Supporting Information

Fabrication of a Family of Atomically Precise Silver Nanoclusters via Dual-Level Kinetic Control

Xiao Wei,[‡] Chao Xu,[‡] Hao Li, Xi Kang,^{*} and Manzhou Zhu^{*}

Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.

[‡]X.W. and C.X. contributed equally.

*E-mails of corresponding authors: kangxi_chem@ahu.edu.cn (X.K.); zmz@ahu.edu.cn (M.Z.).

Notes: The authors declare no competing financial interest.

This PDF file includes: Figs. S1-S26 Tables S1-S9

Fig. S1 Photos of the reduction of Ag-(S-Adm) complexes by $NaBH_4$ in CH_2Cl_2 . After the introduction of $NaBH_4$, the solution turned black within three seconds, demonstrating the rapid reduction rate.

Fig. S2 (A) The HAADF-STEM image of the CH_2Cl_2 supernatant for reducing the Ag-(S-Adm) complexes by NaBH₄ (the reaction lasted for 12 hours after the reductant introduction). Polydisperse metal nanoparticles (from ~1 to ~10 nm) were observed. (B) TGA result of these polydisperse silver nanoparticles. The Ag-to-SAdm ratio of these nanoparticles was determined as 16.67%.

Fig. S3 DLS results of Ag-(S-Adm) or Ag-(S-Adm)-PR complexes. (A) The average diameter of the Ag-(S-Adm) complexes in CH₂Cl₂ was determined as 4429.0 nm. (B) The average diameter of the Ag-(S-Adm)-TPP complexes in CH₂Cl₂ was determined as 601.2 nm. (C) The average diameter of the Ag-(S-Adm)-DPPM complexes in CH₂Cl₂ was determined as 444.9 nm. (D) The average diameter of the Ag-(S-Adm)-DPPE complexes in CH₂Cl₂ was determined as 657.6 nm. (E) The average diameter of the Ag-(S-Adm)-DPPE complexes in CH₂Cl₂ was determined as 657.6 nm. (E) The average diameter of the Ag-(S-Adm)-DPPP complexes in CH₂Cl₂ was determined as 93.92 nm. (F) The average diameter of the Ag-(S-Adm)-DPPB complexes in CH₂Cl₂ was determined as 93.92 nm. (G) The average diameter of the Ag-(S-Adm)-DPPPE complexes in CH₂Cl₂ was determined as 22.8 nm. (H) The average diameter of the Ag-(S-Adm)-DPPP complexes in CH₂Cl₂ was determined as 88.8 nm. (I) Comparison of average diameters of Ag-(S-Adm) or Ag-(S-Adm)-PR complexes. (J) Structures of different phosphine ligands, including TPP, DPPM, DPPE, DPPP, DPPB, DPPPE, and DPPH.

Fig. S4 ESI-MS results of Ag-(S-Adm) or Ag-(S-Adm)-PR complexes in the positive mode. (A) ESI-MS results of Ag-(S-Adm) complexes. (B) ESI-MS results of Ag-(S-Adm)-TPP complexes. (C) ESI-MS results of Ag-(S-Adm)-DPPM complexes. (D) ESI-MS results of Ag-(S-Adm)-DPPE complexes. (E) ESI-MS results of Ag-(S-Adm)-DPPP complexes. (F) ESI-MS results of Ag-(S-Adm)-DPPB complexes. (G) ESI-MS results of Ag-(S-Adm)-DPPB complexes. (H) ESI-MS results of Ag-(S-Adm)-DPPH complexes. (C) ESI-MS results of Ag-(S-Adm)-DPPB complexes. (C) ESI-MS results of Ag-(S-Adm)-DPB complexes. (C) ESI-MS resites ESI-MS results of Ag-(S-Adm)-DPB co

Fig. S5 ESI-MS results of Ag-(S-Adm) or Ag-(S-Adm)-PR complexes in the negative mode. (A) ESI-MS results of Ag-(S-Adm) complexes. (B) ESI-MS results of Ag-(S-Adm)-TPP complexes. (C) ESI-MS results of Ag-(S-Adm)-DPPM complexes. (D) ESI-MS results of Ag-(S-Adm)-DPPE complexes. (E) ESI-MS results of Ag-(S-Adm)-DPPP complexes. (F) ESI-MS results of Ag-(S-Adm)-DPPB complexes. (G) ESI-MS results of Ag-(S-Adm)-DPPE complexes. (H) ESI-MS results of Ag-(S-Adm)-DPPH complexes. (C) ESI-MS results of Ag-(S-Adm)-DPPB complexes. (C) ESI-MS results of Ag-(S-Adm)-DPB resI-MS results of Ag-(S-Adm)-DPB resI ESI-MS resUlts of Ag-(S-Ad

