathbf{C 4}$, the CD intensity of $S \mathbf{- 1}$ at 304 nm increased by 1.4% (Fig. S7), while 5 equiv. of C6 and C8 increased the same intensity by 75% and 110%, respectively (Fig. S9 and S11).

As mentioned in the main text, $S \mathbf{- 1}$ and $R-\mathbf{1}$ are diastereomerically pure in water at room temperature. Such significant increase of CD intensities of both $S \mathbf{- 1}$ and $R-\mathbf{1}$ upon addition of linear dicarboxylic acids is unexpected. It is probable that the non-flipping swing of the five units of a pillar[5]arene remains allowed because of the flexibility of bridging methylene groups of $\mathbf{1}$, although the flip is inhibited at room temperature. This was revealed by the relative broad signals of both $S \mathbf{- 1}$ and $R-\mathbf{1}$ in ${ }^{1} \mathrm{H}$ NMR spectra. The swing of pillar[5]arene units would prevent the full expression of CD signals. Upon addition of dicarboxylic acids, the swing of pillar[5]arene units was inhibited by complexation, and the CD intensity of 1 increased subsequently. Because 1 was diastereomerically pure in water, the binding constants $\left(K_{\mathrm{a}}\right)$ between dicarboxylic acids and $\mathbf{1}$ could be determined by CD titration (Table S2). In case of $\mathbf{C 4}$, the K_{a} is too small to be determined. The K_{a} of the complexes between S - $\mathbf{1}$ and $\mathbf{C 6}$ and $\mathbf{C 8}$ are (3.66 ± 0.44) $\times 10^{4} \mathrm{M}^{-1}$ and $(6.30 \pm 1.02) \times 10^{5} \mathrm{M}^{-1}$, respectively. It is apparent that the binding affinity increased as the length of the guest molecule increased. The association constants were summarized in Table S2.

Fig. S7 CD spectra of $S \mathbf{- 1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C 4}$.

Fig. S8 CD spectra of $S \mathbf{- 1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C 5}$.

Fig. S9 CD spectra of S - $\mathbf{1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C} 6$.

Fig. S10 CD spectra of $S \mathbf{- 1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C} 7$.

Fig. S11 CD spectra of $S \mathbf{- 1}$ and $R \mathbf{- 1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C 8}$.

Fig. S12 CD spectra of $S \mathbf{- 1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{C} 9$.
Table S2. Association constants (K_{a}) between dicarboxylic acids and $\mathbf{1} .^{a}$

$$
K_{\mathrm{a}}\left(\times 10^{4} \mathrm{M}^{-1}\right)
$$

	$S-\mathbf{1}$	$R-\mathbf{1}$
$\mathbf{C 4}$	$-b$	$-b$
C5	$-b$	$-b$
C6	3.66 ± 0.44	3.41 ± 0.43
C7	11.0 ± 1.3	7.84 ± 1.18
C8	63.0 ± 10.2	53.2 ± 8.0
C9	143 ± 40	130 ± 41

${ }^{a} K_{\mathrm{a}}$ was calculated by fitting the CD change at 304 nm upon titration at $25^{\circ} \mathrm{C}$.
${ }^{b}$ Too small to be determined by CD titration.
To investigate the binding mode between $\mathbf{1}$ and $\mathbf{C 4} \mathbf{C 9}$, the ${ }^{1} \mathrm{H}$ NMR spectra of S 1 upon addition of dicarboxylic acids were measured. Upon addition of 20 equiv. of $\mathbf{C 4}$, no chemical shift change was observed for all protons on $S \mathbf{- 1}$, suggesting that the complexation between $\mathbf{C 4}$ and $S-\mathbf{1}$ was too weak to be detected by NMR titration (Fig. S13). Differently, all protons of $S \mathbf{- 1}$ shifted downfield and became sharper upon addition of $\mathbf{C 6}$ (Fig. S14). Furthermore, two new proton signals of $\mathbf{C} 6$ appeared at -0.17 ppm and -1.60 ppm . These observations indicated that $\mathbf{C} 6$ threaded through the cavity of $S-\mathbf{1}$ and a complex was formed in $\mathrm{D}_{2} \mathrm{O}$. The complex between $\mathbf{C 8}$ and $S \mathbf{- 1}$ was more stable kinetically and thermodynamically. When 0.5 equiv. of $\mathbf{C 8}$ was added in the solution of $S-\mathbf{1}$, clear signals of complex $\left(\mathrm{H}_{\mathrm{a}}{ }^{\prime}-\mathrm{H}_{\mathrm{g}}{ }^{\prime}\right)$ and free components $\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{g}}\right)$ were observed in ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. S15), suggesting that the exchange speed between complex and free components are slower than the NMR time scale. This slow exchange led to the
high degree of CD increase of $S \mathbf{- 1}$. The mixture of $\mathbf{C 8}$ and $S \mathbf{- 1}$ in 1:1 ratio shows only the signals of complex in ${ }^{1} \mathrm{H}$ NMR spectrum, indicating a strong binding.

