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1 Dataset 

In Figure S1 we show the activation energies of the reactions in the dataset used to generate the partition 
function dataset. In Table S1 we show the partition function equations employed to compute 𝑄(𝑇). 

 
 
Figure S1: Histogram of ground state activation 
energies of all reaction used to generate the partition 
functions dataset. The average value of the 
activation energies 〈𝐸!	〉 = 85.3 kcal/mol is much 
higher than that of most organic chemistry reactions 
because these reactions involve breaking covalent 
bonds in unimolecular reactants. 
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Table S1: Equations employed to compute the translational, vibrational, and 
rotational partition functions with the rigid body, harmonic oscillator, and rigid 
rotor approximations. Here 𝑚 is the molecular mass, 𝑉 the volume, 𝜔 are the 
wavenumbers, θ" = ℎ# 8𝜋#𝐼"⁄  where 𝐼" is the moment of inertia and 𝜎 is the 
symmetry number. The electronic partition function was approximated as equal to 
the electronic ground state degeneracy, 𝑔$%,'. 

 
 

 
 
 
 
 
 
 

 
2 Featurization 

2.1 Search for optimal input features 

For the Qest model, we screened over a series of geometry based input features which included 
Autocorrelation (AC) [1], EncodedBonds (EB) [2], and Coulomb Matrix (CM)[3] as well as Smooth 
Overlap of Atomic Positions (SOAP) [4], and Many Body Tensor Representation (MBTR) [5]. To 
create these, the MolML [2] and DScribe [6] software packages were used. See section 2.2. Graph based 
featurization techniques were not considered and this is in plan for future work. For each featurization 
we tested feature and target standardization; we considered min-max scaling and gaussian 
normalization. The model hyperparameters used during this screening are shown in Table S2. 

Overall, we searched over 45 possible combinations of input feature, feature standardization, and 
target standardization and found that EncodedBonds with feature min-max scaling and target 
normalization were optimal. The average performance of the different featurizers is shown in Figure 
S2. We repeated the screening of standardization for QesTS using EncodedBonds, which yielded no 
standardization as optimal. 

 
Table S2: Hyperparameters used during data screening. 

Hyperparameter Value 
layer sizes [200, 200] 
learning rate 0.001 
batch size 100 
epochs 20 
hidden activation function relu 
l2 regularization 0.0 
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bias initialization constant 1.0 
weight initialization stdev 0.2 
loss mean squared error 

 
 

 
Figure S2: Average performance of each featurizer tested during screening. Bars 

represent the cross validated mean absolute error, while error bars are the standard 

deviation across the data standardization combinations tested for each featurizer. 

Models using Encoded Bonds performed best on average. Also, the best 

performing combination used Encoded Bonds with feature min-max scaling and 

target normalization. 

2.2 Featurization parameters 

The parameters used to produce the input features are described in subsection 2.2.1 and 2.2.2. Smooth 
Overlap of Atomic Positions (SOAP) and Many-body Tensor Representation (MBTR) input features 
were produced with the DScribe software, while Autocorrelation, Encoded Bonds, and Coulomb Matrix 
were produced with the MolML software. 

2.2.1 DScribe Software 

The DScribe software package[6] was used to generate SOAP and MBTR input features. The 
parameters used are listed below.  
 
SOAP – Smooth Overlap of Atomic Positions 
The parameters used to produce SOAP features are listed in python dictionary format: 
{ 

'species': ["H", "C", "O", "N"], 
'rcut': 6.0, 
'nmax': 8, 
'lmax': 6, 
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'average': 'inner' 
} 
For a description of these parameters, we refer the reader to Ref [6]. 
 
MBTR – Many-body Tensor Representation 
The parameters used to produce MBTR features are listed hereafter in python dictionary format: 
{ 
    species=["H", "O", 'C', 'N'], 
    k1={ 
        "geometry": {"function": "atomic\_number"}, 
        "grid": {"min": 0, "max": 8, "n": 100, "sigma": 0.1}, 
    }, 
    k2={ 
    "geometry": {"function": "inverse\_distance"}, 
    "grid": {"min": 0, "max": 1, "n": 100, "sigma": 0.1}, 
    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3}, 
    }, 
    k3={ 
    "geometry": {"function": "cosine"}, 
    "grid": {"min": -1, "max": 1, "n": 100, "sigma": 0.1}, 
    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3}, 
    }, 
    periodic=False, 
    normalization='none', 
    flatten=True 
} 
 
We refer the reader to Ref [6] for a description of these parameters. 

2.2.2 MolML Software  

MolML [2] was used to define the EncodedBonds, Coulomb Matrix and Autocorrelation features. 
MolML determines parameters such as the element types present and the maximum number of atoms 
during featurization. Due to limited RAM, the entire dataset could not be loaded at once, so it was 
scanned for a set of 3 structures which contained both the full array of chemical elements in the dataset, 
as well as the largest molecular system. The featurizers were fit to this minimal set, and then used to 
transform the entire dataset in chunks. The minimum subset of systems is given below in xyz format 
and angstrom units: 
 
14 
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C      -2.301345240000000      0.245555560000000     -0.146458820000000 
O      -1.801117640000000     -1.068638690000000     -0.132535600000000 
C      -0.698207700000000     -1.254313550000000     -0.983955260000000 
C       0.498785910000000     -0.503501480000000     -0.581849450000000 
C       1.474872740000000      0.110834400000000     -0.254355130000000 
C       2.665120440000000      0.852752900000000      0.143128950000000 
H      -2.602697440000000      0.544988140000000     -1.159271040000000 
H      -3.175412910000000      0.262006730000000      0.502576870000000 
H      -1.561197990000000      0.962926400000000      0.225284290000000 
H      -0.479999560000000     -2.323300650000000     -0.969310430000000 
H      -0.961290100000000     -0.982075860000000     -2.016315420000000 
H       3.153957870000000      0.378701800000000      0.995343110000000 
H       3.380779340000000      0.898604960000000     -0.679097780000000 
H       2.407752320000000      1.875459330000000      0.422868020000000 
 
