Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

# **Pyridine Dicarbanion-bonded Ag<sub>13</sub> Organometallic Nanoclusters: Synthesis and On-surface Oxidative Coupling Reaction**

Cui-Cui Li, Siqi Zhang, Jian Tang, Ruijun Jian, Yu Xia and Liang Zhao\*

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

E-mail: zhaolchem@mail.tsinghua.edu.cn; Phone: +86-10-62786635.

#### **Table of Contents**

| 1 | General Information            |            |
|---|--------------------------------|------------|
| 2 | X-ray Crystallographic Studies | S3         |
| 3 | Supporting Figures             | <b>S</b> 6 |
| 4 | Supporting Tables              | S27        |
| 5 | References                     | S28        |

#### **Experimental Procedures**

#### 1. General Information

#### **Computational details**

Theoretical calculations of <sup>Me</sup>PyAg<sub>5</sub>, <sup>Me</sup>PyAg<sub>13</sub>, <sup>Ph</sup>PyAg<sub>13</sub> -based model clusters were performed using the Gaussian 09 program<sup>1</sup> and ORCA ab initio.<sup>2</sup> The TZVP basis sets<sup>3</sup> are used for all atoms for geometry optimizations of <sup>Me</sup>PyAg<sub>13</sub> and <sup>Ph</sup>PyAg<sub>13</sub> with the functional of BP86.<sup>4</sup> Solvation effects of acetone were accounted by using the SMD<sup>5</sup> continuum solvation model. The scaling method<sup>6</sup> was used to calculate the NMR of <sup>Me</sup>PyAg<sub>13</sub> and <sup>Ph</sup>PyAg<sub>13</sub> and <sup>Ph</sup>PyAg<sub>13</sub> with the functional of b3lyp<sup>7</sup> and 6-31G(d)<sup>8</sup> (C, H, N atoms) & SDD<sup>9</sup> (Ag atoms) basis set. Data for orbital composition analysis with Mulliken partition are from Gaussian 09 calculations and processed with Multiwfn software.<sup>10</sup> Initial structure for molecular orbital analysis of <sup>Me</sup>PyAg<sub>5</sub> was built up on the basis of single crystal structure with the functional of b3lyp<sup>7</sup> and 6-31G(d)<sup>8</sup> (C, H, N, O, S, F atoms) & LanL2DZ<sup>11</sup> (Ag atoms) basis sets. The bond order, IGMH analysis and AIM analysis of <sup>Me</sup>PyAg<sub>13</sub> were realized by Multiwfn and VMD<sup>12</sup> software.

#### **DOSY measurement**

DOSY experiments were carried out on a Bruker Avance 600 MHz instrument using a 5mm TXI HC/N Z-GRD probe. 2D sequence for diffusion measurements were conducted using stimulated echo and LED with 2 spoil gradients. All <sup>1</sup>H-DOSY spectra were recorded at 298 K with 50 ms diffusion delay, 16 squared increments for gradient levels and 32 transients. Gradient strength was set as 50 G/cm. Molecular sizes of  $^{Me}PyAg_{13}$  in  $d_6$ -Acetone were calculated according to the Einstein-Stokes equation:

$$D = k_B T / 6\pi \eta r$$

*T*: temperature (K);  $\eta$ : viscosity constant of acetone =  $3.16 \times 10^{-4}$  Pa·s; *kB*: Boltzmann's constant; *D*: diffusion coefficient; *r*: radius of the spherical particle.

#### 2. X-ray Crystallographic Studies

Single-crystal X-ray data for silver cluster complexes were collected with Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) on a Rigaku Saturn 724/724 + CCD diffractometer with frames of oscillation range 0.5°. The selected crystal was mounted onto a nylon loop by polyisobutene and enveloped in a low-temperature stream of dry nitrogen gas during data collection. The absorption corrections were applied using multi-scan methods. All structures were solved by direct methods, and non-hydrogen atoms were located from difference Fourier maps. Non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F<sup>2</sup> using the SHELXTL program<sup>13</sup> unless otherwise noted. The diffused electron density in the remaining void was treated by SQUEEZE program on the PLATON platform.<sup>14</sup> All figures were drawn by using X-seed<sup>15</sup> and Diamond program.

Crystal data for <sup>Me</sup>PyAg<sub>5</sub> ([Ag<sub>5</sub>(C<sub>6</sub>NH<sub>5</sub>)(Py[8])](CF<sub>3</sub>SO<sub>3</sub>)<sub>3</sub>) (CCDC-1996369):  $C_{57}H_{53}Ag_5F_9N_{17}O_9S_3$ , M = 1925.68, monoclinic, space group C2/c (No. 15), a = 25.7535(5) Å, b = 24.5293(6) Å, c = 24.9163(4) Å,  $\beta = 91.174(2)^\circ$ , V = 15736.7(6) Å<sup>3</sup>, Z = 8, T = 173 K, Dc = 1.627 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 14876 unique reflections ( $R_{int} = 0.034$ ) and 11488 observed reflections with I > 2 $\sigma(I)$  to give R<sub>1</sub> = 0.0727 and wR<sub>2</sub> = 0.2176 and a goodness-of-fit = 1.041. The silver atom Ag04 was disordered at two positions with a refined site

occupancy ratio of 0.95:0.05. The SQUEEZE procedure of PLATON was used in the processing of <sup>Me</sup>PyAg<sub>5</sub>. In the checkCIF report of <sup>Me</sup>PyAg<sub>5</sub>, there are two B alerts of "High 'MainMol' Ueq as Compared to Neighbors of O029" and "Low 'MainMol' Ueq as Compared to Neighbors of S007", which can be ascribed to the disorders of triflate anions in the structure of <sup>Me</sup>PyAg<sub>5</sub>.

Crystal data for <sup>*n*-Pr</sup>PyAg<sub>5</sub> ([Ag<sub>5</sub>(C<sub>8</sub>NH<sub>9</sub>)(Py[8])](CF<sub>3</sub>SO<sub>3</sub>)<sub>3</sub>) (CCDC-2062353): C<sub>59</sub>H<sub>57</sub>Ag<sub>5</sub>F<sub>9</sub>N<sub>17</sub>O<sub>9</sub>S<sub>3</sub>, M = 3909.50, triclinic, space group P-1 (No. 2), a = 14.8014(4) Å, b =22.3158(5) Å, c = 24.8300(6) Å,  $\alpha =$ 84.932(2)°,  $\beta =$  76.949(2)°,  $\gamma =$  73.121(2)°, V = 7643.2(3) Å<sup>3</sup>, Z = 4, T = 100 K, Dc = 1.699 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 27744 unique reflections ( $R_{int} = 0.0571$ ) and 19864 observed reflections with I > 2 $\sigma$ (I) to give R<sub>1</sub> = 0.0591 and wR<sub>2</sub> = 0.1229 and a goodness-of-fit = 1.020. The SQUEEZE procedure of PLATON was used in the processing of <sup>*n*-Pr</sup>PyAg<sub>5</sub>. The three B alerts in the checkCIF report of <sup>*n*-Pr</sup>PyAg<sub>5</sub> may be ascribed to the disorders of triflate anions in the structure of <sup>*n*-Pr</sup>PyAg<sub>5</sub>.

