Supporting Information

Extended Phenothiazines: Synthesis, Photophysical and
Redox Properties, and Efficient Photocatalytic Oxidative
Coupling of Amines
Jun Zhou, Lijun Mao, Meng-Xiang Wu, Zhiyong Peng, Yiming
Yang, Manfei Zhou, Xiao-Li Zhao, ${ }^{*}$ Xueliang Shi,* Hai-Bo Yang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
Email: xlzhao@,chem.ecnu.edu.cn, xlshi@.chem.ecnu.edu.cn
Contents
1 General 2
2 Synthesis and characterization 3
3 Theoretical calculation 11
3.1 HOMO and LUMO energies 11
3.2 Spin density and spin population 12
3.3 The dihedral angle and bond length analysis 14
3.4 Real space representation of hole and electron distributions 15
4 UV-vis-NIR titrations 16
5 EPR studies 16
6 Single crystal data 19
6.1 Single crystals growth of 1-5 19
6.2 Single crystals data 22
7 Photostability study 26
8 Comparison of catalytic performance of different catalysts 27
9 Sunlight-driven oxidative coupling of amines to imines 27
10 NMR spectra 28
$10.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds 28
10.2 2D NMR spectra of new compounds 45
10.3 In situ ${ }^{1} \mathrm{H}$ NMR spectra of imines 48
10.3.1 In situ ${ }^{1} \mathrm{H}$ NMR spectra in Table 2 48
10.3.2 In situ ${ }^{1} \mathrm{H}$ NMR spectra in Table 3 55
11 GC-MS data of imines 59
12 Mass spectra of new compounds 64
13 Reference 68

1 General

All solvents were dried according to the standard procedures and all of them were degassed under N_{2} for 30 minutes before use. All air-sensitive reactions were carried out under inert N_{2} atmosphere. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, 2D NMR (NOESY, COSY) spectra were recorded on Bruker $300 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}$ spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to the residual solvent signals. Coupling constants (J) are denoted in Hz and chemical shifts (δ) are denoted in ppm. Multiplicities are denoted as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet and $\mathrm{m}=$ multiplet. UV-vis-NIR spectra were recorded in a quartz cell (light path 10 mm) on a Shimadzu UV2700 UV-visible spectrophotometer. Fluorescence spectra and photoluminescence quantum yields $\left(\Phi_{\mathrm{F}}\right)$ were recorded on HORIBA Duetta. Cyclic voltammetry was recorded on a Bio-Logic SAS SP-150 spectrometer in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing n $\operatorname{BuNPF}_{6}(0.1 \mathrm{M})$ as supporting electrolyte at a scan rate of $20 \mathrm{mV} / \mathrm{s}$ at room temperature. The CV cell has a glassy carbon electrode, a Pt wire counter electrode, and an $\mathrm{Ag} / \mathrm{Ag}^{+}$ reference electrode. The potential was calibrated against the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$couple. $E^{\theta} \mathrm{Fc}^{+} / \mathrm{Fc}=0.46 \mathrm{~V}$ vs. SCE in $\mathrm{CH}_{2} \mathrm{Cl}_{2} . E_{1 / 2}\left(\mathrm{PC}^{+} / \mathrm{PC}^{*}\right)=E_{1 / 2}\left(\mathrm{PC}^{+} / \mathrm{PC}\right)-$ E_{hv} where $E_{\mathrm{hv}}=h c / \lambda_{\max }=1240 \mathrm{~nm} / \lambda_{\max } \cdot E_{1 / 2}\left(\mathrm{PC}^{+} / \mathrm{PC}\right)$ was obtained from CV as the half sum of anodic (E_{pa}) and cathodic (E_{pc}) peak potentials, $E_{1 / 2}\left(\mathrm{PC}^{+} / \mathrm{PC}\right)=\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right) / 2$. $E_{\mathrm{g}}{ }^{\text {opt }}$ was calculated from the onset of the absorption band. $E_{\text {ox }}$ is the first oxidation potential, versus ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$). $E_{\text {Номо was calculated from the onset }}$ of the first oxidation wave and referenced against $\mathrm{Fc} / \mathrm{Fc}^{+}$at -4.8 eV vs. vacuum. E_{LUMO} was calculated with $E_{\text {Номо }}$ and $E_{\mathrm{g}}{ }^{\text {opt }}$. EPR spectra for radicals were obtained on Bruker EMX instrument EMXPLUS-10/12. EPR spectra simulation was conducted on the Bruker SpinFit software. The HR-ESI mass spectra were performed on Q Exactive Focus (Thermo Scientific, USA). The single crystals were measured on Bruker Apex duo equipment with Cu radiation $(\lambda=1.54184 \AA)$. DFT computations were performed by Gaussian 16 program. During the optimization, all atoms were described by RM06-2X/def2-SVP and UM06-2X/def2-SVP computational level for neutral compounds and radical cations, respectively. Frequency calculations were conducted to ensure that these structures were indeed local minima without imaginary frequencies. The single point energy was performed at the level of M06-2X/def2-TZVP. Time-dependent density functional theory (TD-DFT) calculations at the CAM-B3LYP/def2-SVP level. Electronic structure analyses were performed with the Multiwfn 3.8 (dev) code. The isosurface maps of various molecular orbitals, spin density and hole-electron distributions were rendered by Visual Molecular Dynamics (VMD 1.9.3) software based on the files exported from Multiwfn. ${ }^{[1-4]}$ The photocatalytic experiments were carried out under photoreactor which was purchased from Shanghai 3S Technology Co., Ltd. (item no. S-Light-AL1). Yields of imines were determined by in situ ${ }^{1}$ H NMR using 1,3,5-trimethoxybenzene as an internal standard. In order to increase the solubility of products, adding some DMSO to the mixture after reaction. Conversion was determined by gas chromatograph (GC-2014, SHIMADZU, equipped with an FID detector). Products were confirmed by ${ }^{1} \mathrm{H}$ NMR and GC-MS (GCMSQP2020, SHIMADZU).

2 Synthesis and characterization

Compound a-OMe

A round-bottom flask was charged with 2-bromo-3-methoxynaphthalene ($3.54 \mathrm{~g}, 15.0$ $\mathrm{mmol})$, 2-methoxybenzenethiol ($2.20 \mathrm{~mL}, 18.0 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(686 \mathrm{mg}, 0.75 \mathrm{mmol})$, XPhos ($715 \mathrm{mg}, 1.50 \mathrm{mmol}$), t-BuONa ($4.32 \mathrm{~g}, 45.0 \mathrm{mmol}$) and toluene $(100 \mathrm{~mL})$. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE:EA $=20: 1$) to obtain the compound a-OMe (2.49 g) as a white solid with yield of 56%. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (td, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32$ (m, 1H), 7.31 (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ (ppm) 158.98, 155.65, 133.98, 133.83, 129.80, 129.49, 129.20, 127.12, 126.80, 126.54, 126.41, 124.37, 121.70, 121.64, 111.63, 105.83, 56.22, 56.19.

