Regiocontrolled Allylic Functionalization of Internal Alkene via Selenium- π-Acid Catalysis Guided by Boron Substitution

Ling Yang, Yuan Liu, Wen-Xin Fan, Dong-Hang Tan, Qingjiang Li and Honggen Wang*

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China

E-mail: wanghg3@mail.sysu.edu.cn

Table of contents

1. General information 3
2. General procedure for preparation of the starting materials. 4
3. General procedure for the chlorination reaction 11
4. General procedure for the imidation reaction 17
5. The synthesis of γ-functionalized benzyl MIDA boronates 24
6. KIE experiments 31
7. Intramolecular competition experiments and control experiment. 32
8. NMR spectrum of starting materials and products 34
9. References 124

1. General information

Unless otherwise noted, all commercially available materials were used without further purification. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DMF}$ and DMSO were purchased from Acros Organics and stored under argon.

NMR-spectra were recorded on Bruker AvanceIII-400M and Ascend ${ }^{\text {TM }} 500 \mathrm{M}$ in solvents as indicate. Chemical shifts (δ) are given in ppm relative to tetramethylsilane ($\delta=0$). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (Acetone-d6: $\delta_{\mathrm{H}}=2.05 \mathrm{ppm}, \delta_{\mathrm{C}}=29.84 \mathrm{ppm}$). The following abbreviations were used to describe peak splitting patterns: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets). Coupling constants (J) were reported in hertz unit (Hz).

High-resolution mass spectra (HRMS) were recorded on a Bruker VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV 254 plates. Visualization was accomplished by UV light (254 nm), or KMnO_{4} staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh).

No attempts were made to optimize yields for substrate synthesis.

2. General procedure for preparation of the starting materials.

The allylic boronic esters were synthesized from allylic alcohols which were commercially available or reported before. ${ }^{1}$ The allyl MIDA boronates were prepared according to the following procedure. ${ }^{2}$

General procedure A:

General procedure B:

An oven-dried round bottom flask was charged with di- μ-chlorobis\{2-[(dimethylamino)methyl]phenyl-C, N$\}$ dipalladium (II) (0.025 equiv), bis(pinacolato) diboron (1.5 equiv) and $\mathrm{T}_{\mathrm{s}} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.05 equiv). After being sealed with a septum, the flask was connected to an argon-vacuum line and was evacuated and backfilled with $\operatorname{argon}(x 3)$. $\mathrm{DMSO}(10 \mathrm{~mL}), \mathrm{MeOH}(10 \mathrm{~mL})$ and the allylic alcohol ($10 \mathrm{mmol}, 1$ equiv) were added in turn by syringe under an argon atmosphere. The resulting reaction mixture was stirred vigorously at $50^{\circ} \mathrm{C}$ overnight then cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. Ethyl acetate was then added and the layers were separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by flash chromatography. Then anhydrous DMSO $(5 \mathrm{~mL})$ was added to dissolve the product which was then added via syringe to a suspension of N -methyliminodiacetic acid (MIDA, 6.2 equiv) and $\mathrm{CH}(\mathrm{OMe})_{3}$ (4.0 equiv) in DMSO (5 mL). The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ until the allylic boronic esters was used up by GC-MS monitoring. After cooling to r.t., the reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was seperated and the aqueous layer was extracted with ethyl acetate (20 mL) for three times. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.
General procedure $\mathbf{C}^{\mathbf{3}}$:

An oven-dried round bottom flask equipped with a magnetic stir bar was charged with bis(1,5 -cyclooctadiene)nickel $(0)(0.25 \mathrm{mmol})$, tricyclohexylphosphine $(0.25 \mathrm{mmol})$, and toluene (20 mL) in the glovebox. The vial was capped and stirred for two minutes, then (E)-ethyl hepta-4,6-dienoate (10 mmol) was added, followed by pinacolborane
$(10.5 \mathrm{mmol})$. The vial was capped with a teflon cap, sealed with electrical tape, removed from the glovebox, and allowed to stir at rt for 3 h . The reaction was concentrated in vacuo, and the crude reaction mixture was purified on silica gel. Then anhydrous DMSO (5 mL) was added to dissolve the product which was then added via syringe to a suspension of N -methyliminodiacetic acid (MIDA, 6.2 equiv) and $\mathrm{CH}(\mathrm{OMe})_{3}$ (4.0 equiv) in DMSO (5 mL). The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ until the allylic boronic esters was used up by GC-MS monitoring. After cooling to r.t., the reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was seperated and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL})$ for three times. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

(E)-2-(hex-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1a)

Following the general procedure A , the product 1a was obtained in 84% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.30(\mathrm{PE} / \mathrm{EA}=1: 3)$.
${ }^{1}$ H NMR (400 MHz , Acetone- d_{6}) $\delta=5.51-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.34 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ $=168.9,129.9,127.0,61.8,45.6,34.5,22.4,13.6 .{ }^{11}$ B NMR (128 MHz, DMSO- d_{6}) δ $=12.02$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 262.1223$; Found, 262.1212.
(\boldsymbol{E})-6-methyl-2-(tridec-2-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (1c)

Following the general procedure B, the product $\mathbf{1 c}$ was obtained in 60% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.31(\mathrm{PE} / \mathrm{EA}=1: 4)$;
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 5.40(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 17 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11}$ B NMR (160 MHz , Acetonitrile$\left.d_{3}\right) \delta 12.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.0,132.2,127.3,63.0,46.5,33.5$, $32.6,30.5,30.4(2 \mathrm{C}), 30.2,30.1,30.0,23.4,14.4$.
HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{BNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 360.2320$; Found 360.2313.
(E)-6-methyl-2-(6-phenylhex-2-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (1e)

Following the general procedure B, the product $\mathbf{1 e}$ was obtained in 37% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.29(\mathrm{PE} / \mathrm{EA}=1: 4)$;
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.26$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.11$ (m, 3H), 5.68$5.00(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR $(128 \mathrm{MHz}$, DMSO- d_{6}) δ 12.2. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.8,141.8,129.5,128.4,128.2$, 127.5, 125.7, 61.7, 45.5, 35.4, 34.1 .

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 324.1381; Found, 324.1369.
ethyl (\boldsymbol{E})-4-(5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-3-en-1-
yl)benzoate (1f)

Following the general procedure B , the product
1f was obtained in 54% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.15(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.44-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz, DMSO- d_{6}) $\delta 11.2 .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.8,165.7,147.7,129.1,129.0,128.7,127.9,127.5$, 61.7, 60.5, 45.5, 35.3, 33.7, 14.2 .

HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 396.1592$; Found, 396.1580.
(E)-6-methyl-2-(5-phenoxypent-2-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (1g)

Following the general procedure B , the product $\mathbf{1 g}$ was obtained in 16% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.23(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.53(\mathrm{dt}, J=$ $15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=15.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.81$ $(\mathrm{m}, 4 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 12.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.0,159.9$, $130.5,130.5,130.4,127.9,121.5,115.4,68.5,63.0,46.5,33.5$.
HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 340.1330$; Found, 340.1321.
(E)-2-(5-(benzyloxy)pent-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1h)

Following the general procedure B, the product $\mathbf{1 h}$ was obtained in 34% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.29(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 7.44-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.49(\mathrm{dt}, J=14.8,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{dt}, J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J$ $=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 12.2$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.0,139.9,129.5,129.3,128.8,128.8,128.4,73.3,70.9,62.9,46.3$, 34.1.

