Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for

An Economycal Approach for Peptide Synthesis *via* Regioselective C–N Bond Cleavage of Lactams

Wataru Muramatsu* and Hisashi Yamamoto*

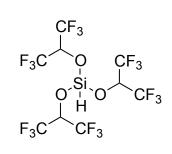
*Corresponding authors. Email for W.M.: muramatsu@isc.chubu.ac.jp Email for H.Y.: hyamamoto@isc.chubu.ac.jp

This PDF file includes:

Materials and Methods References HPLC data NMR data

Table of contents

1.	General	S3
2.	General procedure for the neutralization of amino acid HCl salts	S4
3.	Preparation of tris[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]silane	S5
4.	Properties of lactams 1a-k (Table 1)	S6
5.	Properties of dipeptides 2a-k (Table 1)	S9
6.	Properties of lactams 3a–m (Scheme 2)	S18
7.	Properties of peptides 2aa-ab, 4a-m (Scheme 2)	S24
8.	Properties of lactams 5a-k (Scheme 3)	S41
9.	Properties of peptides 6a-k (Scheme 3)	S52
10.	Synthesis of hexapeptides (Scheme 4)	S77
11.	References	S81
12.	HPLC data	S82
13.	NMR data	S92


1. General

NMR spectra were recorded on a JEOL 400SS spectrometer operating at 400 MHz and 100 MHz, for ¹H and ¹³C acquisitions, respectively. Chemical shifts are reported in ppm with a solvent resonance as an internal standard (¹H NMR; tetramethylsilane, CD₃OD, D₂O, and CDCl₃ as internal standard, indicating 0, 3.31, 4.79, and 7.26 ppm, respectively, ¹³C NMR; (CD₃)₂SO, CD₃OD, and CDCl₃ as internal standard, indicating 39.52, 49.00, and 77.00 ppm, ²⁹Si NMR; tetramethylsilane as internal standard, indicating 0 ppm). Data is reported as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet; coupling constants in Hz; integration. FT-IR spectra were recorded with a Bruker ALPHA (Eco-ATR) spectrometer. Specific rotation was measured with an ATAGO AP-300 digital polarimeter. MS spectra were recorded with a JEOL JMS-T100CS "AccuTOF CS" mass spectrometer with electrospray ionization time-of flight (ESI-TOF) for HRMS measurements. E.r. values were determined by high performance liquid chromatography (HPLC) using a Shimadzu CBM 20A HPLC equipped with Shimadzu SPD-M20A photodiode array detector and DAICEL IA-3, IE-3, and IG-3 columns (4.6 mm x 25 cm). Removal of amino acid esters were performed by using ULVAC KIKO GLD-137CC small oil rotary vacuum pump and ULVAC KIKO VPC-051A oil diffusion pump. TLC analysis was performed on commercial glass plates bearing a 0.25 mm layer of Merck KGaA TLC silica gel 60 F254. Silica gel chromatography was carried out Merck KGaA silica gel 60 (230-400 mesh ASTM). Dry solvents, DCM and CHCl₃, were purchased from FUJIFILM Wako Pure Chemical Co. These solvents were used without further treatment. Amino acids and their derivatives were purchased from Accela ChemBio Inc., Acros Organics, Advanced ChemBlocks Inc., AmBeed, Inc., Apollo Scientific Ltd., BLD Pharmatech Ltd., Cayman Chemical Company, Chem-Impex Int'l Inc. Chemspace LLC., Combi-Blocks, Inc., Sigma-Aldrich Co. LLC., Synthonic, Inc., Tokyo Chemical Industry Co., Ltd., Toronto Research Chemicals, Inc., and Watanabe Chemical Ind., Ltd. Trichlorosilane and 1,1,1,3,3,3-hexafluoro-2propanol were purchased from Tokyo Chemical Industry Co., Ltd. AmberlystTM A21 was purchased from Organo corporation.

2. General procedure for the neutralization of amino acid HCl salts

A flame-dried 500 mL round-bottom flask with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with amino acid *tert*-butyl ester HCl salt (5.0 g) and Amberlyst A21 (10 g, 200 wt%), and DCM or CHCl₃ (150 ~ 400 mL: choice of the *solvents and their volumes are depended on the solubility of the amino acid ester HCl salts*). After the resulting mixture was stirred under nitrogen atmosphere for 4 h ~ overnight at 0 °C to ambient temperature, the mixture was filtered on celite with DCM, then the filtrate was concentrated in *vacuo* (70 Torr) with the aid of a rotary evaporator and water bath without heating. The residue was transferred into 50 mL vials by a pipette, and further concentrated in *vacuo* (70 Torr) at ambient temperature for overnight. 3Å MS was added to the free amine, then it was stored in a freezer (See, E. L. Baker, M. M. Yamano, Y. Zhou, S. M. Anthony and N. K Garg, *Nat. Commun.* 2016, **7**, 11554).

3. Preparation of tris[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]silane

Tris[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]silane (CAS No. 2473688-54-7)¹: Tris[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]silane was prepared from commercially avairable trichlorosilane (Tokyo Chemical Industry Co., Ltd., T0398) and 1,1,1,3,3,3-hexafluoro-2-propanol (Tokyo Chemical Industry Co., Ltd., H0424) according to the literature method.¹ ¹H NMR (400 MHz, CD₂Cl₂) δ 4.79 (s, 1H, Si<u>H</u>), 4.75–4.60 (m, 3H, OC<u>H</u>(CF₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 120.6 (q, 6C, J = 280.6 Hz), 70.3 (quin, 3C, J = 35.0 Hz); ²⁹Si NMR (80 MHz, CD₂Cl₂) δ -63.1. IR (thin film, cm⁻¹) 2253, 1377, 1301, 1231, 1198, 1151, 1104, 900, 859, 732, 686

4. Properties of lactams 1a-k (Table 1)

N-Boc-2-piperidone (1a, CAS No. 85908-96-9): *N*-Boc-2-piperidone was purchased from Tokyo Chemical Industry Co., Ltd. (B3788) and used as delivered.

2-Piperidone (1b, CAS No. 675-20-7): 2-Piperidone was purchased from Tokyo Chemical Industry Co., Ltd. (P0455) and used as delivered.

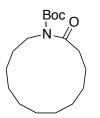
N-Me-2-Piperidone (1c, CAS No. 931-20-4): *N*-Bn-2-piperidone was purchased from Sigma-Aldrich Co. LLC. (M73788) and used as delivered.

N-Bn-2-Piperidone (1d, CAS No. 4783-65-7): *N*-Bn-2-piperidone was purchased from Sigma-Aldrich Co. LLC. (496898) and used as delivered.

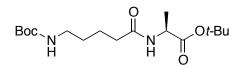
N-Ac-2-piperidone (1e, CAS No. 3326-13-4): *N*-Ac-2-piperidone was purchased from BLD Pharmatech Ltd. (BD142931) and used as delivered.

N-Bz-2-piperidone (1f, CAS No. 4252-56-6): *N*-Bz-2-piperidone was purchased from Enamine Ltd. (EN300-207021) and used as delivered.

N-Cbz-2-piperidone (1g, CAS No. 106412-35-5): *N*-Cbz-2-piperidone was purchased from Sigma-Aldrich Co. LLC. (737534) and used as delivered.

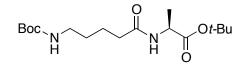

N-Boc-2-azetidinone (1h, CAS No. 1140510-99-1): *N*-Boc-2-azetidinone was purchased from Apollo Scientific Ltd. (OR925839) and used as delivered.

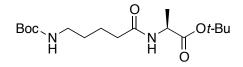
N-Boc-2-pyrrolidinone (1i, CAS No. 85909-08-6): *N*-Boc-2-pyrrolidinone was purchased from Combi-Blocks, Inc. (SS-7905) and used as delivered.


N-Boc-ε-caprolactam (1j, CAS No. 106412-36-6): *N*-Boc-ε-caprolactam was purchased from Sigma-Aldrich Co. LLC. (719706) and used as delivered.

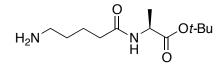
N-Boc-λ-caprolactam (1k, CAS No. 370861-81-7)²: *N*-Boc-λ-caprolactam was prepared from commercially avairable ω -laurinlactam (Tokyo Chemical Industry Co., Ltd., L0092), Boc₂O (Tokyo Chemical Industry Co., Ltd., D1547), DMAP (FUJIFILM Wako Pure Chemical Co., 042-19212), and triethylamine (FUJIFILM Wako Pure Chemical Co., 202-02646) according to the literature method.²

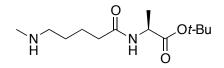
 $R_f = 0.33$ (10% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 3.90–3.75 (m, 2H, 3.00-3.85 (m, 2H, 2H, 1.80-1.65 (m, 1.65 - 1.502H, (m, (100 MHz, CDCl₃) & 177.0, 153.7, 82.6, 43.9, 37.9, 28.0 (3C), 27.6, 26.9, 26.5, 25.7, 25.2, 25.0 (2C), 24.9, 24.1. IR (thin film, cm⁻¹) 2930, 2862, 21728, 1689, 1459, 1367, 1351, 1337, 1282, 1257, 1220.

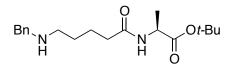

5. Properties of dipeptides 2a-k (Table 1)

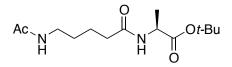

Boc-ð-HoGly-L-Ala-Ot-Bu (2a, entry 1): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-piperidone (**1a**, 99.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **2a** (171.4 mg, >99% yield) as a colorless oil with >99:1 er.

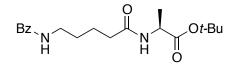
R_f = 0.56 (80% AcOEt in hexane). [α]_D²² = -34.8 (*c* 1.18, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.20 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 4.74 (br t, *J* = 6.0 Hz, 1H, (C<u>H</u>₃)₃COCON<u>H</u>), 4.46 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.13 (q, *J* = 6.0 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂), 2.23 (t, *J* = 7.3 Hz, 2H, CH₂CH₂CH₂C<u>H</u>₂), 1.75–1.40 (m, 4H, CH₂C<u>H</u>₂C<u>H</u>₂CH₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.36 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 172.1, 156.0, 81.9, 79.1, 48.5, 39.9, 35.8, 29.4, 28.4 (3C), 27.9 (3C), 22.6, 18.7. IR (thin film, cm⁻¹) 3316, 2977, 2933, 1713, 1692, 1651, 1523, 1454, 1366, 1246, 1147. HRMS (ESI) calculated for C₁₇H₃₂N₂O₅Na [M+Na]⁺ *m/z* 367.2209, found, 367.2223.


	Boc N_O	H-∟-Ala-O <i>t-</i> Bu (2 equiv)			
	la	Solvent 30 °C, 12 h open air 2a			
solvent	yield of 2a (%)	solvent	yield of 2a (%)	solvent	yield of 2a (%)
no solvent	99	2-Me-THF	69	DMA	42
toluene	74	1,4-dioxane	46	DMSO	29
benzene	58	<i>i</i> -Pr ₂ O	81	NBP	65
PhCl	53	TBME	76	H_2O	32
CHCl ₃	47	DME	58	EtOH	48
DCM	52	AcOEt	55	<i>i</i> -PrOH	46
CPME	88	MeCN	55	t-BuOH	74
THF	61	DMF	52	CF ₃ CH ₂ OH	17

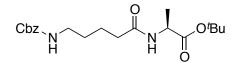

Boc-ô-HoGly-L-Ala-Ot-Bu (2a, entry 2): A flame-dried 20 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-piperidone (**1a**, 1.20 g, 6.0 mmol) and H-L-Ala-Ot-Bu (1.74 g, 12 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (6.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **2a** (2.00 g, 97% yield) as a white solid with >99:1 er.


Boc-ô-HoGly-L-Ala-Ot-Bu (2a, entry 3): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-piperidone (**1a**, 199.3 mg, 1.0 mmol) and H-L-Ala-Ot-Bu (72.6 mg, 0.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **2a** (157.9 mg, 92% yield) as a white solid with >99:1 er.

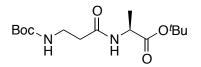

H-δ-HoGly-L-Ala-Ot-Bu (2b, entry 19): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with 2-piperidone (**1b**, 49.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The title compound **2b** was not produced.


Me- δ -HoGly-L-Ala-Ot-Bu (2c, entry 20): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Me-2-piperidone (1c, 56.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The title compound 2c was not produced.

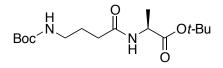
Bn-\delta-HoGly-L-Ala-Ot-Bu (2d, entry 21): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Bn-2-piperidone (1d, 94.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The title compound 2d was not produced.



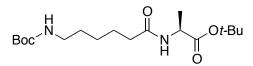
Ac- δ -HoGly-L-Ala-Ot-Bu (2e, entry 22): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Ac-2-piperidone (1e, 70.6 mg, 0.5 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the undesired compound Ac-L-Ala-Ot-Bu (CAS No. 75552-90-8). The title compound 2e was not produced.


Bz-δ-HoGly-L-Ala-Ot-Bu (2f, entry 23): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Bz-2-piperidone (**1f**, 101.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **2f** (8.8 mg, 5% vield) as a colorless oil and undesired Bz-L-Ala-Ot-Bu (CAS No. 67617-34-9).

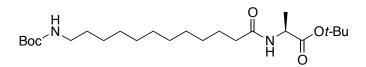
R_f = 0.35 (AcOEt). [α]_D²⁰ = -40.6 (*c* 1.06, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.75 (m, 2H, C₆<u>H</u>₅CONH), 7.55–7.35 (m, 3H, C₆<u>H</u>₅CONH), 6.76 (br t, *J* = 6.0 Hz, 1H, C₆H₅CON<u>H</u>), 6.21 (br d, *J* = 7.3 Hz, 1H, N<u>H</u>), 4.45 (quin, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 3.46 (td, *J* = 6.4, 6.0 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂), 2.40–2.20 (m, 2H, CH₂CH₂CH₂CH₂C<u>H</u>₂), 1.80–1.60 (m, 4H, CH₂C<u>H₂CH₂CH₂CH₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.36 (d, *J* = 7.3 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.3 (2C), 167.5, 134.6, 131.2, 128.4 (2C), 126.9 (2C), 81.9, 48.5, 39.2, 35.5, 28.7, 27.9 (3C), 22.3, 18.5. IR (thin film, cm⁻¹) 3291, 3064, 2978, 1734, 1637, 1536, 1454, 1367, 1306, 1224, 1146. HRMS (ESI) calculated for C₁₉H₂₈N₂O₄Na [M+Na]⁺ *m/z* 371.1947, found, 371.1903.</u>


Cbz-ô-HoGly-L-Ala-Ot-Bu (2g, entry 24): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Cbz-2-piperidone (**1g**, 116.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **2g** (81.6 mg, 43% yield) as a white solid with >99:1 er and undesired Cbz-L-Ala-Ot-Bu (CAS No. 50300-96-4).

R_f = 0.48 (80% AcOEt in hexane). M.p. 61–62 °C. [α]_D²⁸ = –35.3 (*c* 1.22, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.25 (m, 5H, C₆<u>H</u>₅CH₂OCONH), 6.16 (br d, *J* = 7.3 Hz, 1H, N<u>H</u>), 5.09 (s, 2H, C₆H₅C<u>H</u>₂OCONH), 5.02 (br t, *J* = 6.4 Hz, 1H, C₆H₅CH₂OCON<u>H</u>), 4.45 (quin, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 3.20 (q, *J* = 6.4 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂), 2.25 (dd, *J* = 15.5, 7.3 Hz, 1H, CH₂CH₂CH₂C<u>H₂C</u>), 2.19 (dd, *J* = 15.5, 6.8 Hz, 1H, CH₂CH₂CH₂C<u>H₂C</u>), 1.75–1.60 (m, 2H, CH₂CH₂C<u>H₂C</u>), 1.60–1.45 (m, 2H, CH₂C<u>H₂CH₂CH₂C), 1.46 (s, 9H, CO₂C(C<u>H₃)</u>), 1.35 (d, *J* = 7.3 Hz, 3H, CHC<u>H₃</u>). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 172.0, 156.4, 136.6, 128.4 (2C), 128.0, 128.0 (2C), 81.9, 66.5, 48.4, 40.4, 35.7, 29.2, 27.9 (3C), 22.4, 18.6. IR (thin film, cm⁻¹) 3344, 3307, 2977, 2948, 1736, 1679, 1652, 1538, 1517, 1210, 1155. HRMS (ESI) calculated for C₂₀H₃₀N₂O₅Na [M+Na]⁺ *m/z* 401.2052, found, 401.2044.</u>


Boc-β-HoGly-L-Ala-Ot-Bu (2h, entry 25): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-azetidinone (**1h**, 85.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **2h** (143.9 mg, 91% yield) as a colorless oil with >99:1 er.

R_f = 0.60 (80% AcOEt in hexane). [α]_D¹⁶ = -39.8 (*c* 1.03, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.19 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 5.22 (br t, *J* = 6.2 Hz, 1H, (C<u>H</u>₃)₃COCON<u>H</u>), 4.45 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.41 (dt, *J* = 6.2, 6.0 Hz, 2H, C<u>H</u>₂CH₂), 2.42 (t, *J* = 6.0 Hz, 2H, CH₂C<u>H₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.37 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 170.9, 156.0, 82.0, 79.2, 48.6, 36.5, 36.1, 28.4 (3C), 27.9 (3C), 18.5. IR (thin film, cm⁻¹) 3323, 2978, 2935, 1714, 1651, 1516, 1454, 1366, 1246, 1147, 1049. HRMS (ESI) calculated for C₁₅H₂₈N₂O₅Na [M+Na]⁺ *m/z* 339.1896, found, 339.1944.</u>


Boc- γ **-HoGly-L-Ala-Ot-Bu (2i, entry 26):** A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-pyrrolidinone (**1i**, 92.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (217.8 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **2i** (120.6 mg, 73% yield) as a colorless oil with >99:1 er.

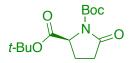
R_f = 0.43 (80% AcOEt in hexane). [α]_D²⁵ = -25.0 (*c* 1.16, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.43 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 4.90–4.70 (m, 1H, (C<u>H</u>₃)₃COCON<u>H</u>), 4.45 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.30–3.10 (m, 2H, C<u>H</u>₂CH₂CH₂), 2.30–2.20 (m, 2H, CH₂CH₂C<u>H</u>₂), 1.90–1.75 (m, 2H, CH₂C<u>H</u>₂CH₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.37 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.9, 156.2, 81.9, 79.2, 48.6, 39.8, 33.5, 28.4 (3C), 27.9 (3C), 26.0, 18.5. IR (thin film, cm⁻¹) 3314, 2978, 2934, 1692, 1651, 1523, 1453, 1366, 1249, 1147, 1048. HRMS (ESI) calculated for C₁₆H₃₀N₂O₅Na [M+Na]⁺ *m/z* 353.2052, found, 353.2053.

Boc-\varepsilon-HoGly-L-Ala-Ot-Bu (2j, entry 27): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc- ε -caprolactam (**1j**, 106.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **2j** (162.2 mg, 90% yield) as a colorless oil with >99:1 er.

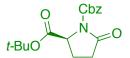
 $R_f = 0.50$ (80% AcOEt in hexane). $[\alpha]_D^{25} = -28.1$ (c 1.14, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.05 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 4.65–4.50 (m, 1H, (C<u>H</u>₃)₃COCON<u>H</u>), 4.47 (quin, J = 7.1 Hz, 2H, 1H. CHCH₃). 3.20-3.00 (m. $CH_2CH_2CH_2CH_2CH_2),$ 2.30-2.15 2H. (m. $CH_2CH_2CH_2CH_2CH_2$, 1.47 (s, 9H, $CO_2C(CH_3)_3$), 1.44 (s, 9H, $(CH_3)_3COCONH$), 1.36 (d, J =7.1 Hz, 3H, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 172.1, 156.0, 81.9, 79.0, 48.4, 40.3, 36.3, 29.7, 28.4 (3C), 27.9 (3C), 25.1, 18.7. IR (thin film, cm⁻¹) 3320, 2978, 2934, 1693, 1652, 1525, 1454, 1366, 1247, 1148, 1046. HRMS (ESI) calculated for $C_{18}H_{34}N_2O_5Na [M+Na]^+ m/z$ 381.2365, found, 381.2358.

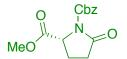
Boc- λ -**HoGly-L-Ala-Ot-Bu (2k, entry 28):** A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc- λ -caprolactam (**1k**, 146.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (217.8 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **2k** (143.8 mg, 65% yield) as a white solid with >99:1 er.

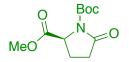
 $R_f = 0.61$ (50% AcOEt in hexane). M.p. 72–74 ° C. $[\alpha]_D^{22} = -48.2$ (c 1.64, MeOH). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 6.08 \text{ (br d, } J = 7.1 \text{ Hz}, 1\text{H}, \text{NH}), 4.60-4.50 \text{ (m, 1H, (CH_3)_3COCONH)}, 4.47$ 7.1 Hz, 1H. 3.10 (quin, J= $CHCH_3),$ (q, J= 6.4 Hz, 2H. 2.30 - 2.102H, (m, 1.70-1.55 (m, 2H, 1.55 - 1.2016H, (m, $(CH_3)_3$ COCONH), 1.36 (d, J = 7.1 Hz, 3H, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 172.4, 155.9, 81.9, 78.9, 48.4, 40.6, 36.6, 30.0, 29.4, 29.4, 29.3, 29.2, 29.2, 29.2, 28.4 (3C), 27.9

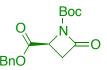

S15

(3C), 26.7, 25.5, 18.8. IR (thin film, cm⁻¹) 3338, 2920, 2850, 1737, 1696, 1661, 1524, 1455, 1365, 1235, 1151. HRMS (ESI) calculated for $C_{24}H_{46}N_2O_5Na$ [M+Na]⁺ m/z 465.3304, found, 465.3308.

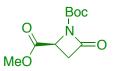

6. Properties of lactams 3a-m (Scheme 2)


rac-Methyl *N*-Boc-2-oxopiperidine-3-carboxylate (3a, CAS No. 400073-68-9): *rac*-Methyl *N*-Boc-2-oxopiperidine-3-carboxylate was purchased from Accela ChemBio Inc. (SY026045) and used as delivered.


Boc-L-Pyr-Ot-Bu (3b, CAS No. 91229-91-3): Boc-L-Pyr-Ot-Bu was purchased from Tokyo Chemical Industry Co., Ltd. (B5216) and used as delivered.


Cbz-L-Pyr-Ot-Bu (3c, CAS No. 81470-51-1): Cbz-L-Pyr-Ot-Bu was purchased from AmBeed, Inc. (A346058) and used as delivered.

Cbz-D-Pyr-OMe (3d, CAS No. 690211-34-8): Cbz-D-Pyr-OMe was purchased from Combi-Blocks, Inc. (YC-2555) and used as delivered.



Boc-L-Pyr-OMe (3e, CAS No. 108963-96-8): Boc-L-Pyr-OMe was purchased from Tokyo Chemical Industry Co., Ltd. (M2803) and used as delivered.

(*S*)-Benzyl *N*-Boc-4-oxoazetidine-2-carboxylate (3f, CAS No. 146849-54-9)³: (*S*)-Benzyl *N*-Boc-4-oxoazetidine-2-carboxylate was prepared from commercially avairable (*S*)-benzyl 4-oxoazetidine-2-carboxylate (Sigma-Aldrich Co. LLC., 468975), Boc₂O (Tokyo Chemical Industry Co., Ltd., D1547), DMAP (FUJIFILM Wako Pure Chemical Co., 042-19212), and triethylamine (FUJIFILM Wako Pure Chemical Co., 202-02646) according to the literature method.³

R_f = 0.33 (20% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.30 (m, 5H, CO₂CH₂C₆<u>H</u>₅), 5.27 (d, *J* = 12.1 Hz, 1H, CO₂C<u>H</u>₂C₆H₅), 5.20 (d, *J* = 12.1 Hz, 1H, CO₂C<u>H</u>₂C₆H₅), 4.42 (dd, *J* = 6.6, 3.2 Hz, 1H, C<u>H</u>CH₂CO), 3.25 (dd, *J* = 15.8, 6.6 Hz, 1H, CHC<u>H</u>₂CO), 2.98 (dd, *J* = 15.8, 3.2 Hz, 1H, CHC<u>H</u>₂CO), 1.45 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 162.1, 146.8, 134.8, 128.7 (3C), 128.5 (2C), 84.0, 67.6, 49.6, 41.3, 27.8. IR (thin film, cm⁻¹) 2979, 1813, 1723, 1456, 1324, 1253, 1187, 1145, 1094, 1044, 1032.

(*S*)-Methyl *N*-Boc-4-oxoazetidine-2-carboxylate (3g, CAS No. 107020-13-3)⁴: (*S*)-Methyl *N*-Boc-4-oxoazetidine-2-carboxylate was prepared from commercially avairable (*S*)-1-Boc-azetidine-2-carboxylic acid methyl ester (Synthonic, Inc., A8195), NaIO₄ (FUJIFILM Wako Pure Chemical Co., 199-02401), and RuO₂ hydrate (Sigma-Aldrich Co. LLC., 208833-1G) according to the literature method.⁴

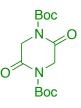
R_f = 0.40 (30% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 4.39 (dd, J = 6.6, 3.2 Hz, 1H, C<u>H</u>CH₂CO), 3.82 (s, 3H, CO₂C<u>H</u>₃), 3.26 (dd, J = 15.8, 6.6 Hz, 1H, CHC<u>H</u>₂CO), 3.00 (dd, J = 15.8, 3.2 Hz, 1H, CHC<u>H</u>₂CO), 1.51 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ

169.7, 162.2, 146.9, 84.0, 52.7, 49.4, 41.2, 27.9. IR (thin film, cm⁻¹) 2982, 1814, 1720, 1439, 1324, 1254, 1217, 1144, 1098, 1045, 1031.

(S)-N,N'-di-Boc-3-aminoazepan-2-one (3h): A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable (S)-3-aminoazepan-2-one hydrochloride (1.0 g, 6.07 mmol), DMAP (2.23 g, 18.2 mmol), Boc₂O (3.98 g, 18.2 mmol), and DCM-CHCl₃ (5:2, 70 mL). After Et₃N (2.54 mL, 18.2 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (30–100% AcOEt in hexane) to provide (S)-N-Boc-3-aminoazepan-2-one (CAS No. 76944-95-1, 824.6 mg, 59% yield). A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with (S)-N-Boc-3-aminoazepan-2-one (CAS No. 76944-95-1, 804.6 mg, 3.52 mmol), DMAP (861.2 mg, 7.05 mmol), Boc₂O (1.54 g, 7.05 mmol), and DCM (50 mL). After Et₃N (0.49 mL, 3.52 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in vacuo with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and

pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–30% AcOEt in hexane) to provide the title compound **3h** (1.10 g, 95% yield) as a colorless oil.