Compound a-OTf

Compound a-OMe ($1.00 \mathrm{~g}, 3.40 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(20 \mathrm{~mL}) . \mathrm{BBr}_{3}(2.30$ $\mathrm{mL}, 23.60 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and then the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was evaporated under reduced pressure to obtain crude product without purification. Then the crude product was dissolved in DCM (20 mL), pyridine ($655 \mu \mathrm{~L}, 8.10 \mathrm{mmol}$) was added. Then triflic anhydride ($1.70 \mathrm{~mL}, 10.1 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . After the reaction, the mixture was quenched with saturated NaHCO_{3} aqueous solution and extracted with $\mathrm{DCM}(20 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to give the compound a-OTf $(1.39 \mathrm{~g})$ as a white solid in 77% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.96$ (s, $1 \mathrm{H}), 7.87$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.79$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55$ (m, 2H), 7.39-7.37 (m, 2H), 7.30-7.27 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 148.49$, $146.50,135.72,133.54,133.28,132.70,129.67,129.18,128.97,128.47,128.11$, 128.06, 127.81, 124.76, 122.38, 120.48.

Compound 1

A round-bottom flask was charged with a-OTf ($532 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(977 \mathrm{mg}$, 3.00 mmol), DPEPhos ($53.8 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(45.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ and toluene $(10 \mathrm{~mL})$. 4-tert-butylaniline ($175 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$) was added to the mixture. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=100: 1$) to obtain the compound $\mathbf{1}(186 \mathrm{mg})$ as a pale yellow solid with the yield of $49 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.64,137.71,137.53,137.49,137.29$, 135.12, 135.09, 134.65, 133.38, 130.69, 130.57, 130.53, 129.07, 128.75, 128.44, $126.65,126.57,126.33,126.14,125.89,124.93,102.41,55.70,21.41,21.20,20.14$, 19.90. HR-ESI-MS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 382.1551$, found: 382.1616 .

Compound b-OMe

A round-bottom flask was charged with 2-bromo-3-methoxynaphthalene (1.19g, 5.00 mmol), thiourea ($247 \mathrm{mg}, 3.25 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.28 \mathrm{~g}, 7.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(91.6$ $\mathrm{mg}, 0.10 \mathrm{mmol})$, TriPhos ($187 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 1,4-dioxane (50 mL). The mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE:EA $=10: 1$) to give the compound b-OMe (485 mg) as a white solid in 56% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.44$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 156.05,134.38,131.43,131.39,129.51,127.37,126.81,125.15$, 124.43, 106.12, 56.40. HR-ESI-MS: m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 347.1028$, found: 347.1091.

Compound b-OTf

Compound b-OMe ($346 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in DCM (5 mL). BBr_{3} (674 $\mu \mathrm{L}, 7.00 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, and then the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was evaporated under reduced pressure to obtain crude product without purification. The crude product was dissolved in DCM (5 mL). Then pyridine ($194 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added. Then triflic anhydride ($505 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. and the resulting mixture was stirred at room temperature for 2 h . After the reaction, the mixture was quenched with saturated NaHCO_{3} aqueous solution and extracted with $\mathrm{DCM}(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to give the compound b-OTf $(483 \mathrm{mg})$ as a white solid with yield of 83%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})$ 8.27 (s, 2H), 8.15 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (s, 2H), 7.97 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (dt, J $=14.8,7.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 144.93$, 133.96, 132.67, 132.40, 128.48, 128.36, 128.19, 127.72, 123.84, 120.83. HR-ESI-MS: m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 582.9700$, found: 582.9761.

Compound 2

A round-bottom flask was charged with b-OTf ($583 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(977 \mathrm{mg}$, 3.00 mmol), DPEPhos ($53.8 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(45.8 \mathrm{mg}, 0.0500 \mathrm{mmol})$ and toluene (10 mL). 4-tert-butylaniline ($175 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$) was added to the mixture. The mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=100: 1$) to give the compound $2(155 \mathrm{mg})$ as a white solid in 36% yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 152.35,141.60,138.57,133.50,130.52,130.05,128.53$, 127.12, 126.50, 126.36, 124.59, 124.57, 122.03, 111.82, 35.24, 31.62. HR-ESI-MS: m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 432.1708$, found: 432.1775.

Compound 2-Br

9,10-dimesityl-2-methoxyanthracene was synthesized by previous reported procedures. ${ }^{\text {[4] }} 9,10$-Dimesityl-2-methoxyanthracene ($889 \mathrm{mg}, 2.00 \mathrm{mmol}$) was dissolved in THF 20 mL . Then ethyl n-BuLi ($0.96 \mathrm{~mL}, 2.40 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under N_{2} protection and the resulting mixture was stirred at room temperature for 1 h . After that, 1,2-dibromoethane ($190 \mu \mathrm{~L}, 2.20 \mathrm{mmol}$) was added to the mixture at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. After that, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with AcOEt. The organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE) to obtain the compound $\mathbf{2 - B r}(846 \mathrm{mg})$ as a yellow solid in 81% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=13.4,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{~s}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 153.09, 137.61, 137.56, 137.45, 137.30, 134.84, 134.66, 134.36, 133.60, 130.93, 130.46, 129.81, 129.08, 128.57, 126.92, 126.62, 126.10, 125.92, 125.07, 115.22, 103.60, 56.18, 21.43, 21.41, 20.11, 19.98. HR-ESI-MS: m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}: 523.1558$, found: 523.1634.

Compound c-OMe

A round-bottom flask was charged with 2-Br ($1.00 \mathrm{~g}, 2.00 \mathrm{mmol}$), 2methoxybenzenethiol ($292 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(91.57 \mathrm{mg}, 0.10 \mathrm{mmol})$, XPhos ($95.34 \mathrm{mg}, 0.2 \mathrm{mmol}$), t-BuONa ($577 \mathrm{mg}, 6.00 \mathrm{mmol}$) and toluene (20 mL). The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=100: 1$) to give the compound c-OMe (699 mg) as a yellow solid with yield of $60 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.95-$ $6.85(\mathrm{~m}, 4 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 159.62$, $153.75,136.66,136.61,136.49,136.24,136.01,134.14,133.51,132.98,132.23$, $131.42,129.64,128.84,128.39,127.95,125.59,125.54,125.43,125.20,124.88$, 121.97, 121.33, 116.46, 111.72, 100.77, 55.47, 55.31, 20.91, 20.89, 19.44, 19.25. HR-ESI-MS: m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 583.2593$, found: 583.2658.

Compound c-OTf

Compound c-OMe ($582 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(10 \mathrm{~mL}) . \mathrm{BBr}_{3}(674$ $\mu \mathrm{L}, 7.00 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with $\mathrm{MeOH}(3 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was evaporated under reduced pressure to obtain crude product without purification. The crude product was dissolved in DCM $(10 \mathrm{~mL})$. Then pyridine ($194 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added. Then triflic anhydride ($505 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. and the resulting mixture was stirred at room temperature for 2 h . After that, the mixture was quenched with saturated NaHCO_{3} aqueous solution and extracted with DCM (10 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=60: 1$) to give the compound $\mathbf{c - O T f}$ (622 mg) as a yellow solid with yield of 76%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.56-$ 7.51 (m, 2H), 7.47 (s, 1H), 7.45-7.34 (m, 4H), 7.31-7.28 (m, 2H), 7.20 (s, 1H), 7.15 (s, 2 H), $7.00(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 149.65,145.66,138.44,137.94,137.70,137.51,136.93$, 136.17, 135.47, 133.56, 133.51, 131.62, 131.27, 131.19, 130.80, 129.67, 128.84, $128.71,128.66,127.28,127.09,127.07,126.95,126.84,125.92,122.67,118.93,21.39$, 21.35, 19.96, 19.93. HR-ESI-MS: m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 819.1265$, found: 819.1315 .