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 354.1486; Found, 354.1479.
(E)-2-(6-(5,5-dimethyl-1,3-dioxan-2-yl)hex-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1i)

Following the general procedure B , the product $\mathbf{1 i}$ was obtained in 37% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.28(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 5.73-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ (d, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.36$ (d, $J=10.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{11}$ B NMR (160 MHz , Acetone- d_{6}) $\delta 11.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) δ $168.8,129.8,127.1,101.1,76.0,61.8,45.6,33.8,32.1,29.7,23.6,22.8,21.4$.
HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 376.1905$; Found, 376.1890.
(E)-2-(5-(1,3-dioxoisoindolin-2-yl)pent-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1 j)

Following the general procedure B , the product $\mathbf{1} \mathbf{j}$ was obtained in 65% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.14(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.87-7.81(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28(\mathrm{dt}, J=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 168.8, 167.8, 134.4, 131.5, 129.8, 126.0, 123.0, 61.7, 45.6, 37.5, 31.4.

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BN}_{2} \mathrm{O}_{6} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}, 409.1082$; Found, 409.1055.
tert-butyl (E)-4-(5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-3-en-1-yl)piperidine-1-carboxylate (1 k)

Following the general procedure A , the product
1k was obtained in 15% yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.11(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 5.50-5.32(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.92 (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 2.04-$ 1.97 (m, 2H), 1.64 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.51$ (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ (s, 10H), 1.29$1.23(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{qd}, J=12.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) δ 12.3. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone $-d_{6}$) $\delta 169.0,155.5,132.0,127.5,79.5,63.0,46.6$, 37.2, 36.1, 32.9, 30.5, 28.6.

HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BN}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 431.2328; Found, 431.2329 .
(E)-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-5-en-1-yl benzoate (11)

Following the general procedure B, the product $\mathbf{1 1}$ was obtained in 30% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.22(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.9-4.84(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.46(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{p}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 0.98(\mathrm{q}, J=5.9,4.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , DMSO-d6) $\delta 12.2{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 173.7,168.7,129.3,127.8,62.9,60.4,46.3,34.1,27.2$, 25.6, 14.6.

HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}, 374.1773$; Found, 374.1789.
(E)-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-5-en-1-yl pivalate (1m)

Following the general procedure A , the product $\mathbf{1 m}$ was obtained in 46% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.23(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 5.47-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60$ $-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{11}$ B NMR (128 MHz, DMSO- d_{6}) $\delta 11.9 .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 177.4,168.8,129.7,127.3$, 63.7, 61.8, 45.6, 38.2, 31.8, 27.6, 26.9, 25.5.

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 376.1905$; Found, 376.1893.

(()-2-(7-chlorohept-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1n)

Following the general procedure A , the product $\mathbf{1 n}$ was obtained in 32% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.26(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ 5.43-5.35 (m, 1H), 5.32-5.27 (m, 1H), 4.18 (d, $J=$ $17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , DMSO$\left.d_{6}\right) \delta$ 11.6. ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 168.8,129.5,127.4,61.8,45.6,45.3,31.6$, 31.4, 26.4.

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 310.0990$; Found, 310.0996.
ethyl (Z)-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-5-enoate (10)

Following the general procedure C , the product 10 was obtained in 18% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.13(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) δ 5.55-5.49 (m, 1H), 5.35-5.29 (m, 1H), $4.19(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{p}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , DMSO- d_{6}) δ 12.0. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 174.3,169.0,129.7,127.5,62.9,60.8$, 46.6, 34.3, 27.2, 25.6, 14.6.

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BNO}_{6} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}, 350.1174$; Found, 350.1168 .
(\boldsymbol{E})-2-(hept-2-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (1p)

Following the general procedure A , the product $\mathbf{1 p}$ was obtained in 65% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 5.69-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-$ $1.24(\mathrm{~m}, \mathrm{~J}=4.1,3.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.13-0.77(\mathrm{~m}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 12.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 169.1, 132.2, 127.3, 63.0, 46.5, 33.2, 32.7, 23.0, 14.2 .

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 276.1378; Found, 276.1379.

Synthesis of the deuterium allyl boronate 1p-D2: ${ }^{4}$

A solution of vinylboronic acid pinacol ester and d_{2}-dibromomethane (1.5 equiv.) in THF was cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added $2.5 \mathrm{M} n \mathrm{BuLi}$ in hexane (1.6 equiv.) dropwise from a syringe, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . It was then rapidly brought to room temperature and refluxed at $65^{\circ} \mathrm{C}$ for 1.5 h . Then cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}$ was added. Ethyl acetate was then added and the layers were separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by flash chromatography. Then anhydrous DMSO was added to dissolve the product which was then added via syringe to a suspension of N-methyliminodiacetic acid (MIDA, 6.2 equiv) and $\mathrm{CH}(\mathrm{OMe})_{3}$ (4.0 equiv) in DMSO. The resulting mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ until the allylic boronic esters was used up by GC-MS monitoring. After cooling to r.t., the reaction mixture was diluted with ethyl acetate and water. The organic phase was seperated and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

(E)-2-(hept-2-en-1-yl-1,1- \boldsymbol{d}_{2})-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 5.44-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.93$
(d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.72(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.42-$ $1.23(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.1$, 132.2, 127.3, 63.0, 46.5, 33.2, 32.7, 23.0, 14.2.

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{D}_{2} \mathrm{BNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 278.1503$; Found, 278.1500.

3. General procedure for the chlorination reaction

General procedure D:

The allyl MIDA boronates $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride (10 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), N-chlorosuccinimide ($\mathrm{NCS}, 0.22 \mathrm{mmol}, 1.1$ equiv) and $4 \AA \mathrm{MS}$ $(20 \mathrm{mg})$ were added in $3 \mathrm{mLCH}_{3} \mathrm{CN}$ producing the pale yellow solution. The reaction mixture was stirred at room temperature overnight. After completion of the reaction, the p-iodobenzole (0.2 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR. After that, the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc from 2:1 to1:3, v/v) to afford the pure product as a white solid.

General procedure E:

The allyl MIDA boronates $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride (10 $\mathrm{mol} \%, 0.02 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(20 \mathrm{mg})$ were added in $1 \mathrm{mLCH}_{3} \mathrm{CN}$. A solution of $N-$ chlorosuccinimide (0.22 mmol , in $2 \mathrm{mLCH}_{3} \mathrm{CN}$) was prepared then drawn into a 5 mL syringe equipped with a teflon needle. The solution of NCS was added via syringe pump at the rate of $0.4 \mathrm{~mL} / \mathrm{h}$. The reaction mixture was stirred at room temperature overnight. After completion of the reaction, the p-iodobenzole (0.2 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR. After that, the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc from 2:1 to1:3, v / v) to afford the pure product as a white solid.