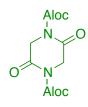
 $R_f = 0.40$ (20% AcOEt in hexane). $[\alpha]_D^{24} = +6.7$ (c 1.20, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.83 (d, J = 6.6 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.54 (ddd, J = 11.0, 6.6, 1.8 Hz, 1H, $CHCH_2CH_2CH_2CH_2NCO_2C(CH_3)_3),$ 4.29 (ddt. J = 15.4, 5.0. Hz. 1H. 1.6 $CHCH_2CH_2CH_2CH_2NCO_2C(CH_3)_3),$ 3.31 15.4. (dd, J= 11.2 Hz. 1H, 1.53 (s, 9H, (CH₃)₃COCONH), 1.44 (s, 9H, CHCH₂CH₂CH₂CH₂NCO₂C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 155.1, 152.5, 83.6, 79.6, 54.9, 45.4, 33.0, 28.3 (3C), 27.9 (3C), 27.7, 27.2. IR (thin film, cm⁻¹) 3429, 2978, 2933, 1774, 1698, 1486, 1366, 1279, 1254, 1136, 1055. HRMS (ESI) calculated for $C_{16}H_{28}N_2O_5Na [M+Na]^+ m/z 351.1896$, found, 351.1900.



tert-Butyl (3*S*)-3-{[(*tert*-butoxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate (3i, CAS No. 1277168-39-4): A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable (*S*)-*tert* butyl (2-oxopiperidin-3-yl)carbamate (1.50 g, 7.0 mmol), DMAP (1.71 g, 14.0 mmol), Boc₂O (3.06 g, 14.0 mmol), and DCM (70 mL). After Et₃N (0.98 mL, 7.0 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (20–50% AcOEt in hexane) to provide the title compound **3i** (1.67 g, 76% yield) as a colorless oil.

R_f = 0.45 (30% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 5.50 (br s, 1H, (CH₃)₃COCON<u>H</u>), 4.35–4.20 (m, 1H, C<u>H</u>CH₂CH₂CH₂CH₂NCO₂C(CH₃)₃), 3.99 (dt, J = 13.5, 5.9 Hz, 1H, CHCH₂CH₂CH₂CH₂NCO₂C(CH₃)₃), 3.52 (ddd, J = 13.5, 8.4, 5.3 Hz, 1H, CHCH₂CH₂CH₂NCO₂C(CH₃)₃), 2.60–2.45 (m, 1H, CHCH₂C<u>H₂CH₂NCO₂C(CH₃)₃), 2.00–1.80 (m, 2H, CHC<u>H₂CH₂CH₂NCO₂C(CH₃)₃), 1.60–1.45 (m, 1H, CHC<u>H₂CH₂CH₂NCO₂C(CH₃)₃), 2.00–1.81 (m, 2H, CHC<u>H₂CH₂CH₂NCO₂C(CH₃)₃), 1.60–1.45 (m, 1H, CHC<u>H₂CH₂CH₂NCO₂C(CH₃)₃), 1.53 (s, 9H, (C<u>H₃)₃COCONH</u>), 1.45 (s, 9H, CHCH₂CH₂CH₂NCO₂C(C<u>H₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 155.5, 151.9, 83.5, 79.8, 52.6, 43.8, 28.3 (3C), 27.9 (3C), 26.8, 20.3. IR (thin film, cm⁻¹) 3389, 2978, 2933, 1773, 1705, 1495, 1366, 1279, 1242, 1142, 1054.</u></u></u></u></u></u>

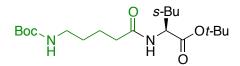
tert-Butyl (3*S*)-3-{[(benzyloxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate (3j, CAS No. 1277168-36-1): *tert*-Butyl (3*S*)-3-{[(benzyloxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate was purchased from Chemspace LLC. (BBV-300822848) and used as delivered.


Cyclo(-Boc-Gly-Boc-Gly-) (3k, CAS No. 151692-07-8)⁵: Cyclo(-Boc-Gly-Boc-Gly-) was prepared from commercially avairable Cyclo(-Gly-Gly-) (Kanto Chemical Co. Inc., 17568-31), Boc₂O (Tokyo Chemical Industry Co., Ltd., D1547), DMAP (FUJIFILM Wako Pure Chemical Co., 042-19212), and triethylamine (FUJIFILM Wako Pure Chemical Co., 202-02646) according to the literature method.⁵

 $R_f = 0.36 (30\% \text{ AcOEt in hexane})$. M.p. 140–143 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.43 (s, 4H, C<u>H</u>₂), 1.54 (s, 18H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (2C), 149.5 (2C), 85.1 (2C), 49.5 (2C), 27.9 (6C). IR (thin film, cm⁻¹) 2982, 1787, 1726, 1715, 1366, 1293, 1248, 1206, 1139, 1085, 846.

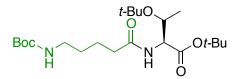
Cyclo(-Boc-L-Ala-Boc-L-Ala-) (31, CAS No. 959865-87-3)⁵: A flame-dried 200 mL roundbottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Cyclo(-L-Ala-L-Ala-) (4.26 g, 30.0 mmol), DMAP (733.0 mg, 6.0 mmol), Boc₂O (26.2 g, 120.0 mmol), and CHCl₃–DMF (35:1, 36 mL). After Et₃N (8.33 mL, 60.0 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–50% AcOEt in hexane) to provide the title compound **31** (9.45 g, 92% yield) as a white solid.

R_f = 0.52 (30% AcOEt in hexane). M.p. 101–102 °C. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 4.87 (q, J = 7.4 Hz, 2H, C<u>H</u>CH₃), 1.64 (d, J = 7.4 Hz, 6H, CHC<u>H</u>₃), 1.55 (s, 18H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (2C), 149.8 (2C), 84.8 (2C), 56.0 (2C), 27.9 (6C), 20.4 (2C). IR (thin film, cm⁻¹) 2979, 2942, 1768, 1722, 1696, 1459, 1368, 1238, 1142, 1080, 1029.



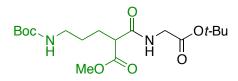
Cyclo(-Aloc-Gly-Aloc-Gly-) (3m): A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Cyclo(-Gly-Gly-) (1.39 g, 12.2 mmol), DMAP (149.2 g, 1.22 mmol), and DMF (50 mL). After

Aloc₂O (5.0 g, 26.9 mmol) was added to the mixture at room temperature, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **3m** (355.3 mg, 10% yield) as a colorless oil.

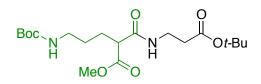

R_f = 0.42 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 5.96 (ddt, J = 17.2, 10.3, 5.7 Hz, 2H, CH₂CH₂OCON), 5.45 (ddd, J = 17.2, 2.5, 1.2 Hz, 2H, CH₂CHCH₂OCON), 5.33 (ddd, J = 10.3, 2.5, 1.2 Hz, 2H, CH₂CHCH₂OCON), 4.79 (dt, J = 5.7, 1.2 Hz, 4H, CH₂CHCH₂OCON), 4.55 (s, 4H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (2C), 151.2 (2C), 130.5 (2C), 119.9 (2C), 68.5 (2C), 49.5 (2C). IR (thin film, cm⁻¹) 2945, 1782, 1717, 1438, 1363, 1297, 1276, 1085, 985, 933, 768. HRMS (ESI) calculated for C₁₂H₁₄N₂O₆Na [M+Na]⁺ *m/z* 305.0750, found, 305.0799.

7. Properties of peptides 2aa–ab, 4a–m (Scheme 2)

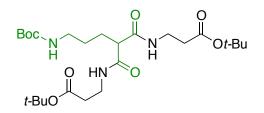
Boc-ô-HoGly-L-Ile-Ot-Bu (2aa): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-piperidone (**1a**, 99.6 mg, 0.50 mmol) and H-L-Ile-Ot-Bu (187.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **2aa** (192.5 mg, >99% yield) as a colorless oil with >99:1 dr.


R_f = 0.71 (80% AcOEt in hexane). [α]_D²⁹ = -19.5 (*c* 1.08, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (br d, J = 8.5 Hz, 1H, N<u>H</u>), 4.68 (br t, J = 6.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.50 (dd, J = 8.5, 4.6 Hz, 1H, C<u>H</u>CH(CH₃)CH₂CH₃), 3.13 (q, J = 6.4 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂), 2.28 (dd, J = 15.0, 7.5 Hz, 1H, CH₂CH₂CH₂C<u>H</u>₂), 2.22 (dd, J = 15.0, 7.5 Hz, 1H, CH₂CH₂CH₂CH₂C<u>H</u>₂), 1.90–1.80 (m, 1H, CHC<u>H</u>(CH₃)CH₂CH₃), 1.75–1.40 (m, 5H, CH₂C<u>H</u>₂C<u>H</u>₂CH₂ and CHCH(CH₃)C<u>H</u>₂CH₃), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.30–1.10 (m, 1H, CHCH(CH₃)C<u>H</u>₂CH₃), 0.93 (t, J = 7.5 Hz, 3H, CHCH(CH₃)CH₂C<u>H</u>₃), 0.90 (d, J = 6.9 Hz, 3H, CHCH(C<u>H</u>₃)CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.2, 156.0, 82.0, 79.0, 56.5, 39.9, 38.1, 36.0, 29.4, 28.4 (3C), 28.0 (3C), 25.3, 22.6, 15.3, 11.7. IR (thin film, cm⁻¹) 3626, 2969, 2933, 1714, 1694, 1652, 1520, 1366, 1247, 1161, 1144. HRMS (ESI) calculated for C₂₀H₃₈N₂O₅Na [M+Na]⁺ *m/z* 409.2678, found, 409.2661.

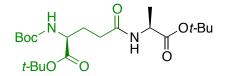
Boc-δ-HoGly-L-Thr(*t***-Bu)-O***t***-Bu (2ab):** A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *N*-Boc-2-piperidone (**1a**, 99.6 mg, 0.50 mmol)


and H-L-Thr(*t*-Bu)-O*t*-Bu (231.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **2ab** (214.5 mg, >99% yield) as a colorless oil with >99:1 dr.

R_f = 0.72 (80% AcOEt in hexane). [α]_D³⁰ = -1.0 (*c* 1.04, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.16 (br d, *J* = 9.3 Hz, 1H, N<u>H</u>), 4.67 (br t, *J* = 6.3 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.38 (dd, *J* = 9.3, 2.0 Hz, 1H, C<u>H</u>CH(CH₃)OC(CH₃)₃), 4.20 (qd, *J* = 6.2 Hz, 1H, CHC<u>H</u>(CH₃)OC(CH₃)₃), 3.14 (q, *J* = 6.3 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂), 2.30 (t, *J* = 7.5 Hz, 2H, CH₂CH₂CH₂CH₂C<u>H₂), 1.80–1.45 (m, 4H, CH₂C<u>H</u>₂C<u>H</u>₂CH₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.17 (s, 9H, CHCH(CH₃)OC(C<u>H</u>₃)₃), 1.13 (d, *J* = 6.2 Hz, 3H, CHCH(C<u>H</u>₃)OC(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.0, 156.0, 81.8, 79.0, 73.8, 67.2, 58.2, 40.0, 35.9, 29.4, 28.7 (3C), 28.4 (3C), 28.1 (3C), 22.6, 21.0. IR (thin film, cm⁻¹) 3366, 2976, 2933, 1713, 1662, 1506, 1365, 1247, 1160, 1146, 1086. HRMS (ESI) calculated for C₂₂H₄₂N₂O₆Na [M+Na]⁺ *m/z* 453.2941, found, 453.2930.</u>

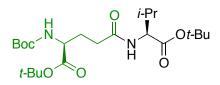

4aa: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *rac*-methyl *N*-Boc-2-oxopiperodine-3-carboxylate (**3a**, 128.6 mg, 0.50 mmol) and H-Gly-Ot-Bu (131.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **4aa** (184.5 mg, 95% yield) as a colorless oil.

 $R_f = 0.33 (50\% \text{ AcOEt in hexane}).$ ¹H NMR (400 MHz, CDCl₃) δ 7.02 (br t, J = 5.0 Hz, 1H, N<u>H</u>), 4.70 (br t, J = 5.7 Hz, 1H, (CH₃)₃COCON<u>H</u>), 3.93 (d, J = 5.0 Hz, 2H, C<u>H</u>₂), 3.75 (s, 3H, CH₂CH₂CH₂CHCO₂C<u>H</u>₃), 3.40–3.25 (m, 1H, CH₂CH₂CH₂CH₂CO₂CH₃), 3.25–3.05 (m, 2H, C<u>H</u>₂CH₂CH₂CHCO₂CH₃), 2.05–1.90 (m, 2H, CH₂CH₂CH₂CHCO₂CH₃), 1.60–1.45 (m, 2H, CH₂CH₂CH₂CH₂CHCO₂CH₃), 1.47 (s, 9H, CO₂C(C<u>*H*</u>₃)₃), 1.43 (s, 9H, (C<u>*H*</u>₃)₃COCONH). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 168.6, 168.3, 156.1, 82.3, 79.2, 52.5, 51.9, 42.1, 39.6, 28.4 (3C), 28.0 (3C), 27.6, 27.5. IR (thin film, cm⁻¹) 3341, 2976, 2933, 1739, 1714, 1668, 1519, 1366, 1247, 1150, 1036. HRMS (ESI) calculated for C₁₈H₃₂N₂O₇Na [M+Na]⁺ *m/z* 411.2107, found, 411.2102.

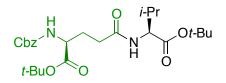

4ab: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *rac*-methyl *N*-Boc-2-oxopiperodine-3-carboxylate (**3a**, 128.6 mg, 0.50 mmol) and H- β -HoGly-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **4ab** (199.1 mg, 99% yield) as a colorless oil.

R_f = 0.31 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 6.93 (br t, J = 6.2 Hz, 1H, N<u>H</u>), 4.64 (br t, J = 6.1 Hz, 1H, (CH₃)₃COCON<u>H</u>), 3.60–3.40 (m, 2H, CH₂C<u>H</u>₂), 3.73 (s, 3H, CH₂CH₂CH₂CH₂CHCO₂C<u>H</u>₃), 3.23 (t, J = 7.3 Hz, 1H, CH₂CH₂CH₂CH₂CO₂CH₃), 3.12 (q, J = 6.1 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CHCO₂CH₃), 2.45 (t, J = 6.2 Hz, 2H, C<u>H</u>₂CH₂), 2.00–1.85 (m, 2H, CH₂CH₂CH₂CHCO₂CH₃), 1.60–1.40 (m, 2H, CH₂C<u>H</u>₂CH₂CHCO₂CH₃), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.5, 168.1, 156.0, 81.1, 79.2, 52.4, 52.2, 39.7, 35.3, 35.0, 28.4 (3C), 28.1 (3C), 27.6, 27.4. IR (thin film, cm⁻¹) 3300, 2978, 2937, 1727, 1715, 1695, 1661, 1520, 1366, 1248, 1154. HRMS (ESI) calculated for C₁₉H₃₄N₂O₇Na [M+Na]⁺ *m/z* 425.2264, found, 425.2253.

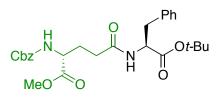
4ac: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *rac*-methyl *N*-Boc-2-oxopiperodine-3-carboxylate (**3a**, 128.6 mg, 0.50 mmol), H- β -HoGly-Ot-Bu (290.4 mg, 2.0 mmol), and Ta(OMe)₅ (16.8 mg, 0.050 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 60 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **4ac** (247.5 mg, 96% yield) as a white solid.


 R_f = 0.15 (50% AcOEt in hexane). M.p. 75–77 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (br t, *J* = 6.0 Hz, 2H, N<u>H</u>), 4.77 (br t, *J* = 6.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 3.60–3.35 (m, 4H, C<u>H</u>₂CH₂CO₂C(CH₃)₃), 3.13 (q, *J* = 6.4 Hz, 2H, C<u>H</u>₂CH₂CH₂CH), 3.01 (t, *J* = 7.3 Hz, 1H, CH₂CH₂CH₂CH₂C<u>H</u>), 2.44 (t, *J* = 6.3 Hz, 4H, CH₂C<u>H</u>₂CO₂C(CH₃)₃), 1.84 (q, *J* = 7.3 Hz, 2H, CH₂CH₂CH₂C<u>H</u>), 1.60–1.35 (m, 2H, CH₂C<u>H</u>₂CH₂CH), 1.45 (s, 18H, CH₂CH₂CO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H, (C<u>H</u>₃)₃COCONH). ¹³C NMR (100 MHz, CDCl₃) δ 171.2 (2C), 170.6 (2C), 156.0, 81.1 (2C), 79.1, 53.8, 39.6, 35.2 (2C), 35.1 (2C), 29.8, 28.4 (3C), 28.0 (6C), 27.6. IR (thin film, cm⁻¹) 3296, 2977, 2932, 1727, 1683, 1666, 1531, 1365, 1278, 1249, 1149. HRMS (ESI) calculated for C₂₅H₄₅N₃O₈Na [M+Na]⁺ *m/z* 538.3104, found, 538.3092.

Boc-L-Glu(L-Ala-Ot-Bu)-Ot-Bu (4ba, CAS No. 2374223-99-9)⁶: A flame-dried 5.0 mL screwcap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Boc-L-Pyr-Ot-Bu (**3b**, 142.7 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (217.8 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 60 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (1–10% MeOH in CHCl₃) to provide the title compound **4ba** (208.9 mg, 97% yield) as a white solid with >99:1 dr.

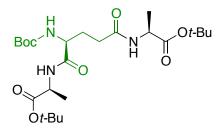

 $R_f = 0.44$ (5% MeOH in CHCl₃). M.p. 64–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.42 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 5.25 (br d, J = 7.8 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.45 (quin, J = 7.1 Hz, 1H,

C<u>H</u>CH₃), 4.25–4.10 (m, 1H, C<u>H</u>CH₂CH₂), 2.35–2.25 (m, 2H, CHCH₂C<u>H₂), 2.25–2.10 (m, 1H, CHCH₂CH₂), 2.00–1.80 (m, 1H, CHC<u>H₂CH₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.38 (d, J = 7.1 Hz, 3H, CHC<u>H₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.4, 171.3, 155.6, 82.1, 81.8, 79.7, 53.4, 48.6, 32.4, 29.0, 28.2 (3C), 27.9 (3C), 27.9 (3C), 18.5. IR (thin film, cm⁻¹) 3365, 3301, 2977, 2936, 1733, 1704, 1661, 1525, 1366, 1151, 1057.</u></u></u>


Boc-L-Glu(L-Val-Ot-Bu)-Ot-Bu (4bb): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Boc-L-Pyr-Ot-Bu (**3b**, 142.7 mg, 0.50 mmol) and H-L-Val-Ot-Bu (260.0 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 60 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–50% AcOEt in hexane) to provide the title compound **4bb** (178.4 mg, 78% yield) as a white solid with >99:1 dr.

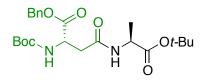
R_f = 0.70 (50% AcOEt in hexane). M.p. 105–107 °C. [α]_D²⁷ = –52.9 (*c* 1.02, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.38 (br d, J = 8.7 Hz, 1H, N<u>H</u>), 5.24 (br d, J = 8.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.45 (dd, J = 8.7, 4.6 Hz, 1H, C<u>H</u>CH(CH₃)₂), 4.18 (td, J = 8.4, 3.6 Hz, 1H, C<u>H</u>CH₂CH₂), 2.40–2.10 (m, 4H, CHC<u>H</u>₂C<u>H</u>₂), 1.95–1.80 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, (C<u>H</u>₃)₃COCONH), 0.95 (d, J = 6.9 Hz, 3H, CHCH(C<u>H</u>₃)₂), 0.92 (d, J = 7.1 Hz, 3H, CHCH(C<u>H</u>₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.4, 171.1, 155.7, 82.1, 81.8, 79.8, 57.4, 53.4, 32.6, 31.3, 29.4, 28.3 (3C), 28.0 (3C), 27.9 (3C), 18.8, 17.6. IR (thin film, cm⁻¹) 2968, 1733, 1706, 1665, 1521, 1452, 1365, 1249, 1147, 1053, 847. HRMS (ESI) calculated for C₂₃H₄₂N₂O₇Na [M+Na]⁺ *m/z* 481.2890, found, 481.2864.

Cbz-L-Glu(L-Val-Ot-Bu)-Ot-Bu (4c, CAS No. 161878-63-3)⁷: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cbz-L-Pyr-Ot-Bu (**3c**, 159.7 mg, 0.50 mmol) and H-L-Val-Ot-Bu (173.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–100% AcOEt in hexane) to provide the title compound **4c** (240.1 mg, 97% yield) as a white solid with >99:1 dr.

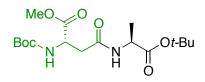

R_f = 0.44 (50% AcOEt in hexane). M.p. 105–106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.25 (m, 5H, C₆<u>H</u>₅CH₂OCONH), 6.29 (br d, J = 8.7 Hz, 1H, N<u>H</u>), 5.57 (br d, J = 8.5 Hz, 1H, C₆H₅CH₂OCON<u>H</u>), 5.11 (s, 2H, C₆H₅C<u>H</u>₂OCONH), 4.46 (dd, J = 8.7, 4.6 Hz, 1H, C<u>H</u>CH(CH₃)₂), 4.26 (td, J = 8.5, 3.7 Hz, 1H, C<u>H</u>CH₂CH₂), 2.40–2.10 (m, 4H, CHC<u>H</u>₂C<u>H</u>₂), 2.00–1.80 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, CO₂C(C<u>H</u>₃)₃), 0.94 (d, J = 6.9 Hz, 3H, CHC<u>H</u>₃), 0.91 (d, J = 6.8 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.1, 171.0, 156.2, 136.2, 128.5 (2C), 128.1 (2C), 82.4, 81.9, 67.0, 57.4, 53.9, 32.5, 31.4, 29.1, 28.0 (3C), 27.9 (3C), 18.8, 17.6. IR (thin film, cm⁻¹) 3365, 3292, 2968, 2937, 1736, 1706, 1666, 1529, 1253, 1157, 1048.

Cbz-D-Glu(L-Phe-Ot-Bu)-OMe (4d): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cbz-D-Pyr-OMe (**3d**, 138.6 mg, 0.50 mmol) and H-L-Phe-Ot-Bu (221.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography

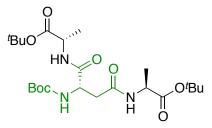
(10–100% AcOEt in hexane) to provide the title compound **4d** (178.0 mg, 76% yield) as a white solid with >99:1 dr.


R_f = 0.43 (50% AcOEt in hexane). M.p. 90–91 °C. $[α]_D^{23}$ = +18.2 (*c* 1.21, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.10 (m, 10H, C₆<u>H</u>₅CH₂OCONH and CHCH₂C₆<u>H</u>₅), 6.28 (br d, *J* = 7.6 Hz, 1H, N<u>H</u>), 5.70 (br d, *J* = 8.0 Hz, 1H, C₆H₅CH₂OCON<u>H</u>), 5.10 (s, 2H, C₆H₅C<u>H</u>₂OCONH), 4.73 (dt, *J* = 7.6, 6.2 Hz, 1H, C<u>H</u>CH₂C₆H₅), 4.50–4.30 (m, 1H, C<u>H</u>CH₂CH₂), 3.72 (s, 3H, CO₂C<u>H</u>₃), 3.06 (d, *J* = 6.2 Hz, 2H, CHC<u>H</u>₂C₆H₅), 2.40–2.10 (m, 3H, CHC<u>H</u>₂C<u>H</u>₂), 2.10–1.90 (m, 1H, CHCH₂C<u>H</u>₂), 1.39 (s, 9H, CO₂C(C<u>H</u>₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.2, 170.7, 156.2, 136.2, 136.1, 129.4 (2C), 128.5 (2C), 128.3 (2C), 128.1, 128.1 (2C), 126.9, 82.3, 67.0, 53.6, 53.5, 52.5, 38.0, 32.2, 28.2, 27.9 (3C). IR (thin film, cm⁻¹) 3334, 2988, 1731, 1718, 1703, 1650, 1538, 1454, 1253, 1152, 1041. HRMS (ESI) calculated for C₂₇H₃₄N₂O₇Na [M+Na]⁺ *m/z* 521.2264, found, 521.2286.

Boc-L-Glu(L-Ala-Ot-Bu)-L-Ala-Ot-Bu (4e): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Boc-L-Pyr-OMe (**3e**, 121.6 mg, 0.50 mmol), H-L-Ala-Ot-Bu (290.4 mg, 2.0 mmol), and Ta(OMe)₅ (16.8 mg, 0.050 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **4e** (206.4 mg, 80% yield) as a white solid with >99:1 dr.

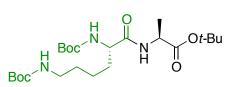

R_f = 0.62 (80% AcOEt in hexane). M.p. 42–43 °C. [α]_D²⁸ = -69.4 (*c* 1.08, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 8.05–7.85 (m, 1H, N<u>H</u>), 7.70–7.50 (m, 1H, N<u>H</u>), 5.20–5.00 (m, 1H, (CH₃)₃COCON<u>H</u>), 4.80–4.40 (m, 1H, C<u>H</u>CH₂CH₂), 4.53 (quin, *J* = 7.6 Hz, 1H, C<u>H</u>CH₃), 4.10–3.80 (m, 1H, C<u>H</u>CH₃), 2.40–2.10 (m, 3H, CHC<u>H₂CH₂), 1.90–1.70 (m, 1H, CHC<u>H₂CH₂), 1.48 (s, 9H, CO₂C(C<u>H₃)₃), 1.47 (s, 9H, CO₂C(C<u>H₃)₃), 1.42 (s, 9H, (CH₃)₃COCONH), 1.39 (d, *J* = 7.6 Hz, 1Hz, 1.20 (d, *J* = 7.6 Hz, 1Hz).</u></u></u></u>

3H, CHC*H*₃), 1.35 (d, J = 7.6 Hz, 3H, CHC*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 172.1 (2C), 171.6, 154.6, 82.4 (2C), 79.4, 52.9, 48.4 (2C), 32.0, 29.4, 28.3 (3C), 27.9 (6C), 17.7, 17.5. IR (thin film, cm⁻¹) 3308, 2981, 2931, 1718, 1655, 1524, 1452, 1366, 1232, 1145, 1050. HRMS (ESI) calculated for C₂₄H₄₃N₃O₈Na [M+Na]⁺ *m/z* 524.2948, found, 524.2918.