Fig. S13 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $S-1\left(5 \times 10^{-4} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ upon addition of $\mathbf{C 4}$ at room temperature. No chemical shift change of $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{g}}$ was observed.

Fig. S14 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $S-\mathbf{1}\left(5 \times 10^{-4} \mathrm{M}, 400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ upon addition of $\mathbf{C 6}$ at room temperature. All protons on S - $\mathbf{1}$ shift downfield.

Fig. S15 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $S-\mathbf{1}\left(5 \times 10^{-4} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ upon addition of $\mathbf{C 8}$ at room temperature. All protons on S - $\mathbf{1}$ split to two sets upon addition of 0.5 equiv. of $\mathbf{C 8}$. When over 1 equiv. of $\mathbf{C 8}$ was added, signals ascribed to free S - $\mathbf{1}$ disappeared.

Assembly of APy in water

The fluorescent spectra of APy showed a drastic concentration dependent spectral change (Fig. S16 and S17). At low concentrations, the fluorescence maximum was clearly observed at ca. 426 nm , corresponding to the emission of monomeric APy. As concentration increased, a new fluorescence band emerged at $c a .530 \mathrm{~nm}$ and gradually red-shift. This indicated the formation of the π-oligomer of APy and suggested the high molecular aggregation ability of APy in water. Actually, the fluorescence band at $c a .530 \mathrm{~nm}$ can be observed even at very low concentration (e.g., $1 \times 10^{-7} \mathrm{M}$). However, it is clear that the monomeric emission at ca. 426 nm significantly decreased at concentrations above $2 \times 10^{-5} \mathrm{M}$ (Fig. S17b), while the oligomeric emission at ca. 530 nm kept constant, resulting in sharp increase of the ratio of fluorescence intensities I_{531} / I_{426}. This implied that the aggregates of APy were dominant above $2 \times 10^{-5} \mathrm{M}$ in water, which was revealed by concentration-dependent and temperature variable ${ }^{1} \mathrm{H}$ NMR measurements (Fig. S18 and S19).

Fig. S16 (a) Excitation ($\lambda_{\mathrm{em}}=426 \mathrm{~nm}$) and emission $\left(\lambda_{\mathrm{ex}}=385 \mathrm{~nm}\right)$ spectra of APy in water at $1 \times 10^{-7} \mathrm{M}$. (b) Normalized fluorescence spectra of APy in water at various concentrations. All spectra were recorded at room temperature.

Fig. S17 (a) Fluorescence spectra ($\lambda_{\mathrm{ex}}=385 \mathrm{~nm}$) of APy at c-range from 1×10^{-7} to 5×10^{-3} M. Inset: Images under UV light (365 nm) of APy at various concentrations: $1 \times 10^{-7}, 1 \times 10^{-4}$ and $5 \times 10^{-3} \mathrm{M}$ (from left to right). (b) Plots of fluorescence intensity at 426 nm and 531 nm , and their ratio against the concentration of APy.

Fig. $\mathbf{S 1 8}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A P y}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ at various concentrations. All spectra were recorded at room temperature. Under all tested conditions, the resonances of pyrene (i.e., protons a and b) and triazole (i.e., proton c) moieties became broadening and splitting, indicating the stacking between the π-conjugated parts of APy at all tested concentrations. Moreover, the signals of protons a, b, c and d gradually upfield shift as concentration increasing, which suggests that larger assemblies formed. In contrast, protons e-f do not show clearly shift, because the interactions of the periphery of APy are relative weak.

Fig. S19 Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of APy $\left(5 \times 10^{-3} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$. Upon heating, the stacking of the π-conjugated parts of APy weakened, and the signals showed downfield shift and became sharp, indicating decomposition of the assemblies of Apy. At 80 ${ }^{\circ} \mathrm{C}$, only signals of monomeric Apy were observed.