Crystal data for <sup>Ph</sup>PyAg<sub>5</sub> ([Ag<sub>5</sub>(C<sub>11</sub>NH<sub>7</sub>)(Py[8])](CF<sub>3</sub>SO<sub>3</sub>)<sub>3</sub>) (CCDC-2062351): C<sub>62</sub>H<sub>55</sub>Ag<sub>5</sub>F<sub>9</sub>N<sub>17</sub>O<sub>9</sub>S<sub>3</sub>, M = 1988.76, monoclinic, space group C2/c (No. 15), a = 38.1353(5) Å, b = 21.9159(4) Å, c = 25.6721(3) Å,  $\beta = 129.9700(10)^{\circ}$ , V = 16443.4(5) Å<sup>3</sup>, Z = 8, T = 173.00(10) K, Dc = 1.607 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 15513 unique reflections ( $R_{int} = 0.0268$ ) and 14298 observed reflections with I > 2 $\sigma$ (I) to give R<sub>1</sub> = 0.0532 and wR<sub>2</sub> = 0.1656 and a goodness-of-fit = 1.061. The SQUEEZE procedure of PLATON was used in the processing of <sup>Ph</sup>PyAg<sub>5</sub>. The checkCIF report of <sup>Ph</sup>PyAg<sub>5</sub> has a B alert of "Hirshfeld Test Diff for S2-O84". This can be ascribed to the disorders of triflate anions in the structure of <sup>Ph</sup>PyAg<sub>5</sub>.

**Crystal data for** <sup>Me</sup>**PyAg**<sub>13</sub> ([Ag<sub>13</sub>(C<sub>6</sub>NH<sub>5</sub>)<sub>6</sub>H<sub>6</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>6</sub>) (CCDC-1995296): C<sub>42</sub>H<sub>36</sub>Ag<sub>13</sub>F<sub>18</sub>N<sub>6</sub>O<sub>18</sub>S<sub>6</sub>, M = 2849.44, triclinic, space group P-1 (No. 2), a = 14.0332(7) Å, b = 15.3545(7) Å, c = 22.4180(9) Å,  $\alpha = 82.805(4)^{\circ}$ ,  $\beta = 84.350(3)^{\circ}$ ,  $\gamma = 88.156(4)^{\circ}$ , V = 4768.2(4) Å<sup>3</sup>, Z = 2, T = 293 K, Dc = 1.985 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 18877 unique reflections ( $R_{int} = 0.099$ ) and 10657 observed reflections with I > 2 $\sigma$ (I) to give R<sub>1</sub> = 0.1681 and wR<sub>2</sub> = 0.4685 and a goodness-of-fit = 1.195. The SQUEEZE procedure of PLATON was used in the processing of <sup>Me</sup>PyAg<sub>13</sub>. There is an A alert of "Check Calcd Positive Resid. Density on Ag" in the checkCIF report, which can be ascribed to the Fourier truncation error induced by the metal atom. The B alert of "High wR<sub>2</sub> Value (i.e. > 0.25)" is attributed to a little low signal to noise ratio of the crystal data and the other two B alerts can be ascribed to the disorders of triflate anions in the structure of <sup>Me</sup>PyAg<sub>13</sub>.

Crystal data for <sup>*n*-Pr</sup>PyAg<sub>13</sub> ([Ag<sub>13</sub>(C<sub>8</sub>NH<sub>9</sub>)<sub>6</sub>H<sub>6</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>6</sub>) (CCDC-2062348): C<sub>54</sub>H<sub>60</sub>Ag<sub>13</sub>F<sub>18</sub>N<sub>6</sub>O<sub>18</sub>S<sub>6</sub>, M = 3017.75, triclinic, space group P-1 (No. 2), a = 14.2592(3) Å, b = 17.1159(6) Å, c = 21.9955(6) Å, a = 96.598(2)°,  $\beta = 93.982(2)°$ ,  $\gamma = 92.905(2)°$ , V = 5310.4(3) Å<sup>3</sup>, Z = 2, T = 100 K, Dc = 1.887 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 21079 unique reflections ( $R_{int} = 0.0750$ ) and 13952 observed reflections with I > 2 $\sigma(I)$  to give R<sub>1</sub> = 0.0893 and wR<sub>2</sub> = 0.2813 and a goodness-of-fit = 1.035. The checkCIF report of *n*-Pr**PyAg<sub>13</sub>** has an A alert of "Check Calcd Positive Resid. Density on Ag6", which can be ascribed to the Fourier truncation error induced by

the metal atom. And the two B alerts of "High 'MainMol' Ueq as Compared to Neighbors of O01G" and "Low Bond Precision on C-C Bond" can be attributed to the disorders of triflate anions in the structure of  $^{n-Pr}PyAg_{13}$ .

**Crystal data for** <sup>Ph</sup>**PyAg**<sub>13</sub> ([Ag<sub>13</sub>(C<sub>11</sub>NH<sub>7</sub>)<sub>6</sub>H<sub>6</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>6</sub>) (CCDC-2062349): C<sub>72</sub>H<sub>48</sub>Ag<sub>13</sub>F<sub>18</sub>N<sub>6</sub>O<sub>18</sub>S<sub>6</sub>, M = 3221.83, orthorhombic, space group Fddd (No. 70), a = 16.1557(9) Å, b = 30.2077(17) Å, c = 58.888(4) Å, a = 90°,  $\beta = 90°$ ,  $\gamma = 90°$ , V = 28739(3) Å<sup>3</sup>, Z = 8, T = 296.15 K, Dc = 1.627 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 8802 unique reflections ( $R_{int} = 0.0882$ ) and 5651 observed reflections with I > 2 $\sigma$ (I) to give R<sub>1</sub> = 0.1340 and wR<sub>2</sub> = 0.4077 and a goodness-of-fit = 1.080. The SQUEEZE procedure of PLATON was used in the processing of <sup>Ph</sup>**PyAg**<sub>13</sub>. In the checkCIF report of <sup>Ph</sup>**PyAg**<sub>13</sub>, there is a B alert of "High wR<sub>2</sub> Value (i.e. > 0.25)" that can be ascribed to a few smeared reflections in the crystal data, presumably due to the disorded benzene within the crystal causing the bad packing. And the other four B alerts can be ascribed to the disorders of triflate anions and benzene rings in the structure of <sup>Ph</sup>**PyAg**<sub>13</sub>.