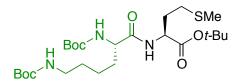

Boc-L-Asp(L-Ala-Ot-Bu)-OBn (4f): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with (*S*)-Benzyl *N*-Boc-4-oxoazetidine-2-carboxylate (**3f**, 152.7 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (217.8 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 60 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **4f** (249.9 mg, 60% yield) as a white solid with >99:1 dr.

R_f = 0.50 (30% AcOEt in hexane). M.p. 103–104 °C. $[α]_D^{27} = -38.3$ (*c* 1.07, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.20 (m, 5H, CO₂CH₂C₆*H*₅), 6.20 (br d, *J* = 7.1 Hz, 1H, N*H*), 5.80 (br d, *J* = 8.5 Hz, 1H, (CH₃)₃COCON*H*), 5.21 (d, *J* = 12.4 Hz, 1H, CO₂C*H*₂C₆H₅), 5.14 (d, *J* = 12.4 Hz, 1H, CO₂C*H*₂C₆H₅), 5.14 (d, *J* = 12.4 Hz, 1H, CO₂C*H*₂C₆H₅), 4.57 (dt, *J* = 8.5, 4.4 Hz, 1H, C*H*CH₂), 4.39 (quin, *J* = 7.1 Hz, 1H, C*H*CH₃), 2.93 (dd, *J* = 15.8, 4.4 Hz, 1H, CHC*H*₂), 2.71 (dd, *J* = 15.8, 4.4 Hz, 1H, CHC*H*₂), 1.46 (s, 9H, CO₂C(C*H*₃)₃), 1.42 (s, 9H, (C*H*₃)₃COCONH), 1.29 (d, *J* = 7.1 Hz, 3H, CHC*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.3, 169.2, 155.6, 128.4 (2C), 128.2, 128.1 (2C), 82.1, 79.9, 67.2, 50.4, 48.6, 37.7, 28.2 (3C), 27.9 (3C), 18.5. IR (thin film, cm⁻¹) 3309, 3264, 2982, 2730, 1699, 1653, 1542, 1286, 1240, 1158, 1057. HRMS (ESI) calculated for C₂₃H₃₄N₂O₇Na [M+Na]⁺ *m/z* 473.2264, found, 473.2240.

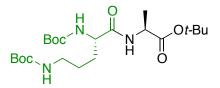
Boc-L-Asp(L-Ala-Ot-Bu)-OMe (4ga): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with (*S*)-methyl *N*-Boc-4-oxoazetidine-2-carboxylate (**3g**, 114.6 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **4ga** (147.8 mg, 79% yield) as a white solid with >99:1 dr.


R_f = 0.32 (50% AcOEt in hexane). M.p. 72–73 °C. $[\alpha]_D^{24} = -52.0$ (*c* 1.23, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.22 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 5.74 (br d, J = 8.2 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.53 (ddd, J = 8.2, 4.6, 4.2 Hz, 1H, C<u>H</u>CH₂), 4.42 (quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.75 (s, 3H, CO₂C<u>H₃</u>), 2.92 (dd, J = 15.6, 4.2 Hz, 1H, CHC<u>H₂</u>), 2.70 (dd, J = 15.6, 4.6 Hz, 1H, CHC<u>H₂</u>), 1.47 (s, 9H, CO₂C(C<u>H₃</u>)₃), 1.44 (s, 9H, (C<u>H₃</u>)₃COCONH), 1.35 (d, J = 7.1 Hz, 3H, CHC<u>H₃</u>). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.9, 169.2, 155.6, 82.1, 79.9, 52.5, 50.3, 48.6, 37.8, 28.3 (3C), 27.9 (3C), 18.5. IR (thin film, cm⁻¹) 3296, 2979, 1732, 1697, 1657, 1542, 1365, 1286, 1239, 1159, 1058. HRMS (ESI) calculated for C₁₇H₃₀N₂O₇Na [M+Na]⁺ *m/z* 397.1951, found, 397.1932.

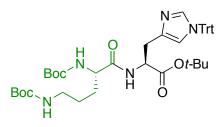
Boc-L-Asp(L-Ala-Ot-Bu)-L-Ala-Ot-Bu (4gb): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with (*S*)-methyl *N*-Boc-4-oxoazetidine-2-carboxylate (**3g**, 114.6 mg, 0.50 mmol), H-L-Ala-Ot-Bu (290.4 mg, 2.0 mmol), and Ta(OMe)₅ (16.8 mg, 0.050 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100%)


AcOEt in hexane) to provide the title compound **4gb** (102.9 mg, 41% yield) as a white solid with >99:1 dr.

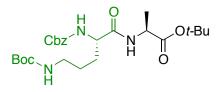
R_f = 0.45 (50% AcOEt in hexane). M.p. 53–54 °C. [α]_D²⁴ = -51.2 (*c* 1.27, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (br d , *J* = 7.1 Hz, 1H, N<u>H</u>), 6.57 (br d, *J* = 7.3 Hz, 1H, N<u>H</u>), 6.11 (br d, *J* = 7.1, 1H, (CH₃)₃COCON<u>H</u>), 4.50–4.30 (m, 2H, C<u>H</u>CH₂ and C<u>H</u>CH₃), 4.40 (quin, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 2.87 (dd, *J* = 15.1, 2.5 Hz, 1H, CHC<u>H</u>₂), 2.57 (dd, *J* = 15.1, 6.6 Hz, 1H, CHC<u>H</u>₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 18H, (C<u>H</u>₃)₃COCONH and CO₂C(C<u>H</u>₃)₃), 1.35 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.8, 170.6, 170.4, 155.5, 82.1, 81.8, 80.1, 51.1, 48.9, 48.8, 38.0, 28.3 (3C), 27.9 (6C), 18.1, 18.0. IR (thin film, cm⁻¹) 3305, 2976, 1731, 1684, 1649, 1530, 1454, 1367, 1253, 1146, 1050. HRMS (ESI) calculated for C₂₃H₄₁N₃O₈Na [M+Na]⁺ *m/z* 510.2791, found, 510.2748.


Boc-L-Lys(Boc)-L-Ala-Ot-Bu (4ha, CAS No. 2374224-03-8)⁶: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with (*S*)-*N*,*N*'-di-Boc-3-aminoazepan-2-one (**3h**, 164.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **4ha** (234.4 mg, 99% yield) as a white solid with >99:1 dr.

 $R_f = 0.52$ (50% AcOEt in hexane). M.p. 81–83 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.64 (br d, J =7.1 Hz, 1H, N<u>H</u>), 5.19 (br d, J = 5.3 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.80–4.60 (m, 1H, $CHCH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3$, 4.42 (quin, J = 7.1 Hz, 1H, $CHCH_3$), 4.08 (br td, J = 7.6, 5.3 C<u>H</u>CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), Hz, 1H, 3.20-3.00 2H. (m. CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.90–1.75 (m, 1H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.70-1.55 1H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), (m, 1.60 - 1.30(m, 4H, CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.46 (s, 9H, CO₂C(CH₃)₃), 1.44 (s, 18H, (CH₃)₃COCONH and CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.37 (d, J = 7.1 Hz, 3H, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.4, 156.1, 155.7, 81.9, 79.9, 79.0, 54.3, 48.6, 39.9, 32.1, 29.5, 28.4 (3C), 28.3 (3C), 27.9 (3C), 22.5, 18.4. IR (thin film, cm⁻¹) 2974, 2938, 1686, 1655, 1509, 1456, 1365, 1246, 1148, 1046, 1018.

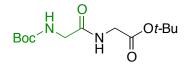

Boc-L-Lys(Boc)-L-Met-Ot-Bu (4hb): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with (S)-N,N'-di-Boc-3-aminoazepan-2-one (**3h**, 164.2 mg, 0.50 mmol) and H-L-Met-Ot-Bu (205.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 36 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **4hb** (258.9 mg, 97% yield) as a white solid with >99:1 dr.

 $R_f = 0.58$ (50% AcOEt in hexane). M.p. 35–36 °C. $[\alpha]_D^{24} = -32.3$ (c 1.55, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.75 (br d, J = 7.6 Hz, 1H, N<u>H</u>), 5.17 (br d, J = 5.5 Hz, 1H, $(CH_3)_3COCONH$, 4.68 (br t, J = 6.0 Hz, 1H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 4.56 (td, J =7.6, 5.1 Hz, 1H, CHCH₂CH₂SCH₃), 4.06 (br td, J = 8.0,5.5 Hz. 1H, $CH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3),$ J = 6.93.11 (br td. 6.0 Hz, 2H. CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 2.60–2.40 (m, 2H, CHCH₂CH₂SCH₃), 2.20–2.05 (m, 1H, $CHCH_2CH_2SCH_3),$ 2.09 (s, 3H, $CHCH_2CH_2SCH_3),$ 2.05 - 1.75(m, 2H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃ CHCH2CH2SCH3), and 1.70 - 1.55(m, 1H, CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.60–1.30 (m, 4H, CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.47 9H, $CO_2C(C\underline{H}_3)_3),$ 1.44 18H, $(CH_3)_3$ COCONH (s, (s, and CHCH₂CH₂CH₂CH₂NHCO₂C(C<u>H</u>₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 170.6, 156.1, 155.7, 82.4, 80.0, 79.1, 54.4, 52.1, 39.8, 31.9, 31.8, 29.8, 29.6, 28.4 (3C), 28.3 (3C), 28.0 (3C), 22.5, 15.4. IR (thin film, cm⁻¹) 3329, 2977, 2932, 1690, 1661, 1513, 1455, 1365, 1246, 1151, 1044. HRMS (ESI) calculated for $C_{25}H_{47}N_3O_7SiNa [M+Na]^+ m/z 556.3032$, found, 556.3027.

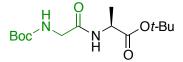

Boc-L-Orn(Boc)-L-Ala-Ot-Bu (4ia): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *tert*-butyl (3*S*)-3-{[(*tert*butoxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate (3i, 157.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80%) AcOEt in hexane) to provide the title compound 4ia (225.1 mg, 98% yield) as a white solid with >99:1 dr.

 $R_f = 0.50$ (50% AcOEt in hexane). M.p. 41–42 °C. $[\alpha]_D^{25} = -25.0$ (c 1.00, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.81 (br d, J = 7.3 Hz, 1H, NH), 5.22 (br d, J = 6.2 Hz, 1H, $(CH_3)_3COCONH$, 4.78 (br t, J = 5.7 Hz, 1H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 4.42 (quin, J =7.3 Hz, 1H, CHCH₃), 4.30-4.15 (m, 1H, CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 3.40-3.20 (m, 1H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 3.20–3.00 (m, 1H, CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.95– 1H. $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 1.70 - 1.501.80 (m, 3H, (m, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.45 (s, 9H, CO₂C(CH₃)₃), 1.44 (s, 9H, (CH₃)₃COCONH), 1.43 (s, 9H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.37 (d, J = 7.3 Hz, 3H, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) § 171.8, 171.6, 156.4, 155.7, 81.8, 79.8, 79.2, 53.2, 48.6, 39.4, 30.2, 28.4 (3C), 28.3 (3C), 27.9 (3C), 26.1, 18.1. IR (thin film, cm⁻¹) 3309, 2978, 2933, 1686, 1659, 1515, 1365, 1247, 1148, 1048, 1015. HRMS (ESI) calculated for $C_{22}H_{41}N_3O_7Na$ [M+Na]⁺ m/z 482.2842, found, 482.2842.

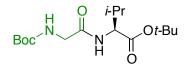
Boc-L-Orn(Boc)-L-His(Trt)-Ot-Bu (4ib): A flame-dried 5.0 mL screw-cap vial equipped with a *tert*-butyl magnetic stirring bar (Sm-Co) was charged with (3S)-3-{[(tertbutoxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate (3i, 157.2 mg, 0.50 mmol) and H-L-His-Ot-Bu (680.4 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 60 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80%) AcOEt in hexane) to provide the title compound **4ib** (268.8 mg, 70% yield) as a white solid with >99:1 dr.


 $R_f = 0.38$ (50% AcOEt in hexane). M.p. 58–60 °C. $[\alpha]_D^{25} = -10.0$ (c 1.00, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (br d, J = 7.8 Hz, 1H, NH), 7.40–7.25 (m, 10H, CHCH₂CNCHN(C(C₆H₅)₃)CH), 7.20–7.00 (m, 6H, CHCH₂CNCHN(C(C₆H₅)₃)CH), 6.59 (s, 1H, CHCH₂CNCHN(C(C₆H₅)₃)C<u>H</u>), 5.44 (br d, J = 7.6 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.82 (br t, J = 5.5 $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3), 4.64 (dt, J = 7.8, 5.4 Hz,$ Hz, 1H. 1H. CHCH2CNCHN(C(C6H5)3)CH), 4.30-4.15 (m, 1H, CHCH2CH2CH2CH2NHCO2C(CH3)3), 3.20-3.00 2H. $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 2.98 (d, J= 5.4 (m, Hz, 2H. CHCH2CNCHN(C(C6H5)3)CH), 1.95-1.80 (m, 1H, CHCH2CH2CH2NHCO2C(CH3)3), 1.70-1.50 (m, 3H, $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3$), 1.40 (s, 9H, $CO_2C(CH_3)_3$), 1.40 (s, 9H, (CH₃)₃COCONH), 1.34 (s, 9H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 170.0, 156.0, 155.3, 142.2 (3C), 138.6, 136.3, 129.7 (6C), 128.0 (9C), 119.4, 81.5, 79.4, 78.8, 75.2, 53.7, 52.8, 39.9, 30.5, 29.5, 28.4 (3C), 28.3 (3C), 28.0 (3C), 25.4. IR (thin film, cm⁻¹) 3278, 2973, 2928, 1711, 1695, 1680, 1494, 1365, 1245, 1153, 1037. HRMS (ESI) calculated for $C_{23}H_{34}N_2O_7Na [M+Na]^+ m/z$ 790.4156, found, 790.4143.

Cbz-L-Orn(Boc)-L-Ala-Ot-Bu (4j): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with *tert*-butyl (3*S*)-3-{[(benzyloxy)carbonyl]amino}-2-oxopiperidine-1-carboxylate (**3j**, 174.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (217.8 mg, 1.5 mmol). After the vial was sealed with screw-cap, the resulting

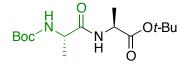

mixture was stirred vigorously at 50 °C for 36 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **4j** (234.5 mg, 95% yield) as a white solid with >99:1 dr.

 $R_f = 0.43$ (50% AcOEt in hexane). M.p. 95–96 °C. $[\alpha]_D^{24} = -49.1$ (c 1.14, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.25 (m, 5H, C₆H₅CH₂OCONH), 6.79 (br d, J = 7.1 Hz, 1H, NH), 5.54 (br d, J = 7.6 Hz, 1H, C₆H₅CH₂COCON<u>*H*</u>), 5.10 (s, 2H, C₆H₅C<u>*H*</u>₂OCONH), 4.75 (br t, J =6.1 1H. $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 4.50-4.30 Hz, (m, 1H. $CH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3$, 4.42 (quin, J = 7.1 Hz, 1H, CH_2CH_3), 3.40–3.20 (m, 1H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 3.15–3.00 (m, 1H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 2.00– 1.80 $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 1H, 1.70 - 1.20(m, (m, 3H, $CHCH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 1.43 1.45 (s, 9H, $CO_2C(C\underline{H}_3)_3),$ (s, 9H, CHCH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.36 (d, J = 7.1 Hz, 3H, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) § 171.7, 171.3, 156.5, 156.2, 136.3, 128.5 (2C), 128.1, 128.0 (2C), 81.8, 79.3, 66.9, 53.5, 48.6, 39.2, 30.4, 28.4 (3C), 27.9 (3C), 26.1, 18.0. IR (thin film, cm⁻¹) 3316, 2978, 1715, 1683, 1657, 1530, 1453, 1367, 1246, 1151, 1054. HRMS (ESI) calculated for C₂₅H₃₉N₃O₇Na [M+Na]⁺ *m*/*z* 516.2686, found, 516.2653.

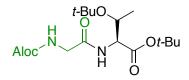

Boc-Gly-Gly-Ot-Bu (4ka, CAS No. 5845-68-1)⁸: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Boc-Gly-) (3k, 157.2 mg, 0.50 mmol) and H-Gly-Ot-Bu (262.4 mg, 2.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound 4ka (288.0 mg, >99% yield) as a colorless oil.

R_f = 0.35 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 6.60 (br t, J = 5.3 Hz, 1H, N<u>H</u>), 5.22 (br t, J = 5.7 Hz, 1H, (CH₃)₃COCON<u>H</u>), 3.95 (d, J = 5.3 Hz, 2H, C<u>H</u>₂), 3.85 (br d, J = 5.7 Hz, 2H, C<u>H</u>₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.46 (s, 9H, (C<u>H</u>₃)₃COCONH). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 168.8, 156.0, 82.4, 80.3, 44.2, 41.9, 28.3 (3C), 28.0 (3C). IR (thin film, cm⁻¹) 3318, 2979, 2933, 1732, 1668, 1515, 1366, 1224, 1151, 1049, 1030.

Boc-Gly-L-Ala-Ot-Bu (4kb, CAS No. 58177-79-0)⁶: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Boc-Gly-) (3k, 157.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (290.4 mg, 2.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound 4kb (296.4 mg, 98% yield) as a colorless oil with >99:1 er.


R_f = 0.37 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 6.66 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 5.22 (br t, J = 5.5 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.47 (quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.85 (dd, J = 17.0, 5.5 Hz, 1H, C<u>H</u>₂), 3.79 (dd, J = 17.0, 5.5 Hz, 1H, C<u>H</u>₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.46 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.38 (d, J = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 168.7, 155.9, 82.1, 80.1, 48.6, 44.2, 28.2 (3C), 27.9 (3C), 18.6. IR (thin film, cm⁻¹) 3314, 2979, 2933, 1721, 1664, 1514, 1367, 1246, 1144, 1050, 1030.

Boc-Gly-L-Val-Ot-Bu (4kc, CAS No. 1202014-17-2)⁹: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Boc-Gly-) (3k, 157.2 mg, 0.50 mmol) and H-L-Val-Ot-Bu (346.6 mg, 2.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and


pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound 4kc (301.0 mg, 91% yield) as a colorless oil with >99:1 er.

R_f = 0.54 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 6.57 (br d, J = 8.8 Hz, 1H, N<u>H</u>), 5.18 (br dd, J = 5.7, 5.5 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.46 (dd, J = 8.8, 4.5 Hz, 1H, C<u>H</u>CH(CH₃)₂), 3.87 (dd, J = 16.7, 5.5 Hz, 1H, C<u>H</u>₂), 3.78 (dd, J = 16.7, 5.7 Hz, 1H, C<u>H</u>₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.46 (s, 9H, (C<u>H</u>₃)₃COCONH), 0.94 (d, J = 6.9 Hz, 3H, CHCH(C<u>H</u>₃)₂), 0.90 (d, J = 6.9 Hz, 3H, CHCH(C<u>H</u>₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 169.2, 156.0, 82.1, 80.2, 57.2, 44.4, 31.4, 28.2 (3C), 28.0 (3C), 18.8, 17.5. IR (thin film, cm⁻¹) 3321, 2974, 2934, 1721, 1665, 1514, 1367, 1247, 1142, 1049, 1029.

Boc-L-Ala-L-Ala-Ot-Bu (4I, CAS No. 93836-34-1)⁶: A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Boc-L-Ala-) (3I, 171.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (290.4 mg, 2.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound 4I (94.9 mg, 30% yield) as a colorless oil with >99:1 dr.

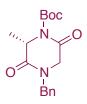
R_f = 0.54 (50% AcOEt in hexane). ¹H NMR (400 MHz, CDCl₃) δ 6.66 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 5.20–5.05 (m, 1H, (CH₃)₃COCON<u>H</u>), 4.43 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.30–4.10 (m, 1H, C<u>H</u>CH₃), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.37 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃), 1.36 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.9, 155.3, 81.9, 79.9, 50.0, 48.6, 28.3 (3C), 27.9 (3C), 18.5 (2C). IR (thin film, cm⁻¹) 3310, 2978, 2935, 1718, 1659, 1518, 1453, 1366, 1247, 1146, 1049.

Aloc-Gly-L-Thr(*t*-Bu)-O*t*-Bu (4m): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Aloc-Gly-Aloc-Gly-) (3m, 141.1 mg, 0.50 mmol) and H-L-Thr(*t*-Bu)-O*t*-Bu (462.7 mg, 2.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound 4m (261.5 mg, 91% yield) as a colorless oil with >99:1 dr.

R_f = 0.38 (50% AcOEt in hexane). $[α]_D^{26} = -5.2$ (*c* 1.36, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.53 (br d, *J* = 9.2 Hz, 1H, N<u>H</u>), 5.92 (ddt, *J* = 17.2, 10.3, 5.3 Hz, 1H, CH₂CC<u>H</u>CH₂OCONH), 5.60–5.40 (m, 1H, CH₂CCHCH₂OCON<u>H</u>), 5.31 (ddd, *J* = 17.2, 3.2, 1.6 Hz, 1H, C<u>H</u>₂CCHCH₂OCONH), 5.22 (ddd, *J* = 10.3, 2.5, 1.2 Hz, 1H, C<u>H</u>₂CCHCH₂OCONH), 4.62 (dd, *J* = 13.8, 5.3 Hz, 1H, CH₂CCHC<u>H</u>₂OCONH), 4.58 (dd, *J* = 13.8, 5.3 Hz, 1H, CH₂CCHC<u>H</u>₂OCONH), 4.37 (dd, *J* = 9.2, 2.0 Hz, 1H, C<u>H</u>CH(CH₃)OC(CH₃)₃), 4.20 (qd, *J* = 6.3, 2.0 Hz, 1H, CHC<u>H</u>(CH₃)OC(CH₃)₃), 3.99 (dd, *J* = 17.2, 5.5 Hz, 1H, C<u>H</u>₂), 3.94 (dd, *J* = 17.2, 6.0 Hz, 1H, C<u>H</u>₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.16 (s, 9H, CHCH(CH₃)OC(C<u>H</u>₃)₃), 1.16 (d, *J* = 6.3 Hz, 3H, CHCH(C<u>H</u>₃)OC(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.0, 156.2, 132.6, 117.8, 82.1, 73.8, 67.1, 65.9, 58.3, 44.3, 28.6 (3C), 28.0 (3C), 21.0. IR (thin film, cm⁻¹) 3326, 2976, 2935, 1726, 1669, 1514, 1366, 1247, 1143, 1081, 990. HRMS (ESI) calculated for C₁₈H₃₂N₂O₆Na [M+Na]⁺ *m/z* 395.2158, found, 395.2175.

8. Properties of lactams 5a-k (Scheme 3)

Cyclo(-Boc-Gly-Gly-) (5a): A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with **3k** (5.0 g, 15.9 mmol) and DCM (160 mL). After TFA (1.22 mL, 15.9 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. Next, the reaction mixture was filtered on filter paper to recover Cyclo(-Gly-Gly-) (544.2 mg, 30% yield) and the filtrate was concentrated in *vacuo* with the aid of a rotary evaporator and water bath. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The reaction mixture was purified by flash column chromatography (50–100% AcOEt in hexane \rightarrow 5% MeOH in CHCl₃) to provide the title compound **5a** (1.26 g, 37% yield) as a white solid and recover **3k** (1.30 g, 26% yield). The recovered Cyclo(-Gly-Gly-) and **3k** were reused to synthesize **5a**.


R_f = 0.29 (AcOEt). M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (br d, J = 2.1 Hz, 1H, N<u>H</u>), 4.32 (s, 2H, C<u>H</u>₂), 4.06 (br d, J = 2.1 Hz, 2H, C<u>H</u>₂), 1.54 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 164.7, 149.8, 84.9, 47.8, 46.5, 27.8 (3C). IR (thin film, cm⁻¹) 3240, 2977, 1736, 1697, 1682, 1447, 1367, 1292, 1212, 1150, 1058. HRMS (ESI) calculated for C₉H₁₄N₂O₄Na [M+Na]⁺ *m/z* 237.0851, found, 237.0895.

Cyclo(-Boc-L-Ala-L-Ala-) (5b): A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with **31** (6.05 g, 17.7 mmol) and DCM (170 mL). After TFA (1.35 mL, 17.7 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at 0 °C for 2 h and at room temperature


for 2.5 h. Next, the reaction mixture concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The reaction mixture was purified by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **5b** (1.60 g, 37% yield) as a white solid and recover **3l** (3.14 g, 52% yield). The recovered **3l** was reused to synthesize **5b**.

R_f = 0.46 (AcOEt). M.p. 140–141 °C. [α]_D²⁴ = +100.0 (*c* 1.08, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (br d, J = 3.2 Hz, 1H, N<u>H</u>), 4.66 (q, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.21 (qd, J = 7.3, 3.2 Hz, 1H, C<u>H</u>CH₃), 1.61 (d, J = 7.1 Hz, 3H, CHC<u>H₃</u>), 1.58 (d, J = 7.3 Hz, 3H, CHC<u>H₃</u>), 1.55 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.8, 150.2, 84.6, 54.8, 52.7, 27.8 (3C), 21.9, 20.9. IR (thin film, cm⁻¹) 2941, 1769, 1733, 1715, 1448, 1370, 1289, 1241, 1149, 1135, 1089. HRMS (ESI) calculated for C₁₁H₁₈N₂O₄Na [M+Na]⁺ *m/z* 265.1164, found, 265.1199.

Cyclo(-Boc-L-Ala-Bn-Gly-) (5c): A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Cyclo(-L-Ala-Bn-Gly-) (1.0 g, 4.58 mmol), DMAP (1.12 g, 9.16 mmol), Boc₂O (2.0 g, 9.16 mmol), and DCM (46 mL). After Et₃N (0.64 mL, 4.58 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–50% AcOEt in hexane) to provide the title compound **5c** (1.30 g, 89% yield) as a white solid.