Two-step complexation of APy with 1 in water

Fig. S20 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ upon addition of $0.2,0.4,0.8$, $1.0,2.0$ and 3.0 equiv. of $S-\mathbf{1}$ (from bottom to top). A two-step complexing process was clearly observed. The initial broadening and upfield shift of all resonance signals (illustrated by red arrows) suggested assembly of APy upon addition of less than 0.6 equiv. of $S \mathbf{- 1}$. As further adding $S-\mathbf{1}$, subsequent sharpening and down-field shift of resonances was observed, suggesting the disassembly process. In especial, the signals corresponding to the linear alkyl chains of APy (protons III) drastically upfield shift to around -1 to -2 ppm , indicating strong shielding effect due to inclusion of these protons by the cavity of $S \mathbf{- 1}$.

In order to clearly understand the binding between $\mathbf{1}$ and $\mathbf{A P y}$, complexation between 1 and APh, the unit model of APy, was also investigated by CD titration and NMR measurements (Fig. S21-S24). In the NMR spectra, the resonances of free APh and complexed APh were also clearly separated, indicating a slower exchange than the NMR scale. This was similar to the observations of C8. With the same alkyl chain between the two ends as C8, APh possesses similar association constants with S - $\mathbf{1}$ and $R \mathbf{- 1}$. The binding constants of $S \mathbf{- 1}$ and $R \mathbf{- 1}$ with APh were determined to be (8.02 ± 2.41) $\times 10^{5} \mathrm{M}^{-1}$ and $(1.10 \pm 0.30) \times 10^{6} \mathrm{M}^{-1}$, respectively.

Fig. S21 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A P h}\left(2.5 \times 10^{-4} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ upon addition of $S-\mathbf{1}$ at room temperature. From (a) to (d), $0,0.5,1.0$ and 2.0 equiv. of $S-1$ were added, respectively. (e) ${ }^{1} \mathrm{H}$ NMR spectra of $S-1\left(5 \times 10^{-4} \mathrm{M}, 600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$. (b) All protons on $\mathbf{A P h}$ split to two sets upon addition of 0.5 equiv. of $S \mathbf{- 1}$, indicating that the exchange between complexed and free APh was slower than the NMR time scale. Therefore, relative stable complex formed between APh and S-1. (c) As 1 equiv. of $S-1$ was added, signals ascribed to free APh disappeared, indicating that the complexation between APh and $S-\mathbf{1}$ was strong. (d) By complexation, peaks of $S-\mathbf{1}$ also split to two sets due to the asymmetric structure of APh. It is clear that the binding between S - $\mathbf{1}$ and APh was strong, and the alkyl chain of APh was deeply included in the cavity of S - $\mathbf{1}$ as complexation.

Fig. S22 2D COSY spectrum ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of the 1:1 mixture of $\mathbf{A P h}\left(2.5 \times 10^{-4} \mathrm{M}\right)$ and $S-1\left(2.5 \times 10^{-4} \mathrm{M}\right)$. Only the resonance of the complex was observed. The correlation between the complexed APh protons was shown.

Fig. S23 CD spectra of $S \mathbf{- 1}$ and $R-\mathbf{1}\left(2 \times 10^{-5} \mathrm{M}\right)$ in water upon addition of $\mathbf{A P h}$.

Fig. S24 Non-linear curve-fittings for CD intensity at 304 nm of (a) $S-\mathbf{1}$ and (b) $R \mathbf{- 1}$ upon addition of APh. The data was taken from Fig. S23. The binding constants of $S-\mathbf{1}$ and $R-\mathbf{1}$ with APh were determined to be $(8.02 \pm 2.41) \times 10^{5} \mathrm{M}^{-1}$ and $(1.10 \pm 0.30) \times 10^{6} \mathrm{M}^{-1}$, respectively.

Fig. S25 (a) UV-vis spectra of APy in water at c-range from 1×10^{-7} to $1 \times 10^{-4} \mathrm{M}$. (b) Plots of molar absorption coefficient (ε) at 299 nm and 385 nm , and their ratio against the concentration of APy. All spectra were recorded at room temperature.

