## Supporting information

## Parallel imaging of coagulation pathway proteases activated protein C, thrombin, and factor Xa in human plasma

Sylwia Modrzycka,<sup>a</sup> Sonia Kołt,<sup>a</sup> Stéphanie Polderdijk,<sup>b</sup> Ty Adams,<sup>b</sup> Stanisław Potoczek,<sup>c</sup> James Huntington,<sup>b</sup> Paulina Kasperkiewicz,<sup>a</sup> and Marcin Drąg<sup>\*a</sup>

- a Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- b Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
- c Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University, Pasteura 1, 50-367 Wrocław, Poland

\* corresponding author: <u>marcin.drag@pwr.edu.pl</u>



**Figure S1.** General scheme of library screening and its use for the design of selective substrates and activity-based probes.

|       | Structuro                             | $[M+H]^{+/2+}$ | $[M+H]^{+/2+}$ | Purity      |
|-------|---------------------------------------|----------------|----------------|-------------|
|       | Structure                             | calculated     | measured       | Turny       |
| SMA1  | Ac-Lys-Dab(Z)-Lys(2-Cl-Z)-Arg-ACC     | 1075.4768      | 1075.4773      | $\geq$ 99%  |
| SMA2  | Ac-Lys-Agp-Lys(2-Cl-Z)-Arg-ACC        | 969.4462       | 969.4442       | $\geq$ 99%  |
| SMA3  | Ac-Lys-Glu(Bzl)-Lys(2-Cl-Z)-Arg-ACC   | 1060.4659      | 1060.4678      | $\geq 97\%$ |
| SMA4  | Ac-Lys-Nle(O-Bzl)-Lys(2-Cl-Z)-Arg-ACC | 1060.5023      | 1060.5031      | $\geq$ 99%  |
| SMA5  | Ac-Lys-Dab(Z)-Igl-Arg-ACC             | 952.4681       | 952.4676       | $\geq$ 99%  |
| SMA6  | Ac-Lys-Agp-Igl-Arg-ACC                | 846.4375       | 846.4381       | $\geq$ 99%  |
| SMA7  | Ac-Lys-Glu(Bzl)-Igl-Arg-ACC           | 937.4572       | 937.4589       | $\geq$ 99%  |
| SMA8  | Ac-Lys-Nle(O-Bzl)-Igl-Arg-ACC         | 937.4936       | 937.4934       | $\geq$ 99%  |
| SMA9  | Ac-Lys-Dab(Z)-Val-Arg-ACC             | 878.4525       | 878.4521       | $\geq$ 99%  |
| SMA10 | Ac-Lys-Agp-Val-Arg-ACC                | 772.4218       | 772.4213       | $\geq$ 95%  |
| SMA11 | Ac-Lys-Glu(Bzl)-Val-Arg-ACC           | 863.4416       | 863.4434       | $\geq$ 95%  |
| SMA12 | Ac-Lys-Nle(O-Bzl)-Val-Arg-ACC         | 863.4780       | 863.4785       | $\geq 97\%$ |
| SMA13 | Ac-Lys-Dab(Z)-Oic-Arg-ACC             | 930.4838       | 930.4832       | $\geq 97\%$ |
| SMA14 | Ac-Lys-Agp-Oic-Arg-ACC                | 412.7305       | 412.7392       | $\geq 97\%$ |
| SMA15 | Ac-Lys-Glu(Bzl)-Oic-Arg-ACC           | 915.4728       | 915.4732       | $\geq 97\%$ |
| SMA16 | Ac-Lys-Nle(O-Bzl)-Oic-Arg-ACC         | 915.5093       | 915.5091       | $\geq$ 95%  |
| SMA17 | Ac-Lys-Dab(Z)-Lys-Arg-ACC             | 907.4790       | 907.4796       | $\geq$ 99%  |
| SMA19 | Ac-Lys-Glu(Bzl)-Lys-Arg-ACC           | 892.4681       | 892.4695       | $\geq$ 99%  |
| SMA20 | Ac-Lys-Nle(O-Bzl)-Lys-Arg-ACC         | 892.5045       | 892.5038       | $\geq$ 99%  |
| SMA21 | Ac-Lys-Dab(Z)-Cha-Arg-ACC             | 932.4994       | 932.4982       | $\geq$ 99%  |
| SMA22 | Ac-Lys-Agp-Cha-Arg-ACC                | 826.4688       | 826.4696       | $\geq$ 99%  |
| SMA23 | Ac-Lys-Glu(Bzl)-Cha-Arg-ACC           | 917.4885       | 917.4896       | $\geq$ 99%  |
| SMA24 | Ac-Lys-Nle(O-Bzl)-Cha-Arg-ACC         | 917.5249       | 917.5265       | $\geq 97\%$ |
| SMA25 | Ac-Lys-Glu(All)-Igl-Arg-ACC           | 887.4416       | 887.4402       | $\geq$ 99%  |
| SMA26 | Ac-Lys-βhLys-Igl-Arg-ACC              | 860.4783       | 860.4785       | $\geq$ 99%  |
| SMA54 | Ac-Lys-Gln-Lys-Arg-ACC                | 801.4371       | 801.4374       | $\geq 99\%$ |