R_f = 0.38 (30% AcOEt in hexane). M.p. 130–132 °C. $[\alpha]_D^{25}$ = +70.4 (*c* 1.15, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂N), 4.83 (q, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.71 (d, *J* = 14.6 Hz, 1H, C₆H₅C<u>H</u>₂N), 4.50 (d, *J* = 14.6 Hz, 1H, C₆H₅C<u>H</u>₂N), 3.94 (d, *J* = 18.3 Hz, 1H, C<u>H</u>₂), 3.85 (d, *J* = 18.3 Hz, 1H, C<u>H</u>₂), 1.54 (s, 9H, (C<u>H</u>₃)₃COCON), 1.53 (d, *J* = 7.1 Hz, 3H, CHCH₂C<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.6, 149.6, 134.9, 129.0 (2C), 128.2 (3C), 84.6, 55.3, 50.2, 49.2, 27.9 (3C), 18.5. IR (thin film, cm⁻¹) 2973, 1735, 1718, 1647, 1494, 1368, 1291, 1256, 1232, 1149, 1100. HRMS (ESI) calculated for C₁₇H₂₂N₂O₄Na [M+Na]⁺ *m/z* 341.1477, found, 341.1526.

Cyclo(-Boc-L-Abu-Bn-Gly-) (5d, CAS No. 1932055-28-1): A flame-dried 200 mL roundbottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Cyclo(-L-Abu-Bn-Gly-) (1.0 g, 4.31 mmol), DMAP (1.05 g, 8.62 mmol), Boc₂O (1.88 g, 8.62 mmol), and DCM (43 mL). After Et₃N (0.60 mL, 4.31 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **5d** (1.29 g, 90% yield) as a white solid.

R_f = 0.36 (30% AcOEt in hexane). M.p. 109–110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂N), 4.81 (d, *J* = 14.4 Hz, 1H, C₆H₅C<u>H</u>₂N), 4.75 (t, *J* = 6.9 Hz, 1H, C<u>H</u>CH₂CH₃), 4.36 (d, *J* = 14.4 Hz, 1H, C₆H₅C<u>H</u>₂N), 3.95 (d, *J* = 18.3 Hz, 1H, C<u>H</u>2), 3.85 (d, *J* = 18.3 Hz, 1H, C<u>H</u>2), 1.90 (qd, *J* = 7.6, 6.9 Hz, 2H, CHC<u>H</u>2CH₃), 1.54 (s, 9H, (C<u>H</u>₃)₃COCON), 1.03 (t, *J* = 7.6)

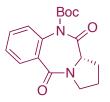
Hz, 3H, CHCH₂C<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 164.9, 149.8, 135.0, 129.0 (2C), 128.3 (2C), 128.2, 84.6, 60.2, 50.4, 49.2, 27.8 (3C), 26.6, 10.0. IR (thin film, cm⁻¹) 2973, 2935, 1778, 1668, 1493, 1391, 1296, 1247, 1234, 1146, 1109.

Cyclo(-Boc-Gly-L-Pro-) (5e, CAS No. 1174732-58-1)¹⁰: Cyclo(-Boc-Gly-L-Pro-) was prepared from commercially avairable Cyclo(-Gly-L-Pro-) (BLD Pharmatech Ltd., BD173941), Boc₂O (Tokyo Chemical Industry Co., Ltd., D1547), DMAP (FUJIFILM Wako Pure Chemical Co., 042-19212), and triethylamine (FUJIFILM Wako Pure Chemical Co., 202-02646) according to the literature method.¹⁰

R_f = 0.50 (AcOEt). M.p. 104–105 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.67 (d, J = 16.5 Hz, 1H, C<u>H</u>₂), 4.17 (t, J = 8.0 Hz, 1H, C<u>H</u>CH₂CH₂CH₂), 4.10 (dd, J = 16.5, 0.7 Hz, 1H, C<u>H</u>₂), 3.58 (dd, J = 8.1, 5.9 Hz, 2H, CHCH₂CH₂CH₂C₂), 2.45–2.20 (m, 2H, CHC<u>H</u>₂CH₂CH₂), 2.10–1.85 (m, 2H, CHCH₂C<u>H</u>₂CH₂), 1.54 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 163.2, 150.0, 84.5, 60.3, 49.7, 45.1, 28.0, 27.8 (3C), 23.1. IR (thin film, cm⁻¹) 2985, 2880, 1742, 1714, 1664, 1448, 1360, 1295, 1255, 1195, 1143.

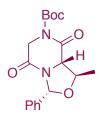
Cyclo(-Boc-L-Ala-L-Pro-) (5f): A flame-dried 50 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with commercially avairable Cyclo(-L-Ala-L-Pro-) (500 mg, 2.97 mmol), DMAP (72.6 mg, 0.60 mmol), Boc₂O (1.30 g, 5.95 mmol), and DCM (30 mL), and Et₃N (0.41 mL, 2.97 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 0 °C to room temperature for 2 h. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and

then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **5f** (256.9 mg, 32% yield) as a white solid. R_f = 0.59 (AcOEt). M.p. 93–95 °C. $[\alpha]_D^{24} = -2.6$ (*c* 1.14, MeOH). ¹H NMR (400 MHz, CDCl₃) δ


4.50 (q, J = 6.6 Hz, 1H, C<u>H</u>CH₃), 4.15 (dd, J = 9.2, 6.6 Hz, 1H, C<u>H</u>CH₂CH₂CH₂CH₂), 3.73 (dt, J = 11.9, 8.1 Hz, 1H, CHCH₂CH₂CH₂C<u>H₂</u>), 3.51 (ddd, J = 11.9, 9.0, 3.2 Hz, 1H, CHCH₂CH₂CH₂C<u>H₂</u>), 2.50– 2.30 (m, 1H, CHC<u>H₂CH₂CH₂CH₂), 2.20–1.80 (m, 3H, CHC<u>H₂CH₂CH₂), 1.57 (d, J = 6.6 Hz, 3H, CHC<u>H₃</u>), 1.55 (s, 9H, (C<u>H₃</u>)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.9, 151.2, 84.9, 59.7, 55.2, 45.5, 28.9, 27.7 (3C), 22.1, 1 7.1. IR (thin film, cm⁻¹) 2992, 2950, 1738, 1698, 1651, 1468, 1367, 1325, 1272, 1248, 1153. HRMS (ESI) calculated for C₁₃H₂₀N₂O₄Na [M+Na]⁺ *m/z* 291.1321, found, 291.1365.</u></u>

Cyclo(-Boc-D-Ala-L-Pro-) (5g): A flame-dried 50 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with commercially avairable Cyclo(-D-Ala-L-Pro-) (500 mg, 2.97 mmol), DMAP (72.6 mg, 0.60 mmol), Boc₂O (1.30 g, 5.95 mmol), and CHCl₃–DMF (30:1, 31 mL), and Et₃N (0.41 mL, 2.97 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at room temperature for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column

chromatography (50–100% AcOEt in hexane) to provide the title compound **5g** (524.7 mg, 66% yield) as a white solid.


R_f = 0.54 (AcOEt). M.p. 112–113 °C. [α]_D²⁴ = –105.4 (*c* 1.30, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 4.79 (q, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 4.19 (dd, *J* = 9.4, 7.1 Hz, 1H, C<u>H</u>CH₂CH₂CH₂CH₂), 3.70–3.50 (m, 2H, CHCH₂CH₂C<u>H₂</u>), 2.50–1.85 (m, 4H, CHC<u>H₂CH₂CH₂</u>), 1.54 (d, *J* = 7.3 Hz, 3H, CHC<u>H₃</u>), 1.54 (s, 9H, (C<u>H₃</u>)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.1, 150.0, 84.4, 59.3, 57.3, 45.5, 29.0, 27.9 (3C), 22.6, 17.2. IR (thin film, cm⁻¹) 2981, 2888, 1776, 1728, 1667, 1459, 1384, 1287, 1250, 1222, 1148. HRMS (ESI) calculated for C₁₃H₂₀N₂O₄Na [M+Na]⁺ *m/z* 291.1321, found, 291.1302.

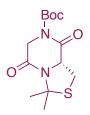
Cyclo(-Boc-Abz-L-Pro-) (5h): A flame-dried 50 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with commercially avairable Cyclo(-Abz-L-Pro)-) (1.0 g, 4.62 mmol), DMAP (113.0 mg, 0.93 mmol), Boc₂O (2.02 g, 9.25 mmol), and DCM (46 mL), and Et₃N (0.64 mL, 4.62 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 0 °C for 1.5 h. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **5h** (1.43 g, 98% yield) as a white solid.

R_f = 0.60 (AcOEt). M.p. 167–168 °C. $[α]_D^{25} = -17.0$ (*c* 1.06, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 7.8, 1.6 Hz, 1H, CCHCHCHC<u>H</u>C), 7.50 (ddd, J = 8.0, 7.3, 1.6 Hz, 1H, CCHC<u>H</u>CHCHC), 7.41 (ddd, J = 7.8, 7.3, 1.0 Hz, 1H, CCHCHCHC<u>H</u>CHC), 7.23 (dd, J = 8.0, 1.0 Hz, 1H, CC<u>H</u>CHCHCHC), 4.10–4.00 (m, 1H, C<u>H</u>CH₂CH₂CH₂), 3.85 (ddd, J = 11.7, 8.6, 3.0 Hz,

1H, CHCH₂CH₂CH₂CH₂), 3.56 (ddd, J = 11.7, 10.1, 6.9 Hz, 1H, CHCH₂CH₂CH₂CH₂), 2.80–2.65 (m, 1H, CHCH₂CH₂CH₂CH₂), 2.20–1.90 (m, 3H, CHCH₂CH₂CH₂), 1.46 (s, 9H, (CH₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 165.0, 150.7, 135.4, 131.2, 131.1, 129.8, 127.5, 126.2, 84.8, 58.9, 46.7, 27.6 (3C), 26.4, 23.6. IR (thin film, cm⁻¹) 2980, 2927, 1776, 1634, 1600, 1454, 1417, 1369, 1230, 1140, 1108. HRMS (ESI) calculated for C₁₇H₂₀N₂O₄Na [M+Na]⁺ *m/z* 339.1321, found, 339.1352.

Cyclo(-Boc-Gly-L-Thr(\psi^{Ph,H}pro)-) (5i): A flame-dried 50 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with commercially avairable Cyclo(-Gly-L-Thr($\psi^{Ph,H}$ pro)-) (500 mg, 2.03 mmol), DMAP (744.2 mg, 6.09 mmol), Boc₂O (1.33 g, 6.09 mmol), and DCM (20 mL), and Et₃N (0.28 mL, 2.03 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at room temperature for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (10–50% AcOEt in hexane) to provide the title compound **5i** (618.8 mg, 88% yield) as a white solid.

R_f = 0.83 (AcOEt). M.p. 147–148 °C. $[α]_D^{24} = -37.2$ (*c* 1.05, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.30 (m, 5H, CHCH(CH₃)OCHC₆<u>H</u>₅), 6.31 (s, 1H, CHCH(CH₃)OC<u>H</u>C₆H₅), 4.73 (d, *J* = 17.1 Hz, 1H, C<u>H</u>₂), 4.50 (dq, *J* = 8.9, 6.0 Hz, 1H, CHC<u>H</u>(CH₃)OCHC₆H₅), 4.17 (d, *J* = 17.1 Hz, 1H, C<u>H</u>₂), 3.99 (d, *J* = 8.9 Hz, 1H, C<u>H</u>CH(CH₃)OCHC₆H₅), 1.56 (s, 9H, (C<u>H</u>₃)₃COCON), 1.56 (d, *J* = 6.0 Hz, 3H, CHCH(C<u>H</u>₃)OCHC₆H₅). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 162.0, 149.7, 136.8, 129.3, 128.7 (2C), 126.2 (2C), 88.5, 85.2, 74.0, 63.7, 50.2, 27.9

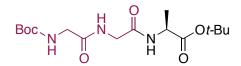

(3C), 18.1. IR (thin film, cm⁻¹) 2985, 2932, 1764, 1683, 1428, 1368, 1285, 1237, 1145, 1127, 1011. HRMS (ESI) calculated for $C_{18}H_{22}N_2O_5Na$ [M+Na]⁺ *m/z* 369.1426, found, 369.1459.

Cyclo(-Boc-Gly-L-Ser($\psi^{Me,Me}$ pro)-) (5j): A flame-dried 500 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Fmoc-Gly-L-Ser(w^{Me,Me}pro)-OH (10.0 g, 23.56 mmol), MeOH (9.53 mL, 235.60 mmol), WSC•HCl (5.87 g, 30.63 mmol), HOBt (4.14 g, 30.63 mmol), and CHCl₃ (200 mL). After ^{*i*}Pr₂NEt (6.16 mL, 35.34 mmol) was added to the mixture at -5 °C, the resulting mixture was stirred under nitrogen atmosphere at -5 °C for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (300 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 200 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in vacuo with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (30 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 10 mL). The crude product was purified by flash column chromatography (30–100% AcOEt in hexane) to provide Fmoc-Gly-L-Ser($\psi^{Me,Me}$ pro)-OMe (9.88 g, 95% yield) as a white solid. A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with Fmoc-Gly-L-Ser(\u03c8^{Me,Me}pro)-OMe (6.37 g, 14.5 mmol) and DCM (116 mL). After piperidine (29 mL) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for 2 h. After completion, the reaction mixture was concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (200 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (3 x 200 mL). The organic phase was dried over MgSO₄, filtered, concentrated in vacuo with the aid of a rotary evaporator and water bath without heating. The

crude product was then diluted with CHCl₃ (30 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 10 mL). The crude product was purified by flash column chromatography (1–5% MeOH in CHCl₃) to provide Cyclo(-Gly-L-Ser($\psi^{Me,Me}$ pro)-) (2.41 g, 90% yield) as a white solid. A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with Cyclo(-Gly-L-Ser($\psi^{Me,Me}$ pro)-) (2.12 g, 11.51 mmol), DMAP (281.2 mg, 2.30 mmol), Boc₂O (5.02 g, 23.02 mmol), DCM (115 mL), and Et₃N (1.6 mL, 11.51 mmol). After the vial was sealed with screw-ca p, the resulting mixture was stirred vigorously at 0 °C to room temperature for overnight. After completion, the reaction mixture was concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (30 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 10 mL). The crude product was purified diretly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **5j** (2.95 g, 90% yield) as a white solid.

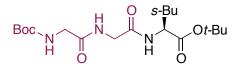
R_f = 0.54 (50% AcOEt in hexane). M.p. 114–115 °C. [α]_D²⁵ = –122.4 (*c* 1.07, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 4.61 (d, *J* = 16.5 Hz, 1H, C<u>H</u>₂), 4.50–4.30 (m, 2H, C<u>HCH</u>₂OC(CH₃)₂), 4.20–4.10 (m, 1H, CHC<u>H</u>₂OC(CH₃)₂), 4.11 (d, *J* = 16.5 Hz, 1H, C<u>H</u>₂), 1.65 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.60 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.55 (s, 9H, (C<u>H</u>₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 160.8, 149.6, 95.9, 85.0, 65.2, 58.3, 50.3, 27.8 (3C), 25.2, 23.5. IR (thin film, cm⁻¹) 2980, 1760, 1674, 1430, 1384, 1366, 1290, 1237, 1149, 1098, 1015. HRMS (ESI) calculated for C₁₃H₂₀N₂O₅Na [M+Na]⁺ *m/z* 307.1270, found, 307.1223.

Cyclo(-Boc-Gly-L-Cys(\psi^{Me,Me}pro)-) (5k): A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with commercially avairable Fmoc-Gly-L-Cys($\psi^{Me,Me}$ pro)-OH (5.0 g, 11.35 mmol), MeOH (4.59 mL, 113.51 mmol), WSC•HCl (2.83 g, 14.76 mmol), HOBt (1.99 g, 14.76 mmol), and CHCl₃ (110 mL). After Et₃N (2.37 mL, 17.03 mmol) was added to the mixture at -5 °C, the resulting mixture was stirred


under nitrogen atmosphere at -5 °C for overnight. After completion, the reaction mixture was transferred to a separatory funnel with CHCl₃ (200 mL) and saturated aqueous solution of NH₄Cl (100 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 100 mL). The organic phase was washed with water (50 mL) and brine (50 mL), and then dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (50% AcOEt in hexane) to provide Fmoc-Gly-L-Cys(\u03c6 Me,Mepro)-OMe (4.73 g, 92% yield) as a white solid. A flame-dried 200 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) and nitrogen balloon was charged with Fmoc-Gly-L-Cys($\psi^{Me,Me}$ pro)-OMe (2.50 g, 5.50 mmol) and DCM (55 mL). After piperidine (5.5 mL, 55.68 mmol) was added to the mixture at 0 °C, the resulting mixture was stirred under nitrogen atmosphere at room temperature for 2 h. After completion, the reaction mixture was concentrated in *vacuo* with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with $CHCl_3$ (15 mL), transferred onto SiO_2 column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (1-7.5% MeOH in CHCl₃) to provide Cyclo(-Gly-L-Cys($\psi^{Me,Me}$ pro)-) (1.09 g, 99% yield) as a white solid. A flamedried 50 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with commercially avairable Cyclo(-Gly-L-Cys(\u03c8^{Me,Me}pro)-) (500 mg, 2.50 mmol), DMAP (61.0 mg, 0.50 mmol), Boc₂O (1.90 g, 4.99 mmol), DCM (25 mL), and Et₃N (0.28 mL, 2.50 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 0 °C to room temperature for overnight. After completion, the reaction mixture was concentrated in vacuo with the aid of a rotary evaporator and water bath without heating. The crude product was then diluted with CHCl₃ (15 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with CHCl₃ (2 x 5 mL). The crude product was purified by flash column chromatography (30-80% AcOEt in hexane) to provide the title compound 5k (666.6 mg, 89% yield) as a white solid.

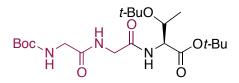
R_f = 0.52 (50% AcOEt in hexane). M.p. 154–155 °C. [α]_D²⁰ = -55.9 (*c* 1.11, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 4.60 (dd, J = 9.5, 6.3 Hz, 1H, C<u>H</u>CH₂SC(CH₃)₂), 4.59 (d, J = 16.5 Hz, 1H, C<u>H</u>₂), 4.08 (d, J = 16.5 Hz, 1H, C<u>H</u>₂), 4.11 (d, J = 16.5 Hz, 1H, C<u>H</u>₂), 3.43 (d, J = 12.5, 9.5 Hz,

S50

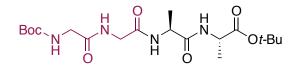

1H, CHC*H*₂SC(CH₃)₂), 3.31 (d, J = 12.5, 6.3 Hz, 1H, CHC*H*₂SC(CH₃)₂), 1.90 (s, 3H, CHCH₂SC(C*H*₃)₂), 1.84 (s, 3H, CHCH₂SC(C*H*₃)₂), 1.55 (s, 9H, (C*H*₃)₃COCON). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 162.0, 149.7, 85.0, 73.2, 65.4, 50.2, 30.1, 29.2, 27.9, 27.8 (3C). IR (thin film, cm⁻¹) 2980, 1768, 1723, 1667, 1415, 1370, 1312, 1282, 1236, 1143, 1071. HRMS (ESI) calculated for C₁₃H₂₀N₂O₄SNa [M+Na]⁺ *m/z* 323.1042, found, 323.1049.

9. Properties of peptides 6a-k (Scheme 3)

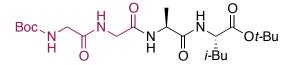
Boc-Gly-Gly-L-Ala-Ot-Bu (6aa): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Gly-) (5a, 107.1 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (AcOEt \rightarrow 10% MeOH in CHCl₃) to provide the title compound 6aa (163.5 mg, 91% yield) as a white solid with >99:1 er.


R_f = 0.30 (10% MeOH in CHCl₃). M.p. 30–31 °C. [α]_D²³ = –23.5 (*c* 1.02, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (br t, J = 5.4 Hz, 1H, N<u>H</u>), 6.95 (br d, J = 7.3 Hz, 1H, N<u>H</u>), 5.50 (br t, J = 5.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.43 (quin, J = 7.3 Hz, 1H, C<u>H</u>CH₃), 4.04 (dd, J = 16.7, 5.4 Hz, 1H, C<u>H</u>2), 3.97 (dd, J = 16.7, 5.4 Hz, 1H, C<u>H</u>2), 3.85 (br d, J = 5.4 Hz, 2H, C<u>H</u>2), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.38 (d, J = 7.3 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 170.1, 168.2, 156.1, 82.0, 80.2, 48.7, 44.2, 42.8, 28.3 (3C), 27.9 (3C), 18.1. IR (thin film, cm⁻¹) 3309, 2979, 2934, 1731, 1652, 1519, 1454, 1367, 1247, 1146, 1051. HRMS (ESI) calculated for C₁₆H₂₉N₃O₆Na [M+Na]⁺ *m/z* 382.1954, found, 382.1963.

Boc-Gly-Gly-L-Ile-Ot-Bu (6ab): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Gly-) (**5a**, 107.1 mg, 0.50 mmol) and H-L-Ile-Ot-Bu (187.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ 12 mL). The reaction mixture was purified directly by flash column

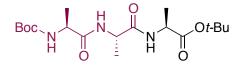

chromatography (50–100% AcOEt/hexane $\rightarrow 20\%$ MeOH in CHCl₃) to provide the title compound **6ab** (186.7 mg, 93% yield) as a white solid with >99:1 dr.

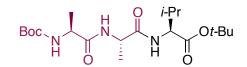
R_f = 0.68 (AcOEt). M.p. 28–29 °C. [α]_D²⁷ = -41.5 (*c* 1.06, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (br t, *J* = 5.3 Hz, 1H, N<u>H</u>), 6.81 (br d, *J* = 8.5 Hz, 1H, N<u>H</u>), 5.41 (br t, *J* = 5.5 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.47 (dd, *J* = 8.5, 4.6 Hz, 1H, C<u>H</u>CH(CH₃)CH₂CH₃), 4.04 (dd, *J* = 16.7, 5.3 Hz, 1H, C<u>H</u>₂), 3.99 (dd, *J* = 16.7, 5.3 Hz, 1H, C<u>H</u>₂), 3.86 (br d, *J* = 5.5 Hz, 2H, C<u>H</u>₂), 1.95–1.80 (CHC<u>H</u>(CH₃)CH₂CH₃), 1.60–1.35 (m, 1H, CHCH(CH₃)C<u>H</u>₂CH₃), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.30–1.10 (m, 1H, CHCH(CH₃)C<u>H</u>₂CH₃), 0.92 (t, *J* = 7.5 Hz, 3H, CHCH(CH₃)CH₂C<u>H</u>₃), 0.90 (d, *J* = 6.9 Hz, 3H, CHCH(C<u>H</u>₃)CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.0, 168.3, 156.0, 82.1, 80.2, 56.9, 44.1, 42.9, 38.0, 28.3 (3C), 28.0 (3C), 25.2, 15.3, 11.7. IR (thin film, cm⁻¹) 3304, 2973, 2934, 1731, 1652, 1518, 1456, 1366, 1247, 1143, 1049. HRMS (ESI) calculated for C₁₉H₃₅N₃O₆Na [M+Na]⁺ *m/z* 424.2424, found, 424.2403.


Boc-Gly-Gly-L-Thr(*t*-**Bu**)-O*t*-**Bu** (6ac): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-Gly-) (5a,107.1 mg, 0.50 mmol) and H-L-Thr(*t*-Bu)-O*t*-Bu (200.6 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 60 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (1–10% MeOH in CHCl₃) to provide a mixture of the title compound 6ac and H-L-Thr(*t*-Bu)-O*t*-Bu. Finally, H-L-Thr(*t*-Bu)-O*t*-Bu was evaporated *in vacuo* with the aid of an oil difusion pump to provide 6ac (200.6 mg, 90% yield) as a white solid with >99:1 dr.

R_f = 0.59 (AcOEt). M.p. 31–32 °C. [α]_D²⁸ = +2.9 (*c* 1.03, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.95 (br dd, *J* = 5.3, 5.0 Hz, 1H, N<u>H</u>), 6.53 (br d, *J* = 9.2 Hz, 1H, N<u>H</u>), 5.31 (br t, *J* = 5.3 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.36 (dd, *J* = 9.2, 2.1 Hz, 1H, C<u>H</u>CH(CH₃)OC(CH₃)₃), 4.20 (qd, *J* = 6.2, 2.1 Hz, 1H, CHC<u>H</u>(CH₃)OC(CH₃)₃), 4.09 (dd, *J* = 16.8, 5.3 Hz, 1H, C<u>H</u>₂), 4.30 (dd, *J* = 16.8, 5.0 Hz, 1H, C<u>H</u>₂), 3.87 (br d, *J* = 5.3 Hz, 2H, C<u>H</u>₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.16 (s, 9H, CHCH(CH₃)OC(C<u>H</u>₃)₃), 1.16 (d, *J* = 6.2 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.5, 168.7, 155.9, 82.1, 80.1, 73.9, 67.0, 58.4, 44.0, 42.6, 28.6 (3C), 28.2 (3C), 28.0 (3C), 20.9. IR (thin film, cm⁻¹) 3340, 2977, 2932, 1723, 1660, 1515, 1506, 1366, 1244, 1147, 1082. HRMS (ESI) calculated for C₂₁H₃₉N₃O₇Na [M+Na]⁺ m/z 468.2686, found, 468.2659.

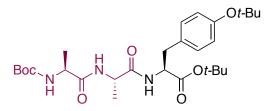
Boc-Gly-Gly-L-Ala-L-Ala-Ot-Bu (6ad): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Nd) was charged with Cyclo(-Boc-Gly-Gly-) (**5a**, 107.1 mg, 0.50 mmol) and H-L-Ala-L-Ala-Ot-Bu (216.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (80–100% AcOEt/hexane \rightarrow 10–20% MeOH in CHCl₃) to provide the title compound **6ad** (206.7 mg, 96% yield) as a white solid with >99:1 dr.


R_f = 0.35 (AcOEt). M.p. 69–70 °C. [α]_D²⁵ = –48.7 (*c* 1.23, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (br t, *J* = 4.4 Hz, 1H, N<u>H</u>), 7.52 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 7.41 (br d, *J* = 7.4 Hz, 1H, N<u>H</u>), 5.79 (br t, *J* = 4.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.79 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.47 (quin, *J* = 7.4 Hz, 1H, C<u>H</u>CH₃), 4.14 (dd, *J* = 17.2, 4.4 Hz, 1H, C<u>H</u>₂), 4.06 (dd, *J* = 17.2, 4.4 Hz, 1H, C<u>H</u>₂), 3.98 (d, *J* = 4.4 Hz, 2H, C<u>H</u>₂), 1.45 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.40 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃), 1.37 (d, *J* = 7.4 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.7, 169.8, 168.3, 156.1, 81.7, 79.8, 48.8, 48.6, 43.9, 43.0, 28.3 (3C), 27.9 (3C), 19.1, 18.0. IR (thin film, cm⁻¹) 3309, 2979, 1730, 1702, 1667, 1634, 1504, 1447, 1366, 1244, 1151. HRMS (ESI) calculated for C₁₉H₃₄N₄O₇Na [M+Na]⁺ *m*/z 453.2325, found, 453.2295.