Crystal data for protonated 2,2'-dimethyl-4,4'-bipyridine  $[C_{12}N_2H_{14}](SO_3CF_3)_2$  (CCDC-1995303):  $C_{14}H_{14}F_6N_2O_6S_2, M = 434.38$ , triclinic, space group P-1 (No. 2), a = 14.2592(3) Å, b = 17.1159(6) Å, c = 21.9955(6) Å, a = 96.598(2)^{\circ}, \beta = 93.982(2)^{\circ}, \gamma = 92.905(2)^{\circ}, V = 5310.4(3) Å^3, Z = 2, T = 99.99(10) K, Dc = 1.682 g cm^{-3}. The structure, refined on  $F^2$ , converged for 1908 unique reflections ( $R_{int} = 0.0456$ ) and 1659 observed reflections with I > 2 $\sigma(I)$  to give  $R_1 = 0.0565$  and  $wR_2 = 0.1583$  and a goodness-of-fit = 1.037. The checkCIF report has a B alert of "diffrn\_measured\_fraction\_theta\_full value Low 0.955", which may be ascribed to a few missing data points at theta-max angle.

Crystal data for protonated 2,2'-dipropyl-4,4'-bipyridine  $[C_{16}N_2H_{22}](SO_3CF_3)_2$  (CCDC-2060712):  $C_{18}H_{22}F_6N_2O_6S_2, M = 540.51$ , triclinic, space group P-1 (No. 2), a = 9.0344(3) Å, b = 12.9270(4) Å, c = 15.4280(5) Å, a = 85.714(2)^{\circ}, \beta = 87.099(3)^{\circ}, \gamma = 87.475(3)^{\circ}, V = 1792.99(10) Å^3, Z = 3, T = 173 K, Dc = 1.5016 g cm^{-3}. The structure, refined on  $F^2$ , converged for 6033 unique reflections ( $R_{int} = 0.0271$ ) and 4852 observed reflections with I > 2 $\sigma(I)$  to give  $R_1 = 0.0632$  and w $R_2 = 0.1791$  and a goodness-of-fit = 1.057.

Crystal data for (Py[8]-2H<sup>+</sup>-Ag<sup>+</sup>)(OTf)<sub>3</sub> [Ag(Py[8]-2H)](SO<sub>3</sub>CF<sub>3</sub>)<sub>3</sub> (CCDC-2175048):  $C_{51}H_{50}AgF_9N_{16}O_9S_3$ , M = 1406.12, monoclinic, space group  $P2_1/c$  (No. 14), a = 13.6223(2) Å, b = 29.4112(4) Å, c = 17.5734(3) Å,  $\beta = 111.122(2)^\circ$ , V = 6567.72(19) Å<sup>3</sup>, Z = 4, T = 173 K, Dc = 1.422 g cm<sup>-3</sup>. The structure, refined on  $F^2$ , converged for 12564 unique reflections ( $R_{int} = 0.0220$ ) and 10845 observed reflections with I > 2 $\sigma(I)$  to give  $R_1 = 0.0567$  and w $R_2 = 0.1602$  and a goodness-of-fit = 1.034.



Figure S1. High resolution ESI-MS spectra of complex  ${}^{Me}PyAg_5$  in methanol. Calcd. for  $C_{56}H_{53}Ag_5F_6N_{17}O_6S$  1777.8949 ([ ${}^{Me}PyAg_5 - OTf$ ]<sup>+</sup>), found 1777.9000 ([ ${}^{Me}PyAg_5 - OTf$ ]<sup>+</sup>); Calcd. for  $C_{55}H_{53}Ag_4F_3N_{17}O_3S$  1520.0382 ([ ${}^{Me}PyAg_5 - Ag^+ - 2OTf$ ]<sup>+</sup>), found 1520.0421 ([ ${}^{Me}PyAg_5 - Ag^+ - 2OTf$ ]<sup>+</sup>).



**Figure S2.** High resolution ESI-MS spectra of complex  ${}^{n-Pr}\mathbf{PyAg_5}$  in methanol. Calcd. for  $C_{58}H_{57}Ag_5F_6N_{17}O_6S_2$ 1805.9262 ([ ${}^{n-Pr}\mathbf{PyAg_5} - OTf$ ]<sup>+</sup>), found 1805.9270 ([ ${}^{n-Pr}\mathbf{PyAg_5} - OTf$ ]<sup>+</sup>); Calcd. for  $C_{57}H_{57}Ag_4F_3N_{17}O_3S$  1548.0695 ([ ${}^{n-Pr}\mathbf{PyAg_5} - Ag^+ - 2OTf$ ]<sup>+</sup>), found 1548.0673 ([ ${}^{n-Pr}\mathbf{PyAg_5} - Ag^+ - 2OTf$ ]<sup>+</sup>).



**Figure S3.** High resolution ESI-MS spectra of complex  ${}^{Ph}PyAg_5$  in methanol. Calcd. for  $C_{61}H_{55}Ag_5F_6N_{17}O_6S$  1839.9106 ([ ${}^{Ph}PyAg_5 - OTf$ ]<sup>+</sup>), found 1839.9078 ([ ${}^{Ph}PyAg_5 - OTf$ ]<sup>+</sup>); Calcd. for  $C_{60}H_{55}Ag_4F_3N_{17}O_3S$  1582.0538 ([ ${}^{Ph}PyAg_5 - Ag^+ - 2OTf$ ]<sup>+</sup>), found 1582.0511 ([ ${}^{Ph}PyAg_5 - Ag^+ - 2OTf$ ]<sup>+</sup>).



Figure S5. Partial <sup>1</sup>H-COSY spectrum of <sup>Me</sup>PyAg<sub>5</sub> in  $d_6$ -acetone at -60 °C.



Figure S6. <sup>1</sup>H-NMR spectrum of complex *n*-Pr**PyAg**<sub>5</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



Figure S7. <sup>1</sup>H-NMR spectrum of complex <sup>Ph</sup>PyAg<sub>5</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



Figure S8. Time-dependent <sup>1</sup>H-NMR spectrum of complex <sup>Me</sup>PyAg<sub>5</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



**Figure S9.** Crystal structure of *n*-Pr**PyAg**<sub>5</sub>. Peripheral  $CF_3SO_3^-$  anions are omitted for clarity. Color coding: Ag, purple (ellipsoids set at 40% probability); C, gray; H, white; N, blue. Selected bond lengths (Å): Ag3-Ag4 2.725 (8); Ag1-Ag2 2.720 (9); Ag1-Ag3 3.362 (1); Ag2-Ag4 3.207 (9); C2-Ag3 2.191 (8); C2-Ag4 2.157 (9); C1-Ag1 2.193 (9); C1-Ag2 2.190 (1).