Fig. S6 Photos of the reduction of Ag-(S-Adm)-TPP complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S7 Photos of the reduction of Ag-(S-Adm)-DPPM complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S8 Photos of the reduction of Ag-(S-Adm)-DPPE complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S9 Photos of the reduction of Ag-(S-Adm)-DPPP complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S10 Photos of the reduction of Ag-(S-Adm)-DPPB complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S11 Photos of the reduction of Ag-(S-Adm)-DPPPE complexes by NaBH₄ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S12 Photos of the reduction of Ag-(S-Adm)-DPPH complexes by $NaBH_4$ in CH_2Cl_2 at different times at room temperature or under ice bath.

Fig. S13 Overall structure of the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; green sphere, Cl; grey sphere, C; white sphere, H.

Fig. S14 Overall structure of the $[Ag_{36}(S-Adm)_{26}S_4]^{2+}$ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; grey sphere, C; white sphere, H.

Fig. S15 Overall structure of the $[Ag_{25}(S-Adm)_{18}]$ - $[Ag_1(DPPE)_2]$ ⁺ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; magenta sphere, P; grey sphere, C; white sphere, H.

Fig. S16 Overall structure of the $[Ag_{25}(S-Adm)_{18}]^{-}[Ag_{3}(DPPH)_{2}(S-Adm)_{2}]^{+}$ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; magenta sphere, P; grey sphere, C; white sphere, H.

Fig. S17 Overall structure of the $[Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4]^{2+}$ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; magenta sphere, P; green sphere, Cl; grey sphere, C; white sphere, H.

Fig. S18 Overall structure of the $[Ag_{37}(S-Adm)_{25}CI_1]^+$ nanocluster. Color legends: light blue sphere, Ag; red sphere, S; green sphere, Cl; grey sphere, C; white sphere, H.

Fig. S19 ESI-MS result of the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster was obtained by reducing the Ag-SR-TPP complexes by NaBH₄.

Fig. S20 ESI-MS result of the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster was obtained by reducing the Ag-SR-DPPPE complexes by NaBH₄.

Fig. S21 (A) ESI-MS result of the $[Ag_{36}(S-Adm)_{26}S_4]^{2+}$ nanocluster. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{36}(S-Adm)_{26}S_4]^{2+}$ nanocluster was obtained by reducing the Ag-SR-DPPM complexes by NaBH₄. (B) ESI-MS result of the SbF₆⁻ counterion.

Fig. S22 (A) ESI-MS result of the $[Ag_{25}(S-Adm)_{18}]^-$ nanocluster. (B) ESI-MS result the $[Ag_1(DPPE)_2]^+$ complex. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{25}(S-Adm)_{18}]^-[Ag_1(DPPE)_2]^+$ nanocluster was obtained by reducing the Ag-SR-DPPE complexes by NaBH₄.

Fig. S23 (A, B) ESI-MS result of the $[Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4]^{2+}$ nanocluster. Probably because the DPPP and Cl ligands were easily dissociated from the $Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4$ nanocluster, several incomplete mass signals were detected, including $[Ag_{34}(S-Adm)_{18}Cl_4 + CH_3OH]^{2+}$, $[Ag_{34}(S-Adm)_{18}(DPPP)_1Cl_2]^{2+}$, and $[Ag_{34}(S-Adm)_{18}(DPPP)_1Cl_4 + CH_3OH]^{2+}$ (Figure S23A), whereas the molecular ion peak (i.e., $[Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4]^{2+}$) was weak (Figure S23B). Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4]^{2+}$ nanocluster was obtained by reducing the Ag-SR-DPPP complexes by NaBH₄. (C) ESI-MS result of the SbF₆⁻ counterion.

Fig. S24 ESI-MS result of the $[Ag_{37}(S-Adm)_{25}Cl_1]^+$ nanocluster. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{37}(S-Adm)_{25}Cl_1]^+$ nanocluster was obtained by reducing the Ag-SR-DPPB complexes by NaBH₄.