(E)-2-(3-chlorohex-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2a)

Following the general procedure \mathbf{D}, the product $\mathbf{2 a}$ was obtained in 84% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.25(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.12(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 0 \mathrm{H}), 5.77(\mathrm{dd}, J=17.5$, $1.0 \mathrm{~Hz}, 0 \mathrm{H}), 4.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0 \mathrm{H}), 4.24(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{dtd}, J=8.4,6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- d_{6}) $\delta 10.4 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone$\left.d_{6}\right) \delta 168.9,144.9,65.1,62.4,47.5,41.0,20.4,13.7$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 296.0833; Found, 296.0823.
(\boldsymbol{E})-2-(3-chlorobut-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2b)

Following the general procedure \mathbf{E}, the product $\mathbf{2 b}$ was obtained in 64% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.26(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.17(\mathrm{dd}, J=17.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.01(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- d_{6}) $\delta 10.4{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) $\delta 168.9,145.9,62.4,60.0,47.5,25.1$.
HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 268.0520; Found, 268.0525.
(E)-2-(3-chlorotridec-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2c)

Following the general procedure \mathbf{D}, the product $\mathbf{2 c}$ was obtained in 84% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.30(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.12(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.77 (dd, $J=17.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=16.9,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.98 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{11}$ B NMR (128 MHz , Acetone- d_{6}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.2$, $169.2,145.5,65.5,62.5,47.8,38.8,32.6,30.3,30.3,30.2,30.0,29.7,27.3,23.4,14.4$. HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{BClNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 358.1954$; Found, 358.1961.
(E)-2-(3-chloro-4-phenylbut-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (2d)

Following the general procedure \mathbf{E}, the product $\mathbf{2 d}$ was obtained in 51% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.12$ (dd, $J=17.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=17.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=16.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $(\mathrm{dd}, J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- d_{6}) $\delta 10.1 .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone- d_{6}) δ 169.0, 168.7, 144.1, 138.8, 130.4, 129.2, 127.5, 65.3, 62.2, 47.2, 45.2.

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 344.0834$; Found, 344.0819.
(\boldsymbol{E})-2-(3-chloro-5-phenylpent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (2e)

Following the general procedure \mathbf{E}, the product $2 \mathbf{e}$ was obtained in 71% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.30(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 7.39-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{dd}$, $J=17.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=17.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (dd, $J=17.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.66(\mathrm{~m}, 2 \mathrm{H})$,
$2.23-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone- d_{6}) $\delta 10.4 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone $-d_{6}$) $\delta 168.9,168.9,144.5,141.9,129.3,129.3,126.8,64.6,62.4,47.6,40.7$, 33.3.

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 358.0991$; Found, 358.0978.
ethyl (E)-4-(3-chloro-5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-4-en-1-yl)benzate (2f)

Following the general procedure \mathbf{E}, the product
2f was obtained in 66% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.16(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.19(\mathrm{dd}, J=17.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=17.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.03$ $(\mathrm{s}, 3 \mathrm{H}), 2.95-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11}$ B NMR (128 MHz , Acetone- d_{6}) $\delta 10.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 169.2, 169.2, 167.1, $147.8,144.9,130.4,129.7,129.5,64.6,62.6,61.7,47.9,40.0,33.3,14.6$.
HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 430.1203$; Found, 420.1213.
(E)-2-(3-chloro-5-phenoxypent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (2 g)

Following the general procedure \mathbf{D}, the product $\mathbf{2 g}$ was obtained in 58% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.24(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.29(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.90(\mathrm{~m}$, $3 \mathrm{H}), 6.18(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17-4.04 (m, 2H), $3.95(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=17.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}$, 3H), 2.36-2.19 (m, 2H). ${ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.3$. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- $\left.d_{3}\right) \delta 169.2,169.2,159.8,144.7,130.5,121.8,115.5,65.5,62.5,62.5$, 62.0, 47.8, 38.3.

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BClNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 374.0940$; Found, 374.0943.
(E)-2-(5-(benzyloxy)-3-chloropent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2h)

Following the general procedure \mathbf{E}, the product $\mathbf{2 h}$ was obtained in 64% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetonitrile- d_{3}) $\delta 7.35(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{dt}, J=6.3,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=17.0,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=17.3,11.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.61$ (dtd, $J=11.0,5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H})$, 2.07-2.02 (m, 1H). ${ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 168.8,168.8,144.6,139.4,128.9,128.2,128.1,73.1,67.2,62.1,61.9$, 47.4, 38.5.

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BClNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 388.1097$; Found, 388.1081.
(E)-2-(3-chloro-6-(5,5-dimethyl-1,3-dioxan-2-yl)hex-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2i)

Following the general procedure \mathbf{E}, the product $\mathbf{2 i}$ was obtained in 79% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.28(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 6.11(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.05 (dd, $J=17.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.02(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetone- d_{6}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 168.9,168.9$, 144.8, 102.4, 77.4, 65.2, 62.4, 62.4, 47.6, 38.8, 34.9, 30.6, 23.3, 21.9, 21.7. HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 410.1515$; Found, 410.1527.
(\boldsymbol{E})-2-(3-chloro-5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione ($\mathbf{2 j}$)

Following the general procedure \mathbf{E}, the product $\mathbf{2 j}$ was obtained in 63% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.15(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.18(\mathrm{dd}, J=17.4,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{dd}, J=17.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=17.0,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=16.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{td}, J=7.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$, $2.32-2.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11}$ B NMR (128 MHz , Acetone- d_{6}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) $\delta 168.9,168.9,168.7,143.9,135.0,133.2,123.7,62.4,62.4,62.3,47.6$, 37.4, 35.9.

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BClN}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 427.0842$; Found, 427.0851.
tert-butyl (E)-4-(3-chloro-5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-4-en-1-yl)piperidine-1-carboxylate (2k)

Following the general procedure \mathbf{D}, the product $\mathbf{2 k}$ was obtained in 78% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.11(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.13(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (dd, $J=17.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=16.9,1.8$ $\mathrm{Hz}, 4 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{bs}, 2 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ $(\mathrm{s}, 12 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone-d $\mathrm{d}_{6} \delta 10.4 .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone- d_{6}) $\delta 168.9,155.0,144.8,79.1,65.5,62.4,47.6,36.4,36.2,34.1,33.0$, 32.9, 28.6.

HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BClN}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 465.1938; Found, 465.1921.
(\boldsymbol{E})-5-chloro-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-6-en-1-yl benzoate (21)

Following the general procedure E, the product 21 was obtained in 79% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.23(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=17.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=17.1$, $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.2,167.2$, 145.3, 134.0, 131.5, 130.2, 129.6, 65.5, 65.2, 62.5, 47.8, 38.4, 28.8, 23.9.

HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BClNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}, 408.1383$; Found, 408.1390.
(\boldsymbol{E})-5-chloro-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-6-en-1-yl pivalate (2 m)

Following the general procedure \mathbf{E}, the product $\mathbf{2 m}$ was obtained in 80% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.23(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.13(\mathrm{dd}, J=17.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=17.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-3.90(\mathrm{~m}, 4 \mathrm{H})$, $3.02(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 0 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- d_{6}) $\delta 10.3 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) $\delta 178.3$, 168.9, 168.9, 144.7, 65.2, 64.5, 62.4, 47.6, 39.2, 38.5, 28.8, 27.5, 23.7.

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 410.1515$; Found,410.1514.
(E)-2-(3,7-dichlorohept-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2n)

Following the general procedure \mathbf{E}, the product $\mathbf{2 n}$ was obtained in 79% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 6.13$ (dd, $J=17.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.80(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=16.9,3.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetone- d_{6}) $\delta 10.4 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 168.9,168.9$, 144.7, 65.0, 62.4, 47.6, 45.6, 38.2, 32.8, 24.7.