**Figure S10.** Crystal structure of <sup>Ph</sup>**PyAg**<sub>5</sub>. Peripheral CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> anions are omitted for clarity. Color coding: Ag, purple (ellipsoids set at 40% probability); C, gray; H, white; N, blue. Selected bond lengths (Å): Ag3-Ag4 2.743(6); Ag1-Ag2 2.699(6); Ag1-Ag3 3.324(6); Ag2-Ag4 3.182(6); C2-Ag3 2.173(5); C2-Ag4 2.166(5); C1-Ag1 2.202(5); C1-Ag2 2.162(5).



**Figure S11.** Molecular orbitals of  $MePyAg_5$  manifesting the participation of  $p_{\pi}$  orbitals of pyridine ring in the bonding with silver atoms. The energy is given in atomic unit.



Figure S12. Partial <sup>1</sup>H NMR spectra (400 MHz, *d*<sub>6</sub>-acetone) of <sup>Me</sup>PyAg<sub>5</sub> in the CH<sub>3</sub>COOH titration experiment.



**Figure S13.** <sup>1</sup>H-NMR spectrum of white precipitate (Py[8]-2H<sup>+</sup>-Ag<sup>+</sup>)(OTf)<sub>3</sub> after adding HOTf into <sup>Me</sup>PyAg<sub>5</sub> (400 MHz,  $d_6$ -DMSO, 298 K).



**Figure S14.** High resolution ESI-MS spectra of  ${}^{Me}PyAg_{13}$  in acetone. Calcd. for  $C_{42}H_{36}Ag_{13}F_{18}N_6O_{18}S_6$  2847.7919 ([ ${}^{Me}PyAg_{13}$ ]<sup>+</sup>), found 2847.7750 ([ ${}^{Me}PyAg_{13}$ ]<sup>+</sup>); Calcd. for  $C_{42}H_{38}Ag_{13}F_{18}N_6O_{19}S_6$  2865.7865 ([ ${}^{Me}PyAg_{13} \bullet H_2O$ ]<sup>+</sup>), found 2865.7704 ([ ${}^{Me}PyAg_{13} \bullet H_2O$ ]<sup>+</sup>); Calcd. for  $C_{41}H_{36}Ag_{13}F_{15}N_6O_{15}S_5$  2699.8317 ([ ${}^{Me}PyAg_{13} - HOTf$ ]<sup>+</sup>), found 2699.8314 ([ ${}^{Me}PyAg_{13} - HOTf$ ]<sup>+</sup>); Calcd. for  $C_{40}H_{35}Ag_{13}F_{12}N_6O_{12}S_4$  2549.8719 ([ ${}^{Me}PyAg_{13} - 2HOTf$ ]<sup>+</sup>), found 2549.8508 ([ ${}^{Me}PyAg_{13} - 2HOTf$ ]<sup>+</sup>); Calcd. for  $C_{39}H_{34}Ag_{13}F_9N_6O_9S_3$  2399.9120 ([ ${}^{Me}PyAg_{13} - 3HOTf$ ]<sup>+</sup>), found 2399.8930 ([ ${}^{Me}PyAg_{13} - 3HOTf$ ]<sup>+</sup>).



Figure S15. EPR spectra of  $MePyAg_{13}$  at 153 K (EtOH:MeOH = 4:1).



Figure S16. X-ray photoelectron spectra of <sup>Me</sup>PyAg<sub>13</sub>: survey spectrum (a), high-resolution spectra of Ag 3d (b) and Ag MNN 3d (c).



**Figure S17.** Crystal structure of the coupling product protonated 2,2'-dimethyl-4,4'-bipyridine. Color coding: C, gray; H, white; N, blue; S, yellow; O, red; F, brilliant blue.



Figure S18. High resolution ESI-MS spectra of acidifying acetone solution of MePyAg<sub>5</sub>.



**Figure S19.** (a) The crystal structure of  $(\mathbf{Py}[\mathbf{8}]-2\mathrm{H}^+-\mathrm{Ag}^+)(\mathrm{OTf})_3$  from the acidification of  $^{\mathbf{R}}\mathbf{PyAg}_5$ ; (b) Synthetic procedures for aryl vicinal dicarbanion bonded  $\mathrm{Ag}_{13}$  nanoclusters and the corresponding reaction equation of  $^{\mathbf{Me}}\mathbf{PyAg}_5$  and  $\mathrm{CF}_3\mathrm{SO}_3\mathrm{H}$  as an example.



Figure S20. Three combinations of  $C_{para}$ -Ag- $C_{para}$ ,  $C_{para}$ -Ag- $C_{meta}$  and  $C_{meta}$ -Ag- $C_{meta}$  in MePyAg<sub>13</sub>.



Figure S21. Two enantiomers co-exist in the crystal structure of <sup>Me</sup>PyAg<sub>13</sub>.



**Figure S22.** Sign( $\lambda_2$ ) $\rho$  colored IGMH map. a):  $\delta g^{inter} = 0.015$  a.u. isosurfaces of MePyAg<sub>13</sub> formed by six 2methylpyridyl diides and Ag<sub>13</sub> core; b):  $\delta g^{inter} = 0.015$  a.u. isosurfaces of Ag<sub>13</sub> core formed by central Ag(0) atom and twelve surface silver ions; c):  $\delta g^{intra} = 0.015$  a.u. isosurfaces of Ag<sub>13</sub> core. Color scale is from -0.05 to 0.05 a.u. Red color (large and positive Sign( $\lambda_2$ ) $\rho$  value) denotes strong steric effect; blue color (large and negative Sign( $\lambda_2$ ) $\rho$ 

value) denotes attractive interaction.



Figure S23. The BCPs of MePyAg<sub>13</sub> in AIM analysis.



Figure S24. High resolution ESI-MS spectra of acidifying acetone solution of *n*-PrPyAg<sub>5</sub>.



Figure S25. High resolution ESI-MS spectra of the coupling product 2,2'-diphenyl-4,4'-bipyridine.



**Figure S26.** Crystal structure of the coupling product protonated 2,2'-dipropyl-4,4'-bipyridine. Color coding: C, gray; H, white; N, blue; S, yellow; O, red; F, brilliant blue.



**Figure S27.** Crystal structure of the coupling product protonated 2,2'-diphenyl-4,4'-bipyridine. Color coding: C, gray; H, white; N, blue; S, yellow; O, red; F, brilliant blue. The completence of the crystal data is not enough (80%) due to the quality of the crystal, but the single crystal structure can be precisely solved as shown above.