Fig. S25 (A) ESI-MS result of the $[Ag_{25}(S-Adm)_{18}]^{-}$ nanocluster. (B) ESI-MS result the $[Ag_3(S-Adm)_2(DPPH)_2]^+$ complex. Insets: the framework of the nanocluster and the comparison of the experiment (black line) and the simulated (red line) isotopic distributions. This $[Ag_{25}(S-Adm)_{18}]^{-}$ $[Ag_3(S-Adm)_2(DPPH)_2]^+$ nanocluster was obtained by reducing the Ag-SR-DPPH complexes by NaBH₄.

Fig. S26 Optical absorptions of the obtained silver nanoclusters (dissolved in CH_2Cl_2). (A) UV-vis spectrum of $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$. (B) UV-vis spectrum of $[Ag_{36}(S-Adm)_{26}S_4]^{2+}$. (C) UV-vis spectrum of $[Ag_{25}(S-Adm)_{18}]^{-}[Ag_1(DPPE)_2]^{+}$. (D) UV-vis spectrum of $[Ag_{34}(S-Adm)_{18}(DPPP)_3Cl_4]^{2+}$. (E) UV-vis spectrum of $[Ag_{37}(S-Adm)_{25}Cl_1]^{+}$. (F) UV-vis spectrum of $[Ag_{25}(S-Adm)_{18}]^{-}[Ag_3(S-Adm)_2(DPPH)_2]^{+}$.

Table S1. Crystal data and structure refinement for the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster (prepared in the presence of TPP). The CCDC number of the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster (prepared in the presence of TPP) is 2094270.

Crystal system	orthorhombic			
Space group	Pccn			
a/Å	22.7708(5)			
b/Å	37.8932(8)			
c/Å	47.1176(9)			
α/°	90			
β/°	90			
γ/°	90			
Volume/ų	40655.8(15)			
Z	4			
pcalcg/cm ³	1.705			
µ/mm ⁻¹	21.409			
F(000)	20240			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-26 ≤ h ≤ 20, -43 ≤ k ≤ 20, -54 ≤ l ≤ 54			
θ range (°)	2.940 - 62.499			
Measured reflections and unique reflections	151947 / 31624 (R _{int} =0.0427)			
Goodness-of-fiton F ²	1.047			
Largest diff. peak/hole / e Å ⁻³	2.9/-2.5			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0514, wR_2 = 0.1423$			
Final R indexes [all data]	$R_1 = 0.0636, wR_2 = 0.1371$			

Crystal system	monoclinic			
Space group	P 21/n			
a/Å	22.2769(4)			
b/Å	29.4661(4)			
c/Å	24.0645(4)			
α/°	90			
β/°	95.0370(10)			
γ/°	90			
Volume/Å ³	15735.3(4)			
Z	2			
pcalcg/cm ³	1.864			
μ/mm ⁻¹	21.085			
F(000)	8664			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-25 ≤ h ≤ 21, -29 ≤ k ≤ 33, -47 ≤ l ≤ 22			
θ range (°)	3.521 – 62.499			
Measured reflections and unique reflections	49442 / 24374 (<i>R</i> _{int} =0.0470)			
Goodness-of-fiton F ²	1.029			
Largest diff. peak/hole / e Å ⁻³	2.8/-4.9			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0909, wR_2 = 0.2693$			
Final R indexes [all data]	$R_1 = 0.1085, wR_2 = 0.2502$			

Table S2. Crystal data and structure refinement for the $[Ag_{36}(S-Adm)_{28}S_4](SbF_6)_2$ nanocluster. The CCDC number of $[Ag_{36}(S-Adm)_{28}S_4](SbF_6)_2$ is 2094271.

Crystal system	triclinic			
Space group	P -1			
a/Å	20.263(2)			
b/Å	20.999(2)			
c/Å	34.609(3)			
α/°	90.312(8)			
β/°	103.772(8)			
γ/°	116.638(7)			
Volume/Å ³	12677(2)			
Z	2			
pcalcg/cm ³	1.732			
µ/mm⁻¹	17.656			
F(000)	6560			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-23 ≤ h ≤ 21, -24 ≤ k ≤ 24, -17 ≤ l ≤ 39			
θ range (°)	3.396 - 62.498			
Measured reflections and unique reflections	112742 / 39941 (<i>R</i> _{int} =0.0375)			
Goodness-of-fiton F ²	0.992			
Largest diff. peak/hole / e Å-3	5.2/-3.4			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0443, wR_2 = 0.1184$			
Final R indexes [all data]	$R_1 = 0.0577, wR_2 = 0.1133$			

Table S3. Crystal data and structure refinement for the $[Ag_{25}(S-Adm)_{18}][Ag_1(DPPE)_2]$ nanocluster. The CCDC number of $[Ag_{25}(S-Adm)_{18}][Ag_1(DPPE)_2]$ is 2094272.