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BCl}_{2} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 344.0600$; Found, 344.0608.
ethyl (E)-5-chloro-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-6enoate (20)

Following the general procedure \mathbf{E}, the product $\mathbf{2 o}$ was obtained in 73% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.14(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.12$ (dd, $J=17.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (dd, $J=17.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.01(\mathrm{~m}, 4 \mathrm{H})$, $3.03(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11}$ B NMR $\left(128 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 10.3 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone$\left.d_{6}\right) \delta 173.3,169.0,168.9,144.6,64.8,62.4,60.6,47.5,38.1,33.8,22.7,14.5$.
HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 368.1045$; Found, 368.1028.
(()-2-(3-chlorohept-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (2p)

${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 6.09$ (dd, $J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.69 (dd, $J=$ $17.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J$ $=17.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=$ 7.1 Hz, 3H). ${ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.2 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.3,169.2,145.5,65.5,62.6,47.9,38.6,29.4,22.8,14.2$. HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 310.0988$; Found, 310.0991.

4. General procedure for the imidation reaction

General procedure \mathbf{F} :

Under an argon atmosphere the allyl MIDA boronates 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) and NFSI ($0.3 \mathrm{mmol}, 1.5$ equiv) diphenyl diselenide ($0.02 \mathrm{mmol}, 10 \% \mathrm{mmol}$) and $4 \AA$ molecular sieves (powder) were added to a 15 mL Schlenk tube. The dry DCE (2 mL) was added to the reaction mixture. After stirring at $35^{\circ} \mathrm{C}$ for 12 h the solvent was evaporated. The p-iodobenzole $(0.2 \mathrm{mmol})$ was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR. After that, the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc from 2:1 to1:3, v/v) to afford the pure product as a white solid.

(E)-N-(1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hex-1-en-3-yl)- N (phenylsulfonyl)benzenesulfonamide (3a)

Following the general procedure \mathbf{F}, the product $\mathbf{3 a}$ was obtained in 68% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.15(\mathrm{dd}, J=17.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ (dd, $J=17.1,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ (s, $3 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.1,169.1,142.8,135.2,130.2,129.2,67.5,62.4,47.7,36.4,20.9$, 13.8.

HRMS: calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 557.1198; Found, 557.1187.
(E)- N -(4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)but-3-en-2-yl)- N (phenylsulfonyl)benzenesulfonamide (3b)

Following the general procedure \mathbf{F}, the product $\mathbf{3 b}$ was obtained in
56% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.26(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1}$ H NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.95-7.89$ (m, 4H), 7.77-7.72 (m, 2H), 7.65-7.59 (m, 4H), 6.15 (dd, $J=17.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (dd, $J=17.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (qdd, $J=$ $7.0,5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=17.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66$ (s, $3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.1,143.9$, 140.9, 135.2, 130.3, 129.1, 62.3, 62.3, 47.7, 19.6.

HRMS: calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 529.0885$; Found, 529.0862.
(E)-N-(1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)tridec-1-en-3-yl)-N(phenylsulfonyl)benzenesulfonamide (3c)

Following the general procedure \mathbf{F}, the
product 3c was obtained in 64% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.32(\mathrm{PE} / \mathrm{EA}=$ 1:4).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.15(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=17.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=17.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=17.1,11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.06(\mathrm{~m}, 16 \mathrm{H}), 0.86(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- d_{6}) δ 10.2. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile$\left.d_{3}\right) \delta 169.1,169.1,142.9,135.2,130.2,129.2,67.8,62.4,47.7,34.3,32.6,30.3,30.2$, 30.1, 30.0, 29.7, 27.6, 23.4, 14.4.

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 655.2295; Found, 655.2296.
(E)- \boldsymbol{N}-(4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-1-phenylbut-3-en-2$\mathbf{y l})-\mathrm{N}$-(phenylsulfonyl)benzenesulfonamide (3d)

Following the general procedure \mathbf{F}, the product $\mathbf{3 d}$ was obtained in 30% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.27(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.41(\mathrm{dd}, J=17.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddd}, J=11.3,7.6$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, 1 H), 3.51 (dd, $J=13.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=13.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetone- d_{6}) $\delta 10.1 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 168.8,168.7$, 140.7, 138.8, 135.0, 130.2, 130.2, 129.4, 129.3, 127.5, 68.8, 62.2, 62.1, 47.1, 41.3. HRMS: calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 605.1199; Found, 605.1198.
(E)-N-(1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-5-phenylpent-1-en-3-yl)- N-(phenylsulfonyl)benzenesulfonamide (3e)

Following the general procedure \mathbf{F}, the product $\mathbf{3 e}$ was obtained in 74% NMR yield as a white solid after column chromatography (eluent =

Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.30(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{q}, J=7.5$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (dd, $J=19.5,17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, 2.62-2.54 (m, 1H), 2.52-2.39 (m, 2H), 2.02-1.98 (m, 1H). ${ }^{11}$ B NMR (128 MHz , Acetonitrile- d_{3}) $\delta 9.9 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.2,169.1,142.3$, $141.8,135.2,130.3,129.4,129.4,129.1,127.1,66.7,62.5,47.8,36.1,33.5$.
HRMS: calculated for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 619.1356$; Found, 619.1351 .
ethyl (E)-4-(5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-3-(N -
(phenylsulfonyl)phenylsulfonamido)pent-4-en-1-yl)benzoate (3f)

Following the general procedure \mathbf{F}, the product
3f was obtained in 66% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.16(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.91$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.85 (d, $J=7.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.30$ (dd, $J=17.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=7.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (d, $J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (dd, $J=17.0,15.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.67(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=13.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{dd}, J=16.1,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 10.1 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 168.7, 168.7, 166.7, 146.9, 141.7, 134.9, 130.0, 129.9, 129.2, 129.1, 128.7, 66.2, 62.1, 61.3, 47.4, 35.3, 33.1, 14.2.

HRMS: calculated for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{BN}_{2} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 669.1748; Found, 669.1733.
(E)-N-(1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-5-phenoxypent-1-en-3-yl)- N -(phenylsulfonyl)benzenesulfonamide (3g)

Following the general procedure \mathbf{F}, the product $\mathbf{3 g}$ was
obtained in 57% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.24(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{q}, J=7.9,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=17.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J$ $=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{td}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=$ 17.2, 9.7, $3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.59-2.48 (m, 4H), 2.30-2.19 (m, 1H). ${ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.1 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 169.1, 169.1, 159.7, $141.5,135.3,130.5,130.3,129.2,121.8,115.4,65.2,64.3,62.4,47.6,34.2$.
HRMS: calculated for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 635.1305; Found, 635.1302.
(E)-N-(5-(benzyloxy)-1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-1-en-3-yl)- N -(phenylsulfonyl)benzenesulfonamide (3h)

Following the general procedure \mathbf{F}, the product $\mathbf{3 h}$ was obtained in 54% NMR yield as a white solid after column chromatography (eluent = Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.30(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (t, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.412-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $17.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.38 (dd, $J=17.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{td}, J=8.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=17.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (dd, $J=17.0,12.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.39 (dt, $J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (td, $J=9.4,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{11}$ B NMR (160 MHz , Acetone$\left.d_{6}\right) \delta 10.3 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 168.9,168.8,141.5,139.7,134.9,130.0$, 129.2, 129.1, 128.4, 128.3, 73.2, 67.3, 64.2, 62.4, 47.5, 35.0.