**Figure S28.** (a) Crystal structure of n-Pr**PyAg**<sub>13</sub> containing equatorial (pink) and axial (light green) 2-propylpyridyl dide ligands. Peripheral CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> anions are omitted for clarity; (b) The Ag<sub>13</sub> kernel in n-Pr**PyAg**<sub>13</sub>. Color coding: Ag, brown; C, gray; H, white; N, blue. (c) Arrangement of the orientated 2-propylpyridine rings attached on the Ag<sub>13</sub> kernel at the upper and nether sides in n-Pr**PyAg**<sub>13</sub> (left: vertical view; right: upward view). Selected bond lengths (Å) of n-Pr**PyAg**<sub>13</sub> highlighted in yellow: Ag1-Ag2 2.877(1); Ag1-Ag3 2.927(1); Ag1-Ag4 2.980(1); Ag1-Ag5 2.977(1); Ag1-Ag6 3.160(1); Ag1-Ag7 2.983(1); Ag1-Ag8 2.962(1); Ag1-Ag9 3.014(1); Ag1-Ag10 2.914(1); Ag1-Ag11 2.980(1); Ag1-Ag12 2.866(2); Ag1-Ag13 3.013(1); red: Ag2-Ag3 2.762(1); Ag2-Ag10 2.828(1); Ag4-Ag9 2.730(1); Ag4-Ag8 2.747(2); Ag3-Ag7 2.738(2); Ag5-Ag6 2.717(1); Ag5-Ag11 2.740(2); Ag10-Ag13

2.711(2); Ag9-Ag13 2.727(1); Ag8-Ag12 2.782(1); Ag6-Ag7 2.706(1); Ag11-Ag12 2.782(1); green: Ag2-Ag4 3.314(1); Ag3-Ag4 3.256(1); Ag10-Ag9 3.126(1); Ag8-Ag7 3.248(1); Ag2-Ag5 3.275(1); Ag3-Ag6 3.086(1); Ag5-Ag10 3.175(1); Ag11-Ag13 3.226(2); Ag8-Ag9 3.053(1); Ag12-Ag13 3.327(2); Ag7-Ag12 3.222(1); Ag6-Ag11 3.113(1).



**Figure S29.** High resolution ESI-MS spectra of complex  ${}^{n-Pr}\mathbf{PyAg_{13}}$  in acetone. Calcd. for  $C_{54}H_{60}Ag_{13}F_{18}N_6O_{18}S_6$  3017.9637 ([ ${}^{n-Pr}\mathbf{PyAg_{13}}$ ]<sup>+</sup>), found 3018.0814 ([ ${}^{n-Pr}\mathbf{PyAg_{13}}$ ]<sup>+</sup>); Calcd. for  $C_{53}H_{60}Ag_{13}F_{15}N_6O_{15}S_5$  1434.5058 ([ ${}^{n-Pr}\mathbf{PyAg_{13}} - \mathrm{OTf}$ ]<sup>2+</sup>), found 1434.5253 ([ ${}^{n-Pr}\mathbf{PyAg_{13}} - \mathrm{OTf}$ ]<sup>2+</sup>).



**Figure S30.** (a) Crystal structure of <sup>Ph</sup>**PyAg**<sub>13</sub> containing equatorial (pink) and axial (light green) 2-phenylpyridyl diide ligands. Peripheral CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> anions are omitted for clarity; (b) The Ag<sub>13</sub> kernel in <sup>Ph</sup>**PyAg**<sub>13</sub>. Color coding: Ag, brown; C, gray; H, white; N, blue. (c) Arrangement of the orientated 2-phenylpyridine rings attached on the Ag<sub>13</sub> kernel at the upper and nether sides in <sup>Ph</sup>**PyAg**<sub>13</sub> (left: vertical view; right: upward view). Selected bond lengths (Å) of <sup>Ph</sup>**PyAg**<sub>13</sub> highlighted in yellow: Ag1-Ag2 2.968(1); Ag1-Ag3 3.150(1); Ag1-Ag4 2.941(1); Ag1-Ag5 2.828(1); red: Ag2-Ag2B 2.742(2); Ag5-Ag4B 2.799(2); Ag2-Ag4A 2.726(1); Ag3-Ag2B 2.742(2); green: Ag2-Ag5 3.217(2); Ag2-Ag4 3.220(2); Ag3A-Ag4B 3.110(1); Ag5A-Ag2C 3.217(2).



**Figure S31.** High resolution ESI-MS spectra of complex  ${}^{Ph}PyAg_{13}$  in acetone. Calcd. for  $C_{72}H_{48}Ag_{13}F_{18}N_6O_{18}S_6$ 3221.8695 ([ ${}^{Ph}PyAg_{13}$ ]<sup>+</sup>), found 3221.8822 ([ ${}^{Ph}PyAg_{13}$ ]<sup>+</sup>); Calcd. for  $C_{71}H_{47}Ag_{13}F_{15}N_6O_{15}S_5$  3071.9096 ([ ${}^{Ph}PyAg_{13}$  – HOTf]<sup>+</sup>), found 3071.9205 ([ ${}^{Ph}PyAg_{13}$  – HOTf]<sup>+</sup>); Calcd. for  $C_{70}H_{46}Ag_{13}F_{12}N_6O_{12}S_4$  2921.9498 ([ ${}^{Ph}PyAg_{13}$  – 2HOTf]<sup>+</sup>), found 2921.9542 ([ ${}^{Ph}PyAg_{13}$  – 2HOTf]<sup>+</sup>).



Figure S32. UV-vis spectra of <sup>Me</sup>PyAg<sub>13</sub>, <sup>*n*-Pr</sup>PyAg<sub>13</sub> and <sup>Ph</sup>PyAg<sub>13</sub> in acetone ( $C = 2.5 \times 10^{-5}$  mol/L, 298 K).



Figure S33. <sup>1</sup>H-NMR spectrum of complex <sup>Me</sup>PyAg<sub>13</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



Figure S34. DOSY <sup>1</sup>H NMR spectrum (600 MHz, *d*<sub>6</sub>-acetone) of <sup>Me</sup>PyAg<sub>13</sub>.



Figure S35. Variable temperature <sup>1</sup>H NMR spectra of  $MePyAg_{13}$  (400 MHz,  $d_6$ -acetone).



Figure S36. The variable temperature UV-vis spectra of <sup>Me</sup>PyAg<sub>13</sub> in acetone.



Figure S37. (a) Calculated NMR spectrum of <sup>Me</sup>PyAg<sub>13</sub>; (b) Atomic dipole moment corrected Hirshfeld population (ADCH) of carbon atoms in <sup>Me</sup>PyAg<sub>13</sub>.



Figure S38. <sup>1</sup>H-NMR spectrum of complex *"-Pr*PyAg<sub>13</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



Figure S39. <sup>1</sup>H-NMR spectrum of complex <sup>Ph</sup>PyAg<sub>13</sub> (400 MHz, *d*<sub>6</sub>-acetone, 298 K).



**Figure S40.** (a) Calculated NMR spectrum of <sup>Ph</sup>PyAg<sub>13</sub>; (b) Atomic dipole moment corrected Hirshfeld population (ADCH) of carbon atoms in <sup>Ph</sup>PyAg<sub>13</sub>.



Figure S41. High resolution ESI-MS spectra monitoring on the simultaneously acidification of equivalent  $^{Me}PyAg_{13}$  and  $^{n-Pr}PyAg_{13}$  in acetone for 4 days.



