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I. METHODS

In this section, we will first review the basics of the quantum embedding methods, fol-

lowing the discussions in previous works [1–3]. We then introduce the our methods DMET-

ESVQE in Section IB. We further discuss the practical implementation for molecular sys-

tems.

A. Review of density matrix embedding theory

Density matrix embedding is one of the representative methods in the quantum embed-

ding theory, first proposed in 2012 [2, 3], which converts the original quantum system into

a system composed of a fragment, the corresponding bath, and the pure environment. The

basic idea is to compress the dimension of the system by Schmidt decomposition of the wave

function. Imagine a Hilbert space composed of two orthonormal subspaces called fragment

A with dimension LA and environment B with dimension LB (LA < LB). the dimension of

any wave function |Ψ⟩ in this Hilbert space can be decomposed by Schmidt decomposition

as

|Ψ⟩ =
LA∑
i

LB∑
j

Ψij|Ai⟩|Bj⟩ =
LA∑
i

LB∑
j

LA∑
α

UiαλαV
†
αj|Ai⟩|Bj⟩ =

LA∑
α

λα|Ãα⟩|B̃α⟩, (1)

where the states |B̃α⟩ =
∑LB

j V †
αj|Bj⟩ are defined as the bath orbitals which are entangled

with fragment orbitals |Ãα⟩ =
∑LA

i Uiα|Ai⟩. If |Ψ⟩ is the ground state of a Hamiltonian H,

then it must also be the ground state of

Ĥemb = P̂ ĤP̂ , (2)

which is the Hamiltonian for the embedded system composed of fragment plus its bath with

the projector defined by

P̂ =
∑
αβ

|ÃαB̃β⟩⟨ÃαB̃β|. (3)

The spirit of DMET is that the solution of a small embedded system is the exact equivalent to

the solution of the full system [1], while the dimensions could be greatly reduced. However,
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the construction of P̂ requires the exact ground state of the full system |Ψ⟩ and thus the

introduction of approximations is necessary. In practice, DMET algorithm is designed in

a bootstrap manner. The mean-field approximation will be used for the full system to

carry out the Schmidt decomposition and the embedded system will be solved by high-level

method. Some constraints will be introduced to regulate the high-level results for further

improvement.

B. Procedure of DMET-ESVQE

The entire process of calculating a chemical system by DMET-ESVQE is outlined as

follows.

1. Partition the system into several fragments. Perform low-level, mean-field calculation

on the entire system to obtain the ground state |Φ0⟩.

2. Select a fragment from the system, construct the corresponding bath from |Φ0⟩ by

Schmidt decomposition. Construct the projector P̂ and then obtain Ĥemb = P̂ ĤP̂ for

the embedded system.

3. Calculate the one-body (1D) and two-body reduced density matrix (2D) of the em-

bedded system by ESVQE simulated on a classical computer or real quantum device

in the future. Check if all the fragments have been traversed. If not, go back to step

2 and move to the next fragment.

4. Check if the constraint has been satisfied. The different limitation has a different

cost function CF (see details in Section IC). For the single-shot DMET, the global

chemical potential µglobal is introduced to conserve the electron number. If L (µglobal)

is more than a settled threshold τ , go back to step 3 with the optimized µglobal, and

re-calculate all the fragments.

5. Calculate expectations such as the total energy of the system democratically.

The pseudocode of the above DMET workflow is outlined in Algorithm 1.
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Algorithm 1: Pseudocode for Density Matrix Embedding Theory

1 Partition the full system with a given scheme ;

2 |Φ0⟩ ← low-level method ;

3 µglobal ← 0 ;

4 τ ← 10−5 ;

5 do

6 for fragment A ∈ system do

7 Construct bath orbitals, |Bq⟩ ← |Φ0⟩, |Ap⟩ ;

8 Build projection matrix, P̂ ← |Ap⟩, |Bq⟩ ;

9 Obtain embedding Hamiltonian, Ĥemb ← Ĥ, P̂ , µglobal ;

10 Get 1DA and 2DA by ESVQE, 1DA,
2DA ← Ĥemb, |Ap⟩, |Bq⟩ ;

11 end

12 CF(µglobal) and µglobal ← Nocc,
∑

A
1DA ;

13 while |CF(µglobal)| > τ ;

14 Calculate observable expectation of interest ←
∑

A
1DA,

∑
A

2DA

In the following, we discuss the construction of the embedding Hamiltonian in Section IC,

the constraints in the practical implementation for realistic quantum chemistry problems in

Section ID and the implementation details of ESVQE in IE.