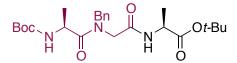

Boc-Gly-Gly-L-Ala-L-Leu-Ot-Bu (6ae): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Nd) was charged with Cyclo(-Boc-Gly-Gly-) (**5a**, 107.1 mg, 0.50 mmol)

and H-L-Ala-L-Leu-Ot-Bu (258.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (80–100% AcOEt/hexane \rightarrow 10% MeOH in CHCl₃) to provide the title compound **6ae** (229.2 mg, 97% yield) as a white solid with >99:1 dr.

R_f = 0.50 (AcOEt). M.p. 135–137 °C. [α]_D²⁵ = –52.5 (*c* 1.18, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (br t, J = 4.8 Hz, 1H, N<u>H</u>), 7.19 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 7.09 (br d, J = 8.6 Hz, 1H, N<u>H</u>), 5.62 (br t, J = 4.4 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.73 (quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.45 (td, J = 8.6, 5.1 Hz, 1H, C<u>H</u>CH₂CH(CH₃)₂), 4.05 (d, J = 4.8 Hz, 2H, C<u>H</u>₂), 3.96 (dd, J = 4.4 Hz, 2H, C<u>H</u>₂), 1.75–1.40 (m, 3H, CHC<u>H₂CH(CH₃)₂), 1.45 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.40 (d, J = 7.1 Hz, 3H, CHC<u>H</u>₃), 0.92 (d, J = 6.0 Hz, 3H, CHCH₂CH(C<u>H</u>₃)₂), ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.7, 169.8, 168.2, 156.1, 81.7, 80.0, 51.5, 48.8, 44.0, 42.9, 41.1, 28.3 (3C), 27.9 (3C), 24.8, 22.7, 21.9, 18.9. IR (thin film, cm⁻¹) 3297, 2974, 1727, 1702, 1667, 1637, 1505, 1453, 1366, 1247, 1149. HRMS (ESI) calculated for C₂₂H₄₀N₄O₇Na [M+Na]⁺ m/z 495.2795, found, 495.2768.</u>

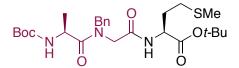


Boc-L-Ala-L-Ala-L-Ala-Ot-Bu (6ba, CAS No. 2249882-15-1)⁶: A flame-dried 5.0 mL screwcap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-L-Ala-) (**5b**, 121.1 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 30 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (1–10% MeOH in CHCl₃) to provide a mixture of the title compound **6ba** and H-L-Ala-Ot-Bu. Finally, H-L-Ala-Ot-Bu was evaporated *in vacuo* with the aid of an oil rotary vacuum pump to provide **6ba** (158.9 mg, 82% yield) as a white solid with >99:1 dr. R_f = 0.68 (AcOEt). M.p. 180–182 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.89 (br d, J = 6.8 Hz, 1H, N<u>H</u>), 6.87 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 5.20 (br d, J = 7.1 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.53 (quin, J = 6.8 Hz, 1H, C<u>H</u>CH₃), 4.42 (quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.20 (br quin, 1H, C<u>H</u>CH₃), 1.46 (s, 9H, CO₂C(C<u>H₃</u>)₃), 1.44 (s, 9H, (C<u>H₃</u>)₃COCONH), 1.39 (d, J = 6.8 Hz, 3H, CHC<u>H₃</u>), 1.36 (d, J = 7.1 Hz, 3H, CHC<u>H₃</u>). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.8, 171.4, 155.5, 81.9, 80.1, 50.1, 48.7, 48.7, 28.3 (3C), 27.9 (3C), 18.5 (2C), 18.3. IR (thin film, cm⁻¹) 3309, 2977, 1737, 1674, 1637, 1516, 1454, 1368, 1251, 1151, 1050.


Boc-L-Ala-L-Ala-L-Val-Ot-Bu (6bb, CAS No. 2249882-18-4)⁶: A flame-dried 5.0 mL screwcap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-L-Ala-) (**5b**, 121.1 mg, 0.50 mmol) and H-L-Val-Ot-Bu (173.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–100% AcOEt in hexane) to provide the title compound **6bb** (191.1 mg, 92% yield) as a white solid with >99:1 dr.

R_f = 0.63 (80% AcOEt in hexane). M.p. 73–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.93 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 6.86 (br d, J = 8.7 Hz, 1H, N<u>H</u>), 5.26 (br d, J = 7.1 Hz, 1H, (C<u>H</u>₃)₃COCON<u>H</u>), 4.58 (quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.40 (dd, J = 8.7, 4.6 Hz, 1H, C<u>H</u>CH(CH₃)₂), 4.22 (br quin, J = 7.1 Hz, 1H, C<u>H</u>CH₃), 2.25–2.10 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.47 (s, 9H, CO₂C(C<u>H₃</u>)₃), 1.44 (s, 9H, (C<u>H₃</u>)₃COCONH), 1.39 (d, J = 7.1 Hz, 3H, CHC<u>H</u>₃), 1.35 (d, J = 7.1 Hz, 3H, CHC<u>H</u>₃), 0.91 (dd, J = 7.1 Hz, 3H, CHCH(C<u>H₃</u>)₂), 0.90 (dd, J = 7.1 Hz, 3H, CHCH(C<u>H₃</u>)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 171.8, 170.6, 155.4, 81.9, 80.0, 57.5, 50.0, 48.8, 31.2, 28.3 (3C), 28.0 (3C), 18.8, 18.5, 18.1, 17.5. IR (thin film, cm⁻¹) 3281, 2977, 1706, 1641, 1505, 1453, 1391, 1366, 1312, 1225, 1151.

Boc-L-Ala-L-Ala-L-Tyr(*t*-**Bu**)-O*t*-**Bu** (6bc): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-L-Ala-) (5b, 121.1 mg, 0.50 mmol) and H-L-Tyr(*t*-Bu)-O*t*-Bu (205.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound 6bc (222.2 mg, 83% yield) as a white solid with >99:1 dr.

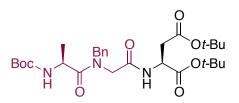

R_f = 0.57 (80% AcOEt in hexane). M.p. 60–62 °C. $[α]_D^{22} = -23.4$ (*c* 1.07, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.10–7.00 (m, 2H, CHCH₂C₆<u>H</u>₄OC(CH₃)₃), 6.95–6.85 (m, 2H, CHCH₂C₆<u>H</u>₄OC(CH₃)₃), 6.82 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 6.67 (br d, *J* = 6.1 Hz, 1H, N<u>H</u>), 5.15 (br d, *J* = 7.1 Hz, 1H, (CH₃)₃COCON<u>H</u>), 4.75–4.60 (m, 1H, C<u>H</u>CH₃), 4.48 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.25–4.10 (m, 1H, C<u>H</u>CH₂C₆H₄OC(CH₃)₃), 3.05 (dd, *J* = 13.9, 5.8 Hz, 1H, CHC<u>H</u>₂C₆H₄OC(CH₃)₃), 3.00 (dd, *J* = 13.9, 6.3 Hz, 1H, CHC<u>H</u>₂C₆H₄OC(CH₃)₃), 1.45 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.37 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.34 (d, *J* = 7.1 Hz, 6H, CHC<u>H</u>₃ and CHC<u>H</u>₃), 1.32 (s, 9H, CHCH₂C₆H₄OC(C<u>H</u>₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.3, 170.2, 155.5, 154.3, 130.9, 129.9 (2C), 124.0 (2C), 82.3, 80.1, 78.3, 53.7, 50.0, 48.8, 37.4, 28.8 (3C), 28.3 (3C), 27.9 (3C), 18.3 (2C). IR (thin film, cm⁻¹) 3286, 2977, 2931, 1704, 1637, 1504, 1446, 1364, 1234, 1152, 1047. HRMS (ESI) calculated for C₂₈H₄₅N₃O₇Na [M+Na]⁺ *m/z* 558.3155, found, 558.3136.

Boc-L-Ala-Bn-Gly-L-Ala-Ot-Bu (6ca): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Bn-Gly-) (**5c**, 159.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the

resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–80% AcOEt in hexane) to provide the title compound **6ca** (220.2 mg, 95% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.

 $R_f = 0.55$ (50% AcOEt in hexane). M.p. 38–40 °C. $[\alpha]_D^{24} = -13.0$ (c 1.00, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (br d, J = 7.2 Hz, 1H x 40/100, N<u>H</u>), 7.40–7.15 (m, 5H, C₆<u>H</u>₅CH₂N), 6.85 (br d, J = 7.2 Hz, 1H x 60/100, N<u>H</u>), 5.29 (br d, J = 7.1 Hz, 1H x 60/100, (CH₃)₃COCON<u>H</u>), 5.20 (br d, J = 7.1 Hz, 1H x 40/100, (CH₃)₃COCONH), 4.95–4.20 (m, 4H + 1H x 60/100, $CHCH_3$, $C_6H_5CH_2N$, CH_2 , and $CHCH_3$), 4.03 (d, J = 18.1 Hz, 1H x 60/100, CH_2), 3.98 (d, J = 18.1 Hz, 1H x 60/100, CH_2), 3.98 (d, J = 18.1 18.1 Hz, 1H x 60/100, CH₂), 3.84 (d, J = 16.3, 1H x 40/100, CH₂), 1.47 (s, 9H x 60/100, $CO_2C(CH_3)_3$, 1.43 (s, 18H x 40/100, (CH₃)₃COCONH and $CO_2C(CH_3)_3$), 1.42 (s, 9H x 60/100, $(CH_3)_3$ COCONH), 1.36 (d, J = 7.2 Hz, 3H x 60/100, CHCH₃), 1.34 (d, J = 7.2 Hz, 3H x 40/100, CHC*H*₃), 1.29 (d, *J* = 7.1 Hz, 3H x 40/100, CHC*H*₃), 1.24 (d, *J* = 7.1 Hz, 3H x 60/100, CHC*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.3 (1C x 60/100), 173.7 (1C x 40/100), 171.8 (1C x 60/100), 171.5 (1C x 40/100), 167.8 (1C x 60/100), 167.6 (1C x 40/100), 156.0 (1C x 40/100), 155.4 (1C x 60/100), 136.4 (1C x 40/100), 135.6 (1C x 60/100), 128.9 (2C x 60/100), 128.6 (2C x 40/100), 128.5 (1C x 60/100), 128.0 (2C x 40/100), 127.7 (1C x 40/100), 126.9 (2C x 60/100), 81.8 (1C x 60/100), 81.5 (1C x 40/100), 80.2 (1C x 60/100), 79.9 (1C x 40/100), 52.0 (1C x 60/100), 50.8 (1C x 40/100), 50.5 (1C x 40/100), 49.7 (1C x 60/100), 48.9 (1C x 40/100), 48.6 (1C x 60/100), 46.9 (1C x 40/100), 46.3 (1C x 60/100), 28.3 (3C x 60/100), 28.2 (3C x 40/100), 27.9 (3C x 60/100), 27.9 (3C x 40/100), 18.3 (1C x 40/100), 18.2 (1C x 60/100), 17.3 (1C x 60/100), 17.1 (1C x 40/100). IR (thin film, cm⁻¹) 3292, 2977, 2932, 1732, 1686, 1645, 1520, 1452, 1366, 1222, 1147. HRMS (ESI) calculated for C₂₄H₃₇N₃O₆Na [M+Na]⁺ *m/z* 486.2580, found, 486.2563.

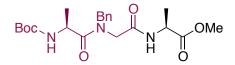
Boc-L-Ala-Bn-Gly-L-Met-Ot-Bu (6cb): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Bn-Gly-) (**5c**, 159.2 mg, 0.50 mmol) and H-L-Met-Ot-Bu (205.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the


resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **6cb** (251.3 mg, 96% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.

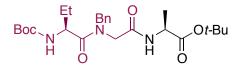
 $R_f = 0.36$ (50% AcOEt in hexane). M.p. 29–30 °C. $[\alpha]_D^{22} = -21.2$ (c 1.18, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (br d, J = 7.8 Hz, 1H x 40/100, N<u>H</u>), 7.40–7.15 (m, 5H, C₆<u>H</u>₅CH₂N), 6.88 (br d, J = 7.3 Hz, 1H x 60/100, N<u>H</u>), 5.33 (br d, J = 6.6 Hz, 1H x 60/100, (CH₃)₃COCON<u>H</u>), 5.20 (br d, J = 6.9 Hz, 1H x 40/100, (CH₃)₃COCONH), 4.90–4.40 (m, 4H, CHCH₃, C₆H₅CH₂N, and CHCH₂CH₂SCH₃), 4.22 (d, J = 15.8 Hz, 1H x 60/100, CH₂), 4.02 (s, 1H x 40/100, CH₂), 4.01 (s, 1H x 40/100, CH₂), 3.87 (d, J = 15.8, 1H x 60/100, CH₂), 2.55–2.35 (m, 2H, CHCH₂CH₂SCH₃), 2.20–2.00 (m, 1H, CHCH₂CH₂SCH₃), 2.09 (s, 3H, CHCH₂CH₂SCH₃), 2.00– 1.85 (m, 1H, CHCH₂CH₂SCH₃), 1.48 (s, 9H x 60/100, CO₂C(CH₃)₃), 1.44 (s, 9H x 40/100, CO₂C(CH₃)₃), 1.43 (s, 9H x 40/100, (CH₃)₃COCONH), 1.43 (s, 9H x 60/100, (CH₃)₃COCONH), 1.35 (d, J = 6.9 Hz, 3H x 40/100, CHCH₃), 1.28 (d, J = 6.6 Hz, 3H x 60/100, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.2 (1C x 60/100), 173.6 (1C x 40/100), 170.6 (1C x 60/100), 170.5 (1C x 40/100), 168.2 (1C x 40/100), 168.1 (1C x 60/100), 156.1 (1C x 60/100), 155.3 (1C x 40/100), 136.3 (1C x 40/100), 135.5 (1C x 60/100), 129.0 (2C x 60/100), 128.7 (2C x 40/100), 128.4 (1C x 60/100), 128.0 (2C x 40/100), 127.8 (1C x 40/100), 127.0 (2C x 60/100), 82.3 (1C x 60/100), 81.9 (1C x 40/100), 80.3 (1C x 40/100), 79.9 (1C x 60/100), 52.6 (1C x 40/100), 52.1 (1C x 60/100), 50.4 (1C x 60/100), 50.7 (1C x 40/100), 50.4 (1C x 40/100), 49.8 (1C x 60/100), 46.9 (1C x 60/100), 46.3 (1C x 40/100), 31.9 (1C x 60/100), 30.6 (1C x 40/100), 30.4 (1C x 40/100), 30.0 (1C x 60/100), 28.3 (3C x 60/100), 28.3 (3C x 40/100), 28.0 (3C x 60/100), 27.9 (3C x 40/100), 18.6 (1C x 60/100), 17.3 (1C x 40/100), 15.5 (1C x 60/100), 15.4 (1C x 40/100). IR (thin film, cm⁻¹) 3207, 2979, 2931, 1682, 1651, 1645, 1518, 1447, 1366, 1226, 1151. HRMS (ESI) calculated for $C_{26}H_{41}N_3O_6SNa [M+Na]^+ m/z 546.2614$, found, 546.2622.

Boc-L-Ala-Bn-Gly-L-Lys(Boc)-Ot-Bu (6cc): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Bn-Gly-) (**5c**, 159.2 mg, 0.50 mmol) and H-L-Lys(Boc)-Ot-Bu (302.4 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **6cc** (304.1 mg, 98% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.

 $R_f = 0.29$ (50% AcOEt in hexane). M.p. 44–45 °C. $[\alpha]_D^{23} = -28.0$ (c 1.18, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.20 (m, 5H + 1H x 40/100, C₆H₅CH₂N and NH), 6.73 (br d, J = 6.9 Hz, 1H x 60/100, NH), 5.45 (br d, J = 4.8 Hz, 1H x 60/100, (CH₃)₃COCONH), 5.26 (br d, J = 7.4Hz, 1H x 40/100, (CH₃)₃COCON<u>H</u>), 5.10-4.25 (m, 5H, C<u>H</u>CH₃, C₆H₅C<u>H</u>₂N, and $C\underline{H}CH_2CH_2CH_2CH_2N\underline{H}CO_2C(CH_3)_3$, 4.16 (d, J = 15.7 Hz, 1H x 60/100, $C\underline{H}_2$), 4.05 (d, J = 17.9Hz, 1H x 40/100, CH₂), 3.98 (d, J = 17.9 Hz, 1H x 40/100, CH₂), 3.85 (d, J = 15.7 Hz, 1H x 60/100, CH₂), 3.20-3.00 (m, 2H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.90-1.70 (m, 1H, CHCH2CH2CH2CH2NHCO2C(CH3)3), 1.70-1.55 (m, 1H, CHCH2CH2CH2CH2NHCO2C(CH3)3), 1.55–1.20 (m, 4H, CHCH₂CH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.46 (s, 9H x 60/100, CO₂C(CH₃)₃), 1.44 (s, 9H x 40/100, CO₂C(CH₃)₃), 1.43 (s, 18H x 40/100, (CH₃)₃COCONH and CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.42 (s, 18H x 60/100, (CH₃)₃COCONH and CHCH₂CH₂CH₂CH₂NHCO₂C(C<u>*H*₃</u>)₃), 1.35 (d, J = 6.9 Hz, 3H x 40/100, CHC<u>*H*₃</u>), 1.28 (d, J =6.9 Hz, 3H x 60/100, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.5 (1C x 40/100), 173.7 (1C x 60/100), 171.0 (1C x 60/100), 170.0 (1C x 40/100), 168.0 (1C x 40/100), 167.8 (1C x 60/100), 156.0 (1C x 60/100), 155.9 (1C x 40/100), 155.3, 136.3 (1C x 40/100), 135.5 (1C x 60/100), 129.0 (2C x 60/100), 128.6 (2C x 40/100), 128.3 (1C x 60/100), 128.0 (2C x 40/100), 127.6 (1C x 40/100), 127.0 (2C x 60/100), 81.9 (1C x 60/100), 81.8 (1C x 40/100), 80.1 (1C x 40/100), 79.8 (1C x 60/100), 79.0, 53.1 (1C x 40/100), 52.3 (1C x 60/100), 52.3 (1C x 60/100), 50.4 (1C x 40/100), 50.3 (1C x 60/100), 50.0 (1C x 40/100), 40.1 (1C x 40/100), 40.0 (1C x 60/100), 31.8 (1C x 60/100), 31.0 (1C x 40/100), 29.5 (1C x 40/100), 29.2 (1C x 60/100), 28.4 (3C x 60/100), 28.3 (3C), 28.2 (3C x 40/100), 28.0 (3C x 60/100), 27.9 (3C x 40/100), 22.8 (1C x 40/100), 22.1 (1C x 60/100), 18.6 (1C x 60/100), 17.6 (1C x 40/100). IR (thin film, cm⁻¹) 3321, 2977, 2932,

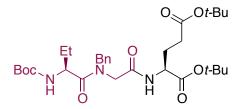

1682, 1651, 1517, 1454, 1365, 1247, 1156, 1027. HRMS (ESI) calculated for $C_{32}H_{52}N_4O_8Na$ [M+Na]⁺ *m/z* 643.3683, found, 643.3648.

Boc-L-Ala-Bn-Gly-L-Asp(*t*-**Bu**)-**Ot-Bu** (6cd): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Bn-Gly-) (5c, 159.2 mg, 0.50 mmol) and H-L-Asp(*t*-Bu)-O*t*-Bu (245.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **6cd** (259.3 mg, 92% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.


 $R_f = 0.36$ (50% AcOEt in hexane). M.p. 40–41 °C. $[\alpha]_D^{21} = -25.2$ (c 1.11, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.15 (m, 5H + 1H x 40/100, C₆H₅CH₂N and NH), 6.98 (br d, J = 8.3Hz, 1H x 60/100, NH), 5.51 (br d, J = 6.6 Hz, 1H x 60/100, (CH₃)₃COCONH), 5.31 (br d, J = 6.8Hz, 1H x 40/100, (CH₃)₃COCONH), 4.90–4.40 (m, 4H, CHCH₃, $C_{6}H_{5}CH_{2}N$, and $CHCH_2CO_2C(CH_3)_3$, 4.20 (d, J = 18.2, 1H x 40/100, CH_2), 4.03 (d, J = 15.9, 1H x 60/100, CH_2), $3.97 (d, J = 15.9, 1H \ge 60/100, CH_2), 3.86 (d, J = 18.2, 1H \ge 40/100, CH_2), 2.85 (dd, J = 17.0, J = 10.0, J = 10$ 4.6 Hz, 1H x 60/100, CHCH₂CO₂C(CH₃)₃), 2.82 (dd, J = 17.0, 4.6 Hz, 1H x 40/100, $CHCH_2CO_2C(CH_3)_3$, 2.71 (dd, J = 17.0, 4.6 Hz, 1H x 40/100, $CHCH_2CO_2C(CH_3)_3$), 2.69 (dd, J= 17.0, 4.6 Hz, 1H x 60/100, CHCH₂CO₂C(CH₃)₃), 1.46 (s, 18H x 40/100, CHCH₂CO₂C(CH₃)₃) and CO₂C(C<u>H</u>₃)₃), 1.45 (s, 18H x 60/100, CHCH₂CO₂C(C<u>H</u>₃)₃ and CO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H x 40/100, (CH₃)₃COCONH), 1.43 (s, 9H x 60/100, (CH₃)₃COCONH), 1.35 (d, J = 6.6 Hz, 3H x 60/100, CHC<u>H</u>₃), 1.35 (d, J = 6.8 Hz, 3H x 40/100, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.9 (1C x 40/100), 173.9 (1C x 60/100), 171.1 (1C x 60/100), 170.0 (1C x 40/100), 169.4 (1C x 60/100), 169.3 (1C x 30/100), 167.8 (1C x 60/100), 167.5 (1C x 40/100), 155.6 (1C x 40/100), 155.1 (1C x 60/100), 136.1 (1C x 40/100), 135.3 (1C x 60/100), 128.6 (2C x 60/100), 128.6 (2C x 40/100), 128.2 (1C x 60/100), 128.0 (2C x 40/100), 127.6 (1C x 40/100), 127.1 (2C x 60/100),

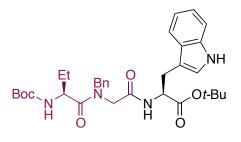
82.3 (1C x 40/100), 82.2 (1C x 60/100), 81.5, 79.9 (1C x 40/100), 79.6 (1C x 60/100), 51.8 (1C x 60/100), 49.9 (1C x 40/100), 49.8 (1C x 40/100), 49.4 (1C x 40/100), 49.0 (1C x 60/100), 49.0 (1C x 60/100), 46.5 (1C x 40/100), 46.4 (1C x 60/100), 37.3 (1C x 60/100), 37.1 (1C x 40/100), 28.3 (3C x 60/100), 28.3 (3C x 40/100), 28.0 (3C), 27.9 (3C), 19.0 (1C x 60/100), 18.2 (1C x 40/100). IR (thin film, cm⁻¹) 3311, 2979, 2934, 1731, 1682, 1651, 1515, 1454, 1366, 1246, 1149. HRMS (ESI) calculated for $C_{29}H_{45}N_3O_8Na$ [M+Na]⁺ *m/z* 586.3104, found, 586.3074.

Boc-L-Ala-Bn-Gly-L-Ala-OMe (6ce): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-Bn-Gly-) (5c, 159.2 mg, 0.50 mmol), H-L-Ala-OMe•HCl (154.7 mg, 1.5 mmol), and Et₃N (0.21 mL, 1.5 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50-80% AcOEt in hexane) to provide the title compound **6ce** (200.3 mg, 95% yield, ratio of rotamers = 64:36) as a white solid with >99:1 dr. $R_f = 0.69$ (AcOEt). M.p. 31–33 °C. $[\alpha]_D^{21} = -21.8$ (c 1.01, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (br d, J = 7.4 Hz, 1H x 36/100, N<u>H</u>), 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂N), 6.90 (br d, J = 7.4Hz, 1H x 64/100, N<u>H</u>), 5.26 (br d, J = 6.6 Hz, 1H x 64/100, (CH₃)₃COCON<u>H</u>), 5.20 (br d, J = 6.9Hz, 1H x 36/100, (CH₃)₃COCON<u>H</u>), 4.87 (d, J = 16.4 Hz, 1H x 36/100, C<u>H</u>₂), 4.70–4.30 (m, 4H, CHCH₃, C₆H₅CH₂N, and CHCH₃), 4.07 (d, J = 17.9 Hz, 1H x 64/100, CH₂), 3.95 (d, J = 17.9 Hz, 1H x 64/100, CH₂), 3.83 (d, J = 16.4 Hz, 1H x 36/100, CH₂), 3.75 (s, 3H x 64/100, CO₂CH₃), 3.69 (s, 3H x 36/100, CO₂C<u>*H*₃), 1.42 (s, 9H x 64/100, (C*<u>H</u>₃)₃COCONH), 1.40 (s, 9H x 36/100,</u>* $(CH_3)_3$ COCONH), 1.35 (d, J = 6.6 Hz, 3H x 64/100, CHCH₃), 1.31 (d, J = 7.3 Hz, 3H x 64/100, CHCH₃), 1.24 (d, J = 6.9 Hz, 6H x 36/100, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.3 (1C x 64/100), 173.6 (1C x 36/100), 173.1 (1C x 64/100), 172.8 (1C x 36/100), 168.1 (1C x 64/100), 167.9 (1C x 36/100), 156.1 (1C x 64/100), 155.5 (1C x 36/100), 136.5 (1C x 36/100), 135.6 (1C x 64/100), 129.0 (2C x 64/100), 128.6 (2C x 36/100), 128.5 (1C x 64/100), 128.0 (2C x 36/100), 127.7 (1C x 36/100), 126.9 (2C x 64/100), 80.2 (1C x 36/100), 79.9 (1C x 64/100), 52.4 (1C x


64/100), 52.2 (1C x 36/100), 51.9 (1C x 64/100), 50.9 (1C x 36/100), 50.6 (1C x 36/100), 49.6 (1C x 64/100), 48.2 (1C x 36/100), 48.0 (1C x 64/100), 47.0 (1C x 64/100), 46.3 (1C x 36/100), 28.3 (3C x 64/100), 28.2 (3C x 36/100), 18.2 (1C x 36/100), 17.9 (1C x 64/100), 17.2 (1C x 64/100), 16.9 (1C x 36/100). IR (thin film, cm⁻¹) 3302, 2983, 2930, 1744, 1686, 1643, 1524, 1450, 1366, 1212, 1157. HRMS (ESI) calculated for $C_{21}H_{31}N_3O_6Na$ [M+Na]⁺ *m/z* 444.2111, found, 444.2069.