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{BN}_{2} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 649.1462; Found, 649.1435.
(E)-N-(6-(5,5-dimethyl-1,3-dioxan-2-yl)-1-(6-methyl-4,8-dioxo-1,3,6,2-
dioxazaborocan-2-yl)hex-1-en-3-yl)- N-(phenylsulfonyl)benzenesulfonamide (3i)

Following the general procedure \mathbf{F}, the product $\mathbf{3 i}$ was obtained in 65% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.29(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.19(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $16.9,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H})$, 2.08-2.03 (m, 1H), 1.86-1.77 (m, 1H), $1.46(\mathrm{td}, J=7.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 2 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) δ 10.1. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.1,169.1,142.7,135.2,130.3,129.2,102.4,77.5,67.6,62.3$, 47.7, 34.9, 34.1, 30.7, 23.2, 22.2, 21.8.

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 671.1880; Found, 671.1892.
(E)-N-(5-(1,3-dioxoisoindolin-2-yl)-1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)pent-1-en-3-yl)- N-(phenylsulfonyl)benzenesulfonamide (3j)

Following the general procedure \mathbf{F}, the product $\mathbf{3 j}$ was obtained in 56% NMR yield as a white solid after column chromatography (eluent
$=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.15(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.89-7.84(\mathrm{~m}, 8 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ ($\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$), $6.26(\mathrm{dd}, J=17.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.45$ $(\mathrm{m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=8.1,5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dt}, J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 10.0 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.2,141.2$, 135.3, 135.3, 133.1, 130.3, 129.1, 124.0, 64.3, 62.4, 62.4, 47.8, 36.2, 33.8.

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BN}_{3} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 688.1207; Found, 688.1189.
tert-butyl (E)-4-(5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-3-(N -
(phenylsulfonyl)phenylsulfonamido)pent-4-en-1-yl)piperidine-1-carboxylate (3k)

Following the general procedure \mathbf{F}, the product $\mathbf{3 k}$
was obtained in 58% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.11(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.22(\mathrm{dd}, J=17.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (d, $J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 5 \mathrm{H}), 2.04(\mathrm{td}$, $J=12.5,11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{tt}, J=12.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.41(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 10 \mathrm{H}), 1.26(\mathrm{q}, J=9.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{ddt}, J=33.3,12.1,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 0.85(\mathrm{pd}, J=11.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 10.2$. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.1,169.1,155.4,142.8,135.3,130.3,129.2$, $79.5,67.9,62.4,47.7,36.2,34.4,32.9,32.7,31.5,28.6$.
HRMS: calculated for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{BN}_{3} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 726.2303$; Found, 726.2292.
(\boldsymbol{E})-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-5-(N -(phenylsulfonyl)phenylsulfonamido)hept-6-en-1-yl benzoate (31)

Following the general procedure \mathbf{F}, the product 31
was obtained in 70% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.23(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{dd}, J=16.9$, $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.87 (s, 3H), 2.19 (ddt, $J=14.0,9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 (ddt, $J=16.4,12.0$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-$ $\left.d_{6}\right) \delta 10.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) δ 168.9, 168.8, 166.7, 142.3, 134.9, 133.8, $131.4,130.2,130.1,129.4,129.3,67.5,65.3,62.3,47.5,34.2,29.0,24.4$.
HRMS: calculated for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{BN}_{2} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 691.1568; Found, 691.1559.

(E)-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-5-(N -(phenylsulfonyl)phenylsulfonamido)hept-6-en-1-yl pivalate (3m)

Following the general procedure \mathbf{F}, the product $\mathbf{3 m}$
was obtained in 64% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.24(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.21(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{dd}, J=17.0,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H})$, $2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.15$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 10.0 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile$\left.d_{3}\right) \delta 178.9,169.1,169.0,142.7$ (2C), 135.2, 130.3, 129.2, 67.5, 64.7, 62.4, 47.7, 39.3, 34.0, 28.8, 27.5, 24.3.

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 671.1880; Found,671.1879.
(\boldsymbol{E})- N -(7-chloro-1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-1-en-3$\mathbf{y l})-\mathrm{N}$-(phenylsulfonyl)benzenesulfonamide (3n)

Following the general procedure \mathbf{F}, the product $\mathbf{3 n}$ was obtained in 52% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.26(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.33(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=16.9,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m} \mathrm{1H}), 1.69(\mathrm{td}, J=8.9$, $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetone- d_{6}) $\delta 10.4 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 168.8,168.8,142.2,135.0,130.1,129.3,67.4,62.3,47.5$, 45.4, 33.7, 32.8, 25.1.

HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BClN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 605.0965; Found, 605.0991 .
ethyl (E)-7-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-5-(N -
(phenylsulfonyl)phenylsulfonamido)hept-6-enoate (30)

Following the general procedure \mathbf{F}, the product $\mathbf{3 o}$
was obtained in 16% NMR yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}) . R_{\mathrm{F}}=0.13(\mathrm{PE} / \mathrm{EA}=1: 4)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61$
($\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$), 6.19 (dd, $J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=17.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $17.0,15.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{ddt}, J=13.1,10.4,6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.42(\mathrm{dtd}, J=17.2,13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.2 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 173.8, 169.1, 169.1, 142.5, 135.3, 130.3, 129.2, 67.3, 62.4, 61.0, 47.7, 34.1, 33.7, 23.1, 14.6.

HRMS: calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{BN}_{2} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 629.1410; Found, 629.1399.

5. The synthesis of $\boldsymbol{\gamma}$-functionalized benzyl MIDA boronates

Synthesis of compound 4: ${ }^{5}$

The dimethyl malonate ($0.3 \mathrm{mmol}, 3.0$ equiv.) was added dropwise into the reaction flask filled with $\mathrm{NaH}(80 \%$ in oil) and THF (1 ml) under an atmosphere of nitrogen at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 20 minutes at room temperature. In the glove box, 2a ($0.1 \mathrm{mmol}, 1.0$ equiv.), palladium acetate ($5 \mathrm{~mol} \%$) and triphenylphosphine ($20 \mathrm{~mol} \%$) were added into another 15 ml Schlenk reaction tube, sealed with rubber plug and removed out. The anhydrous THF (1 ml) was added with syringe. Under argon atmosphere, the reaction solution of dimethyl malonate was added into the Schlenk reaction tube by syringe. After the mixture was stirred for 40 minutes at room temperature. The solvents were removed on a rotary evaporator, and the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product $4(32.1 \mathrm{mg}, 87 \%)$ as a white solid.
dimethyl (E)-2-(1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hex-1-en-3yl)malonate

${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 5.84(\mathrm{dd}, J=17.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=$ $17.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (dd, $J=17.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (dd, $J=17.0,15.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B} \mathrm{NMR}(160 \mathrm{MHz}$, Acetone- d_{6}) $\delta 10.4 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta 169.2,169.1,168.9,145.2$, 62.2, 57.2, 52.5, 52.4, 47.4, 45.9, 35.0, 21.0, 14.1.