C. Construction of embedded system in interaction formulation

In this subsection, we discuss the strategy proposed in Ref. [1]. A straightforward ap-

proximation for the exact ground state is the low-level Hartree-Fock wave function. DMET

uses this low-level wave function to construct the bath orbitals and solve the embedded sys-

tem with a high-level solver. The low-level wave function |Φ0⟩ obtained from the mean-field

method could be written in second quantization as follows:

|Φ0⟩ =
∏

µ∈Nocc

â†µ|vac⟩, (4)

where {âk, â†k|k ≤ L} is the set of the annihilation and creation operators on L spin orbitals

denoted by indices k, l. Nocc electrons are supposed to occupy the Nocc lowest spin orbitals

denoted by index µ, ν. The mean-field state |Φ0⟩ is obtained under a selected basis set,

of which the annihilation and creation operators are {ĉ†k, ĉk|k ≤ L]}. For convenience,
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all basis have been orthonormalized and localized. In this work, we use the meta-löwdin

method implemented in PySCF for this purpose [4, 5], although other methods such as

intrinsic atomic orbitals have been reported in the literature [3, 6]. {â†µ, âµ|µ ≤ Nocc} and

{ĉ†k, ĉk|k ≤ L} are connected through a coefficient matrix C:

â†µ =
L∑

k=1

ĉ†kCkµ, (5)

with the size of L×Nocc. The one-body density matrix 1Dmf of the state is obtained as

1Dmf,kl = ⟨Φ0|â†l âk|Φ0⟩ =
Nocc∑
µ

CkµC
†
µl. (6)

For convenience, it is assumed that the orbitals of a selected fragment A are constructed

by the first LA spin orbitals. The 1Dmf could be written as

1Dmf =

 1DA
(LA×LA)

1Dinter
(LA×(L−LA))

1D† inter
((L−LA)×LA)

1DB
((L−LA)×(L−LA))

 , (7)

The environment submatrix 1D
B
mf constructed from 1Dmf can be decomposed as:

1D
B
mf =

L−LA∑
q

λ2
q|Bq⟩⟨Bq|, (8)

where λq is the eigenvalue of the environment orbitals |Bq⟩. The bath orbitals entangled

with the fragment will contribute all the eigenvalues between 0 and 1 (or 2 if using spatial

orbital), while occupied (1 or 2) and unoccupied (0) environment orbitals are separated from

the embedded system, where the occupied environment orbital is named core orbital either.

Due to MacDonald’s theorem [7], the bath orbitals will have the same dimension with the

fragment. In the active space language, there are essentially 2LA active orbitals and the role

of the rest L − 2LA orbitals is to provide an effective potential V̂ eff
pq to the Hamiltonian of

the fragment based on the mean-field one-body reduced density matrix 1D
mf
m,n

V̂ eff
pq =

∑
m,n

[
1D

mf
m,n ([pq|mn]− [pn|mq])

]
â†pâq, (9)

where we have continued to use m,n, k, l as the indices for the original spin-orbitals of the

molecule and p, q, r, s as the indices for the rotated spin-orbitals of the embedded system
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following the main text. The summation of m,n runs over all unentangled orbitals including

the inactive orbitals ΩA
mf. The embedded Hamiltonian can now be written as

Ĥemb = Enuc +
∑
p,q

d̃pqâ
†
pâq +

∑
p,q,r,s

1

2
h̃pqrsâ

†
pâ

†
qârâs, (10)

with d̃pq defined as the transformed one-electron kinetic and Coulomb energy plus the effec-

tive potential of the unentangled electrons

d̃pq =
∑
k,l

T †
pkdklTlq +

∑
m,n

[
1D

mf
m,n ([pq|mn]− [pn|mq])

]
, (11)

and h̃pqrs defined as the transformed two-electron Coulomb interaction

h̃pqrs =
∑

k,l,m,n

T †
pkT

†
qlhklmnTmrTns (12)

where the transformation matrix T is written as:

T =

 I(LA×LA) 0(LA×LA)

0((L−LA)×LA) B((L−LA)×LA).

 . (13)

and B((L−LA)×LA) are the LA bath orbitals entangled with the fragment.