Figure S42. TEM images of (a) the individual atom-precise  $Ag_{13}$  NCs in acetone and (b) the solution sample derived from simultaneously acidification of equivalent  ${}^{Me}PyAg_{13}$  and  ${}^{n-Pr}PyAg_{13}$  in acetone.



Figure S43. The infrared spectra of the solid in  $Et_2O$  after the reaction between <sup>Me</sup>PyAg<sub>13</sub> cluster and CF<sub>3</sub>SO<sub>3</sub>H.

### 4. Supporting Tables

| MePyAg <sub>5</sub> (mmol) | CF <sub>3</sub> SO <sub>3</sub> H (mmol) | Product                                   | Yield   |
|----------------------------|------------------------------------------|-------------------------------------------|---------|
| 0.005                      | 0.01                                     | MePyAg <sub>5</sub>                       | 75%     |
| 0.005                      | 0.015                                    | MePyAg <sub>5</sub>                       | 61%     |
| 0.005                      | 0.025                                    | MePyAg <sub>5,</sub> MePyAg <sub>13</sub> | 25%, 5% |
| 0.005                      | 0.035                                    | MePyAg <sub>13</sub>                      | 35%     |
| 0.005                      | 0.05                                     | MePyAg <sub>13</sub>                      | 52%     |

Table S1. Optimization of the reaction conditions.

Table S2. The Wiberg bond order of  ${}^{Me}PyAg_{13}$  based on Löwdin orthogonalized basis.

| Bond         | Wiberg bond<br>order | Total | Bond         | Wiberg bond<br>order | Total |
|--------------|----------------------|-------|--------------|----------------------|-------|
| 87(C)-3(Ag)  | 0.485                | 0.075 | 91(C)-2(Ag)  | 0.530                | 0.052 |
| 87(C)-2(Ag)  | 0.490                | 0.975 | 91(C)-10(Ag) | 0.423                | 0.933 |
| 53(C)-8(Ag)  | 0.435                | 0 808 | 47(C)-4(Ag)  | 0.551                | 0.802 |
| 53(C)-5(Ag)  | 0.464                | 0.898 | 47(C)-9(Ag)  | 0.341                | 0.895 |
| 25(C)-3(Ag)  | 0.526                | 0.024 | 93(C)-10(Ag) | 0.429                | 0.022 |
| 7(Ag)-25(C)  | 0.398                | 0.924 | 93(C)-13(Ag) | 0.503                | 0.933 |
| 24(C)-4(Ag)  | 0.553                | 0.007 | 49(C)-5(Ag)  | 0.446                | 0.008 |
| 24(C)-8(Ag)  | 0.355                | 0.907 | 49(C)-11(Ag) | 0.462                | 0.908 |
| 48(C)-8(Ag)  | 0.447                | 0.022 | 64(C)-9(Ag)  | 0.381                | 0.000 |
| 48(C)-7(Ag)  | 0.476                | 0.923 | 64(C)-13(Ag) | 0.519                | 0.900 |
| 55(C)-11(Ag) | 0.435                | 0.042 | 50(C)-8(Ag)  | 0.394                | 0.021 |
| 55(C)-12(Ag) | 0.507                | 0.942 | 50(C)-12(Ag) | 0.527                | 0.921 |

| Bond<br>(yellow) | Wiberg<br>bond order | Bond (red)    | Wiberg bond<br>order | Bond (green)  | Wiberg bond<br>order |
|------------------|----------------------|---------------|----------------------|---------------|----------------------|
| 6(Ag)-1(Ag)      | 0.227                | 4(Ag)-9(Ag)   | 0.372                | 4(Ag)-2(Ag)   | 0.213                |
| 7(Ag)-1(Ag)      | 0.258                | 10(Ag)-2(Ag)  | 0.336                | 10(Ag)-9(Ag)  | 0.247                |
| 3(Ag)-1(Ag)      | 0.258                | 4(Ag)-8(Ag)   | 0.348                | 4(Ag)-3(Ag)   | 0.230                |
| 5(Ag)-1(Ag)      | 0.261                | 3(Ag)-7(Ag)   | 0.358                | 8(Ag)-7(Ag)   | 0.224                |
| 11(Ag)-1(Ag)     | 0.260                | 3(Ag)-2(Ag)   | 0.366                | 8(Ag)-3(Ag)   | 0.242                |
| 8(Ag)-1(Ag)      | 0.276                | 8(Ag)-4(Ag)   | 0.370                | 5(Ag)-2(Ag)   | 0.208                |
| 2(Ag)-1(Ag)      | 0.274                | 11(Ag)-5(Ag)  | 0.352                | 7(Ag)-12(Ag)  | 0.200                |
| 9(Ag)-1(Ag)      | 0.252                | 10(Ag)-13(Ag) | 0.366                | 8(Ag)-11(Ag)  | 0.240                |
| 4(Ag)-1(Ag)      | 0.239                | 9(Ag)-13(Ag)  | 0.384                | 13(Ag)-11(Ag) | 0.193                |
| 10(Ag)-1(Ag)     | 0.277                | 8(Ag)-12(Ag)  | 0.331                | 10(Ag)-5(Ag)  | 0.232                |
| 12(Ag)-1(Ag)     | 0.290                | 8(Ag)-7(Ag)   | 0.380                | 8(Ag)-9(Ag)   | 0.249                |
| 13(Ag)-1(Ag)     | 0.244                | 11(Ag)-12(Ag) | 0.339                | 12(Ag)-13(Ag) | 0.189                |

| Bond                | МСВО  | Bond                   | МСВО  | Bond                               | мсво  |
|---------------------|-------|------------------------|-------|------------------------------------|-------|
|                     |       |                        |       |                                    |       |
| 3(Ag)-25(C)-7(Ag)   | 0.076 | 2(Ag)-91(C)-10(Ag)     | 0.091 | 6(Ag)-48(C)-7(Ag)                  | 0.034 |
| 4(Aa)-24(C)-8(Aa)   | 0.030 | 4(Aa)-47(C)-9(Aa)      | 0.050 | $11(A_{\rm C})-49(C)-5(A_{\rm C})$ | 0.013 |
| +(/\g) 2+(0) 0(/\g) | 0.000 | -(/ (g) - / (C) (/ (g) | 0.000 | 11(19) 40(0) 0(19)                 | 0.010 |
| 3(Ag)-87(C)-2(Ag)   | 0.074 | 11(Ag)-55(C)-12(Ag)    | 0.050 | 9(Ag)-64(C)-13(Ag)                 | 0.019 |
| 5(Aa)-53(C)-6(Aa)   | 0.048 | 10(Aa)-93(C)-13(Aa)    | 0.052 | 8(Aa)-50(C)-12(Aa)                 | 0.071 |
| -(                  |       |                        |       | -(                                 |       |

Table S3. The multi-center bond order (MCBO) of each CAg<sub>2</sub> species in <sup>Me</sup>PyAg<sub>13</sub>.