| Table S1. | Purity | and MS | analysis       | of APC | substrates                              |
|-----------|--------|--------|----------------|--------|-----------------------------------------|
|           |        |        | ****** / ~ ~ ~ |        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |

|        | Structure                              | $[M+H]^+$  | $[M+H]^+$ | Duration    |
|--------|----------------------------------------|------------|-----------|-------------|
|        | Structure                              | calculated | measured  | Purity      |
| SMII16 | Ac-hCha-Cys(MeBzl)-Pro-Arg-ACC         | 888.4442   | 888.4429  | $\geq$ 99%  |
| SMII17 | Ac-hLeu-Cys(MeBzl)-Pro-Arg-ACC         | 848.4129   | 848.4133  | $\geq$ 99%  |
| SMII18 | Ac-2-Aoc-Cys(MeBzl)-Pro-Arg-ACC        | 862.4285   | 862.4281  | $\geq$ 99%  |
| SMII19 | Ac-hCha-Cys(MeBzl)-Aze-Arg-ACC         | 874.4285   | 874.4293  | $\geq$ 99%  |
| SMII20 | Ac-hLeu-Cys(MeBzl)-Aze-Arg-ACC         | 834.3973   | 834.3969  | $\geq$ 99%  |
| SMII21 | Ac-2-Aoc-Cys(MeBzl)-Aze-Arg-ACC        | 848.4129   | 848.4134  | $\geq$ 99%  |
| SMII22 | Ac-hCha-Cys(MeBzl)-Pip-Arg-ACC         | 902.4598   | 902.4587  | $\geq$ 99%  |
| SMII23 | Ac-hLeu-Cys(MeBzl)-Pip-Arg-ACC         | 862.4285   | 862.4279  | $\geq$ 99%  |
| SMII24 | Ac-2-Aoc-Cys(MeBzl)-Pip-Arg-ACC        | 876.4442   | 876.4443  | $\geq$ 99%  |
| SMII25 | Ac-hCha-Cys(4-MeOBzl)-Pro-Arg-ACC      | 904.4391   | 904.4390  | $\geq 97\%$ |
| SMII26 | Ac-hLeu-Cys(4-MeOBzl)-Pro-Arg-ACC      | 864.4078   | 864.4073  | $\geq$ 99%  |
| SMII27 | Ac-2-Aoc-Cys(4-MeOBzl)-Pro-Arg-ACC     | 878.4235   | 878.4227  | $\geq$ 99%  |
| SMII28 | Ac-hCha-Cys(4-MeOBzl)-Aze-Arg-ACC      | 890.4235   | 890.4224  | $\geq$ 97%  |
| SMII29 | Ac-hLeu-Cys(4-MeOBzl)-Aze-Arg-ACC      | 850.3922   | 850.3942  | $\geq$ 99%  |
| SMII30 | Ac-2-Aoc-Cys(4-MeOBzl)-Aze-Arg-ACC     | 864.4078   | 864.4067  | $\geq$ 99%  |
| SMII31 | Ac-hCha-Cys(4-MeOBzl)-Pip-Arg-ACC      | 918.4548   | 918.4554  | $\geq$ 99%  |
| SMII32 | Ac-hLeu-Cys(4-MeOBzl)-Pip-Arg-ACC      | 878.4235   | 878.4215  | $\geq$ 99%  |
| SMII33 | Ac-2-Aoc-Cys(4-MeOBzl)-Pip-Arg-ACC     | 892.4391   | 892.4382  | $\geq$ 99%  |
| SMII34 | Ac-hCha-Cys(4-MeOBzl)-Hyp(Bzl)-Arg-ACC | 1010.4810  | 1010.4821 | $\geq$ 99%  |
| SMII57 | Ac-Chg-Cys(MeBzl)-Pip-Arg-ACC          | 874.4285   | 874.4277  | $\geq$ 99%  |
| SMII59 | Ac-Chg-Cys(MeBzl)-Hyp(Bzl)-Arg-ACC     | 966.4548   | 966.4547  | $\geq 97\%$ |
| SMII60 | Ac-2-Aoc-Cys(MeBzl)-Hyp(Bzl)-Arg-ACC   | 968.4704   | 968.4691  | $\geq$ 97%  |
| SMI155 | Ac-Nle-Lys-Pro-Arg-ACC                 | 755.4204   | 755.4218  | $\geq$ 99%  |