Based on Ĥemb, the one-body reduced density matrix 1DA
high for the embedded system:

1DA
high =

 1Dfrag,A
(LA×LA)

1Dinter,A
(LA×LA)

1D† inter,A
(LA×LA)

1Dbath,A
(LA×LA)

 , (14)

is obtained by a high-level quantum solver mentioned in Section I E and so is the two-body

reduced density matrix 2DA
high.

D. Constraint for high-level solution

After solving all fragments, some constraints could be introduced to regulate the high-level

solutions self-consistently [1]. The electrons would be re-distributed between the fragment

and bath during the DMET iteration, and as a result the number of electrons in the fragments

may not sum up to the total number of electrons of the full system.

A global chemical potential µglobal is introduced to fix this problem by modifying the

Hemb as

Ĥemb ← Ĥemb − µglobal

LA∑
r∈ΩA

â†râr. (15)
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Here, we have defined ΩA =
⋃

j Ω
A
j \ ΩA

mf, where ΩA
mf is a set of inactive orbitals treated

at mean-field level and excluded from the DMET iteration. We note ΩA
mf could be an empty

set. The wavefunction in the fragment A can be represented by

|ΨA⟩ = |ΨΩA⟩ ⊗ |ΦA
mf⟩ , (16)

where |ΨΩA⟩ denotes the high-level wavefunction in the selected basis set ΩA, and |ΦA
mf⟩ is

the mean-field solution, a single product state spanning the basis of inactive orbital ΩA
mf.

The role of ΦA
mf is providing an effective potential V̂ eff

pq to the embedded Hamiltonian via

Eq 9. We can find that 1D
mf
rr is irrelevant to the self-consistency condition for single-shot

DMET. Therefore, this method is different from those simply adopting an active space high-

level solver, in which the inactive orbitals will be involved in the optimization process. In

our workflow, the Newton-Raphson method has been used to optimize µglobal by solving the

equation L (µglobal) = 0.

As indicated in the main text, the single-shot DMET cost function is written as

L (µglobal) =

(∑
A

LA∑
r∈ΩA

1D
frag,A
rr (µglobal) +Nmf −Nocc

)2

, (17)

where Nmf =
∑

A

∑
r∈ΩA

mf

1D
mf
rr is the number of electrons in the inactive orbitals obtained

at mean-field level andNocc is the total number of electrons. The solution could be improved

further by eliminating the discrepancy between the mean-field one-body density matrix and

the fragment one-body density matrix by adding a correlation potential Ĉ(u) to Hamiltonian

Ĥ:

Ĥ ← Ĥ + Ĉ(u), (18)

where Ĉ(u) takes the form

Ĉ(u) =
∑
A

∑
rs∈ΩA

ursâ
†
râs. (19)

With inactive orbitals, the cost function can be written as

L(u) =
∑
A

∑
rs∈ΩA

(
1Dfrag,A

rs − 1Dmf
rs (u)

)2
+ γ

∑
rs∈

⋃
A ΩA

mf

(
1Dmf

rs (u)− 1Dmf
rs (0)

)2
, (20)

where 1Dmf
rs (0) is the one-body reduced density matrix without the fitted correlation po-

tential and γ is a predefined weight constant. The last term ensures minimal effect of the

correlation potential on the inactive orbitals ΩA
mf.
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The approach which only keeps the conservation of electron number is named as single-

shot DMET [1], while the one that introduces the correlation potential is named as correla-

tion potential fitting DMET (or self-consistent DMET) [1–3].

Single-shot DMET could also be modified case by case to improve the DMET performance

or save the computational cost. In some cases, we are only interested in a small region in the

whole system, such as the reaction center of a large organic molecule. Then the interested

region can be treated as the only fragment and the calculation of the embedded system

is carried out without any constraint. This modification is named active space DMET or

DMET(AS) [1]. We note that from a chemical perspective, if FCI is used as the DMET

solver, this exactly corresponds to a CASCI calculation and the role of DMET is to define

an active space.

E. VQE with Energy Sorting Unitary Coupled Cluster Ansatz

In this work, we use the energy sorting strategy to construct a compact quantum circuit

for the ground state searching. The workflow of ESVQE is summarized below:

1. Generate the reference state, i.e. the Hartree-Fock state, and construct the operator

pool O to build the wave function ansatz. For UCCSD ansatz, the operator pool O

consists of all the possible single- and double-excitation operators T̂pr and T̂pqrs.