Crystal system	trigonal			
Space group	R -3			
a/Å	26.59(2)			
b/Å	26.59(2)			
c/Å	87.85(3)			
α/°	90			
β/°	90			
γ/°	120			
Volume/Å ³	53775(90)			
Z	6			
pcalcg/cm ³	1.533			
μ/mm ⁻¹	16.901			
F(000)	24324			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-30 ≤ h ≤ 24, -21 ≤ k ≤ 30, -37 ≤ l ≤ 101			
θ range (°)	6.84 – 58.84			
Measured reflections and unique reflections	40279 / 18671 (<i>R</i> _{int} =0.0486)			
Goodness-of-fiton F ²	1.281			
Largest diff. peak/hole / e Å ⁻³	3.7/-1.6			
Final R indexes [I>=2σ (I)]	$R_1 = 0.1066, wR_2 = 0.3549$			
Final R indexes [all data]	$R_1 = 0.1390, wR_2 = 0.3100$			

Table S4. Crystal data and structure refinement for the $[Ag_{34}(S-Adm)_{18}(DPPP)_{3}Cl_{4}](SbF_{6})_{2}$ nanocluster. The CCDC number of $[Ag_{34}(S-Adm)_{18}(DPPP)_{3}Cl_{4}](SbF_{6})_{2}$ is 2094273.

Crystal system	monoclinic			
Space group	P 21/c			
a/Å	21.2728(12)			
b/Å	36.8575(16)			
c/Å	41.407(2)			
α/°	90			
β/°	103.605(4)			
γ/°	90			
Volume/Å ³	31554(3)			
Z	4			
pcalcg/cm ³	1.727			
µ/mm⁻¹	19.859			
F(000)	16112			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-24 ≤ h ≤ 24, -41 ≤ k ≤ 42, -47 ≤ l ≤ 26			
θ range (°)	3.762 - 62.500			
Measured reflections and unique reflections	218541 / 49672 (<i>R</i> _{int} =0.0748)			
Goodness-of-fiton F ²	0.991			
Largest diff. peak/hole / e Å ⁻³	3.4/-2.3			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0670, wR_2 = 0.1894$			
Final R indexes [all data]	$R_1 = 0.0833, wR_2 = 0.1781$			

Table S5. Crystal data and structure refinement for the $[Ag_{37}(S-Adm)_{25}Cl_1]^+$ nanocluster. The CCDCnumber of $[Ag_{37}(S-Adm)_{25}Cl_1]^+$ is 2094275.

Table S6. Crystal data and structure refinement for the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster (prepared in the presence of DPPPE). The CCDC number of the $[Ag_{52}(S-Adm)_{28}Cl_4]^{2+}$ nanocluster (prepared in the presence of DPPPE) is 2094276.

Crystal system	orthorhombic			
Space group	Pccn			
a/Å	22.5930(2)			
b/Å	38.2448(3)			
c/Å	47.1063(2)			
α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	40702.9(5)			
Z	4			
pcalcg/cm ³	1.703			
µ/mm⁻¹	21.384			
F(000)	20240			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-22 ≤ h ≤ 27, -17 ≤ k ≤ 46, -56 ≤ l ≤ 52			
θ range (°)	3.982 – 68.788			
Measured reflections and unique reflections	123849 / 35549 (R _{int} =0.1507)			
Goodness-of-fiton F ²	0.801			
Largest diff. peak/hole / e Å ⁻³	1.8/-2.3			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0690, wR_2 = 0.1977$			
Final R indexes [all data]	$R_1 = 0.1631, wR_2 = 0.1591$			