Table S2. Purity and MS analysis of thrombin substrates.

 Table S3. Purity and MS analysis of fXa substrates.

|       | Stanoturo                                       | $[M+H]^+$  | $[M+H]^+$ | Dunity      |
|-------|-------------------------------------------------|------------|-----------|-------------|
|       | Structure                                       | calculated | measured  | rurity      |
| SMX1  | Ac-Arg(NO <sub>2</sub> )-hArg-Trp-Arg-ACC       | 974.4709   | 974.4722  | $\geq$ 95%  |
| SMX2  | Ac-Gln-hArg-Trp-Arg-ACC                         | 901.4433   | 901.4431  | $\geq 97\%$ |
| SMX3  | Ac-DPro-hArg-Trp-Arg-ACC                        | 870.4375   | 870.4361  | $\geq 97\%$ |
| SMX4  | Ac-Arg(NO <sub>2</sub> )-hArg-Phe(3-Cl)-Arg-ACC | 969.4210   | 969.4218  | $\geq$ 99%  |
| SMX5  | Ac-Gln-hArg-Phe(3-Cl)-Arg-ACC                   | 896.3934   | 896.3934  | $\geq$ 99%  |
| SMX6  | Ac-DPro-hArg-Phe(3-Cl)-Arg-ACC                  | 865.3876   | 865.3879  | $\geq$ 99%  |
| SMX7  | Ac-Arg(NO <sub>2</sub> )-hArg-Bta-Arg-ACC       | 991.4321   | 991.4320  | $\geq$ 99%  |
| SMX8  | Ac-Gln-hArg-Bta-Arg-ACC                         | 918.4045   | 918.4065  | $\geq$ 97%  |
| SMX9  | Ac-DPro-hArg-Bta-Arg-ACC                        | 887.3987   | 887.3996  | $\geq$ 99%  |
| SMX10 | Ac-Arg(NO <sub>2</sub> )-hArg-Phe-Arg-ACC       | 935.4600   | 935.4587  | $\geq$ 99%  |
| SMX11 | Ac-Gln-hArg-Phe-Arg-ACC                         | 862.4324   | 862.4324  | $\geq$ 99%  |
| SMX12 | Ac-DPro-hArg-Phe-Arg-ACC                        | 831.4266   | 831.4280  | $\geq$ 99%  |
| SMX13 | Ac-Arg(NO <sub>2</sub> )-hArg-1-Nal-Arg-ACC     | 985.4756   | 985.4747  | $\geq$ 99%  |
| SMX14 | Ac-Gln-hArg-1-Nal-Arg-ACC                       | 912.4481   | 912.4468  | $\geq$ 99%  |
| SMX15 | Ac-DPro-hArg-1-Nal-Arg-ACC                      | 881.4423   | 881.4412  | $\geq 97\%$ |
| SMX61 | Ac-Met-hArg-1-Nal-Arg-ACC                       | 915.4299   | 915.4292  | $\geq$ 97%  |
| SMX62 | Ac-His(Bzl)-hArg-1-Nal-Arg-ACC                  | 1011.4953  | 1011.4963 | $\geq$ 99%  |
| SMX63 | Ac-DPro-hArg-Gly-Arg-ACC                        | 741.3796   | 741.3793  | $\geq$ 99%  |
| SMX64 | Ac-Met-hArg-Gly-Arg-ACC                         | 775.3674   | 775.3679  | $\geq 99\%$ |
| SMX65 | Ac-His(Bzl)-hArg-Gly-Arg-ACC                    | 871.4327   | 871.4340  | $\geq 99\%$ |
| SMX56 | Ac-Pro-Arg-Gly-Arg-ACC                          | 727.3640   | 727.3647  | $\geq$ 99%  |