(b)

Fig. S26 UV-vis spectra of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of S-1. (b) Plots of ε at 299 nm and 385 nm against the ratio of $S \mathbf{- 1}$ and APy. All spectra were recorded at room temperature. The absorption at 299 nm partly overlapped with $S \mathbf{- 1}$, so it is not suitable for analyzing the intensity change upon titration. The absorption at 385 nm clearly showed the two-step process.

Fig. S27 UV-vis spectra of APy ($6 \times 10^{-5} \mathrm{M}$) upon addition of R-1. (b) Plots of ε at 299 nm and 385 nm against the ratio of $R \mathbf{- 1}$ and $\mathbf{A P y}$. All spectra were recorded at room temperature. The absorption at 299 nm partly overlapped with $R \mathbf{- 1}$, so it is not suitable for analyzing the intensity change upon titration. The absorption at 385 nm clearly showed the two-step process.

Chirality transfer from chiral 1 to APy

Fig. S28 CD spectra of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of (a) S-1 and (b) R - $\mathbf{1}$. All spectra were recorded at room temperature.

Fig. S29 UV-vis spectra of APy ($6 \times 10^{-5} \mathrm{M}$) upon addition of (a) R-unit and (b) L-Val. All spectra were recorded at room temperature.

Fig. S30 (a) CD spectra of APy ($6 \times 10^{-5} \mathrm{M}$) upon addition of R-unit. (b) Plots of CD at 415 nm and 380 nm of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of R-unit. All spectra were recorded at room temperature. Only random and weak CD signals were observed upon titration.

Fig. S31 (a) CD spectra of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of L-Val. (b) Plots of CD at 415 nm and 380 nm of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of $L-$ Val. All spectra were recorded at room temperature. Only random and weak CD signals were observed upon titration.

Fig. S32 TEM images of (a) Apy, and (b) the mixture of APy with $S-\mathbf{1}:[S-\mathbf{1}] /[\mathbf{A P y}]=0.6$.

Assembly and disassembly of APy triggered by chiral 1

Fig. S33 (a) Fluorescence spectra $\left(\lambda_{\mathrm{ex}}=385 \mathrm{~nm}\right)$ of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of $R \mathbf{- 1}$. All spectra were recorded at room temperature.

Fig. S34 Emission decays of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}\right)$ at various equiv. of $S-1$: (a, b) 0 equiv.; (c, d) 0.6 equiv.; (e) 2.0 equiv. The monitoring wavelength of (a, c, e) was 426 nm , that of (b) was 531 nm , and of (d) was 545 nm . All spectra were recorded at room temperature, $\lambda_{\text {ex }}=369 \mathrm{~nm}$. The observations suggested that both monomers and excimers were present in the solution of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}\right)$, while further stacking occurred upon addition of 0.6 equiv. of $S \mathbf{- 1}$. In the sample of APy with 2.0 equiv. of S-1, where only the emission at ca. 426 nm was observed, the life time of monomer emission could not be measured due to the weak fluorescence intensity.

Fig. S35 Plots of the ratio between fluorescence intensities at 531 nm and 426 nm against the molar ratio between (a) S - $\mathbf{1}$ and APy and (b) $R-\mathbf{1}$ and APy.

Fig. S36 Fluorescence spectra $\left(\lambda_{\text {ex }}=385 \mathrm{~nm}\right)$ of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ upon addition of (a) R-unit and (b) L-Val. All spectra were recorded at room temperature. (a) Only the process of assembly was observed in case of titration with R-unit. (b) The fluorescent emission at $c a .426 \mathrm{~nm}$ did not disappear during the whole titration. The ratio of I_{426} and I_{530} slightly changed, indicating that L-Val triggered the assembly of APy with low efficiency.

CPL of APy upon addition of 1

Table S3. Quantum yields of APy upon addition of chiral 1. ${ }^{a}$

	$S-\mathbf{1}$	$R-\mathbf{1}$
0 equiv.	67%	69%
0.2 equiv.	63%	67%
0.4 equiv.	48%	50%
0.6 equiv.	43%	47%
0.8 equiv.	23%	27%
1.0 equiv.	10%	10%
2.0 equiv.	5%	5%

${ }^{a}$ The concentration of APy was $6 \times 10^{-5} \mathrm{M}$.

Fig. S37 The g-values of CD and CPL spectra of the aqueous solution of $\mathbf{A P y}\left(6 \times 10^{-5} \mathrm{M}\right)$ with 0.6 equiv. of chiral 1.