**Table S4.** Topological and energetic properties of  $\rho(\mathbf{r})$  calculated at the (3,-1) critical point in AIM<br/>analysis of MePyAg<sub>13</sub> (given in a.u.)

| Bond          | <i>ρ</i> (r) | V(r)   | ∇² <i>ρ</i> (r) ×<br>10⁻² | G(r)  | V(r) /G(r) | E(r) × 10-<br>3 | E(r)/ <i>p</i> (r) |
|---------------|--------------|--------|---------------------------|-------|------------|-----------------|--------------------|
| 8(Ag)-1(Ag)   | 0.024        | -0.018 | 5.710                     | 0.016 | 1.119      | -1.925          | -0.082             |
| 7(Ag)-1(Ag)   | 0.029        | -0.024 | 6.868                     | 0.021 | 1.172      | -3.575          | -0.125             |
| 3(Ag)-1(Ag)   | 0.026        | -0.021 | 6.396                     | 0.019 | 1.143      | -2.667          | -0.103             |
| 5(Ag)-1(Ag)   | 0.029        | -0.025 | 6.838                     | 0.021 | 1.180      | -3.759          | -0.129             |
| 11(Ag)-1(Ag)  | 0.028        | -0.024 | 6.817                     | 0.020 | 1.161      | -3.259          | -0.117             |
| 6(Ag)-1(Ag)   | 0.032        | -0.029 | 7.604                     | 0.024 | 1.201      | -4.792          | -0.148             |
| 2(Ag)-1(Ag)   | 0.029        | -0.025 | 6.835                     | 0.021 | 1.181      | -3.764          | -0.129             |
| 9(Ag)-1(Ag)   | 0.028        | -0.023 | 6.583                     | 0.020 | 1.172      | -3.407          | -0.121             |
| 4(Ag)-1(Ag)   | 0.023        | -0.017 | 5.462                     | 0.016 | 1.122      | -1.898          | -0.081             |
| 10(Ag)-1(Ag)  | 0.032        | -0.028 | 7.449                     | 0.023 | 1.197      | -4.568          | -0.145             |
| 12(Ag)-1(Ag)  | 0.032        | -0.029 | 7.964                     | 0.024 | 1.187      | -4.592          | -0.143             |
| 13(Ag)-1(Ag)  | 0.025        | -0.019 | 5.984                     | 0.017 | 1.130      | -2.244          | -0.091             |
| 4(Ag)-9(Ag)   | 0.040        | -0.040 | 10.380                    | 0.033 | 1.215      | -7.101          | -0.177             |
| 8(Ag)-5(Ag)   | 0.042        | -0.043 | 11.116                    | 0.035 | 1.210      | -7.408          | -0.177             |
| 9(Ag)-13(Ag)  | 0.043        | -0.043 | 10.968                    | 0.035 | 1.226      | -7.989          | -0.186             |
| 8(Ag)-7(Ag)   | 0.043        | -0.043 | 11.076                    | 0.036 | 1.221      | -7.833          | -0.183             |
| 4(Ag)-2(Ag)   | 0.016        | -0.012 | 4.447                     | 0.011 | 1.020      | -0.223          | -0.014             |
| 10(Ag)-9(Ag)  | 0.024        | -0.018 | 5.781                     | 0.016 | 1.121      | -1.997          | -0.082             |
| 4(Ag)-3(Ag)   | 0.018        | -0.013 | 4.880                     | 0.013 | 1.046      | -0.582          | -0.033             |
| 8(Ag)-7(Ag)   | 0.021        | -0.017 | 5.427                     | 0.015 | 1.103      | -1.558          | -0.073             |
| 8(Ag)-3(Ag)   | 0.022        | -0.016 | 5.270                     | 0.014 | 1.088      | -1.264          | -0.058             |
| 5(Ag)-2(Ag)   | 0.018        | -0.013 | 4.424                     | 0.012 | 1.066      | -0.777          | -0.042             |
| 7(Ag)-12(Ag)  | 0.017        | -0.012 | 4.349                     | 0.011 | 1.035      | -0.391          | -0.023             |
| 8(Ag)-11(Ag)  | 0.022        | -0.017 | 5.500                     | 0.015 | 1.101      | -1.546          | -0.070             |
| 13(Ag)-11(Ag) | 0.016        | -0.011 | 4.176                     | 0.011 | 1.023      | -0.245          | -0.016             |
| 10(Ag)-5(Ag)  | 0.022        | -0.017 | 5.528                     | 0.016 | 1.113      | -1.756          | -0.080             |
| 8(Ag)-9(Ag)   | 0.024        | -0.019 | 5.983                     | 0.017 | 1.131      | -2.251          | -0.092             |
| 12(Ag)-13(Ag) | 0.015        | -0.010 | 4.004                     | 0.010 | 1.001      | -0.011          | -0.001             |

| Bond         | <i>ρ</i> (r) | V(r)   | ∇² <i>ρ</i> (r) ×<br>10⁻² | G(r)  | V(r) /G(r) | E(r) ×<br>10 <sup>-3</sup> | E(r)/ <i>p</i> (r) |
|--------------|--------------|--------|---------------------------|-------|------------|----------------------------|--------------------|
| 133(O)-43(H) | 0.048        | -0.041 | 14.972                    | 0.039 | 1.050      | -1.952                     | -0.041             |
| 61(H)-138(O) | 0.005        | -0.003 | 1.979                     | 0.004 | 0.730      | 1.053                      | 0.212              |
| 136(F)-61(H) | 0.002        | -0.001 | 0.810                     | 0.001 | 0.489      | 0.684                      | 0.441              |
| 41(O)-61(H)  | 0.009        | -0.006 | 3.373                     | 0.007 | 0.842      | 1.148                      | 0.131              |
| 71(H)-122(O) | 0.007        | -0.005 | 2.717                     | 0.006 | 0.840      | 0.938                      | 0.127              |
| 35(O)-71(H)  | 0.007        | -0.004 | 2.636                     | 0.005 | 0.785      | 1.168                      | 0.172              |
| 32(H)-122(O) | 0.006        | -0.004 | 2.421                     | 0.005 | 0.793      | 1.039                      | 0.166              |

| 63(O)-32(H)   | 0.006 | -0.004 | 2.490 | 0.005 | 0.777 | 1.137 | 0.180 |
|---------------|-------|--------|-------|-------|-------|-------|-------|
| 130(H)-116(F) | 0.002 | -0.001 | 1.147 | 0.002 | 0.601 | 0.817 | 0.385 |
| 83(F)-66(H)   | 0.004 | -0.002 | 2.038 | 0.004 | 0.651 | 1.318 | 0.329 |
| 21(O)-66(H)   | 0.006 | -0.004 | 2.604 | 0.005 | 0.776 | 1.192 | 0.184 |
| 52(H)-37(O)   | 0.005 | -0.003 | 2.030 | 0.004 | 0.733 | 1.069 | 0.218 |
| 45(H)-88(O)   | 0.006 | -0.004 | 2.452 | 0.005 | 0.785 | 1.084 | 0.174 |
| 67(O)-45(H)   | 0.007 | -0.004 | 2.639 | 0.005 | 0.791 | 1.142 | 0.170 |