|                 | Structure                                                               | [M+H] <sup>+/2+</sup><br>calculated | [M+H] <sup>+/2+</sup><br>measured | Purity      |
|-----------------|-------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-------------|
| P-SMA61         | biotin-6-Ahx-Lys-Agp-Igl-Arg <sup>P</sup> (OPh) <sub>2</sub>            | 1131.5691                           | 1131.6002                         | $\geq$ 95%  |
| <b>P-SMA171</b> | biotin-6-Ahx-Lys-Dab(Z)-Lys-Arg <sup>P</sup> (OPh) <sub>2</sub>         | 1192.6106                           | 1192.6116                         | $\geq$ 99%  |
| P-SMA261        | biotin-6-Ahx-Lys-βhLys-Igl-Arg <sup>P</sup> (OPh) <sub>2</sub>          | 1145.6099                           | 1145.6179                         | $\geq$ 99%  |
| P-SMII221       | biotin-6-Ahx-hCha-Cys(MeBzl)-Pip-Arg <sup>P</sup> (OPh) <sub>2</sub>    | 1187.5914                           | 1187.5935                         | $\geq$ 99%  |
| P-SMII321       | biotin-6-Ahx-hLeu-Cys(4-MeOBzl)-Pip-Arg <sup>P</sup> (OPh) <sub>2</sub> | 1163.5551                           | 1163.5557                         | $\geq 99\%$ |
| P-SMX91         | biotin-6-Ahx-DPro-hArg-Bta-Arg <sup>P</sup> (OPh) <sub>2</sub>          | 1172.5303                           | 1172.5311                         | $\geq 97\%$ |
| P-SMX151        | biotin-6-Ahx-DPro-hArg-1-Nal-Arg <sup>P</sup> (OPh) <sub>2</sub>        | 1166.5739                           | 1166.5748                         | $\geq 97\%$ |
| P-SMX611        | biotin-6-Ahx-Met-hArg-1-Nal-Arg <sup>P</sup> (OPh) <sub>2</sub>         | 1200.5615                           | 1200.5632                         | $\geq$ 99%  |
| <b>P-SMA172</b> | Cy5-6-Ahx-Lys-Dab(Z)-Lys-Arg <sup>P</sup> (OPh) <sub>2</sub>            | 715.9118                            | 715.9117                          | $\geq$ 95%  |
| P-SMII222       | Cy7-6-Ahx-hCha-Cys(MeBzl)-Pip-Arg <sup>P</sup> (OPh) <sub>2</sub>       | 746.4138                            | 746.4142                          | $\geq$ 99%  |
| P-SMX152        | Cy3-6-Ahx-DPro-hArg-1-Nal-Arg <sup>P</sup> (OPh) <sub>2</sub>           | 689.8856                            | 689.8862                          | $\geq 99\%$ |
| I-SMA17         | Ac-Lys-Dab(Z)-Lys-Arg <sup>P</sup> (OPh) <sub>2</sub>                   | 895.4595                            | 895.4594                          | $\geq 97\%$ |
| I-SMII22        | Ac-hCha-Cys(MeBzl)-Pip-Arg <sup>P</sup> (OPh) <sub>2</sub>              | 890.4404                            | 890.4404                          | $\geq 95\%$ |
| I-SMX15         | Ac-DPro-hArg-1-Nal-Arg <sup>P</sup> (OPh) <sub>2</sub>                  | 869.4227                            | 869.4231                          | $\geq$ 99%  |

Table S4. Purity and MS analysis of ABPs and inhibitors.



Figure S2. Labeling of purified coagulation factors (APC, thrombin, fXa) using biotinylated ABPs.



Figure S3. Labeling of purified coagulation factors (APC, thrombin, fXa) using fluorescent ABPs.



Figure S4. Simultaneous APC, thrombin, and fXa detection and inhibition.







Figure S6. Thrombin labeling in human plasma.







Figure S8. Simultaneous coagulation factors labeling in human plasma.

## Purity and MS analysis of fluorescent ABPs

## P-SMA172, Cy5-6-Ahx-Lys-Dab(Z)-Lys-Arg<sup>P</sup>(OPh)<sub>2</sub>