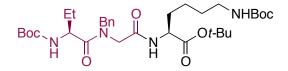
Boc-L-Abu-Bn-Gly-L-Ala-Ot-Bu (6da): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Abu-Bn-Gly-) (**5d**, 166.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10–100% AcOEt in hexane) to provide the title compound **6da** (226.9 mg, 95% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.

R_f = 0.50 (50% AcOEt in hexane). M.p. 41–42 °C. $[α]_D^{28} = -13.9$ (*c* 1.01, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (br d, *J* = 7.1 Hz, 1H x 40/100, N<u>H</u>), 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂N), 6.76 (br d, *J* = 7.1 Hz, 1H x 60/100, N<u>H</u>), 5.25 (br d, *J* = 7.6 Hz, 1H x 60/100, (CH₃)₃COCON<u>H</u>), 5.11 (br d, *J* = 7.6 Hz, 1H x 40/100, (CH₃)₃COCON<u>H</u>), 4.90–4.20 (m, 3H, C<u>H</u>CH₂CH₃ and C₆H₅C<u>H</u>₂N), 4.43 (quin, *J* = 7.1 Hz, 1H x 60/100, C<u>H</u>CH₃), 4.30 (quin, *J* = 7.1 Hz, 1H x 40/100, C<u>H</u>CH₃), 4.14 (d, *J* = 15.7 Hz, 1H x 40/100, C<u>H</u>₂), 4.07 (d, *J* = 17.6 Hz, 1H x 60/100, C<u>H</u>₂), 3.98 (d, *J* = 17.6 Hz, 1H x 60/100, C<u>H</u>₂), 3.93 (d, *J* = 15.7 Hz, 1H x 40/100, C<u>H</u>₂), 1.90–1.50 (m, 2H, CHC<u>H</u>₂CH₃), 1.47 (s, 9H x 60/100, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H x 40/100, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H x 60/100, CHC<u>H</u>₃), 1.30 (d, *J* = 7.1 Hz, 3H x 40/100, CHC<u>H</u>₃), 0.98 (t, *J* = 7.4 Hz, 3H x 40/100, CHCH₂C<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.7 (1C x 60/100), 173.1 (1C x 40/100), 171.8 (1C x 60/100), 171.6 (1C x 40/100), 167.8 (1C x 60/100), 167.6 (1C x 40/100), 156.3 (1C x 40/100), 155.7 (1C x 60/100), 136.5 (1C


x 40/100), 135.6 (1C x 60/100), 128.9 (2C x 60/100), 128.6 (2C x 40/100), 128.5 (1C x 60/100), 128.0 (2C x 40/100), 127.6 (1C x 40/100), 127.2 (2C x 60/100), 81.8 (1C x 60/100), 81.5 (1C x 40/100), 80.1 (1C x 60/100), 79.7 (1C x 40/100), 52.2 (1C x 40/100), 52.1 (1C x 60/100), 51.6 (1C x 60/100), 50.7 (1C x 40/100), 50.2 (1C x 40/100), 49.5 (1C x 60/100), 49.0 (1C x 40/100), 48.6 (1C x 60/100), 28.3 (3C x 40/100), 28.2 (3C x 60/100), 27.9 (3C x 60/100), 27.9 (3C x 40/100), 26.0 (1C x 60/100), 25.2 (1C x 40/100), 18.3 (1C x 60/100), 17.3 (1C x 40/100), 10.0 (1C x 40/100), 9.8 (1C x 60/100). IR (thin film, cm⁻¹) 3297, 2973, 2936, 1733, 1686, 1640, 1522, 1451, 1366, 1218, 1146. HRMS (ESI) calculated for $C_{25}H_{39}N_3O_6Na$ [M+Na]⁺ *m/z* 500.2737, found, 500.2750.

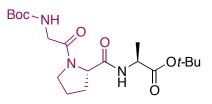
Boc-L-Abu-Bn-Gly-L-Glu(*t*-**Bu**)-**Ot-Bu** (6db): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Abu-Bn-Gly-) (5d, 166.2 mg, 0.50 mmol) and H-L-Glu(*t*-Bu)-O*t*-Bu (259.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–40% AcOEt in hexane) to provide the title compound **6db** (245.6 mg, 83% yield, ratio of rotamers = 65:35) as a white solid with >99:1 dr.

R_f = 0.20 (30% AcOEt in hexane). M.p. 28–30 °C. $[\alpha]_D^{27} = -21.6$ (*c* 1.02, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (br d, *J* = 7.8 Hz, 1H x 35/100, N<u>H</u>), 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂N), 6.78 (br d, *J* = 8.0 Hz, 1H x 65/100, N<u>H</u>), 5.32 (br d, *J* = 7.6 Hz, 1H x 65/100, (CH₃)₃COCON<u>H</u>), 5.14 (br d, *J* = 7.6 Hz, 1H x 35/100, (CH₃)₃COCON<u>H</u>), 4.85–4.30 (m, 4H, C<u>H</u>CH₂CH₃, C₆H₅C<u>H₂N, and C<u>H</u>CH₂CH₂CO₂C(CH₃)₃), 4.06 (d, *J* = 15.6 Hz, 1H x 35/100, C<u>H</u>₂), 4.03 (s, 2H x 65/100, C<u>H</u>₂), 3.95 (d, *J* = 15.6 Hz, 1H x 35/100, C<u>H</u>₂), 2.40–2.00 (m, 3H, CHC<u>H</u>₂C<u>H</u>₂CO₂C(CH₃)₃), 2.00–1.55 (m, 3H, CHC<u>H</u>₂CH₃ and CHC<u>H</u>₂CH₂CO₂C(CH₃)₃), 1.47 (s, 9H x 65/100, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H x 65/100, CHC₂CO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H x 35/100, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.45 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.45 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.43 (s, 9H x 35/100, CO₂C(C(<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃)</u>

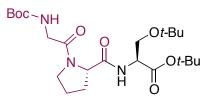

CHCH₂CH₂CO₂C(*C*<u>*H*</u>₃)₃), 0.98 (t, *J* = 7.5 Hz, 3H x 35/100, CHCH₂C<u>*H*</u>₃), 0.90 (t, *J* = 7.5 Hz, 3H x 65/100, CHCH₂C<u>*H*</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.6 (1C x 65/100), 173.0 (1C x 35/100), 172.0 (1C x 65/100), 172.0 (1C x 35/100), 170.7 (1C x 65/100), 170.5 (1C x 35/100), 168.2 (1C x 35/100), 156.4 (1C x 35/100), 155.5 (1C x 65/100), 136.4 (1C x 35/100), 135.5 (1C x 65/100), 128.9 (2C x 65/100), 128.7 (2C x 35/100), 128.4 (1C x 65/100), 128.0 (2C x 35/100), 127.7 (1C x 35/100), 127.3 (2C x 65/100), 82.2 (1C x 65/100), 81.9 (1C x 35/100), 80.6 (1C x 35/100), 80.6 (1C x 35/100), 80.2 (1C x 35/100), 79.7 (1C x 65/100), 52.8 (1C x 35/100), 52.1 (1C x 65/100), 52.1 (1C x 65/100), 51.6 (1C x 35/100), 50.5 (1C x 65/100), 51.0 (1C x 35/100), 49.5 (1C x 65/100), 31.8 (1C x 35/100), 31.4 (1C x 65/100), 28.3 (3C), 28.0 (3C), 27.7 (1C x 65/100), 26.5 (1C x 35/100), 26.2 (1C x 65/100), 10.0 (1C x 35/100), 9.8 (1C x 65/100). IR (thin film, cm⁻¹) 3202, 2975, 2931, 1730, 1693, 1645, 1518, 1453, 1366, 1246, 1148. HRMS (ESI) calculated for C_{31H49}N₃O₈Na [M+Na]⁺ *m/z* 614.3417, found, 614.3405.

Boc-L-Abu-Bn-Gly-L-Trp-Ot-Bu (6dc): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Nd) was charged with Cyclo(-Boc-L-Abu-Bn-Gly-) (**5d**, 166.2 mg, 0.50 mmol) and H-L-Trp-Ot-Bu (260.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **6dc** (272.7 mg, 92% yield, ratio of rotamers = 60:40) as a white solid with >99:1 dr.

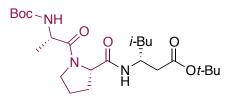
 $R_f = 0.47 (50\% \text{ AcOEt in hexane})$. M.p. 60–62 °C. $[\alpha]_D^{26} = +3.6 (c \ 1.12, \text{ MeOH})$. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (br s, 1H x 60/100, CHCH₂CCHN<u>H</u>CCHCHCHCHC), 8.37 (br s, 1H x 40/100, CHCH₂CCHN<u>H</u>CCHCHCHCHC), 7.62 (br d, J = 7.8 Hz, 1H x 40/100, N<u>H</u>), 7.58 (br d, J = 7.8 Hz, 1H x 60/100, N<u>H</u>), 7.40–6.90 (m, 9H + 1H x 40/100, C₆<u>H</u>₅CH₂N and


CHCH₂CC*H*NHCC*H*CHCHCHC), 6.60 (br d, J = 7.8Hz, 1H Х 60/100,CHCH₂CC<u>H</u>NHCCHCHCHCHC), 5.34 (br d, *J* = 8.0 Hz, 1H x 60/100, (CH₃)₃COCON*H*), 5.23 (br d, J = 7.3 Hz, 1H x 40/100, (CH₃)₃COCONH), 4.85–3.60 (m, 6H, CHCH₂CH₃, C₆H₅CH₂N, and CH_2), 3.41 (d, J = 14.7, 5.0 Hz, 1H x 40/100, CHCH₂CCHNHCCHCHCHCHC), 3.30 (d, J =14.7, 5.5 Hz, 1H x 60/100, CHCH2CCHNHCCHCHCHCHC), 3.24 (d, J = 14.7, 6.4 Hz, 1H x 60/100, CHCH₂CCHNHCCHCHCHCHC), 3.18 (d, J = 14.7, 8.9 Hz, 1H x 40/100, CHCH2CCHNHCCHCHCHC), 1.80-1.30 (m, 2H, CHCH2CH3), 1.47 (s, 9H x 40/100, CO₂C(C<u>*H*</u>₃)₃), 1.44 (s, 9H x 60/100, CO₂C(C<u>*H*</u>₃)₃), 1.41 (s, 9H x 40/100, (C<u>*H*</u>₃)₃COCONH), 1.37 (s, 9H x 60/100, (CH₃)₃COCONH), 0.90 (t, J = 7.3 Hz, 3H x 40/100, CHCH₂CH₃), 0.84 (t, J =7.3 Hz, 3H x 60/100, CHCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.5 (1C x 60/100), 172.9 (1C x 40/100), 170.8 (1C x 60/100), 170.6 (1C x 40/100), 167.8 (1C x 60/100), 167.6 (1C x 40/100), 156.2 (1C x 40/100), 155.5 (1C x 60/100), 136.3 (1C x 40/100), 136.1 (1C x 40/100), 136.0 (1C x 60/100), 135.4 (1C x 60/100), 128.9 (2C x 60/100), 128.5 (2C x 40/100), 128.2 (1C x 60/100), 128.0 (2C x 40/100), 127.8 (1C x 40/100), 127.6 (1C x 40/100), 127.5 (1C x 60/100), 127.1 (2C x 60/100), 122.9, 122.1 (1C x 40/100), 122.0 (1C x 60/100), 119.6 (1C x 40/100), 119.4 (1C x 60/100), 118.9 (1C x 60/100), 118.7 (1C x 40/100), 111.2 (1C x 40/100), 111.1 (1C x 60/100), 110.8 (1C x 40/100), 110.1 (1C x 60/100), 82.1 (1C x 60/100), 81.8 (1C x 40/100), 80.1 (1C x 60/100), 79.7 (1C x 40/100), 53.7 (1C x 40/100), 53.1 (1C x 40/100), 52.1 (1C x 40/100), 51.8 (1C x 60/100), 51.5 (1C x 40/100), 49.8 (1C x 60/100), 49.2 (1C x 40/100), 49.1 (1C x 60/100), 28.4 (3C x 40/100), 28.3 (3C x 60/100), 27.9 (3C x 40/100), 27.9 (3C x 60/100), 27.2 (1C x 40/100), 27.1 (1C x 60/100), 26.3 (1C x 60/100), 25.3 (1C x 40/100), 9.9 (1C x 40/100), 9.7 (1C x 60/100). IR (thin film, cm⁻¹) 3299, 2973, 2931, 1730, 1693, 1640, 1509, 1453, 1365, 1240, 1152. HRMS (ESI) calculated for C₃₃H₄₄N₄O₆Na [M+Na]⁺ m/z 615.3159, found, 615.3139.

Boc-L-Abu-Bn-Gly-L-Lys(Boc)-Ot-Bu (6dd): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Abu-Bn-Gly-) (**5d**, 166.2 mg, 0.50 mmol) and H-L-Lys(Boc)-Ot-Bu (302.4 mg, 1.0 mmol). After the vial was sealed with

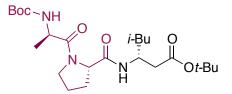

screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **6dd** (288.7 mg, 91% yield, ratio of rotamers = 67:33) as a white solid with >99:1 dr.

 $R_f = 0.38$ (50% AcOEt in hexane). M.p. 45–46 °C. $[\alpha]_D^{26} = -20.4$ (c 1.08, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.20 (m, 5H + 1H x 33/100, C₆*H*₅CH₂N and N*H*), 6.73 (br d, *J* = 6.2 Hz, 1H x 67/100, NH), 5.45-4.25 (m, 8H, (CH₃)₃COCONH, CHCH₂CH₃, C₆H₅CH₂N, and $CHCH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3)$, 4.10–3.80 (m, 2H, C<u>H</u>₂), 3.20–3.00 (m, 2H, $CHCH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 1.90-1.25 (m, 8H, CHC<u>*H*</u>₂CH₃ and CHCH₂CH₂CH₂CH₂NHCO₂C(CH₃)₃), 1.46 (s, 9H, CO₂C(CH₃)₃), 1.45 (s, 9H x 33/100, $CHCH_2CH_2CH_2CH_2NHCO_2C(CH_3)_3),$ 1.44 (s, 9H Х 67/100, CHCH₂CH₂CH₂CH₂NHCO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H x 33/100, (C<u>H</u>₃)₃COCONH), 1.43 (s, 9H x 67/100, (CH₃)₃COCONH), 0.97 (t, J = 7.3 Hz, 3H x 33/100, CHCH₂CH₃), 0.89 (t, J = 7.3 Hz, 3H x 67/100, CHCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 173.8 (1C x 67/100), 173.1 (1C x 33/100), 171.0 (1C x 67/100), 171.0 (1C x 33/100), 167.9 (1C x 33/100), 167.9 (1C x 67/100), 156.2 (1C x 33/100), 156.0 (1C x 67/100), 155.6 (1C x 67/100), 155.5 (1C x 33/100), 136.4 (1C x 33/100), 135.6 (1C x 67/100), 128.9 (2C x 67/100), 128.6 (2C x 33/100), 128.4 (1C x 67/100), 128.0 (2C x 33/100), 127.6 (1C x 33/100), 127.3 (2C x 67/100), 82.0 (1C x 67/100), 81.8 (1C x 33/100), 80.0 (1C x 33/100), 79.7 (1C x 67/100), 79.0, 53.1 (1C x 67/100), 52.4, 52.1 (1C x 33/100), 51.6 (1C x 67/100), 50.4 (1C x 33/100), 50.0 (1C x 33/100), 49.8 (1C x 67/100), 40.2 (1C x 33/100), 40.0 (1C x 67/100), 31.8 (1C x 67/100), 31.2 (1C x 33/100), 29.5 (1C x 33/100), 29.3 (1C x 67/100), 28.4 (3C x 67/100), 28.4 (3C x 33/100), 28.3 (3C x 67/100), 28.2 (3C x 33/100), 28.0 (3C), 26.1 (1C x 67/100), 25.4 (1C x 33/100), 22.8 (1C x 33/100), 22.1 (1C x 67/100), 10.0 (1C x 33/100), 9.8 (1C x 67/100). IR (thin film, cm⁻¹) 3335, 2977, 2934, 1687, 1646, 1517, 1453, 1366, 1243, 1156, 1079. HRMS (ESI) calculated for C₃₃H₅₄N₄O₈Na [M+Na]⁺ *m*/*z* 657.3839, found, 657.3842.



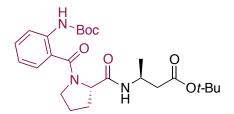
Boc-Gly-L-Pro-L-Ala-Ot-Bu (6ea): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-L-Pro-) (5e, 127.1 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (1–10% MeOH in CHCl₃) to provide the title compound **6ea** (193.8 mg, 97% yield, ratio of rotamers = 90:10) as a white solid with >99:1 dr.

 $R_f = 0.42$ (10% MeOH in CHCl₃). M.p. 180–183 °C. $[\alpha]_D^{27} = -130.5$ (*c* 1.05, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (br d, J = 7.3 Hz, 1H x 90/100, N<u>H</u>), 6.78 (br d, J = 7.3 Hz, 1H x 10/100, NH), 5.48 (br dd, J = 4.8, 4.1 Hz, 1H x 90/100, (CH₃)₃COCONH), 5.28 (br dd, J = 4.8, 4.1 Hz, 1H x 10/100, (CH₃)₃COCONH), 4.55 (dd, J = 8.1, 2.2 Hz, 1H, CHCH₂CH₂CH₂), 4.44 (quin, J = 7.3 Hz, 1H x 10/100, C<u>H</u>CH₃), 4.40 (quin, J = 7.3 Hz, 1H x 90/100, C<u>H</u>CH₃), 4.00 (dd, J = 17.3, 4.8 Hz, 1H, CH₂), 3.91 (dd, J = 17.3, 4.1 Hz, 1H, CH₂), 3.80–3.30 (m, 2H, CHCH₂CH₂CH₂), 2.40–1.85 (m, 4H, CHCH₂CH₂CH₂), 1.46 (s, 9H x 90/100, CO₂C(CH₃)₃), 1.45 (s, 9H x 10/100, CO₂C(CH₃)₃), 1.45 (s, 9H x 90/100, (CH₃)₃COCONH), 1.43 (s, 9H x 10/100, $(CH_3)_3$ COCONH), 1.39 (d, J = 7.3 Hz, 3H x 10/100, CHC H_3), 1.36 (d, J = 7.3 Hz, 3H x 90/100, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.9 (1C x 90/100), 171.6 (1C x 10/100), 170.5 (1C x 10/100), 170.2 (1C x 90/100), 168.4 (1C x 10/100), 168.4 (1C x 90/100), 155.9 (1C x 10/100), 155.7 (1C x 90/100), 82.1 (1C x 10/100), 81.7 (1C x 90/100), 79.6, 60.1 (1C x 10/100), 60.0 (1C x 90/100), 48.8 (1C x 90/100), 48.7 (1C x 10/100), 47.1 (1C x 10/100), 46.2 (1C x 90/100), 43.0 (1C x 90/100), 42.9 (1C x 10/100), 31.9 (1C x 10/100), 28.3 (3C), 27.9 (3C), 27.7 (1C x 90/100), 24.8 (1C x 90/100), 22.3 (1C x 10/100), 18.2 (1C x 90/100), 18.0 (1C x 10/100). IR (thin film, cm⁻¹) 3351, 2968, 1720, 1703, 1678, 1635, 1531, 1450, 1366, 1220, 1148. HRMS (ESI) calculated for C₁₉H₃₃N₃O₆Na [M+Na]⁺ *m/z* 422.2267, found, 422.2246.

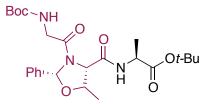

Boc-Gly-L-Pro-L-Ser(t-Bu)-Ot-Bu (6eb, CAS No. 23828-63-9)¹¹: A flame-dried 5.0 mL screwcap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-L-Pro-) (5e, 127.1 mg, 0.50 mmol) and H-L-Ser(t-Bu)-Ot-Bu (217.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (10-100% AcOEt in hexane) to provide the title compound **6eb** (235.1 mg, >99% yield, ratio of rotamers = 84:16) as a white solid with >99:1 dr. $R_f = 0.58$ (AcOEt). M.p. 69–70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (br d, J = 8.1 Hz, 1H x 86/100, NH), 6.61 (br d, J = 8.5 Hz, 1H x 14/100, NH), 5.47 (br dd, J = 4.7, 4.1 Hz, 1H x 86/100, (CH₃)₃COCONH), 5.47–5.35 (m, 1H x 14/100, (CH₃)₃COCONH), 4.65–4.55 (m, 1H, $CHCH_2CH_2CH_2$, 4.53 (dt, J = 8.1, 3.0 Hz, 1H x 86/100, $CHCH_2OC(CH_3)_3$), 4.40–4.30 (m, 1H x 14/100, C<u>H</u>CH₂OC(CH₃)₃), 4.10–3.85 (m, 2H x 14/100, C<u>H</u>₂), 4.00 (dd, J = 17.2, 4.7 Hz, 1H x $86/100, CH_2$, 3.92 (dd, J = 17.2, 4.1 Hz, 1H x $86/100, CH_2$), 3.85–3.30 (m, 4H x 128/400, $CHCH_2CH_2CH_2$ and $CHCH_2OC(CH_3)_3$, 3.79 (dd, J = 8.7, 3.0 Hz, 1H x 14/100, $CHCH_2OC(CH_3)_3$, 3.76 (dd, J = 8.7, 3.0 Hz, 1H x 86/100, $CHCH_2OC(CH_3)_3$), 3.51 (dd, J = 8.7, 3.0 Hz, 1H x 86/100, CHC<u>H</u>₂OC(CH₃)₃), 3.41 (dt, J = 9.2, 7.1 Hz, 1H x 86/100, CHCH₂CH₂CH₂), 2.40–1.85 (m, 4H, CHCH₂CH₂CH₂), 1.46 (s, 9H x 86/100, CO₂C(CH₃)₃), 1.46 (s, 9H x 14/100, CO₂C(CH₃)₃), 1.44 (s, 9H x 86/100, (CH₃)₃COCONH), 1.44 (s, 9H x 14/100, (CH₃)₃COCONH), 1.14 (s, 9H, CHCH₂OC(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.3 (1C x 86/100), 168.9 (1C x 14/100), 168.6 (1C x 14/100), 168.0 (1C x 86/100), 155.7, 82.2 (1C x 14/100), 81.7 (1C x 86/100), 79.5, 73.2 (1C x 14/100), 73.0 (1C x 86/100), 61.9 (1C x 86/100), 61.9 (1C x 14/100), 60.4 (1C x 14/100), 60.0 (1C x 86/100), 53.3 (1C x 86/100), 53.0 (1C x 14/100), 47.0 (1C x 14/100), 46.1 (1C x 86/100), 43.0, 32.0 (1C x 14/100), 28.3 (3C), 28.0 (1C x 86/100), 28.0 (3C), 27.3 (3C), 24.7 (1C x 86/100), 22.2 (1C x 14/100). IR (thin film, cm⁻¹) 3274, 2977, 1749, 1719, 1702, 1665, 1652, 1636, 1546, 1453, 1165.

Boc-L-Ala-L-Pro-D-\beta-HoLeu-Ot-Bu (6f): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-L-Ala-L-Pro-) (**5f**, 134.2 mg, 0.50 mmol) and H-D- β -HoLeu-Ot-Bu (201.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50–100% AcOEt in hexane) to provide the title compound **6fa** (225.4 mg, 96% yield, ratio of rotamers = 85:15) as a white solid with >99:1 dr.

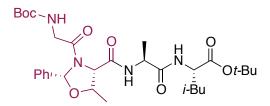
 $R_f = 0.64$ (AcOEt). M.p. 27–28 °C. $[\alpha]_D^{20} = -67.9$ (*c* 1.09, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (br d, J = 8.7 Hz, 1H x 15/100, NH), 6.92 (br d, J = 9.2 Hz, 1H x 85/100, NH), 5.35 (br d, J = 6.9 Hz, 1H x 85/100, (CH₃)₃COCON<u>H</u>), 5.12 (br d, J = 6.9 Hz, 1H x 15/100, $(CH_3)_3COCONH$, 4.56 (br dd, J = 8.0.2.5 Hz, 1H, CHCH₂CH₂CH₂), 4.48 (quin, J = 6.9 Hz, 1H x 85/100, CHCH3), 4.45-4.30 (m, 1H x 15/100, CHCH3), 4.30-4.20 (m, 1H x 85/100, CH(CH₂CH(CH₃)₂)CH₂), 4.15–4.00 (m, 1H x 15/100, CH(CH₂CH(CH₃)₂)CH₂), 3.70–3.50 (m, 2H, CHCH₂CH₂CH₂CH₂), 2.40–1.80 (m, 4H, CHCH₂CH₂CH₂), 2.34 (d, J = 5.5 Hz, 2H, CH(CH₂CH(CH₃)₂)CH₂), 1.70–1.20 (m, 3H, CH(CH₂CH(CH₃)₂)CH₂), 1.43 (s, 18H, $(CH_3)_3$ COCONH and CO₂C(CH₃)₃), 1.38 (d, J = 6.9 Hz, 3H, CHCH₃), 0.92 (d, J = 6.4 Hz, 3H, $CH(CH_2CH(CH_3)_2)CH_2$, 0.90 (d, J = 6.6 Hz, 3H, $CH(CH_2CH(CH_3)_2)CH_2$). ¹³C NMR (100 MHz, CDCl₃) δ 173.0 (1C x 85/100), 172.3 (1C x 15/100), 170.9 (1C x 85/100), 170.6 (1C x 15/100), 170.0 (1C x 85/100), 169.6 (1C x 15/100), 155.5 (1C x 15/100), 155.1 (1C x 85/100), 80.8 (1C x 85/100), 80.7 (1C x 15/100), 79.9 (1C x 15/100) 79.6 (1C x 85/100), 61.0 (1C x 15/100), 60.0 (1C x 85/100), 48.7 (1C x 15/100), 47.7 (1C x 85/100), 47.0 (1C x 85/100), 46.6 (1C x 15/100), 45.2 (1C x 15/100), 44.4 (1C x 85/100), 43.3 (1C x 85/100), 42.8 (1C x 15/100), 40.5, 32.5 (1C x 15/100), 28.3 (3C), 28.0 (3C), 27.5 (1C x 85/100), 25.0 (1C x 15/100), 24.9 (2C x 85/100), 23.0 (1C x 85/100), 22.7 (1C x 15/100), 22.3 (1C x 15/100), 22.1 (1C x 85/100), 21.8 (1C x 15/100), 18.6 (1C x 85/100), 17.3 (1C x 15/100). IR (thin film, cm⁻¹) 3341, 2977, 1713, 1694, 1682, 1644,


1519, 1448, 1366, 1249, 1157. HRMS (ESI) calculated for $C_{24}H_{43}N_3O_6Na$ [M+Na]⁺ m/z 492.3050, found, 492.3007.