Compound 3

A round-bottom flask was charged with c-OTf ($982 \mathrm{mg}, 1.20 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(55.0$ $\mathrm{mg}, 0.06 \mathrm{mmol})$, DPEPhos ($64.6 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.20 \mathrm{~g}, 3.60 \mathrm{mmol})$ and toluene (20 mL). 4-tert-butylaniline ($214 \mu \mathrm{~L}, 1.30 \mathrm{mmol}$) was added to the mixture. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After that, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to give the compound $3(480 \mathrm{mg})$ as a yellow solid with yield of 60%. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 8 \mathrm{H}), 6.99$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H})$, $1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.64,137.71,137.53,137.49$, $137.29,135.12,135.09,134.65,133.38$, 130.69, 130.57, 130.53, 129.07, 128.75, 128.44, 126.65, 126.57, 126.33, 126.14, 125.89, 124.93, 102.41, 55.70, 21.41, 21.20, 20.14, 19.90. HR-ESI-MS: m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 668.3273$, found: 668.3343.

Compound 3-methoxynaphthalene-2-thiol

2-Methoxynaphthalene ($5.00 \mathrm{~g}, 31.6 \mathrm{mmol}$) was dissolved in THF (100 mL). Then ethyl $n-\mathrm{BuLi}(18.2 \mathrm{~mL}, 45.5 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 1 h . After that, elemental sulfur ($1.21 \mathrm{~g}, 37.9 \mathrm{mmol}$) was added to the mixture at $-78^{\circ} \mathrm{C}$. Then the reaction mixture stirred at room temperature overnight. After the reaction, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with AcOEt. The organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE) to give the compound 3-methoxynaphthalene-2-thiol $(2.90 \mathrm{~g})$ as a white solid in 49% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ (ppm) 153.31, 132.19, 128.61, 126.56, 126.52, 125.98, 125.40, 124.14, 123.50, 105.58, 55.95.

Compound d-OMe

A round-bottom flask was charged with $\mathbf{2 - B r}(2.1 \mathrm{~g}, 4.0 \mathrm{mmol})$, 3-methoxynaphthalene-2-thiol $(912 \mathrm{mg}, 4.80 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(183 \mathrm{mg}, 0.20 \mathrm{mmol})$, XPhos ($191 \mathrm{mg}, 0.40 \mathrm{mmol}$), t - $\mathrm{BuONa}(1.15 \mathrm{~g}, 12.0 \mathrm{mmol})$ and toluene $(30 \mathrm{~mL})$. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE:EA $=100: 1$) to obtain the compound d-OMe (1.24 g) as a yellow solid with yield of 49%. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~s}$, $2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})$ $156.20,153.75,136.68,136.60,136.39,136.34,135.76,135.07$, 134.10, 133.26, $133.05,132.25,130.20,128.89,128.51,128.40$, 127.93, 127.54, 127.28, 127.25, 126.68, 125.56, 125.50, 125.46, 125.17, 124.87, 124.03, 122.66, 119.51, 106.61, 100.82, 55.53, 26.35, 20.90, 20.85, 19.43, 19.17. HR-ESI-MS: m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 633.2749$, found: 633.2812.

Compound d-OTf

Compound d-OMe ($1.07 \mathrm{~g}, 1.70 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(20 \mathrm{~mL}) . \mathrm{BBr}_{3}(1.16$ $\mathrm{mL}, 12.0 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and then the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and evaporated under reduced pressure to obtain crude product without purification. The crude product was dissolved in DCM (20 mL). Then pyridine (330 $\mu \mathrm{L}, 4.08 \mathrm{mmol}$) was added. Triflic anhydride ($858 \mu \mathrm{~L}, 5.10 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . After that, the mixture was quenched with saturated NaHCO_{3} aqueous solution and extracted with DCM. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=100: 1$) to give the compound d-OTf $(900 \mathrm{mg})$ as a yellow solid with yield of $61 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (dqd, $J=7.8,6.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (s, 2H), 7.03 (s, $1 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.64,137.71,137.53,137.49,137.29,135.12,135.09$, $134.65,133.38,130.69,130.57,130.53,129.07,128.75,128.44,126.65,126.57$, $126.33,126.14,125.89,124.93,102.41,55.70$, 21.41, 21.20, 20.14, 19.90. HR-ESIMS: m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 869.1422$, found: 869.1484.

Compound 4

A round-bottom flask was charged with d-OTf $(521 \mathrm{mg}, 0.60 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(27.5$ $\mathrm{mg}, 0.03 \mathrm{mmol}$), DPEPhos ($32.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(587 \mathrm{mg}, 1.80 \mathrm{mmol})$ and toluene $(10 \mathrm{~mL})$. 4-tert-butylaniline ($105 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) was added to the mixture. The mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to give the compound $\mathbf{4}(211 \mathrm{mg})$ as a yellow solid with yield of 49%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 10 \mathrm{H}), 6.89$ $(\mathrm{s}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H})$, 1.43 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.64,137.71,137.53,137.49$, $137.29,135.12,135.09,134.65,133.38$, 130.69, 130.57, 130.53, 129.07, 128.75, $128.44,126.65,126.57,126.33,126.14,125.89,124.93,102.41,55.70,21.41,21.20$, 20.14, 19.90. HR-ESI-MS: m / z calculated for $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 718.3429$, found: 718.3474.

Compound e-OMe

A round-bottom flask was charged with 2-Br ($2.60 \mathrm{~g}, 5.00 \mathrm{mmol}$), thiourea (251 mg , $3.30 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(91.6 \mathrm{mg}, 0.10 \mathrm{mmol})$, TriPhos $(187 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.30 \mathrm{~g}, 7.00 \mathrm{mmol}), 1,4$-dioxane $(40 \mathrm{~mL})$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=80: 1$) to give the compound e-OMe $(1.35 \mathrm{~g})$ as a yellow solid with yield of 59%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.40$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}$, $4 \mathrm{H}), 6.89(\mathrm{~s}, 4 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~s}, 12 \mathrm{H})$, $1.60(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.23,137.30,137.12,137.08$, 136.88, 134.71, 134.68, 134.24, 132.96, 130.28, 130.16, 130.12, 128.66, 128.34, $128.03,126.24,126.15,125.92,125.73,125.48,124.52,102.00,55.28,21.00,20.79$, 19.73, 19.49. HR-ESI-MS: m / z calculated for $\mathrm{C}_{66} \mathrm{H}_{63} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 919.4471$, found: 919.4523.