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BNO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 392.1490$; Found, 392.1482.
Synthesis of compound 5:

In the glove box, $\mathbf{4}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), 4-iodoanisole ($0.15 \mathrm{mmol}, 1.5$ equiv.) palladium(II) acetate ($5 \mathrm{~mol} \%$) and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (Sphos, $10 \mathrm{~mol} \%$) were added into 15 ml Schlenk reaction tube, sealed with rubber plug and removed out. Under argon atmosphere, the THF (0.2 mL) and 1 M NaOH (6.0 equiv.)
were added with syringe then the reaction mixture was vigorously stirred at rt. After 30 mins, the reaction mixture was quenched with water (2 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 6/1, v/v) to afford the pure product 5 ($21.8 \mathrm{mg}, 68 \%$).
dimethyl (\boldsymbol{E})-2-(1-(4-methoxyphenyl)hex-1-en-3-yl)malonate
$(\mathrm{MeOOC})_{2} \mathrm{HC}, \mathrm{H}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (d, $\left.J=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83$ (d, $\left.J=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.38$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=15.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (s, $3 \mathrm{H}), 3.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{qd}, J=9.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,168.8,159.2,132.0,130.1$, 127.6, 127.6, 114.1, 57.4, 55.5, 52.6, 52.4, 43.6, 35.2, 20.5, 14.0 .

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 343.1516$; Found, 343.1514.
Synthesis of compound 6: ${ }^{5}$

In the glove box, $\mathbf{2 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), Sodium benzenesulfinate (0.4 mmol , 4 equiv.) and tetrakis(triphenylphosphine)palladium ($5 \mathrm{~mol} \%$) were added into 15 ml Schlenk reaction tube, sealed with rubber plug and removed out. Under argon atmosphere, the anhydrous THF (2 mL) and DMSO (0.3 mL) were added with syringe then the reaction mixture was vigorously stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to the room temperature, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product 6 ($32.7 \mathrm{mg}, 86 \%$) as a white solid.

(E)-6-methyl-2-(3-(phenylsulfonyl)hex-1-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-

 dione
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 8.35-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.20-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.06(\mathrm{~m}$, $2 \mathrm{H}), 6.28$ (dd, $J=17.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=16.9,0.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H})$, $2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11}$ B NMR (128 MHz, Acetone- d_{6}) δ 9.9. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 169.1,169.0$, 139.1, 137.0, 134.7, 130.1, 129.7, 71.0, 62.4, 47.6, 29.4, 20.6, 13.8.

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}, 402.1156$; Found, 402.1159.
Synthesis of compound 7: ${ }^{6}$

In the glove box, $\mathbf{2 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), AgF ($0.5 \mathrm{mmol}, 5.0$ equiv.), CuBr (0.1 mmol) were added into 15 ml Schlenk reaction tube, sealed with rubber plug and removed out. Under argon atmosphere, the anhydrous $\operatorname{MeCN}(0.5 \mathrm{~mL})$ was added with syringe then the reaction mixture was vigorously stirred at room temperature for 24 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product $7(17.7 \mathrm{mg}, 69 \%)$ as a white solid.
(E)-2-(3-fluorohex-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 6.11$ (ddd, $J=17.9,15.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (ddd, $J=17.9,2.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (ddtd, $J=49.2,6.9,5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (d, $J=17.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=17.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}$, $2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Acetonitrile- d_{3}) $\delta-178.4 .{ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 10.4 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.3$, 143.9 $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=19.2 \mathrm{~Hz}\right), 95.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=166.2 \mathrm{~Hz}\right), 62.5,47.8,37.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.8 \mathrm{~Hz}\right)$, $18.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.3 \mathrm{~Hz}\right), 14.1$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BFNO}_{4} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}$, 296.0868; Found, 296.0874.
Synthesis of compound 8 and 12: ${ }^{7}$

2a ($0.1 \mathrm{mmol}, 1.0$ equiv.) or $\mathbf{1 1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.) 1,3-diiodo-5,5dimethylhydantoin (DIH, $0.2 \mathrm{mmol}, 1.0$ equiv), DCM (0.5 mL) and $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HF}(140 \mu \mathrm{~L}$, 9.0 equiv) were added to a 15 mL screw cap vial equipped with a stirring bar. The solution was stirred at room temperature for 5 mins. The resulting mixture was quenched with $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and then extracted with DCM. The organic phase was washed with 0.2 M HCl and brine. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The p iodobenzole (0.1 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR.

After that, the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc from 2:1 to1:3, v/v) to afford the pure product $\mathbf{8}(87 \%$ NMR yield) or $\mathbf{1 2}$ (72% NMR yield) as a white solid. Meanwhile, recrystallization (acetone/diethyl ether) was conducted to get pure product.
(土,-)2-(3-chloro-2-fluoro-1-iodohexyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-
dione (8)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 4.84$ (ddd, $\left.J=46.9,8.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{dd}, J=$ $22.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=17.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ $(\mathrm{s}, 3 \mathrm{H}), 1.96(\mathrm{dt}, J=15.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{pd}, J=13.4,12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.35$ $(\mathrm{m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) $\delta 10.9 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Acetonitrile- d_{3}) $\delta-171.9 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ $168.2,168.2,100.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=179.8 \mathrm{~Hz}\right), 65.3,63.7,63.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.0 \mathrm{~Hz}\right), 47.5(2 \mathrm{C})$, $34.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 20.3,13.6$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BClFINO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 441.9862$; Found, 441.9861.
(土,-)2-(3-azido-2-fluoro-1-iodohexyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (12)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- d_{6}) $\delta 4.71(\mathrm{ddd}, J=47.0,7.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=17.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetone- d_{6}) $\delta 10.8 .{ }^{19}$ F NMR (376 MHz , Acetone- d_{6}) $\delta-173.0 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) δ $167.9,167.9,98.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=179.1 \mathrm{~Hz}\right), 65.1,64.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.1 \mathrm{~Hz}\right), 63.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right.$ $=4.6 \mathrm{~Hz}), 47.1(2 \mathrm{C}), 31.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 20.0,14.0$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BFIN}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 449.0266$; Found, 449,0274.

Synthesis of compound 9:

To the 15 mL tube were added $\mathbf{2 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), 3-Chloroperbenzoic acid (m CPBA, $0.25 \mathrm{mmol}, 2.5$ equiv.) and $\mathrm{DCM}(1.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at $30{ }^{\circ} \mathrm{C}$ for 24 h . The solvent was then removed under reduced pressure, the crude product was purified by flash chromatography on silica with an
eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product 9 ($27.1 \mathrm{mg}, 87 \%$) as a white solid.

2-(3-(1-chlorobutyl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 4.33$ (dd, $J=17.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (dd, $J=16.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.15 (dd, $J=17.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=16.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (tdd, $J=7.4,5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (dd, $J=17.2$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (160 MHz , Acetonitrile- d_{3}) $\delta 9.7 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) $\delta 169.5$, $169.4,168.5,168.4,66.4,64.3,63.0,62.9,62.9,60.3,59.4,47.4,47.3,38.6,38.1,20.3$, 20.0, 13.8, 13.8.

HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}, 290.0963$; Found, 290.0964.
Synthesis of compound 10:

To the 15 mL tube were added $\mathbf{2 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), pinacol ($0.5 \mathrm{mmol}, 5.0$ equiv.), $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($2 \mathrm{M}, 4.0$ equiv.) and THF (1.0 mL). The reaction mixture was vigorously stirred at room temperature for 24 h . The resulting mixture was quenched with water and then extracted with EA. The organic phase was washed with brine. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the p-iodobenzole (0.1 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 86 \%\right)$. The crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product $\mathbf{1 0}(11.2 \mathrm{mg}, 46 \%)$ as a colorless liquid.
(E)-2-(3-chlorohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

$$
R_{\mathrm{F}}=0.24(\mathrm{PE} / \mathrm{EA}=100: 1) ;
$$

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 6.55$ (dd, $J=17.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.62 (d, $J=17.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{dq}, J=13.9,6.7,6.2 \mathrm{~Hz}$, 2 H), $1.27(\mathrm{~s}, 12 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Chloroform- d) $\delta 29.8$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 151.5, 83.6, 63.7, 39.9, 24.9, 24.9, 19.7, 13.6. HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{BClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 277.1197; Found, 277.1187.

Synthesis of compound 11: ${ }^{8}$

To the 15 mL tube were added 3a ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{NaN}_{3}(0.2 \mathrm{mmol}, 2.0$ equiv.), $\mathrm{NaI}(10 \mathrm{~mol} \%)$ and $\mathrm{DMF}(0.5 \mathrm{~mL})$. The reaction mixture was vigorously stirred at $100^{\circ} \mathrm{C}$ for 30 mins . After cooling to the room temperature, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the p-iodobenzole (0.1 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR (71%). The crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product $\mathbf{1 1}$ as a white solid.

(E)-2-(3-azidohex-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 5.99$ (dd, $J=17.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (d, $J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=15.3,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 1.52$ (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 10.4 .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetonitrile- d_{3}) δ 169.2, 143.0, 66.7, 62.5, 62.5, 47.9, 36.8, 19.9, 14.0.

HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BN}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 303.1237; Found, 303.1227.

Synthesis of compound 13:

To the microwave tube were added $\mathbf{3 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{NaI}(0.02 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and DMF (1 mL). The reaction mixture was vigorously stirred at $100^{\circ} \mathrm{C}$ for 30 mins. After cooling to the room temperature, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the p-iodobenzole (0.1 mmol) was added and the NMR yield was determined by ${ }^{1} \mathrm{H}$ NMR (59% for major). The crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc 1:3, v/v) to afford the pure product $\mathbf{1 3}$ as a white solid.
2-((1E)-hexa-1,3-dien-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (major)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 6.53(\mathrm{dd}, J=17.4,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11$ (ddt, $J=13.9,10.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$, 2.15-2.06 (m, 3H), $0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11}$ B NMR (128 MHz , Acetone- d_{6}) δ 10.7. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) δ 169.1, 143.8, 137.9, 132.7, $62.3,47.3,26.2,13.8$. HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BNO} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 260.1065$; Found, 260.1065.

6. KIE experiments

The allyl MIDA boronates $\mathbf{1 p}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride (10 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), N -chlorosuccinimide ($\mathrm{NCS}, 0.11 \mathrm{mmol}, 1.1$ equiv), $4 \AA \mathrm{MS}$ (10 mg) and $1.5 \mathrm{mLCH}_{3} \mathrm{CN}$ were added in a 5 mL round bottom flask. The deuterium allyl MIDA boronates $\mathbf{1 p}-\mathbf{D}_{2}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride ($10 \mathrm{~mol} \%$, 0.02 mmol), N -chlorosuccinimide ($\mathrm{NCS}, 0.11 \mathrm{mmol}, 1.1$ equiv), $4 \AA \mathrm{MS}(10 \mathrm{mg})$ and $1.5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ were added in another 5 mL round bottom flask. After the reaction mixture was stirred for 5 mins , the two reaction mixtures were mixed and p-iodoanisole $(23.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was then added as an internal standard. The mixture was diluted with acetonitrile (2 mL) and then evaporated under reduced pressure. Yields were determined by ${ }^{1} \mathrm{H}$ NMR. A kinetic isotope effect value $k_{\mathrm{H}} / k_{\mathrm{D}}=1.2$ was obtained.

7. Intramolecular competition experiments and control experiment.

The allyl MIDA boronates $\mathbf{1 4}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride (10 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), N-chlorosuccinimide (NCS, $0.22 \mathrm{mmol}, 1.1$ equiv) and $4 \AA \mathrm{MS}$ $(20 \mathrm{mg})$ were added in $3 \mathrm{~mL} \mathrm{CH} \mathrm{H}_{3} \mathrm{CN}$. The reaction mixture was stirred at room temperature for 24 h . After completion of the reaction, the crude product was purified by flash chromatography on silica with an eluent (Petroleum ether/ EtOAc from 2:1 to1:3, v / v) to afford the pure product 15 as a white solid (76% isolated yield).
tert-butyl (E)-5-(4-methyl-2,6-dioxotetrahydro-2H-4 $\lambda^{4}, 8 \lambda^{4}$-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)pent-3-enoate (14)

Following the general procedure B, the product $\mathbf{1 4}$ was obtained in 60% yield as a white solid after column chromatography (eluent $=$ Petroleum ether/ ethyl acetate $1: 3 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- d_{3}) $\delta 5.63-5.33(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=16.9,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.77$ (dd, $J=16.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 5 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 172.5,169.0,131.8,124.1,80.9,62.9$, $62.9,46.4,39.9,28.2 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetonitrile- d_{3}) $\delta 12.1$.
HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 334.1432$; Found, 334.1429.
tert-butyl (E)-4-chloro-5-(4-methyl-2,6-dioxotetrahydro-2H-414,814-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)pent-2-enoate (15)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 6.85(\mathrm{dd}, J=15.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=$ $15.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{tdd}, J=8.4,6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=17.0,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{t}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Acetonitrile- d_{3}) $\delta 168.9,168.8,166.2,148.0,123.5,81.4,62.9,62.8,60.1,46.9$, 28.2. ${ }^{11}$ B NMR (160 MHz , Acetonitrile- d_{3}) $\delta 11.5$.

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 368.1043$; Found, 368.1049.

Control experiment

The allyl pinacol boronate $\mathbf{1 4}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), phenyl selenium chloride (10 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), N-chlorosuccinimide (NCS, $0.22 \mathrm{mmol}, 1.1$ equiv) and $4 \AA \mathrm{MS}$ (20 mg) were added in 3 mLCH 3 CN . The reaction mixture was stirred at room temperature for 24 h . After completion of the reaction, the crude product was purified by flash chromatography on silica to afford the pure product $17(41 \%)$ and $\mathbf{1 8}(28 \%)$ as known compounds.