Crystal system	monoclinic			
Space group	P 21/c			
a/Å	21.739(2)			
b/Å	20.734(2)			
c/Å	33.597(4)			
α/°	90			
β/°	90.70(1)			
γ/°	90			
Volume/Å ³	15142.3(3)			
Z	2			
pcalcg/cm ³	1.596			
µ/mm⁻¹	15.957			
F(000)	7240			
Radiation	CuKα (λ = 1.54186)			
Index ranges	-25 ≤ h ≤ 23, -23 ≤ k ≤ 10, -38 ≤ l ≤ 36			
θ range (°)	3.982 - 68.788			
Measured reflections and unique reflections	93149 / 23937 (<i>R</i> _{int} =0.0461)			
Goodness-of-fiton F ²	0.980			
Largest diff. peak/hole / e Å-3	1.8/-1.0			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0494, wR_2 = 0.1359$			
Final R indexes [all data]	$R_1 = 0.0671, wR_2 = 0.1298$			

Table S7. Crystal data and structure refinement for the $[Ag_{25}(S-Adm)_{18}][Ag_3(S-Adm)_2(DPPH)_2]$ nanocluster. The CCDC number of $[Ag_{25}(S-Adm)_{18}][Ag_3(S-Adm)_2(DPPH)_2]$ is 2094482.

Table S8. Comparison of corresponding bond lengths in different $[Ag_{25}(SR)_{18}]^{-}$ nanoclusters.

Kernel Ag-Icosahedral Ag

Icosahedral Ag-Icosahedral Ag

Icosahedral Ag-Motif S

Motif S

	Kerne	el Ag-	Icosahe	edral Ag-	Icosahe	dral Ag-	Moti	f Ag-
Cluster	Icosahe	edral Ag	Icosah	edral Ag	Mo	tif S	Mot	if S
Cluster	Range	۸	Range	$\Delta v = (\hat{\Delta})$	Range	Δ.v.σ. (Å)	Range	۵
	(Å)	Avg.(A)	(Å)	Avg.(A)	(Å)	Avg.(A)	(Å)	Avg.(A)
Ag ₂₅ (S-	2.749-	2.764	2.821-	2.907	2.453-	2.479	2.382-	2.500
PhMe ₂) ₁₈	2.785		2.998		2.510		3.025	
(Ref 1)								
Ag ₂₅ (S-	2.753-	2.777	2.870-	2.920	2.450-	2.479	2.380-	2.454
Adm) ₁₈	2.808		2.975		2.503		3.056	
(Ag ₂₅ -DPPE)								
Diff.	-	+0.47%	-	+0.45%	-	+0%	-	-1.84%
Ag ₂₅ (S-	2.753-	2.773	2.855-	2.916	2.434-	2.476	2.354-	2.475
Adm) ₁₈	2.806		2.970		2.508		3.013	
(Ag ₂₅ -DPPH)								
Diff		+0.33%		+0.31%		-0.12%		-1.00%

Ref 1. $[Ag_{25}(SPhMe_2)_{18}]^{-}$ referring "C. P. Joshi, M. S. Bootharaju, M. J. Alhilaly, O. M. Bakr. $[Ag_{25}(SR)_{18}]^{-}$: The "Golden" Silver Nanoparticle. *J. Am. Chem. Soc.*, 2015, **137**, 11578-11581". **Ag_{25}-DPPE.** $[Ag_{25}(S-Adm)_{18}][Ag_1(DPPE)_2]$

Ag₂₅-DPPH. $[Ag_{25}(S-Adm)_{18}][Ag_3(S-Adm)_2(DPPH)_2]$

Table S9. Comparison of Ag-Cl or Ag-S bond lengths in different silver nanoclusters. Notes: the Ag-S bonds in this table represent the interactions between Ag and the sole S atoms without any carbon tails rather than the interactions between Ag and S-Adm ligands.

	kerne	el Ag-	Surface Ag-		
Cluster Cl/S		/S	CI/S		
	Range (Å)	Avg.(Å)	Range (Å)	Avg.(Å)	
Ag ₃₄	2.694-2.694	2.694	2.811-2.811	2.811	
nanocluster					
(Ag-Cl)					
Ag ₃₆	2.379-2.467	2.417	2.623-2.668	2.645	
nanocluster					
(Ag-S)					
Ag ₃₇	2.753-2.806	2.540	-	-	
nanocluster					
(Ag-Cl)					
Ag ₅₂	2.691-2.872	2.778	-	-	
nanocluster					
(Ag-Cl)					