Compound e-OTf

Compound e-OMe ($1.45 \mathrm{~g}, 1.58 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(20 \mathrm{~mL}) . \mathrm{BBr}_{3}(1.07$ $\mathrm{mL}, 11.0 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and then the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and evaporated under reduced pressure to obtain crude product without purification. The crude product was dissolved in DCM (20 mL). Then pyridine (307 $\mu \mathrm{L}, 3.80 \mathrm{mmol}$) was added. Triflic anhydride ($791 \mu \mathrm{~L}, 4.70 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . After that, the mixture was quenched with saturated NaHCO_{3} aqueous solution and extracted with DCM. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=100: 1$) to give the compound d-OTf $(1.28 \mathrm{~g})$ as a yellow solid with yield of 70%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 6.93(\mathrm{~s}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}$, $6 \mathrm{H}), 1.77(\mathrm{~s}, 12 \mathrm{H}), 1.59(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 155.64$, 137.71, 137.53, 137.49, 137.29, 135.12, 135.09, 134.65, 133.38, 130.69, 130.57, $130.53,129.07,128.75,128.44,126.65,126.57,126.33,126.14,125.89,124.93$, 102.41, 55.70, 21.41, 21.20, 20.14, 19.90. HR-ESI-MS: m / z calculated for $\mathrm{C}_{66} \mathrm{H}_{57} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 1155.3143$, found: 1155.3214.

Compound 5

A round-bottom flask was charged with e-OTf $(1.00 \mathrm{~g}, 0.87 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(40.0$ $\mathrm{mg}, 0.04 \mathrm{mmol}$), DPEPhos ($48.5 \mathrm{mg}, 0.09 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(847 \mathrm{mg}, 2.60 \mathrm{mmol})$, and toluene (20 mL). 4-tert-butylaniline ($152 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$) was added to the mixture. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h under N_{2} protection. After reaction, the resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (PE:DCM = 10:1) to give the compound $5(210 \mathrm{mg})$ as a yellow solid with yield of 48%. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}) 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.10$ (s, 4H), 6.97 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 4 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H})$, $1.74(\mathrm{~s}, 12 \mathrm{H}), 1.57(\mathrm{~s}, 12 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}) 140.30$, 137.78, 137.64, 137.28, 136.76, 134.72, 134.45, 133.87, 133.69, 130.53, 129.87, 129.19, 129.13, 128.65, 128.23, 127.32, 126.92, 126.53, 126.15, 125.55, 124.90, $123.35,122.55,109.41,34.84,31.62,21.52,21.38,20.03,19.74$. HR-ESI-MS: m / z calculated for $\mathrm{C}_{74} \mathrm{H}_{70} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 1004.5151$, found: 1004.5208.

3 Theoretical calculation

3.1 HOMO and LUMO energies

Figure S1. HOMO and LUMO energies of PTZ, 1, 2, 3, 4 and 5 at the M06-2X/def2TZVP level of theory.

3.2 Spin density and spin population

Figure S2. Spin density and Mulliken atomic spin density values of PTZ^{+}at the M06-2X/def2-TZVP level of theory.

Figure S3. Spin density and Mulliken atomic spin density values of $\mathbf{1}^{++}$at the M06-2X/def2-TZVP level of theory.

Figure S4. Spin density and Mulliken atomic spin density values of $\mathbf{2}^{++}$at the M06-2X/def2-TZVP level of theory.

Figure S5. Spin density and Mulliken atomic spin density values of $\mathbf{3}^{++}$at the M06-2X/def2-TZVP level of theory.

Figure S6. Spin density and Mulliken atomic spin density values of $\mathbf{4}^{++}$at the M06-2X/def2-TZVP level of theory.

Figure S7. Spin density and Mulliken atomic spin density values of $\mathbf{5}^{+}$at the M06-2X/def2-TZVP level of theory.

3.3 The dihedral angle and bond length analysis

(a)

(b)

Figure S8. The dihedral angle and the bond length of DFT-optimized structure of PTZ, $\mathrm{PTZ}^{+}, \mathbf{1}, \mathbf{1}^{++}, \mathbf{2}, \mathbf{2}^{++}, \mathbf{3}, \mathbf{3}^{+}, \mathbf{4}, \mathbf{4}^{++}, \mathbf{5}$ and $\mathbf{5}^{++}$at the M06-2X/def2-SVP level of theory (a) and the dihedral angle and the bond length of single crystal structure of $\mathbf{1}, \mathbf{1}^{++}, \mathbf{2}$ and $\mathbf{2}^{+}$ (b).

Table S1. Dihedral angle and selected bond length of DFT-optimized structure of PTZ, PTZ ${ }^{+}, \mathbf{1}, \mathbf{1}^{++}, \mathbf{2}, \mathbf{2}^{++}, \mathbf{3}, \mathbf{3}^{++}, \mathbf{4}, \mathbf{4}^{++}, \mathbf{5}$ and $\mathbf{5}^{++}$and dihedral angle and selected bond length of crystal structure of $\mathbf{1 , 1} \mathbf{1}^{++}, \mathbf{2}$ and $\mathbf{2}^{++}$.

	PTZ	PTZ ${ }^{+}$	1	$1{ }^{+}$	2	2^{+}	3	3^{+}	4	4^{+}	5	5^{+}	$\begin{gathered} 1 \\ \text { (crystal) } \end{gathered}$	$\begin{gathered} 1^{++} \\ \text {(crystal) } \end{gathered}$	$\begin{gathered} 2 \\ \text { (crystal) } \end{gathered}$	$\begin{gathered} 2^{++} \\ \text {(crystal) } \end{gathered}$
$\mathrm{C}(1)-\mathrm{N}(\mathrm{A})$	1.412	1.388	1.412	1.383	1.409	1.388	1.408	1.410	1.407	1.364	1.404	1.384	1.410	1.386	1.413	1.398
$\mathrm{C}(2)-\mathrm{N}(\mathrm{A})$	1.412	1.388	1.411	1.394	1.409	1.389	1.407	1.365	1.406	1.414	1.404	1.387	1.409	1.398	1.411	1.403
$\mathrm{C}(3)-\mathrm{S}(\AA)$	1.770	1.727	1.766	1.723	1.763	1.733	1.765	1.749	1.762	1.757	1.759	1.759	1.764	1.696	1.754	1.744
$\mathrm{C}(4)-\mathrm{S}(\mathrm{A})$	1.770	1.727	1.765	1.734	1.764	1.733	1.763	1.757	1.763	1.760	1.758	1.758	1.738	1.738	1.753	1.718
Dihedral angle (${ }^{\circ}$)	150.36	179.79	154.43	179.85	155.47	179.78	156.24	165.75	156.90	162.12	163.99	165.22	158.82	180.00	164.87	174.13

3.4 Real space representation of hole and electron distributions

Figure S9. Calculated molecular orbitals of 3, 4, and 5 and their real space representations of hole and electron distributions for $\mathrm{S} 0 \rightarrow \mathrm{~S} 1$ excitation. Blue and green regions denote the hole and electron distributions, respectively (isovalue $=0.003$). $\mathrm{S} 0 \rightarrow \mathrm{~S} 1$ was mainly attributed to electrons transition from $\mathrm{HOMO} \rightarrow$ LUMO (isovalue $=$ 0.03).

4 UV-vis-NIR titrations

Figure S10. UV-vis-NIR titrations of $\mathbf{3}$ (a), $\mathbf{4}$ (b) and $\mathbf{5}$ (c) ($15 \mu \mathrm{M}$ in DCM) using AgSbF_{6} as oxidant.

5 EPR studies

Figure S11. Experimental and simulated EPR spectra of PTZ^{+}in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.00529, A_{\mathrm{N}}=6.99874 \mathrm{G}$.