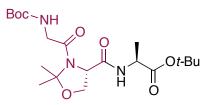
Boc-D-Ala-L-Pro-D-\beta-HoLeu-Ot-Bu (6g): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-D-Ala-L-Pro-) (**5g**, 134.2 mg, 0.50 mmol) and H-D- β -HoLeu-Ot-Bu (201.3 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–100% AcOEt in hexane) to provide the title compound **6g** (230.1 mg, 98% yield, ratio of rotamers = 91:9) as a white solid with >99:1 dr.


 $R_f = 0.58$ (AcOEt). M.p. 50–51 °C. $[\alpha]_D^{25} = -17.0$ (*c* 1.06, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.03 (br d, *J* = 8.8 Hz, 1H x 91/100, N<u>*H*</u>), 6.68 (br d, *J* = 8.8 Hz, 1H x 9/100, N<u>*H*</u>), 5.53 (br d, *J* = 6.6 Hz, 1H x 91/100, (CH₃)₃COCON<u>H</u>), 5.16 (br d, J = 6.6 Hz, 1H x 9/100, (CH₃)₃COCON<u>H</u>), 4.74 (br dd, J = 8.0. 1.4 Hz, 1H x 9/100, C<u>H</u>CH₂CH₂CH₂), 4.55 (br dd, J = 8.0. 1.4 Hz, 1H x 91/100, C<u>H</u>CH₂CH₂CH₂), 4.41 (quin, J = 6.6 Hz, 1H, C<u>H</u>CH₃), 4.35–4.20 (m, 1H, $C\underline{H}(CH_2CH(CH_3)_2)CH_2)$, 3.72 (ddd, J = 9.6, 8.5, 3.0 Hz, 1H, $CHCH_2CH_2CH_2CH_2)$, 3.70–3.50 (m, 1H x 9/100, CHCH₂CH₂CH₂), 3.45 (td, J = 9.6, 7.2 Hz, 1H x 91/100, CHCH₂CH₂CH₂), 2.50– 2.25 (m, 2H x 9/100, CH(CH₂CH(CH₃)₂)CH₂), 2.40 (dd, J = 14.7, 5.5 Hz, 1H x 91/100, $CH(CH_2CH(CH_3)_2)CH_2$, 2.32 (dd, J = 14.7, 6.9 Hz, 1H x 91/100, $CH(CH_2CH(CH_3)_2)CH_2$), 2.20–1.20 (m, 7H, $CHCH_2CH_2CH_2$ and $CH(CH_2CH(CH_3)_2)CH_2$), 1.44 (s, 9H, $CO_2C(CH_3)_3$), 1.43 (s, 9H, $(CH_3)_3$ COCONH), 1.32 (d, J = 6.6 Hz, 3H, CHC H_3), 0.92 (d, J = 6.8 Hz, 3H, CH(CH₂CH(CH₃)₂)CH₂), 0.91 (d, J = 6.8 Hz, 3H, CH(CH₂CH(CH₃)₂)CH₂). ¹³C NMR (100 MHz, CDCl₃) § 172.9 (1C x 9/100), 172.2 (1C x 91/100), 171.0 (1C x 9/100), 170.8 (1C x 91/100), 169.9 (1C x 91/100), 169.8 (1C x 9/100), 155.3 (1C x 91/100), 155.3 (1C x 9/100), 81.2 (1C x 9/100), 80.6 (1C x 91/100), 79.6, 61.0 (1C x 9/100), 60.2 (1C x 91/100), 48.1 (1C x 91/100), 47.5 (1C x 9/100), 46.8, 44.9 (1C x 91/100), 44.5 (1C x 9/100), 43.7 (1C x 91/100), 42.9 (1C x

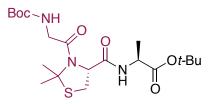
9/100), 41.0 (1C x 91/100), 39.5 (1C x 9/100), 32.1 (1C x 9/100), 28.4 (3C x 91/100), 28.3 (3C x 9/100), 28.0 (3C), 27.6 (1C x 91/100), 25.1 (1C x 9/100), 24.8 (1C x 91/100), 24.5, 22.9 (1C x 91/100), 22.7 (1C x 9/100), 22.4 (1C x 9/100), 22.1 (1C x 91/100), 18.6 (1C x 9/100), 17.6 (1C x 91/100). IR (thin film, cm⁻¹) 3334, 2977, 1737, 1681, 1631, 1522, 1452, 1367, 1249, 1159, 748. HRMS (ESI) calculated for $C_{24}H_{43}N_3O_6Na$ [M+Na]⁺ *m/z* 492.3050, found, 492.3061.


Boc-Abz-L-Pro-L-\beta-HoAla-Ot-Bu (6h): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Abz-L-Pro-) (**5h**, 158.2 mg, 0.50 mmol) and H-L- β -HoAla-Ot-Bu (159.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at room temperature for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (50–80% AcOEt in hexane) to provide the title compound **6h** (178.3 mg, 75% yield, ratio of rotamers = 56:44) as a white solid with >99:1 dr.

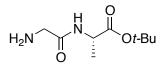
R_f = 0.71 (AcOEt). M.p. 47–48 °C. [α]_D²⁴ = +6.0 (*c* 1.00, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br s, 1H, (CH₃)₃COCON<u>H</u>), 8.15 (br d, J = 8.2 Hz, 1H, N<u>H</u>), 7.50–6.90 (m, 4H, CC<u>HCHCHCH</u>C), 4.71 (br t, J = 6.6 Hz, 1H x 44/100, C<u>H</u>CH₂CH₂CH₂CH₂), 4.65 (br t, J = 7.0 Hz, 1H x 56/100, C<u>H</u>CH₂CH₂CH₂CH₂), 4.40–4.20 (m, 1H, C<u>H</u>(CH₃)CH₂), 3.70–3.40 (m, 2H, CH(CH₃)C<u>H₂), 2.50–1.75 (m, 6H, CHCH₂C<u>H₂CH₂), 1.50 (s, 9H, CO₂C(C<u>H₃)₃), 1.43 (s, 9H x 44/100, (C<u>H₃)₃COCONH), 1.43 (s, 9H x 56/100, (C<u>H₃)₃COCONH), 1.24 (d, J = 6.5 Hz, 3H x 56/100, CH(C<u>H₃)</u>CH₂), 1.23 (d, J = 6.5 Hz, 3H x 44/100, CH(C<u>H₃)</u>CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.3 (1C x 56/100), 170.2 (1C x 44/100), 169.8 (1C x 44/100), 169.8 (1C x 56/100), 153.0, 137.4 (1C x 56/100), 137.3 (1C x 44/100), 131.1, 127.7, 123.7 (1C x 44/100), 123.5 (1C x 56/100), 121.7 (1C x 44/100), 121.7 (1C x 56/100), 120.5 (1C x 44/100), 120.4 (1C x 56/100), 81.1, 80.4, 60.3 (1C x 56/100), 60.1 (1C x 44/100), 50.6 (1C x 56/100), 50.5 (1C x 44/100), 42.4, 41.1 (1C x 44/100), 41.1 (1C x 56/100), 28.5 (1C x 56/100), 28.3 (3C), 28.1 (1C x 44/100), 28.0 (3C), 25.4 (1C x 56/100), 25.3 (1C x 44/100), 19.9 (1C x 56/100), 19.9 (1C x</u></u></u></u></u> 44/100). IR (thin film, cm⁻¹) 2981, 2969, 1723, 1666, 1620, 1588, 1522, 1411, 1365, 1235, 1152. HRMS (ESI) calculated for C₂₅H₃₇N₃O₆Na [M+Na]⁺ *m/z* 498.2580, found, 498.2579.


Boc-Gly-L-Thr($\psi^{Ph,H}$ **pro**)-L-Ala-Ot-Bu (6ia): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-L-Thr($\psi^{Ph,H}$ pro)-) (5i, 173.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (20–100% AcOEt in hexane) to provide the title compound 6ia (243.8 mg, >99% yield, ratio of rotamers = 70:30) as a white solid with >99:1 dr.

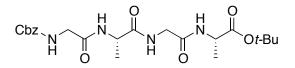
R_f = 0.50 (50% AcOEt in hexane). M.p. 60–61 °C. $[α]_D^{24} = -17.1$ (*c* 1.17, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.6, 1.6 Hz, 2H, CHCH(CH₃)OCHC₆*H*₅), 7.50–7.20 (m, 3H + 1H x 70/100, CHCH(CH₃)OCHC₆*H*₅, and N*H*), 6.95–6.75 (m, 1H x 30/100, N*H*), 6.71 (s, 1H x 30/100, CHCH(CH₃)OC*H*C₆H₅), 6.24 (s, 1H x 70/100, CHCH(CH₃)OC*H*C₆H₅), 5.50–5.30 (m, 1H, (CH₃)₃COCON*H*), 4.80–3.30 (m, 5H, C*H*₂, C*H*C*H*(CH₃)OCHC₆H₅, and C*H*CH₃), 1.70–1.30 (m, 3H + 3H x 70/100, CHCH(C*H*₃)OCHC₆H₅ and CHC*H*₃), 1.47 (s, 9H, CO₂C(C*H*₃)₃), 1.41 (s, 9H, (C*H*₃)₃COCONH), 1.10 (br s, 3H x 30/100, CHCH(C*H*₃)OCHC₆H₅). ¹³C NMR (100 MHz, CDCl₃) δ 171.6 (1C x 70/100), 171.2 (1C x 30/100), 169.5 (1C x 30/100), 168.5 (1C x 70/100), 167.8, 156.0 (1C x 30/100), 155.6 (1C x 70/100), 138.2 (1C x 30/100), 136.9 (1C x 70/100), 129.6 (2C x 30/100), 128.9 (2C x 70/100), 128.6, 127.1 (2C x 70/100), 126.3 (2C x 30/100), 89.4 (1C x 70/100), 89.2 (1C x 30/100), 82.0, 80.0 (1C x 30/100), 79.8 (1C x 70/100), 78.4 (1C x 30/100), 74.3 (1C x 70/100), 65.4, 48.9 (1C x 70/100), 48.4 (1C x 30/100), 43.3, 28.2 (3C), 27.9 (3C), 19.2 (1C x 30/100), 18.3 (1C x 70/100), 18.0 (1C x 70/100), 17.3 (1C x 30/100). IR (thin film, cm⁻¹) 3330, 2979, 1731, 1662, 1520, 1451, 1367, 1239, 1150, 1047, 845. HRMS (ESI) calculated for C₂₅H₃₇N₃O₇Na [M+Na]⁺ *m*/z 514.2529, found, 514.2538.


Boc-Gly-L-Thr($\psi^{Ph,H}$ **pro**)-L-Ala-L-Leu-Ot-Bu (6ib): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Nd) was charged with Cyclo(-Boc-Gly-L-Thr($\psi^{Ph,H}$ pro)-) (5i, 173.2 mg, 0.50 mmol) and H-L-Ala-L-Leu-Ot-Bu (258.4 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (20–100% AcOEt in hexane) to provide the title compound 6ib (207.0 mg, 68% yield, ratio of rotamers = 70:30) as a white solid with >99:1 dr.

 $R_f = 0.31$ (50% AcOEt in hexane). M.p. 62–63 °C. $[\alpha]_D^{24} = -49.2$ (c 1.24, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.50 (m, 2H, CHCH(CH₃)OCHC₆<u>H</u>₅), 7.50-6.50 (m, 5H, CHCH(CH₃)OCHC₆H₅, NH, and NH), 6.95–6.75 (m, 1H x 30/100, NH), 6.48 (s, 1H x 30/100, CHCH(CH₃)OCHC₆H₅), 6.26 (s, 1H x 70/100, CHCH(CH₃)OCHC₆H₅), 5.50–5.30 (m, 1H, $(CH_3)_3COCONH),$ 4.60–3.40 (m, 6H, C<u>H</u>₂, C<u>H</u>C<u>H</u>(CH₃)OCHC₆H₅, C<u>H</u>CH₃, and 1H, $CHCH_2CH(CH_3)_2),$ 2.20 - 2.05(m, $CHC\underline{H}_2CH(CH_3)_2),$ 1.70 - 1.008H. (m. CHCH(C<u>H</u>₃)OCHC₆H₅, CHC<u>H</u>₃, and CHC<u>H</u>₂C<u>H</u>(CH₃)₂), 1.45 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.41 (s, 9H, $(CH_3)_3$ COCONH), 0.91 (d, J = 6.1 Hz, 3H, CHCH₂CH(CH₃)₂), 0.91 (d, J = 6.1 Hz, 3H, CHCH₂CH(C<u>H</u>₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.3, 169.6 (1C x 30/100), 168.6 (1C x 70/100), 168.3 (1C x 30/100), 168.2 (1C x 70/100), 156.3 (1C x 30/100), 155.6 (1C x 70/100), 138.2 (1C x 30/100), 136.9 (1C x 70/100), 129.6, 128.9 (2C x 70/100), 128.6 (2C x 30/100), 127.0 (2C x 70/100), 126.2 (2C x 30/100), 89.4 (1C x 70/100), 89.2 (1C x 30/100), 81.9, 80.1 (1C x 30/100), 79.9 (1C x 70/100), 78.4 (1C x 30/100), 74.5 (1C x 70/100), 65.6 (1C x 70/100), 65.3 (1C x 30/100), 51.4 49.2 (1C x 70/100), 49.0 (1C x 30/100), 43.2, 41.5, 28.2 (3C), 27.9 (3C), 24.8, 22.7, 22.0, 19.1 (1C x 30/100), 17.9 (1C x 70/100), 17.9 (1C x 70/100), 17.4 (1C x 30/100). IR (thin film, cm⁻¹) 3322, 2978, 1719, 1649, 1518, 1450, 1366, 1244, 1150, 1050, 843. HRMS (ESI) calculated for $C_{31}H_{48}N_4O_8Na [M+Na]^+ m/z 627.3370$, found, 627.3358.

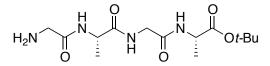

Boc-Gly-L-Ser($\psi^{Me,Me}$ **pro**)-L-Ala-O*t*-Bu (6j): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-L-Ser($\psi^{Me,Me}$ pro)-) (5j, 142.2 mg, 0.50 mmol) and H-L-Ala-O*t*-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 12 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (30–80% AcOEt in hexane) to provide the title compound **6j** (210.5 mg, 98% yield, ratio of rotamers = 77:23) as a white solid with >99:1 dr.

R_f = 0.30 (80% AcOEt in hexane). M.p. 31–32 °C. $[α]_{D}^{25} = -81.2$ (*c* 1.01, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.95 (br d, J = 7.2 Hz, 1H, N<u>H</u>), 5.45–5.30 (m, 1H, (CH₃)₃COCON<u>H</u>), 4.44 (quin, J = 7.2 Hz, 1H, C<u>H</u>CH₃), 4.35 (d, J = 6.6 Hz, 1H, C<u>H</u>CH₂OC(CH₃)₂), 4.29 (d, J = 9.4 Hz, 1H, CHC<u>H₂OC(CH₃)₂), 4.18 (dd, J = 9.4, 6.6 Hz, 1H, CHC<u>H₂OC(CH₃)₂), 3.90 (dd, J = 17.0, 5.9 Hz, 1H, C<u>H</u>₂), 3.79 (dd, J = 17.0, 4.3 Hz, 1H x 77/100, C<u>H</u>₂), 3.71 (dd, J = 17.0, 4.3 Hz, 1H x 23/100, C<u>H</u>₂), 1.76 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.58 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.46 (s, 9H x 23/100, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H x 77/100, CO₂C(C<u>H</u>₃)₃), 1.43 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.41 (d, J = 7.2 Hz, 3H x 77/100, CHC<u>H</u>₃), 1.40 (d, J = 7.2 Hz, 3H x 23/100, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 169.2 (1C x 77/100), 168.9 (1C x 23/100), 166.8 (1C x 77/100), 166.7 (1C x 23/100), 156.0 (1C x 77/100), 155.8 (1C x 23/100), 97.1 (1C x 23/100), 97.0 (1C x 77/100), 82.4 (1C x 23/100), 82.3 (1C x 77/100), 80.0 (1C x 23/100), 79.9 (1C x 77/100), 28.2 (3C), 27.9 (3C), 25.8 (1C x 23/100), 25.7 (1C x 77/100), 22.8, 18.2 (1C x 23/100), 17.9 (1C x 77/100). IR (thin film, cm⁻¹) 3303, 2977, 1649, 1521, 1424, 1366, 1246, 1147, 1077, 1051, 841. HRMS (ESI) calculated for C₂₀H₃₅N₃O₇Na [M+Na]⁺ m/z 452.2373, found, 452.2388.</u></u>


Boc-Gly-L-Cys($\psi^{Me,Me}$ pro)-L-Ala-Ot-Bu (6k): A flame-dried 5.0 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Cyclo(-Boc-Gly-L-Cys($\psi^{Me,Me}$ pro)-) (5k, 150.2 mg, 0.50 mmol) and H-L-Ala-Ot-Bu (145.2 mg, 1.0 mmol). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 24 h. The reaction mixture was diluted with CHCl₃ (3.0 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with CHCl₃ (12 mL). The reaction mixture was purified directly by flash column chromatography (AcOEt) to provide a mixture of the title compound **6k** and H-L-Ala-Ot-Bu. Finally, H-L-Ala-Ot-Bu was evaporated *in vacuo* with the aid of an oil rotary vacuum pump to provide **6k** (207.2 mg, 93% yield, ratio of rotamers = 63:37) as a white solid with >99:1 dr. $R_f = 0.26$ (50% AcOEt in hexane). M.p. 54–55 °C. $[\alpha]_D^{20} = -39.0$ (c 1.00, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.96 (br d, J = 7.1 Hz, 1H, N<u>H</u>), 5.45–5.25 (m, 1H, (CH₃)₃COCON<u>H</u>), 4.66 (br s, 1H, CHCH₂SC(CH₃)₂), 4.44 (quin, J = 7.1 Hz, 1H, CHCH₃), 4.00–3.60 (m, 2H, CH₂), 3.36 $(d, J = 11.8 \text{ Hz}, 1H, CHCH_2SC(CH_3)_2), 3.31 (d, J = 11.8 \text{ Hz}, 1H, CHCH_2SC(CH_3)_2), 2.04 (s, 3H)$ x 37/100, CHCH₂SC(CH₃)₂), 1.98 (s, 3H x 63/100, CHCH₂SC(CH₃)₂), 1.85 (s, 3H x 63/100, CHCH₂SC(C<u>H</u>₃)₂), 1.84 (s, 3H x 37/100, CHCH₂SC(C<u>H</u>₃)₂), 1.47 (s, 9H x 37/100, CO₂C(C<u>H</u>₃)₃), 1.45 (s, 9H x 63/100, $CO_2C(CH_3)_3$), 1.43 (s, 9H, $(CH_3)_3COCONH$), 1.42 (d, J = 7.1 Hz, 3H x 63/100, CHCH₃), 1.40 (d, J = 7.1 Hz, 3H x 37/100, CHCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.8 (1C x 63/100), 168.7 (1C x 37/100), 167.5 (1C x 63/100), 167.4 (1C x 37/100), 156.0 (1C x 63/100), 155.7 (1C x 37/100), 82.4 (1C x 37/100), 82.2 (1C x 63/100), 79.8, 74.5 (1C x 37/100), 74.5 (1C x 63/100), 66.0, 49.2, 44.6, 32.4, 28.6, 28.2 (3C), 27.9 (3C x 37/100), 27.9 (3C x 63/100), 27.7, 18.3 (1C x 37/100), 18.0 (1C x 63/100). IR (thin film, cm⁻¹) 3319, 2979, 1670, 1651, 1517, 1453, 1392, 1366, 1246, 1147, 1052. HRMS (ESI) calculated for $C_{20}H_{35}N_{3}O_{6}SNa [M+Na]^{+} m/z 468.2144$, found, 468.2139.

10. Synthesis of hexapeptides (Scheme 4)

H-Gly-L-Ala-Ot-Bu (7, CAS No. 58177-80-3)¹²: A flame-dried 300 mL two-necked roundbottom flask equipped with a magnetic stirring bar (Nd) and nitrogen balloon was charged with H-Gly-OH (2.63 g, 35 mmol), CsF (531.7 mg, 3.5 mmol), imidazole (238.3 mg, 3.5 mmol), and CHCl₃ (70 mL). After HSi[OCH(CF₃)₂]₃ (37.11 g, 70 mmol) was added to the mixture at room and then the resulting mixture was stirred vigorously under nitrogen atmosphere at 50 °C for 1 h. Next, *N-(tert*-butyldimethylsilyl)-*N*-methyltrifluoroacetamide (MTBSTFA, 8.45 g, 35 mmol) was added to the reaction mixture and the resulting mixture was stirred vigorously under nitrogen atmosphere at 30 °C for 1 h. Then H-L-Ala-Ot-Bu (10.16 g, 70 mmol) was added to the reaction mixture and the resulting mixture was stirred vigorously under nitrogen atmosphere at 30 °C for 24 h. The reaction mixture was transferred onto SiO₂ column by a pipette, and used two-necked round-bottom flask and pipette were washed with CHCl₃ (20 mL). The reaction mixture was purified directly by flash column chromatography (5–20% MeOH in CHCl₃) to provide the title compound 7 (5.53 g, 78% yield).


R_f = 0.53 (20% MeOH in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (br d, *J* = 7.1 Hz, 1H, N<u>H</u>), 4.49 (quin, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.43 (s, 2H, C<u>H</u>₂), 2.42 (br s, 2H, N<u>H</u>₂), 1.47 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.39 (d, *J* = 7.1 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.7, 81.8, 48.2, 44.4, 27.9 (3C), 18.6. IR (thin film, cm⁻¹) 3301, 2980, 2935, 1732, 1655, 1521, 1454, 1368, 1225, 1146, 846.

Cbz-Gly-L-Ala-Gly-L-Ala-Ot-Bu (8): A flame-dried 100 mL schlenk flask equipped with a magnetic stirring bar (Nd) and nitrogen balloon was charged with H-Gly-Ala-Ot-Bu (5.53 g, 27.3 mmol), Cbz-Gly-L-Ala-OH (5.11 g, 18.2 mmol), and CHCl₃ (18.2 mL). After HSi[OCH(CF₃)₂]₃ (12.56 g, 23.7 mmol) was added to the mixture at room temperature, the resulting mixture was

stirred vigorously under nitrogen atmosphere at 50 °C for 24 h. Next, the reaction mixture was transferred to a separatory funnel with CHCl₃ (300 mL) and saturated aqueous solution of NH₄Cl (150 mL) was added. The phases were separated and aqueous layer was extracted with CHCl₃ (2 x 200 mL). The organic phase dried over MgSO₄, filtered, concentrated in *vacuo* with the aid of a rotary evaporator and water bath. The crude product was then diluted with 5% MeOH in CHCl₃ (30 mL), transferred onto SiO₂ column by a pipette, and used round-bottom flask and pipette were washed with 5% MeOH in CHCl₃ (2 x 20 mL). The crude product was purified by flash column chromatography (5–20% MeOH in CHCl₃) to provide the title compound **8** (8.43 g, >99% yield) as a white solid with >99:1 dr.

R_f = 0.30 (10% MeOH in CHCl₃). M.p. 145–147 °C. $[\alpha]_D^{21} = -32.2$ (*c* 1.15, MeOH). ¹H NMR (400 MHz, CD₃OD) δ 7.40–7.20 (m, 5H, C₆<u>H</u>₅CH₂OCONH), 5.08 (s, 2H, C₆H₅C<u>H₂OCONH), 4.31 (q, *J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 4.23 (q, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 4.00–3.70 (m, 4H, C<u>H₂ and CH₂), 1.44 (s, 9H, CO₂C(C<u>H₃</u>)₃), 1.37 (d, *J* = 7.1 Hz, 3H, CHC<u>H₃</u>), 1.33 (d, *J* = 7.1 Hz, 3H, CHC<u>H₃</u>). ¹³C NMR (100 MHz, CD₃OD) δ 175.4, 173.4, 172.4, 171.3, 159.2, 138.0, 129.5 (2C), 129.1, 128.9 (2C), 82.7, 67.9, 51.0, 50.3, 44.8, 43.2, 28.2 (3C), 17.4 (2C). IR (thin film, cm⁻¹) 3277, 1733, 1711, 1673, 1631, 1514, 1447, 1366, 1231, 1148, 1048. HRMS (ESI) calculated for C₂₂H₃₂N₄O₇Na [M+Na]⁺ *m/z* 487.2169, found, 487.2164.</u></u>

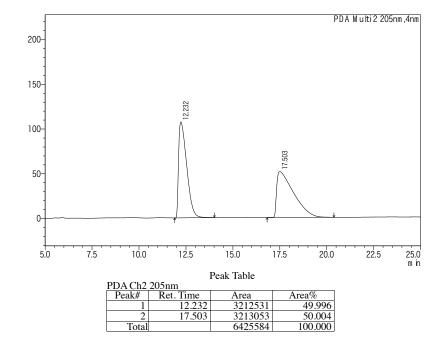
H-Gly-L-Ala-Gly-L-Ala-Ot-Bu (9): A flame-dried 300 mL round-bottom flask equipped with a magnetic stirring bar (Sm-Co) was charged with **8** (8.42 g, 18.16 mmol), 5% Pd/C type NX (843.4 mg, 10 wt%), and MeOH (180 mL), then evacuated and backfilled with hydrogen (this process was repeated a total of 15 times). The resulting mixture was stirred under hydrogen atmosphere at ambient temperature for 5 h. After completion, the reaction mixture was filtrated by filter paper with MeOH (200 mL), and the solvents were removed in *vacuo* with the aid of a rotary evaporator. The title compound **9** (5.98 g, >99% yield) was obtained as a white solid with >99:1 dr.