**Table S5.** Dihedral angles between the upper and lower Ag<sub>3</sub> planes and mean deviations of the central Ag<sub>7</sub> layer in <sup>Me</sup>PyAg<sub>13</sub>, <sup>*n*-Pr</sup>PyAg<sub>13</sub>, <sup>*Ph*</sup>PyAg<sub>13</sub>.

|                                                                                  | Me <b>PyAg</b> 13 | <sup><i>n</i>-Pr</sup> PyAg <sub>13</sub> | Ph <b>PyAg</b> <sub>13</sub> |
|----------------------------------------------------------------------------------|-------------------|-------------------------------------------|------------------------------|
| Dihedral angle<br>between the<br>upper and<br>lower Ag <sub>3</sub><br>planes(°) | 9.7               | 11.5                                      | 11.7                         |
| Mean<br>deviation of<br>the central<br>Ag <sub>7</sub> layer (Å)                 | 0.094             | 0.125                                     | 0.104                        |

Table S6. Diffusion coefficients, and the calculated and measured sizes of <sup>Me</sup>PyAg<sub>13</sub> based on DOSY measurements.

| Species                      | Diffusion<br>coefficients / m <sup>2</sup> s <sup>-1</sup> | Calculated<br>diameter / Å | Diameter in crystal<br>structures / Å |
|------------------------------|------------------------------------------------------------|----------------------------|---------------------------------------|
| Major (8.28 and<br>8.19 ppm) | 7.35 × 10 <sup>-10</sup>                                   | 18.75                      | 17.55                                 |
| Minor (8.94 and<br>7.98 ppm) | 7.28 × 10 <sup>-10</sup>                                   | 18.98                      |                                       |

**Table S7.** High resolution ESI-MS data for simultaneously acidification of equivalent  ${}^{Me}PyAg_5$  and  ${}^{n-Pr}PyAg_5$  in acetone.

| Experimental | Theoretical | Chemical Formula                        |                                                                                                                                           |
|--------------|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2905.8671    | 2905.838    | $C_{46}H_{44}Ag_{13}F_{18}N_6O_{18}S_6$ | ( <sup>Me</sup> Py) <sub>4</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>2</sub> Ag <sub>13</sub> <sup>+</sup>                                  |
| 2921.8655    | 2921.849    | $C_{46}H_{46}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>4</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>2</sub> Ag <sub>13</sub> •H <sub>2</sub> O <sup>+</sup>                |
| 2935.8762    | 2935.849    | $C_{47}H_{46}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>5</sub> ( <sup><i>n</i>-Pr</sup> Py)Ag <sub>13</sub> •C <sub>3</sub> H <sub>6</sub> O <sup>+</sup>               |
| 2949.8907    | 2949.881    | $C_{48}H_{49}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>3</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>3</sub> Ag <sub>13</sub> •H <sub>2</sub> O <sup>+</sup>                |
| 2963.9008    | 2963.880    | $C_{49}H_{50}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>4</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>2</sub> Ag <sub>13</sub> •C <sub>3</sub> H <sub>6</sub> O <sup>+</sup> |
| 2977.9159    | 2977.912    | $C_{50}H_{54}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>2</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>4</sub> Ag <sub>13</sub> •H <sub>2</sub> O <sup>+</sup>                |
| 2991.9250    | 2991.911    | $C_{51}H_{54}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py) <sub>3</sub> ( <sup><i>n</i>-Pr</sup> Py) <sub>3</sub> Ag <sub>13</sub> •C <sub>3</sub> H <sub>6</sub> O <sup>+</sup> |
| 3005.9418    | 3005.943    | $C_{52}H_{58}Ag_{13}F_{18}N_6O_{19}S_6$ | ( <sup>Me</sup> Py)( <sup><i>n</i>-Pr</sup> Py) <sub>5</sub> Ag <sub>13</sub> •H <sub>2</sub> O <sup>+</sup>                              |

#### 5. References

- 1. M. J. Frisch, et al. Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2013).
- 2. F. Neese, F. Wennmohs, U. Becker and C. Riplinger. J. Chem. Phys., 2020, 152, 224108.
- 3. A. Schäfer, C. Huber and R. Ahlrichs. J. Chem. Phys., 1994, 100, 5829.
- 4. J. P. Perdew. Phys. Rev. B, 1986, 33, 8822.
- 5. A. V. Marenich, C. J. Cramer and D. G. Truhlar. J. Phys. Chem. B, 2009, 113, 6378.
- 6. (a) M. W. Lodewyk, M. R. Siebert and D. J. Tantillo. Chem. Rev., 2012, 112, 1839; (b) P. R. Rablen, S. A.

Pearlman and J. Finkbiner. J. Phys. Chem. A, 1999, 103, 7357; (c) R. Jain, T. Bally and P. R. Rablen. J. Org. Chem.,

2009, 74, 4017; (d) T. Bally and P. R. Rablen. J. Org. Chem., 2011, 76, 4818.

- 7. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch. J. Phys. Chem., 1994, 98, 11623.
- 8. G. A. Petersson, et al. J. Chem. Phys., 1988, 89, 2193.
- 9. (a) M. Dolg, U. Wedig, H. Stoll and H. Preuss. J. Chem. Phys., 1987, 86, 866; (b) D. Andrae, U. Häußermann,
- M. Dolg, H. Stoll and H. Preuß. Theoret. Chim. Acta, 1990, 77, 123.
- 10. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 11. (a) W. R. Wadt and P. J. Hay. J. Chem. Phys., 1985, 82, 284; (b) P. J. Hay and W. R. Wadt. J. Chem. Phys.,
- 1985, **82**, 27; (c) P. J. Hay and W. R. Wadt. *J. Chem. Phys.*, 1985, **82**, 299; (d) T. H Jr. Dunning, P. J.Hay and H. F III. Schaefer. *Theory*. (Plenum Press: New York, 1977).
- 12. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14.1, 33.
- 13. G. M. Sheldrick. Acta Crystallogr. Sect. A, 2008, 64, 112.
- 14. (a) P. van der Sluis and A. L. Spek. *Acta Crystallogr. Sect. A*, 1990, **46**, 194; (b) A. Spek. *J. Appl. Crystallogr.*, 2003, **36**, 7.
- 15. J. L. Atwood and L. J. Barbour. Cryst. Growth Des., 2003, 3, 3.