Figure S12. Experimental and simulated EPR spectra of $\mathbf{1}^{++}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.00463, A_{\mathrm{N}}=6.8498 \mathrm{G}$.

Figure S13. Experimental and simulated EPR spectra of 2 ${ }^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.00407, A_{\mathrm{N}}=7.28938 \mathrm{G}$.

Figure S14. Experimental and simulated EPR spectra of $\mathbf{3}^{++}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.0041, A_{\mathrm{N}}=5.93397 \mathrm{G}, A_{\mathrm{Ha}}=4.4158 \mathrm{G}, A_{\mathrm{Hb}}=$ $2.10443 \mathrm{G}, A_{\mathrm{Hc}}=2.10402 \mathrm{G}$.

Figure S15. Experimental and simulated EPR spectra of 4^{+}in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.0041, A_{\mathrm{N}}=4.50023 \mathrm{G}, A_{\mathrm{Ha}}=5.49945 \mathrm{G}, A_{\mathrm{Hb}}=$ $3.61345 \mathrm{G}, A_{\mathrm{Hc}}=2.17639 \mathrm{G}, \mathrm{A}_{\mathrm{Hd}}=1.0399 \mathrm{G}$.

Figure S16. Experimental and simulated EPR spectra of $\mathbf{5}^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (data processing (left) and screenshot (right) from the Bruker SpinFit software). The fitting parameters for the spectral simulation are: $g=2.00281, A_{\mathrm{N}}=5.47755 \mathrm{G}, A_{\mathrm{H}}=4.59686 \mathrm{G}$.

Table S2. The g and $A_{\mathrm{N}}, A_{\mathrm{H}}$ value analysis of $\mathrm{PTZ}^{++}, \mathbf{1}^{++}, \mathbf{2}^{++}, \mathbf{3}^{++}, \mathbf{4}^{+}$and $\mathbf{5}^{+}$.

	PTZ^{+}	$\mathbf{1}^{+}$	$\mathbf{2}^{+}$	$\mathbf{3}^{+}$	$\mathbf{4}^{+}$	$\mathbf{5}^{+}$
g	2.00529	2.00463	2.00407	2.0041	2.0041	2.00281
$A_{\mathrm{N}}(\mathrm{G})$	6.99874	6.8498	7.28938	5.93397	4.50023	5.47755
				4.4158	5.49945	
$A_{\mathrm{H}}(\mathrm{G})$	-	-	-	2.10443	2.17639	4.59686
				2.10402	1.0399	

6 Single crystal data

6.1 Single crystals growth of 1-5

(1) Neutral crystals

Crystals of compounds $\mathbf{1 - 5}$ were grown via a vapor diffusion method: compounds $\mathbf{1 - 5}(5.0 \mu \mathrm{~mol})$ were dissolved in dichloromethane $(1.0 \mathrm{~mL})$ solution and placed it in a 4.0 mL bottle. The small bottle was then placed in a 20 mL glass bottle containing n-hexane (5.0 mL) for several days, after that the transparently white or yellow crystals 1-5 were obtained.
(2) Radical crystals

The radical crystals of compounds $\mathbf{1 , 2}$ was grown via a vapor diffusion method: Compound $\mathbf{1}$ or $\mathbf{2}(5.0 \mu \mathrm{~mol})$ was dissolved in dichloromethane, and oxidized by $\mathrm{AgSbF}_{6}(5.0 \mu \mathrm{~mol})$ and placed it in a 4.0 mL bottle. The liquid turns from light yellow to green. The small bottle was then placed in a 20 mL glass bottle containing n-hexane (5 mL) for several days, after that the transparently purple or green crystal $\mathbf{1}^{\mathbf{+}}$ or $\mathbf{2}^{++}$was obtained.

Figure S17. Packing structure of 1 at 201 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S18. Packing structure of $\mathbf{2}$ at 172.99 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S19. Packing structure of $\mathbf{3}$ at 170 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S20. Packing structure of $\mathbf{4}$ at 170 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S21. Packing structure of $\mathbf{5}$ at 173 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S22. Packing structure of $\mathbf{1 ~}^{++}$at 296.15 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

Figure S23. Packing structure of $\mathbf{2}^{++}$at 169.99 K in the crystalline state. Other hydrogen atoms are omitted for clarity.

6.2 Single crystals data

Table S3. X-ray single crystal data of metallacycles $\mathbf{1}$ and $\mathbf{1}^{\mathbf{+}}$.

Compound	$\mathbf{1}$	$\mathbf{1}^{\bullet+}$
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NS}$	$\mathrm{C}_{13} \mathrm{H}_{11.5} \mathrm{~F}_{3} \mathrm{~N}_{0.5} \mathrm{~S}_{0.5} \mathrm{Sb}_{0.5}$
Formula weight	381.51	308.63
Temperature/K	$201(40)$	296.15
Crystal system	orthorhombic	monoclinic
Space group	Pccn	$\mathrm{C} 2 / \mathrm{m}$
a / \AA	$23.8497(9)$	$27.184(5)$
b / \AA	$21.8615(7)$	$6.8384(13)$
c / \AA	$7.9142(3)$	$19.415(4)$
α / \circ	90	90
$\beta /{ }^{\circ}$	90	$133.036(3)$
$\gamma /{ }^{\circ}$	90	90

Volume / \AA^{3}	4126.4(3)	2638.1(9)
Z	8	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.228	1.554
μ / mm^{-1}	1.453	1.182
F (000)	1616.0	1228.0
Crystal size / mm ${ }^{3}$	$0.36 \times 0.14 \times 0.12$	$0.06 \times 0.06 \times 0.05$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2θ range for data collection/ ${ }^{\circ}$	7.414 to 134.16	6.712 to 55.276
	$-28 \leq \mathrm{h} \leq 28$,	$-35 \leq h \leq 35$,
Index ranges	$\begin{aligned} & -26 \leq \mathrm{k} \leq 25 \\ & -9 \leq 1 \leq 6 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{k} \leq 8 \\ & -25 \leq 1 \leq 25 \end{aligned}$
Reflections collected	16520	10582
	3670	3204
Independent reflections	$\begin{aligned} & \mathrm{R}_{\mathrm{int}}=0.0673 \\ & \mathrm{R}_{\text {sigma }}=0.0620 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\text {int }}=0.0331 \\ & \mathrm{R}_{\text {sigma }}=0.0342 \end{aligned}$
Data / restraints / parameters	3670/14/256	3204/52/222
Goodness-of-fit on F^{2}	1.068	1.015
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{aligned} & \mathrm{R}_{1}=0.0834 \\ & \mathrm{wR}_{2}=0.2097 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0590 \\ & \mathrm{wR}_{2}=0.1625 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0987 \\ & \mathrm{wR}_{2}=0.2207 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0864 \\ & \mathrm{wR}_{2}=0.1914 \end{aligned}$
Largest diff. peak / hole / e \AA^{-}	1.77/-0.47	1.58/-0.63
CCDC	2145133	2145124

Table S4. X-ray single crystal data of metallacycles $\mathbf{2}$ and $\mathbf{2}^{+}$.