(E)-4,4,5,5-tetramethyl-2-(5-phenylpent-2-en-1-yl)-1,3,2-dioxaborolane (16)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.29-7.23 (m, 2H), 7.22-7.12 (m, 3H), 5.58-5.37 $(\mathrm{m}, 3 \mathrm{H}), 2.65(\mathrm{dd}, J=9.1,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24$ (s, 12H).
(3-chloropent-4-en-1-yl) benzene (17)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.32-7.28 (m, 2H), 7.23-7.19 (m, 3H), 5.92 (ddd, $J=16.9,10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dt}, J=10.1,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H})$.
(E)-(5-chloropent-3-en-1-yl) benzene (18)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.29(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22-7.13 (m, 3H), $5.87-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=8.9$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 2 \mathrm{H})$.
8. NMR spectrum of starting materials and products

$$
x_{3}
$$

か「	$\stackrel{\square}{6}$	
$\stackrel{\infty}{\infty}$	－	$\stackrel{\sim}{\sim}{ }_{\sim}^{\sim} \sim \sim_{\sim}^{\sim}$
11	I	\checkmark

(

$\stackrel{N}{N}$

Conele

(

>	$\stackrel{\circ}{\text { g }}$
$\stackrel{\infty}{\infty}$	
$\stackrel{\infty}{\infty}$	
$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\stackrel{\circ}{N}} \stackrel{\stackrel{N}{N}}{\sim}$

Pivo

(

$\stackrel{\stackrel{0}{0}}{\stackrel{0}{\sim}}$

$\begin{array}{llllllllllllllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \underset{\mathrm{f}}{\mathrm{f}} \mathrm{(ppm)} & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$

$\overline{\mathrm{N}}$	운	Nか	$\bar{\square}$	No ${ }_{\text {No }}$
$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{+}}$	Nへべべへ		¢	¢ ¢ ¢
｜｜	11	\1	，	1 \1

Ph

$\stackrel{m}{\stackrel{m}{\circ}}$

Ch

¢ ${ }_{\text {¢ }}$	¢0 \％		$8{ }^{\circ}$	へ®
$\stackrel{\infty}{\circ} \stackrel{\infty}{\circ}$	示		¢ ¢	守が㐌
Y	$1 /$	YT	11	

EtOOC

$\stackrel{n}{N}$
$\stackrel{0}{\circ}$
$\stackrel{1}{1}$

Etooc

$$
t_{0} i \sim^{a} \cos _{80}^{N}
$$

PhthN $\mathrm{H}_{2}^{\mathrm{C}} \underset{-1}{\mathrm{C}}$

$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

PhthN

$$
\text { PivO }_{4)_{4}}^{C l}
$$

PivO $_{4)_{4}}^{C l}$
$20 \quad 210 \quad 200 \quad 10$
$\left.\begin{array}{lllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

$\begin{array}{llllllllllllllllllllll}80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \underset{f 10}{-10} & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100\end{array}$

$=\operatorname{etooc}+\frac{1}{C l}$

잉ㅇㅇㅇ	\bigcirc						
$\cdots \infty$	$\stackrel{\sim}{+}$	$\stackrel{\infty}{\circ}$	¢	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\bullet}$	\bigcirc	
$\stackrel{+}{\sim} \stackrel{0}{\sim}$	$\stackrel{1}{*}$	¢ ¢ ¢	-	¢	N	$\stackrel{\text { - }}{+}$	
\ Y	\|	\1		\|			

HMBC of $\mathbf{3 a}$ (as below) shows a carbon signal peak at 140 ppm while there is no signal peak in ${ }^{13} \mathrm{C}$ NMR spectrum. Meanwhile there are lots of products showing the same phenomenon.

$\xrightarrow[0]{\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}}$

Ph
$\begin{array}{lllllllllllllllllllll}80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \underset{f 1}{(\mathrm{ppm})} & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100\end{array}$

$\stackrel{n}{\stackrel{n}{\circ}}$

Pho

(SnO-2

[^0]| ${ }_{\infty}^{\infty}{ }_{\infty}^{\infty}$ | セん¢ | ¢ | ${ }^{9}$ | \cdots |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\infty}{\stackrel{\infty}{\bullet}}$ | ¢ ${ }_{\sim}^{\sim}$ | | $\stackrel{\text { J }}{ }$ | ¢ |
| Y | － | 1 〉ゝ1 | | |

$\stackrel{+}{⿺}$
$\stackrel{+}{\circ}$
$\stackrel{\circ}{\square}$

HMQC of $\mathbf{3 k}$ (as below) shows carbon signal peak at 42 ppm while there is no signal peak in ${ }^{13} \mathrm{C}$ NMR spectrum.

210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0	-10

Etooc

$(\mathrm{MeOOC})_{2} \mathrm{HC}$

(MeOOC) $\mathrm{HC}_{2}^{\mathrm{HC}} \times$

$$
\underbrace{\mathrm{SO}_{2} \mathrm{Ph}}_{-0}
$$

∞
∞
$\dot{\infty}$
i

SO2

$\stackrel{\text { N }}{\stackrel{1}{+}}$

$$
\underbrace{C}_{F} \underbrace{1}_{B=0}
$$

$$
\underbrace{C l}_{F}
$$

N

$$
\underbrace{\mathrm{N}_{3}}_{\mathrm{FPr}} \underbrace{N_{-}^{\prime}}_{B_{0}^{2}}
$$

[^1]$$
\underbrace{N_{3}}_{n-1}
$$

$\stackrel{N}{N}$
$\stackrel{+}{\circ}$
$\stackrel{1}{1}$

[^2]

9. References

1. Chen, Y. G.; Shuai, B.; Ma, C.; Zhang, X. J.; Fang, P.; Mei, T. S., Regioselective Ni-Catalyzed Carboxylation of Allylic and Propargylic Alcohols with Carbon Dioxide. Org. Lett. 2017, 19, 2969-2972.
2. Aggarwal, V.; Szabó, K.; Dutheuil, G.; Selander, N., Direct Synthesis of Functionalized Allylic Boronic Esters from Allylic Alcohols and Inexpensive Reagents and Catalysts. Synthesis 2008, 2008, 2293-2297.
3. Ely, R. J.; Morken, J. P., Regio- and stereoselective Ni-catalyzed 1,4-hydroboration of 1,3-dienes: access to stereodefined (Z)-allylboron reagents and derived allylic alcohols. J. Am. Chem. Soc. 2010, 132, 2534-5.
4. Brown, H. C.; Singh, S. M.; Rangaishenvi, M. V., Organoboranes. 46. New Procedures for the Homologation of Boronic Esters: A Critical Examination of the Available Procedures To Achieve Convenient Homologation of Boronic Esters. J. Org. Chem. 1986, 51, 3155-3161.
5. Baeckvall, J. E.; Vaagberg, J. O.; Zercher, C.; Genet, J. P.; Denis, A., Stereoselective synthesis of vinylcyclopropanes via palladium-catalyzed reactions. J. Org. Chem. 2002, 52, 5430-5435.
6. Zhang, Z.; Wang, F.; Mu, X.; Chen, P.; Liu, G., Copper-catalyzed regioselective fluorination of allylic halides. Angew. Chem. Int. Ed. 2013, 52, 7549-53.
7. Fan, W. X.; Li, J. L.; Lv, W. X.; Yang, L.; Li, Q.; Wang, H., Synthesis of fluorinated amphoteric organoborons via iodofluorination of alkynyl and alkenyl MIDA boronates. Chem. Commun. 2020, 56, 82-85.
8. Seljestokken, B.; Fiksdahl, A.; Pretzmann, U.; Jensen, A. K.; Thorsen, T. K.; Coppens, P.; Buchardt, O., The Synthesis of (S)-1-Methyl-3-phenylpropylamine by Inversion of Amines. Acta Chemica Scandinavica 1993, 47, 1050-1052.

[^0]: $\begin{array}{lllllllllllllllllllll}80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ f 1(\mathrm{ppm}) & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100\end{array}$

[^1]: $\begin{array}{llllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \left.\begin{array}{l}\text { f1 (ppm) }\end{array}\right]\end{array}$

[^2]: $\begin{array}{cccccccccccc}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \begin{array}{c}0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & -1\end{array}$