10 
O       2.288293630000000      0.484583070000000     -0.121712670000000 
C       1.127501880000000      0.193607830000000     -0.071145460000000 
C      -0.184064230000000      0.924152480000000      0.259412420000000 
C      -0.873748740000000     -0.432000910000000     -0.015729600000000 
N       0.451962880000000     -0.971798030000000     -0.300035950000000 
 
H      -0.242967130000000      1.286299400000000      1.283947400000000 
H      -0.427416880000000      1.726023410000000     -0.434781960000000 
H      -1.362208720000000     -0.885687600000000      0.848217390000000 
H      -1.550559340000000     -0.441221400000000     -0.871782480000000 
H       0.773206630000000     -1.883958250000000     -0.576389100000000 
 
 
 
23 
C       2.349176060000000      0.084494630000000     -0.905389770000000 
C       1.627675400000000      0.053488250000000      0.436342020000000 
C       0.236369270000000     -0.590909200000000      0.414770920000000 
C      -0.342881300000000     -0.607355670000000      1.828561880000000 
C      -0.712898880000000      0.033731390000000     -0.629030880000000 
C      -0.976517400000000      1.521383910000000     -0.403857370000000 
C      -2.030065150000000     -0.732800180000000     -0.733683520000000 
H       2.385265370000000     -0.910486730000000     -1.357281740000000 
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H       3.377237770000000      0.431331870000000     -0.786465570000000 
H       1.861357880000000      0.752318050000000     -1.618183410000000 
H       2.239225610000000     -0.501941370000000      1.154397840000000 
H       1.554048780000000      1.069878880000000      0.838340710000000 
H       0.375865430000000     -1.636038860000000      0.106313200000000 
H       0.341081900000000     -1.112555420000000      2.513879630000000 
H      -0.495666310000000      0.405190570000000      2.210740010000000 
H      -1.298151790000000     -1.131761590000000      1.876033720000000 
H      -0.213934640000000     -0.065520660000000     -1.599015070000000 
H      -1.615287910000000      1.919106830000000     -1.195418250000000 
H      -1.487633380000000      1.698516490000000      0.545714450000000 
H      -0.054749190000000      2.106284580000000     -0.401858700000000 
H      -2.609548020000000     -0.389412500000000     -1.593433690000000 
H      -1.858128490000000     -1.805335340000000     -0.854936010000000 
H      -2.651841000000000     -0.591607940000000      0.153459620000000 
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3 Optimization of hyperparameters 

After screening for input features and standardization (Section S2) we carried a hyperparameter 
optimization. The search space for hyperparameter optimization is shown in Table S3.  
The Tree Parzen [7,8] sampler along with the median pruning algorithm was used to identify the optimal 
hyperparameters (see Table S4) with Optuna [9] using a 5 trial startup for both models. This corresponds 
to 1258 and 7685 completed trials for the Qest and QesTS model, respectively.  
The number of epochs over which to train the model for the optimal hyperparameters was determined 
by using early stopping averaged over the 5 folds.  From this we found that 39 and 27 epochs were 
optimal stopping points for the Qest and QesTS models respectively.  
 

Table S3: Parameter space tested for hyperparameter optimization. Layer parameters such as bias 
initialization are applied to all hidden layers uniformly; the search space is restricted by not 
considering layers having different parameters. One to three total hidden layers are tested, and in 
each case all layers have the same number of neurons chosen from the range [2 – 2000]. MSE loss is 
used. 

Hyperparameter Search space Distribution 
layer sizes 1-3 layers, 2 - 2000 neurons categorical choice 
learning rate (1E-5, 1E-1) loguniform 
batch size (32, 8000) uniform integer 
hidden activation function relu, tanh, softsign, sigmoid, softmax categorical choice 
l2 regularization (0.0, 0.1) uniform 
bias initialization constant (-1.0, 1.0) uniform 
weight initialization stdev (1E-3, 1E+0) loguniform 

 
Table S4: Optimum hyperparameters for both the Qest and QesTS DNN 
models found from TPE hyperparameter optimizations using Encoded Bonds 
as input features. 

 
 
 
 
 
 
 

 

4 Model Performance 

The distributions of error on the test sets for the Qest and QesTS models are shown below. 

Hyperparameter Qest DNN QesTS DNN 
layer sizes [816, 816] [749, 749] 
learning rate 1.58E-4 3.13E-4 
batch size 34 2609 
hidden activation relu relu 
l2 regularization 8.68E-6 4.20E-5 
bias initial value -0.664 -0.207 
weight initialization stdev 0.407 0.059 
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Figure S3: Distribution of errors on the 
natural logarithm of the partition function 
for the Qest model. Most errors cluster 
near 0, however there is a small bias 
towards overestimating the partition 
function. 

 
 
 
 

 
 
Figure S4: Distribution of errors on the 
natural logarithm of the transition state 
partition function for the QesTS model. 
Most errors cluster near 0. The model is 
unbiased, and the average error is -0.09. 

 
 
 
 
 
 

5 Outliers 

To limit extrapolation in the final model, outliers were dropped from the overall dataset as following. 
We identified reactions containing any example with 12 or more feature values ±6 standard deviations 
away from that feature’s mean. This resulted in removing 1,108 reactions. 
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