Compound	2	$2 \cdot+$
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NS}$	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NSSb}$
Formula weight	516.49	667.32
Temperature/K	172.99(10)	169.99(10)
Crystal system	monoclinic	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$	C2/c
a / \AA	11.18030(10)	15.8665(18)
b / \AA	7.73940 (10)	24.950(2)
c / \AA	30.7513(3)	16.2233(13)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	99.9610(10)	99.104(9)
$\gamma /{ }^{\circ}$	90	90
Volume / \AA^{3}	2620.76(5)	6341.4(10)
Z	4	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.309	1.398
μ / mm^{-1}	3.118	7.991
F (000)	1080.0	2664.0
Crystal size / mm ${ }^{3}$	$0.36 \times 0.34 \times 0.28$	$0.28 \times 0.13 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection $/{ }^{\circ}$	8.054 to 134.15	6.662 to 134.156
	$-13 \leq \mathrm{h} \leq 13$,	$-18 \leq \mathrm{h} \leq 18$,
Index ranges	$\begin{aligned} & -9 \leq \mathrm{k} \leq 9 \\ & -36 \leq 1 \leq 36 \end{aligned}$	$\begin{aligned} -29 & \leq \mathrm{k} \leq 29 \\ -19 & \leq 1 \leq 13 \end{aligned}$
Reflections collected	56983	30155
	4679	5659
Independent reflections	$\begin{aligned} & \mathrm{R}_{\mathrm{int}}=0.0599 \\ & \mathrm{R}_{\text {sigma }}=0.0260 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{int}}=0.1462 \\ & \mathrm{R}_{\text {sigma }}=0.1091 \end{aligned}$
Data / restraints / parameters	$\mathrm{R}_{\text {sigma }}=0.0260$ $4679 / 48 / 349$	$\mathrm{R}_{\text {sigma }}=0.1091$ $5659 / 0 / 355$
Goodness-of-fit on F^{2}	1.032	1.017
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{aligned} & \mathrm{R}_{1}=0.0534, \\ & \mathrm{wR}_{2}=0.1357 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0653 \\ & \mathrm{wR}_{2}=0.1592 \end{aligned}$

	$\mathrm{R}_{1}=0.0557$,	$\mathrm{R}_{1}=0.1228$,
Final R indexes [all data]	$\mathrm{wR}_{2}=0.1377$	$\mathrm{wR}_{2}=0.1864$
Largest diff. peak / hole /e \AA^{-3}	$0.49 /-0.65$	$0.68 /-1.72$
CCDC	2143328	2143327

Table S5 X-ray single crystal data of $\mathbf{3}$ and 4.

Compound	3	4
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{45} \mathrm{NS}$	$\mathrm{C}_{52} \mathrm{H}_{47} \mathrm{NS}$
Formula weight	667.91	717.96
Temperature/K	170.00(10)	170.00(10)
Crystal system	monoclinic	trigonal
Space group	$\mathrm{P} 21 / \mathrm{n}$	R-3
a / \AA	16.8923(2)	36.5917(5)
b/	13.29240(10)	36.5917(5)
c / \AA	17.9856(3)	17.7385(3)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	113.172(2)	90
$\gamma /{ }^{\circ}$	90	120
Volume / \AA^{3}	3712.68(10)	20569.0(7)
Z	4	18
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.195	1.043
μ / mm^{-1}	1.022	0.862
F (000)	1424.0	6876.0
Crystal size / mm ${ }^{3}$	$0.26 \times 0.22 \times 0.18$	$0.32 \times 0.24 \times 0.12$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection $/^{\circ}$	6.084 to 134.142	5.71 to 134.152
Index ranges	$\begin{aligned} & -20 \leq h \leq 12 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -21 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} -43 & \leq h \leq 26 \\ -43 & \leq k \leq 29 \\ -21 & \leq 1 \leq 21 \end{aligned}$
Reflections collected	40600	67250
	6597	8171
Independent reflections	$\begin{aligned} & \mathrm{R}_{\text {int }}=0.0396, \\ & \mathrm{R}_{\text {sigma }}=0.0275 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\text {int }}=0.0367, \\ & \mathrm{R}_{\text {sigma }}=0.0188 \end{aligned}$
Data / restraints / parameters	6597/0/460	8171/0/496
Goodness-of-fit on F^{2}	1.030	1.057
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{aligned} & \mathrm{R}_{1}=0.0410 \\ & \mathrm{wR}_{2}=0.1094 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0404 \\ & \mathrm{wR}_{2}=0.1079 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0460 \\ & \mathrm{wR}_{2}=0.1128 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0443 \\ & \mathrm{wR}_{2}=0.1099 \end{aligned}$
Largest diff. peak / hole / e \AA^{-3}	0.51/-0.36	0.45/-0.29
CCDC	2143332	2143331

Table S6 X-ray single crystal data of 5 and a-OMe.

Compound	$\mathbf{5}$	$\mathbf{a - O M e}$
Empirical formula	$\mathrm{C}_{74} \mathrm{H}_{69} \mathrm{NS}$	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	1004.36	296.37
Temperature/K	$173.00(10)$	$173.00(10)$
Crystal system	triclinic	orthorhombic
Space group	$\mathrm{P}-1$	Pbcn
a / \AA	$7.16900(10)$	$19.5758(2)$
b / \AA	$17.2492(3)$	$8.45120(10)$
c / \AA	$25.1684(5)$	$18.7056(2)$
α / \circ	$106.660(2)$	90
β / \circ	$90.552(2)$	90
γ / \circ	$96.116(2)$	90

Volume $/ \AA^{3}$	$2962.06(9)$	$3094.64(6)$
Z	2	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.126	1.272
μ / mm^{-1}	0.799	1.863
$\mathrm{~F}(000)$	1072.0	1248.0
Crystal size $/ \mathrm{mm}^{3}$	$0.36 \times 0.24 \times 0.22$	$0.32 \times 0.26 \times 0.22$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection /	9.034 to 134.13	
	7.34 to 134.154	$-23 \leq \mathrm{h} \leq 23$,
Index ranges	$-8 \leq \mathrm{h} \leq 8$,	$-10 \leq \mathrm{k} \leq 10$,
	$-20 \leq \mathrm{k} \leq 20$,	$-22 \leq 1 \leq 22$
Reflections collected	$-30 \leq 1 \leq 30$	69070
	74173	2759
Independent reflections	10555	$\mathrm{R}_{\text {int }}=0.0679$,
	$\mathrm{R}_{\text {int }}=0.0607$,	$\mathrm{R}_{\text {sigma }}=0.0236$
Data / restraints / parameters	$\mathrm{R}_{\text {sigma }}=0.0388$	$2759 / 0 / 192$
Goodness-of-fit on F^{2}	$10555 / 0 / 700$	1.087
Final R indexes [I $>=2 \sigma(\mathrm{I})]$	1.010	$\mathrm{R}_{1}=0.0382$,
	$\mathrm{R}_{1}=0.0547$,	wR
	$\mathrm{wR}_{2}=0.1406$	$\mathrm{R}_{1}=0.0416$,
Final R indexes [all data]	$\mathrm{R}_{1}=0.0610$,	$\mathrm{wR} 2=0.0919$
Largest diff. peak / hole /e \AA^{-3}	$\mathrm{wR}_{2}=0.1453$	$0.17 /-0.19$
CCDC	$1.25 /-0.89$	2143510

Table S7 X-ray single crystal data of a-OTf and 3-methoxynaphthalene-2-thiol.