R_f = 0.20 (50% MeOH in CHCl₃). M.p. 27–28 °C. [α]_D²³ = -38.1 (*c* 1.05, MeOH). ¹H NMR (400 MHz, CD₃OD) δ 4.35 (q, J = 7.3 Hz, 1H, C<u>H</u>CH₃), 4.28 (q, J = 7.3 Hz, 1H, C<u>H</u>CH₃), 3.92 (d, J =

16.7 Hz, 1H, C<u>*H*</u>₂), 3.85 (d, J = 16.7 Hz, 1H, C<u>*H*</u>₂), 3.57 (d, J = 16.5 Hz, 1H, C<u>*H*</u>₂), 3.53 (d, J = 16.5 Hz, 1H, C<u>*H*</u>₂), 1.46 (s, 9H, CO₂C(C<u>*H*</u>₃)₃), 1.39 (d, J = 7.3 Hz, 3H, CHC<u>*H*</u>₃), 1.37 (d, J = 7.3 Hz, 3H, CHC<u>*H*</u>₃). ¹³C NMR (100 MHz, CD₃OD) δ 175.3, 173.5, 171.1, 170.9, 82.8, 50.8, 50.3, 43.2, 43.0, 28.2 (3C), 17.7, 17.5. IR (thin film, cm⁻¹) 3309, 2980, 2935, 2476, 1732, 1643, 1532, 1447, 1331, 1228, 1146. HRMS (ESI) calculated for C₁₄H₂₆N₄O₅Na [M+Na]⁺ *m/z* 353.1801, found, 353.1833.

Boc-Gly-L-Ser($\psi^{Me,Me}$ **pro**)-**Gly-L-Ala-Gly-L-Ala-Ot-Bu** (10): A flame-dried 50 mL screw-cap vial equipped with a magnetic stirring bar (Nd) was charged with Cyclo(-Boc-Gly-L-Ser($\psi^{Me,Me}$ pro)-) (**5j**, 1.71 g, 6.0 mmol), H-Gly-L-Ala-Gly-L-Ala-Ot-Bu (**9**, 3.96 g, 12.0 mmol), and CPME (9 mL). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at 50 °C for 48 h. The reaction mixture was diluted with 10% MeOH in CHCl₃ (20 mL), transferred onto SiO₂ column by a pipette, and used vial and pipette were washed with 10% MeOH in CHCl₃ (100 mL). The reaction mixture was purified directly by flash column chromatography (10% MeOH in CHCl₃) to provide the title compound **10** (3.13 g, 85% yield, >99:1 dr) as a white solid with >99:1 dr.

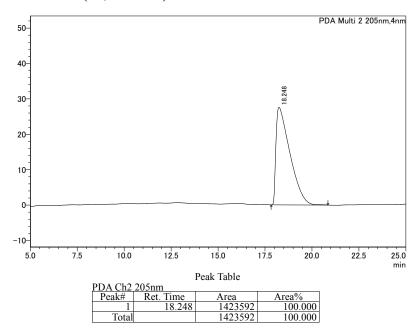
R_f = 0.31 (10% MeOH in CHCl₃). M.p. 119–120 °C. $[\alpha]_D^{19} = -53.3$ (*c* 1.05, MeOH). ¹H NMR (400 MHz, CD₃OD) δ 4.70–3.50 (m, 11H, C<u>H</u>₂, C<u>HCH</u>₂OC(CH₃)₂, C<u>H</u>₂, C<u>H</u>CH₃, C<u>H</u>₂, and C<u>H</u>CH₃), 1.67 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.55 (s, 3H, CHCH₂OC(C<u>H</u>₃)₂), 1.46 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.44 (s, 9H, (C<u>H</u>₃)₃COCONH), 1.38 (d, *J* = 7.3 Hz, 3H, CHC<u>H</u>₃), 1.36 (d, *J* = 7.3 Hz, 3H, CHC<u>H</u>₃). ¹³C NMR (100 MHz, CD₃OD) δ 175.4, 173.4, 172.8, 171.1 (2C), 169.0, 158.5, 98.1, 82.7, 80.6, 69.1, 60.7, 50.8, 50.3, 44.5, 43.7, 43.3, 28.7 (3C), 28.2 (3C), 25.5, 23.5, 17.6 (2C). IR (thin film, cm⁻¹) 3301, 2979, 1701, 1660, 1630, 1520, 1366, 1230, 1146, 1079, 1053. HRMS (ESI) calculated for C₂₇H₄₆N₆O₁₀Na [M+Na]⁺ *m/z* 637.3173, found, 637.3135.

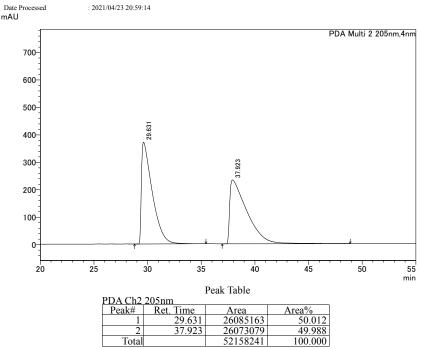

H-Gly-L-Ser-Gly-L-Ala-Gly-L-Ala-OH (11, CAS No. 844644-62-8): A 20 mL screw-cap vial equipped with a magnetic stirring bar (Sm-Co) was charged with Boc-Gly-L-Ser($\psi^{\text{Me,Me}}$ pro)-Gly-L-Ala-Gly-L-Ala-Ot-Bu (10, 307.3 mg, 0.50 mmol) and 1 *N* HCl aq. (5.0 mL). After the vial was sealed with screw-cap, the resulting mixture was stirred vigorously at room temperature for 2 h. The reaction mixture was concentrated to provide the title compound 11 (209.0 mg, >99% yield) as a white solid with >99:1 dr.

M.p. 200–201 °C. ¹H NMR (400 MHz, D₂O) δ 4.50 (t, J = 5.2 Hz, 1H, C<u>H</u>CH₂OH), 4.45–4.20 (m, 2H, C<u>H</u>CH₃ and C<u>H</u>CH₃), 4.05–3.80 (m, 8H, C<u>H₂</u>, CHC<u>H₂</u>OH, C<u>H₂</u>, and C<u>H₂</u>), 1.38 (d, J = 7.3 Hz, 3H, CHC<u>H₃</u>), 1.36 (d, J = 7.8 Hz, 3H, CHC<u>H₃</u>). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 174.0, 172.4, 170.0, 168.7, 168.5, 166.3, 61.6, 55.6, 48.5, 47.5, 42.2, 41.7, 30.7, 17.9, 17.2. IR (thin film, cm⁻¹) 3284, 1701, 1660, 1633, 1526, 1366, 1198, 1169, 1130. HRMS (ESI) calculated for C₁₅H₂₆N₆O₈Na [M+Na]⁺ *m/z* 441.1710, found, 441.1712.

11. References

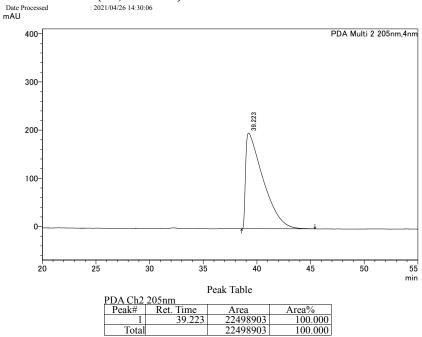
- W. Muramatsu, C. Manthena, E. Nakashima and H. Yamamoto, ACS Catal. 2020, 10, 9594– 9603.
- 2. F. Lepifre, S. Clavier, P. Bouyssou and G. Coudert, Tetrahedron 2001, 57, 6969–6975.
- 3. J. E. Baldwin, R. M. Adlington, A. T. Russell and M. L. Smith, *Tetrahedron* 1995, **51**, 4733–4762.
- 4. K. Tanaka, S. Yoshifuji and Y. Nitta, *Heterocycles* 1986, 24, 2539–2543.
- 5. D. Farran, I. Parrot, J. Martinez and G. Angew. Chem. Int. Ed. 2007, 46, 7488-7490.
- 6. W. Muramatsu, T. Hattori and H. Yamamoto, J. Am. Chem. Soc. 2019, 141, 12288–12295.
- G. M. F. Bisset, V. Bavetsias, T. J. Thornton, K. Pawelczak, A. H. Calvert, L. R. Hughes and A. L. Jackman, J. Med. Chem. 1994, 37, 3294–3302.
- 8. K. K. H. Vong, S. Maeda and K. Tanaka, Chem. Eur. J. 2016, 22, 18865–18872.
- 9. L. Pérez-Picaso, J. Escalante, H. F. Olivo and M. Y. Rios, Molecules 2019, 14, 2836–2849.
- 10. D. Farran, D. Echalier, J. Martinez and G. J. Pept. Sci. 2009, 15, 474-478.
- 11. E. Heidemann and H. W. Nill, Z. Naturforschg. 1969, 24b, 837-843.


12. HPLC data

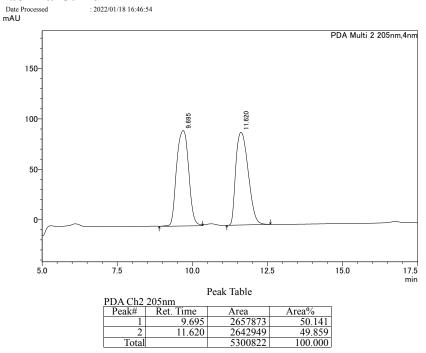

Boc-δ-HoGly-*pac* Ala-Ot-Bu^{21/03/31} 13:59:14

12.232 min = Boc-δ-HoGly-D-Ala-Ot-Bu; 17.503 min = Boc-δ-HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 3:97, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Boc-δ-HoGly-Law Alaw Ot-Bu (2a₂3Table 1)

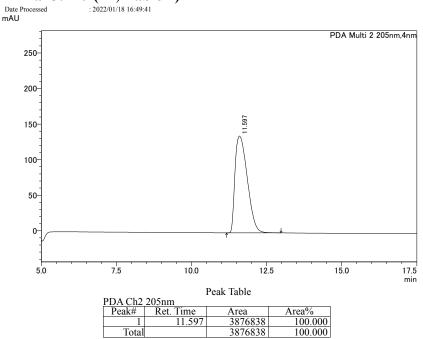


Cbz-δ-HoGly-*rac*-Ala-Ot-Bu

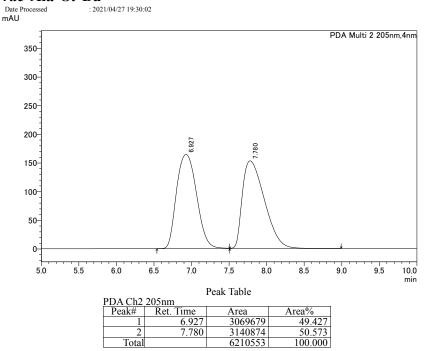


29.631 min = Cbz- δ -HoGly-D-Ala-Ot-Bu; 37.923 min = Cbz- δ -HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 3:97, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Cbz-δ-HoGly-L-Ala-Ot-Bu (2b, Table 1)

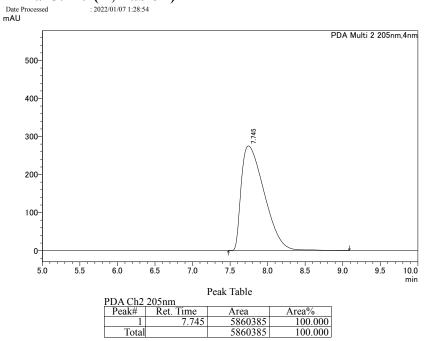


Boc-β-HoGly-*rac*-Ala-Ot-Bu

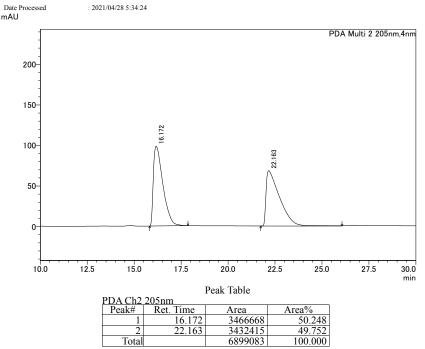


9.977 min = Boc- β -HoGly-D-Ala-Ot-Bu; 12.652 min = Boc- β -HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 4:96, v = 0.8 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Boc-β-HoGly-L-Ala-Ot-Bu (2h, Table 1)

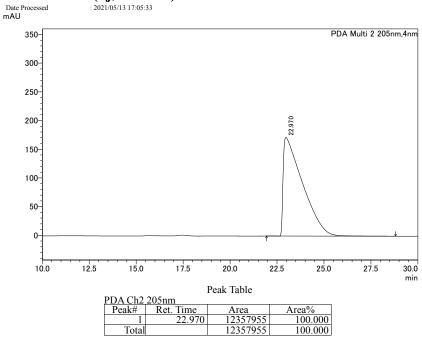


Boc-γ-HoGly-*rac*-Ala-Ot-Bu

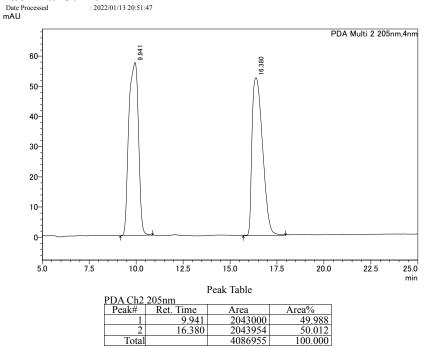


6.927 min = Boc-γ-HoGly-D-Ala-Ot-Bu; 7.780 min = Boc-γ-HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 6:94, v = 1.0 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Boc-γ-HoGly-L-Ala-Ot-Bu (2i, Table 1)

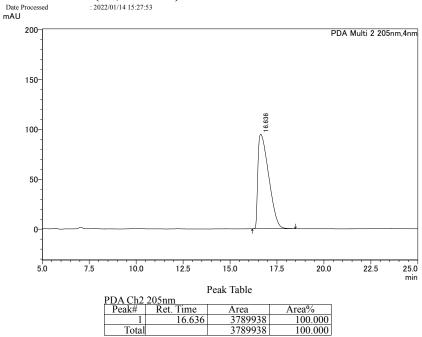


Boc-E-HoGly-rac-Ala-Ot-Bu

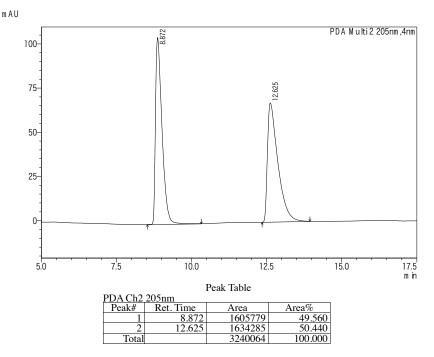


16.172 min = Boc-ε-HoGly-D-Ala-Ot-Bu; 22.163 min = Boc-ε-HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 4:96, v = 0.8 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Boc-E-HoGly-L-Ala-Ot-Bu (2j, Table 1)

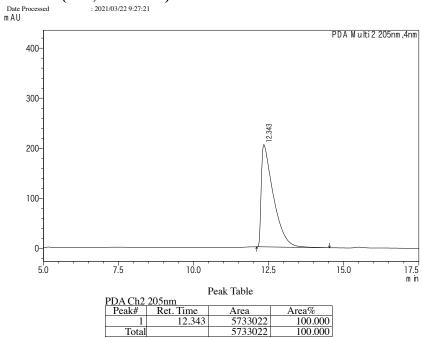


Boc-λ-HoGly-*rac*-Ala-Ot-Bu

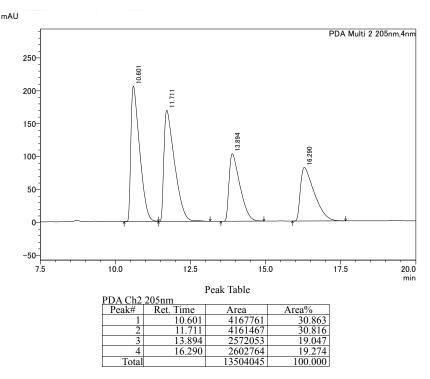


9.941 min = Boc- λ -HoGly-D-Ala-Ot-Bu; 16.380 min = Boc- λ -HoGly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 5:95, v = 1.0 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

Boc-λ-HoGly-L-Ala-Ot-Bu (2k, Table 1)

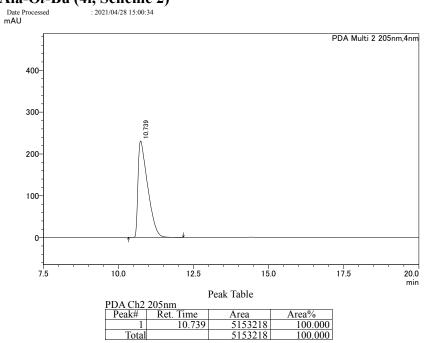


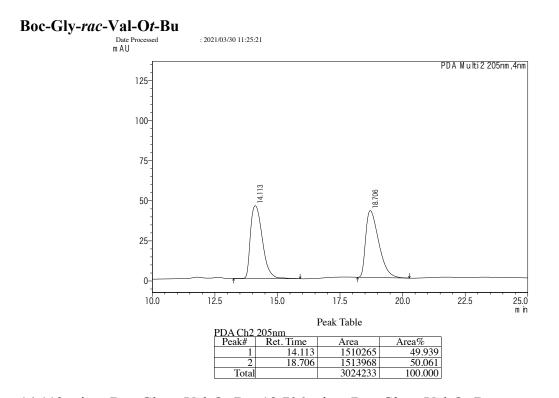
Boc-Gly-rac-Ala-Ot-Bu



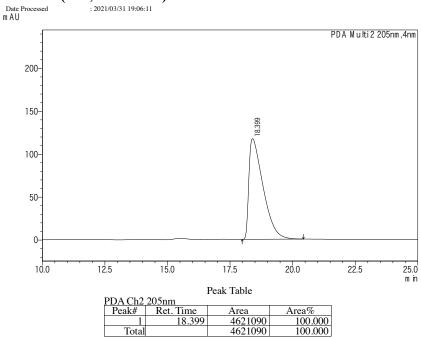
8.872 min = Boc-Gly-D-Ala-Ot-Bu; 12.625 min = Boc-Gly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 3:97, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

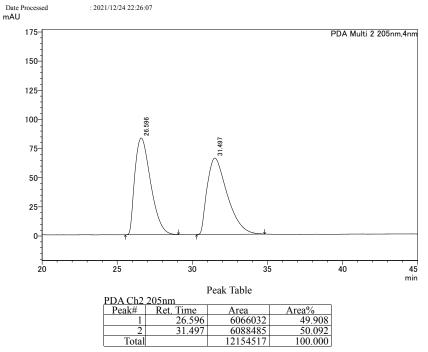
Boc-Gly-L-Ala-Ot-Bu (4kb, Scheme 2)



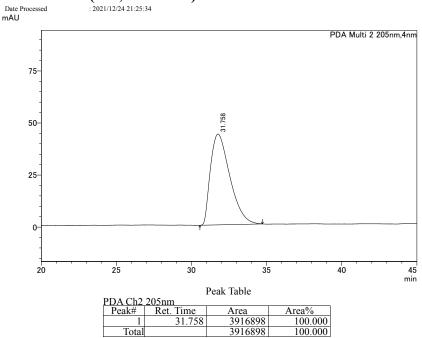

Boc-rac-Ala-rac-Ala-Ot-Bu

10.601 min = Boc-L-Ala-L-Ala-Ot-Bu; 11.711 min = Boc-D-Ala-D-Ala-Ot-Bu 13.894 min = Boc-L-Ala-D-Ala-Ot-Bu; 16.290 min = Boc-D-Ala-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 5:95, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IE-3 column from Daicel Chemical Ind., Ltd

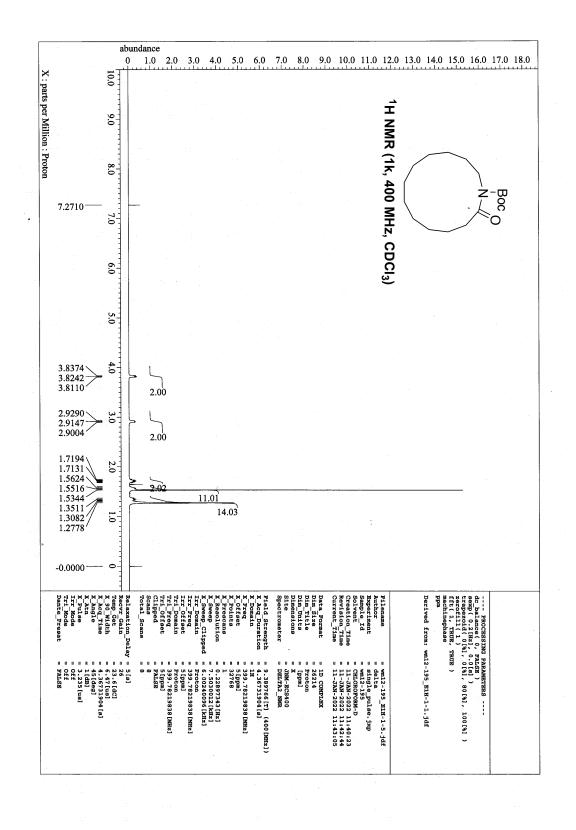

Boc-L-Ala-L-Ala-Ot-Bu (4l, Scheme 2)

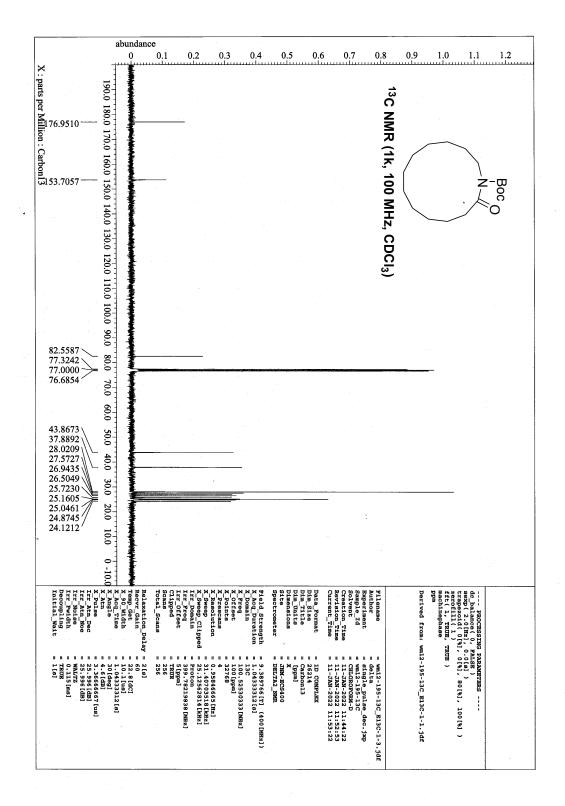


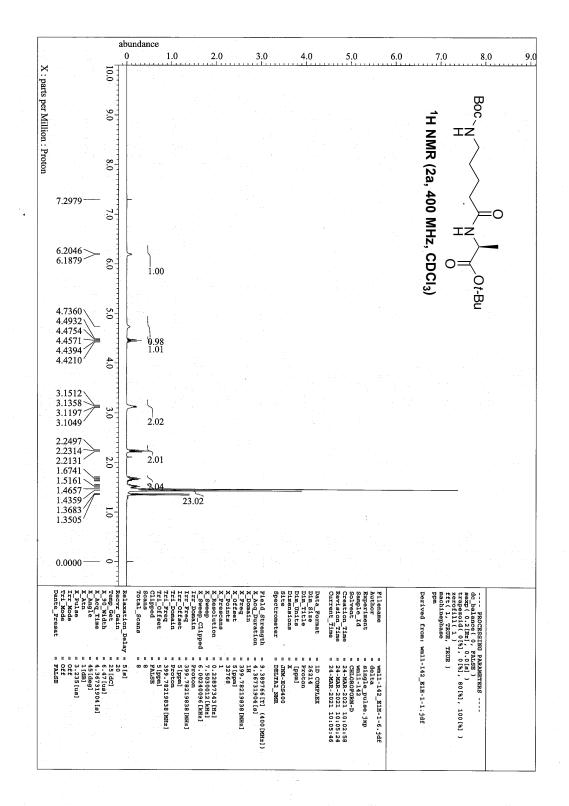
14.113 min = Boc-Gly-D-Val-Ot-Bu; 18.706 min = Boc-Gly-L-Val-Ot-Bu Conditions: 2-propanol/hexane = 2:98, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IA-3 column from Daicel Chemical Ind., Ltd

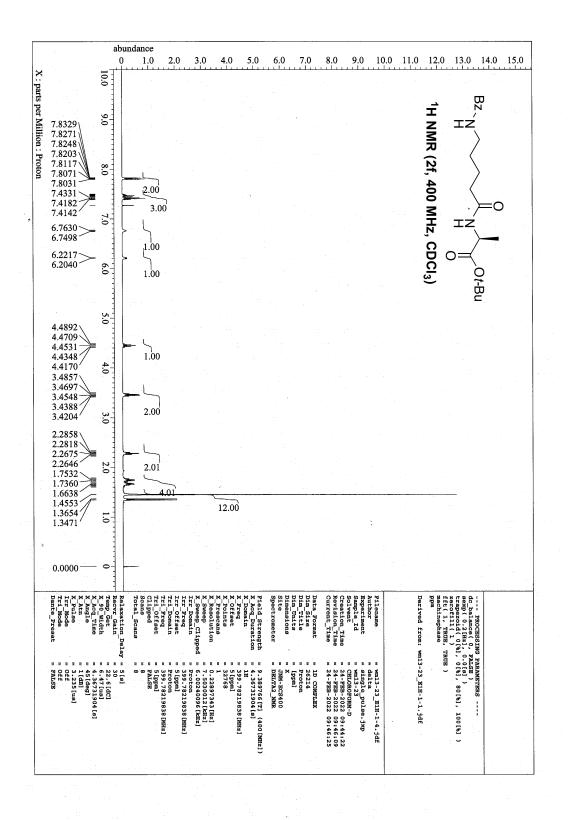


Boc-Gly-Gly-rac-Ala-Ot-Bu




26.596 min = Boc-Gly-Gly-D-Ala-Ot-Bu; 31.497 min = Boc-Gly-Gly-L-Ala-Ot-Bu Conditions: 2-propanol/hexane = 7:93, v = 1.5 mL/min, $\lambda = 205$ nm, 40 °C Chiral Column: IG-3 column from Daicel Chemical Ind., Ltd


Boc-Gly-Gly-L-Ala-Ot-Bu (6aa, Scheme 3)


13. NMR data