Supplementary discussion

The effect of $\mathbf{1}$ on the "assembly and disassembly" of APy was highly efficient. The concentration decrease of APy did not stop $\mathbf{1}$ from triggering assembly of APy (Fig. S38 and S39). Even at the concentration as low as $1 \times 10^{-6} \mathrm{M}$, where the aqueous solution of $\mathbf{A P y}$ was dominated by monomeric state, 0.4 equiv. of $S-1$ accomplished the assembly of APy, while 2.0 equiv. of S - $\mathbf{1}$ caused complete disassembly of APy, as evidenced by the disappearance and appearance of fluorescence emission at $c a .426 \mathrm{~nm}$ (Fig. S39).

Fig. $\mathbf{S 3 8}$ (a) Fluorescence spectra ($\lambda_{\mathrm{ex}}=385 \mathrm{~nm}$) and (b) UV-vis spectra of APy $\left(1 \times 10^{-5} \mathrm{M}\right)$ upon addition of $S-1$. All spectra were recorded at room temperature.

Fig. S39 (a) Fluorescence spectra ($\lambda_{\mathrm{ex}}=385 \mathrm{~nm}$) and (b) UV-vis spectra of APy $\left(1 \times 10^{-6} \mathrm{M}\right)$ upon addition of $S-1$. All spectra were recorded at room temperature.

The host-guest complexation between APy and $\mathbf{1}$ and the planar chirality of $\mathbf{1}$ ensured the successful chiral transfer from chiral $\mathbf{1}$ to the assembly of APy. When a competitive guest, C8,
was added to the mixture of Apy and $R-\mathbf{1}$ in a $1: 0.6$ molar ratio, the CD signal of APy gradually disappeared as the competitive complexation between $R-\mathbf{1}$ and $\mathbf{C 8}$ (Fig. S40).

Fig. S40 (a) Fluorescence and (b) CD spectra of the mixture of APy $\left(6 \times 10^{-5} \mathrm{M}\right)$ and $R \mathbf{- 1}(3.6$ $\times 10^{-5} \mathrm{M}, 0.6$ equiv.) upon addition of C8. Disassembly and loss of chirality of APy were observed.

References

S1 S. Fa, M. Mizobata, S. Nagano, K. Suetsugu, T. Kakuta, T.-A. Yamagishi and T. Ogoshi, ACS Nano, 2021, 15, 16794-16801.
S2 Y. Xu, D. Chang, S. Feng, C. Zhang and J.-X. Jiang, New J. Chem., 2016, 40, 9415-9423.
S3 G. Colombano, C. Travelli, U. Galli, A. Caldarelli, M. G. Chini, P. L. Canonico, G. Sorba, G. Bifulco, G. C. Tron and A. A. Genazzani, J. Med. Chem., 2010, 53, 616-623.

S4 T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.
S5 J. Park, Y. Choi, S. S. Lee and J. H. Jung, Org. Lett., 2019, 21, 1232-1236.
S6 N. L. Strutt, H. Zhang and J. F. Stoddart, Chem. Commun., 2014, 50, 7455-7458.
S7 T. Ogoshi, K. Masaki, R. Shiga, K. Kitajima and T. Yamagishi, Org. Lett., 2011, 13, 1264-1266.

-28.6964
-17.7925

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{D}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}\right)$

$\begin{array}{lllllllll}160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0\end{array}$ $\delta(p p m)$

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{D}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{2}$ and $\mathbf{3}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\right.$ DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

-182.4593
-146.2698
$\left[\begin{array}{l}127.8394 \\ 127.4258 \\ 125.0263 \\ 124.7001 \\ 124.5984 \\ 124.3931\end{array}\right.$
-51.1716
$\left[\begin{array}{r}37.2294 \\ 30.0267 \\ 28.8281 \\ 26.3020 \\ 26.0127\end{array}\right.$

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$

 $\underset{\substack{\text { 品 } \\ i}}{\substack{0}}$

\cdots						
O						
\cdots						
\cdots						
-						

HPh

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra (DMSO- $d_{6}, 25^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra $\left(\mathrm{D}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}\right)$

[^0]: ${ }^{a}$ The g values of the compounds other than $S-\mathbf{1}$ was calculated on the basis of the corresponding literatures.
 ${ }^{b}$ The g value of the complex of $\mathbf{C 8}$ and $S-\mathbf{1}$ was calculated on the basis of Fig. S11.