Compound	a-OTf	3-methoxynaphthalene-2-thiol
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{3}$	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}$
Formula weight	532.44	190.25
Temperature/K	230(80)	229(80)
Crystal system	triclinic	triclinic
Space group	P-1	P1
a / \AA	8.4229(2)	7.0221(4)
b /	10.6178(2)	7.9102(7)
c / \AA	12.2594(2)	9.5017(5)
$\alpha /{ }^{\circ}$	100.265(2)	106.659(7)
$\beta /{ }^{\circ}$	102.985(2)	105.234(5)
$\gamma /{ }^{\circ}$	94.205(2)	101.170(6)
Volume / \AA^{3}	1043.88(4)	466.74(6)
Z	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.694	1.354
μ / mm^{-1}	4.090	2.686
F (000)	536.0	200.0
Crystal size / mm ${ }^{3}$	$0.32 \times 0.24 \times 0.18$	$0.26 \times 0.24 \times 0.12$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection/ ${ }^{\circ}$	7.554 to 134.15	10.328 to 134.16
	$-10 \leq \mathrm{h} \leq 10$,	$-8 \leq h \leq 8$,
Index ranges	$\begin{aligned} & -12 \leq \mathrm{k} \leq 12 \\ & -14 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{k} \leq 9 \\ & -11 \leq 1 \leq 11 \end{aligned}$
Reflections collected	22837	6866
	3692	2954
Independent reflections	$\mathrm{R}_{\text {int }}=0.0448$,	$\mathrm{R}_{\text {int }}=0.0618$,
	$\mathrm{R}_{\text {sigma }}=0.0244$	$\mathrm{R}_{\text {sigma }}=0.0652$
Data / restraints / parameters	3692/0/298	2954/3/239
Goodness-of-fit on F^{2}	1.046	1.054
	S25	

	$\mathrm{R}_{1}=0.0331$,	$\mathrm{R}_{1}=0.0822$,
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{wR}_{2}=0.0888$	$\mathrm{wR}_{2}=0.2480$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0355$,	$\mathrm{R}_{1}=0.0854$,
Largest diff. peak / hole $/ \mathrm{e} \not \AA^{-}$	$\mathrm{wR}_{2}=0.0905$	$\mathrm{wR}_{2}=0.2523$
CCDC	$0.39 /-0.27$	$1.04 /-0.48$

7 Photostability study

Figure S24. Changes of absorbance of $\mathbf{3}$ (a), $\mathbf{4}$ (b) and $\mathbf{5}$ (c) ($30 \mu \mathrm{M}$ in toluene) in absorption spectra upon irradiation by 6 W white LED light every ten minutes. Details of photostability test: A solution of extended phenothiazine ($30 \mu \mathrm{M}$ in toluene) in quartz cell was subjected to 6 W white LED irradiation in the photoreactor, during which the UV-Vis spectra of the solution were measured every ten minutes over a period of one hour to record the absorbance changes. The photostability experiments were repeated 3 times under the same testing condition.

Figure S25. The photostability data of 3-5 from three repeated photostability experiments.

8 Comparison of catalytic performance of different catalysts

Figure S26. Comparison of catalytic performance of different catalysts for oxidative coupling of amines to imines. ${ }^{[5-28]}$

9 Sunlight-driven oxidative coupling of amines to imines

Figure S27. Efficient conversion of amines to imines under sunlight in an air atmosphere.

10 NMR spectra

10.1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

Figure S28. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound a-OMe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S29. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound a-OMe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S30. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound a-OTf in CDCl_{3}.

Figure S31. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound a-OTf in CDCl_{3}.

\qquad

Figure S32. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S34. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound b-OMe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S35. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{b - O M e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S36. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound b-OTf in DMSOd_{6}.

Figure S37. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound \mathbf{b}-OTf in DMSOd_{6}.

Figure S38. The ${ }^{1} \mathrm{H}$ NMR (500 MHz , 298 K) spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S40. The ${ }^{1} \mathrm{H}$ NMR (500 MHz , 298 K) spectrum of compound 2-Br in CDCl_{3}.

Figure S41. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 2-Br in CDCl_{3}.

$$
\stackrel{\infty}{\infty} \stackrel{\infty}{\sim} \stackrel{\infty}{\wedge}
$$

Nic|lill

Figure S42. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 3-methoxynaphthalene-2-thiol in DMSO- d_{6}.

Figure S43. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 3-methoxynaphthalene-2-thiol in DMSO- d_{6}.

Figure S44. The ${ }^{1} \mathrm{H}$ NMR (500 MHz , 298 K) spectrum of compound $\mathbf{c - O M e}$ in DMSOd_{6}.

Figure S45. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound c-OMe in DMSO- d_{6}.

Figure S46. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound c-OTf in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S48. The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S49. The ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S50. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound d-OMe in DMSO- d_{6}.

Figure S52. The ${ }^{1} \mathrm{H}$ NMR (500 MHz , 298 K) spectrum of compound d-OTf in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S53. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound d-OTf in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S54. The ${ }^{1} \mathrm{H}$ NMR (400 MHz , 298 K) spectrum of compound $\mathbf{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S55. The ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S56. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound e-OMe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S58. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound e-OTf in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Figure S59. The ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound e-OTf in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S60. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S61. The ${ }^{13} \mathrm{C}$ NMR (125 MHz , 298 K) spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

10.2 2D NMR spectra of new compounds

Figure S62. The 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathbf{1}$.

Figure S63. The 2D NOESY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathbf{1}$.

Figure S64. The 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathbf{2}$.

Figure S65. The 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of 3.

Figure S66. The 2D NOESY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{3}$.

Figure S67. The 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of 4.

Figure S68. The 2D NOESY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of 4.

Figure S69. The 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of 5.

Figure S70. The 2D NOESY NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of 5.

10.3 In situ ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of imines

10.3.1 In situ ${ }^{1} \mathrm{H}$ NMR spectra in Table 2.

(1a) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~s}$, 2H).

(1b) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2 H), 2.14 ($\mathrm{s}, 3 \mathrm{H}$), 2.04 ($\mathrm{s}, 3 \mathrm{H}$).

(1c) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.337 .22(\mathrm{~m}, 6 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.

(1d) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm}) 8.06$ (s, 1H), 7.75 (d, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$. Some product peaks overlap with solvent peak.

(1e) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm}) 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.28$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=$ $8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$.

(1f) ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})$. Some product peaks overlap with solvent peak.

(1g) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 8.81(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.67(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dt}, J$ $=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H})$.
 $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$.

(1i) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H})$.

(1j) ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) ~ \delta(\mathrm{ppm}) 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H})$, 7.08-7.01 (m, 2H), $6.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 2 \mathrm{H})$.

Figure S71. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Abstract

 $\underset{1}{4}$ ジロ

Figure S72．The ${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, 298 \mathrm{~K}$ ）spectrum of compound $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ ．

Figure S73．The ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, 298 \mathrm{~K})$ spectrum of compound $\mathbf{1 c}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ ．

Figure S74. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 d}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S75. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 e}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S76. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 f}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S77. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S78. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S79. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 i}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S80. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 j}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

10.3.2 In situ ${ }^{1} \mathrm{H}$ NMR spectra in Table 3.

(1a) ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta(\mathrm{ppm}) 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.64$ (m, 2H), 7.26 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.14 (m, 2H), 7.12-7.08 (m, 4H), 4.57 (s, 2H).

(1b) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, toluene $\left.-d_{8}\right) \delta(\mathrm{ppm}) 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$. Some product peaks overlap with solvent peak.

(1c) ${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- d_{8}) $\delta(\mathrm{ppm}) 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.70$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (s, 4H), 4.64 (s, 2H), 1.19 (s, 9H), 1.16 ($\mathrm{s}, 9 \mathrm{H}$).

(1d) ${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- d_{8}) $\delta(\mathrm{ppm}) 8.12(\mathrm{~s}, 1 \mathrm{H})$, 7.69 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.59(\mathrm{~s}$, 2 H), $3.45(\mathrm{~s}, 3 \mathrm{H})$. Some product peaks overlap with solvent peak.

(dd, $J=8.2,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.90(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~s}$, $2 \mathrm{H})$.

Figure S81. The ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 1a in toluene- d_{8}.

Figure S82. The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 b}$ in toluene $-d_{8}$.

Figure S83. The ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, 298 \mathrm{~K})$ spectrum of compound $\mathbf{1 c}$ in toluene $-d_{8}$.

Figure S84. The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 1 d in toluene $-d_{8}$.

Figure S85. The ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, 298 \mathrm{~K})$ spectrum of compound $\mathbf{1 i}$ in toluene- d_{8}.

11 GC-MS data of imines

Figure S86. GC-MS result of product 1a.

Figure S87. GC-MS result of product 1b.

Figure S88. GC-MS result of product $\mathbf{1 c}$.

Figure S89. GC-MS result of product 1d.

Figure S90. GC-MS result of product $\mathbf{1 e}$.

Figure S91. GC-MS result of product $\mathbf{1 f}$.

Figure S92. GC-MS result of product $\mathbf{1 g}$.

Figure S93. GC-MS result of product 1h.

Figure S94. GC-MS result of product $\mathbf{1 i}$.

Figure $\mathbf{S 9 5}$. GC-MS result of product $\mathbf{1 j}$.

12 Mass spectra of new compounds

Figure S96. The mass spectrum of compound 1.

Figure S97. The mass spectrum of compound b-OMe.

Figure S98. The mass spectrum of compound 2-Br.

Figure S99. The mass spectrum of compound b-OTf.

7J-2 \#226-252 RT: 0.52-0.59 AV: 27 NL: 1.29E8

Figure S100. The mass spectrum of compound 2.

Figure S101. The mass spectrum of compound c-OMe.

Figure S102. The mass spectrum of compound c-OTf.

Figure S103. The mass spectrum of compound 3.

Figure S104. The mass spectrum of compound d-OMe.

Figure S105. The mass spectrum of compound d-OTf.

Figure S106. The mass spectrum of compound 4.

Figure S107. The mass spectrum of compound e-OMe.

Figure S108. The mass spectrum of compound e-OTf.

Figure S109. The mass spectrum of compound 5.

13 Reference

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[2] T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
[3] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
[4] Z. Liu, T. Lu and Q. Chen, Carbon, 2020, 165, 461-467.
[5] S. Dong, T. Y. Gopalakrishna, Y. Han, H. Phan, T. Tao, Y. Ni, G. Liu and C. Chi, J. Am. Chem. Soc., 2019, 141, 62-66.
[6] H. Xu, X. Li, H. Hao, X. Dong, W. Sheng and X. Lang, Appl. Catal. B: Environ., 2021, 285, 119796.
[7] F. Su, H. Peng, H. Yin, C. Luo, L. Zhu, W. Zhong and L. Mao, D. Yi, J. Catal., 2021, 404, 149-162.
[8] J.-J. Zhang, J.-M. Ge, H.-H. Wang, X. Wei, X.-H. Li and J.-S. Chen, ChemCatChem, 2016, 8, 3441-3445.
[9] F. Raza, J. H. Park, H.-R. Lee, H.-I. Kim, S.-J. Jeon and J.-H. Kim, ACS Catal., 2016, 6, 2754-2759.
[10]Q. Shen, T. Xu, G. Zhuang, Y. Zhuang, L. Sun, X. Han, X. Wang and W. Zhan, ACS Catal., 2021, 11, 12931-12939.
[11]S. Boochakiat, D. Tantraviwat, O. Thongsook, S. Pornsuwan, A. Nattestad, J. Chen, D. Channei and B. Inceesungvorn, Colloid Interface Sci., 2021, 602, 168176.
[12]Z. Wu, X. Huang, X. Li, G. Hai, B. Li and G. Wang, Sci. China Chem., 2021, 64, 2169-2179.
[13]X. Li, K. Zhang, X. Huang, Z. Wu, D. Zhao and G. Wang, Nanoscale, 2021, 13, 19671-19681.
[14]F. Su, S. C. Mathew, L. Möhlmann, M. Antonietti, X. Wang, and S. Blechert, Angew. Chem., Int. Ed., 2011, 50, 657-660.
[15]K. Zhang, G. Lu, F. Chu and X. Huang, Catal. Sci. Technol., 2021, 11, 70607071.
[16]S. Juntrapirom, S. Anuchai, O. Thongsook, S. Pornsuwan, P. Meepowpan, P. Thavornyutikarn, S. Phanichphant, D. Tantraviwat and B. Inceesungvorn, Chem. Eng. J., 2020, 394, 124934.
[17]K. Zhang, Z. Xi, Z. Wu, G. Lu and X. Huang, ACS Sustainable Chem. Eng., 2021, 9, 12623-12633.
[18]X. Li, Z. Li, K. Zhang, D. Zhao and X. Huang, Asian J. Org. Chem., 2021, 10, 2895-2901.
[19]H. He, X. Fang, D. Zhai, W. Zhou, Y. Li, W. Zhao, C. Liu, Z. Li and W. Deng, Chem. Eur. J., 2021, 27, 14390-14395.
[20]X. Yang, T. Huang, S. Gao and R. Cao, J. Catal., 2019, 378, 248-255.
[21]Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao and H. Fu, J. Am. Chem. Soc., 2019, 141, 2508-2515.
[22]C. Xing, G. Yu, T. Chen, S. Liu, Q. Sun, Q. Liu, Y. Hu, H. Liu and X. Li, Appl. Catal. B: Environ., 2021, 298, 120534.
[23]X. Ye, Y. Li, P. Luo, B. He, X. Cao and T. Lu, Nano Res., 2022, 15, 1509-1516.
[24]J. Jiang, X. Liu and R. Luo, Catal. Lett., 2021, 151, 3145-3153.
[25]Y. Xu, Y. Chen and W.-F. Fu, Appl. Catal. B: Environ., 2018, 236, 176-183.
[26]K. Gao, H. Li, Q. Meng, J. Wu and H. Hou, ACS Appl. Mater. Interfaces, 2021,

13, 2779-2787.
[27]Y. Liu, Y. Chen, W. Zhou, B. Jiang, X. Zhang and G. Tian, Catal. Sci. Technol., 2018, 8, 5535-5543.
[28]L.-H. Meng, X.-P. Tan, L. Chen, S. Shen, J.-K. Guo, C.-T. Au and S.-F. Yin, Appl. Surf. Sci., 2021, 541, 148476.