2. VQE optimization iteration is carried out for each operator T̂i ∈ O for Ei. The

importance of the operator is evaluated by the energy difference with the reference

state ∆Ei = Ei−Eref. ∆Ei = Ei−Eref with Ei = minθi ⟨Ψref|e−θi(T̂i−T̂ †
i )Ĥeθi(T̂i−T̂ †

i )|Ψref⟩

and Eref = ⟨Ψref|Ĥ|Ψref⟩ Then, sorted list E = {(∆Ei, T̂i)}sorted is formed.

3. The operators with contributions above a threshold |∆Ei| > ε are picked out and used

to perform the VQE optimization. In this work we set ε = 1× 10−5.

4. Finally, output the circuit parameters corresponding to the optimized wave function

|Ψopt⟩ together with the energy Eopt and exit.

In the initialization process, the reference energy Eref in Step 2 on a Hartree-Fock state

can be classically calculated efficiently. The energy Ei is measured on a quantum computer,

which is the additional measurement cost compared to conventional VQE. In this work, we
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use the first-order Trotter decomposition. Note that extra fine-tuning can be performed

after step 3 by iteratively adding more operators to the ansatz until the energy difference

E(k−1) − E(k) between the (k − 1)th and the kth iteration (k ≥ 1) is smaller than a certain

convergence criterion. In this work we skip this step for simplicity.

F. Computation of expectation value

The expectation will be calculated in a so-called democratic way, first proposed in Ref. [1].

It means if an operator has the indices from different fragments, the expectation of this

operator will be the average of expectation for this operator in different fragments. For

instance:

⟨â†i âj + â†j âi⟩ = ⟨ΨA|â†i âj|ΨA⟩+ ⟨ΨB|â†j âi|ΨB⟩, (21)

where the i and j belong to the fragment A and B, respectively. So are the two-body terms

and so on.

II. TYPICAL DECOMPOSITION OF UNITARY EVOLUTION

In our work, the embedded small system is solved with high-level quantum solver, par-

ticularly in this work is mainly ESVQE. The ESVQE is well described in I E. The single-

and double-excitation operators T̂pr and T̂pqrs are utilized to construct the compact quantum

circuit.

For example, the wavefunction |Ψ⟩ of a embedded system can be ideally constructed

from the UCCSD ansatz |Ψ⟩ = e
∑Nop

i=1 T̂i−T̂i
†
|Ψ0⟩, where Ti, Nop represents the corresponding

single- and double excitions operators and number of operators in the selected operator

pools. we perform the Jordan-Wigner transformation to change from fermion space to

qubit space to enable the quantum simulation. Generally, the directly unitary evolution

is hard to implement. so first-order Trotterization is always employed, results in quantum

circuit generated as the product of a series of time evolution of Pauli strings like U(θ⃗) =

eiθ1P̂1eiθ2P̂2eiθ3P̂3 ..., where P̂i are Pauli strings.

Specially, for single excitation operators associate with coefficient θ that after Jordan-
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Wigner transform, it can be written as [8]

t̂ai − t̂a†i = θ(a†aai − a†iaa)

JW
= i

θ

2
(σy

aσ
x
i − σx

aσ
y
i )

(
a−1⊗

k=i+1

σz
k

)
(22)

[σy
aσ

x
i , σ

x
mσ

y
n] = 0 if m ̸= a, n ̸= i. Thus, after first-order Trotterization, the corresponding

unitary operators may split as the product a series of unitary operator ei
θ
2
σy
aσ

z
k...σ

x
i , ei

θ
2
σx
aσ

z
k...σ

y
i ,

etc. Similarly, for the double excitation operators associated with another coefficient θ may

leads to

t̂abij − t̂ab†ij = θ(a†aa
†
baiaj − a†ja

†
iabaa)

JW
=

θ

8
(iσy

aσ
x
b σ

x
i σ

x
j − iσx

aσ
y
bσ

x
i σ

x
j − iσx

aσ
x
b σ

y
i σ

x
j

+ iσx
aσ

x
b σ

x
i σ

y
j − iσy

aσ
y
bσ

y
i σ

x
j + iσy

aσ
y
bσ

x
i σ

y
j

+ iσy
aσ

x
b σ

y
i σ

y
j − iσx

aσ
y
bσ

y
i σ

y
j )

(
i−1⊗

k=m+1

σz
k

)(
j−1⊗

p=n+1

σz
p

)
,

(23)

and it can be split as product of similar time evolution of single Pauli strings after Trot-

terization. To realize the time evolution of single Pauli strings, such as a typical operator

eiθσ
z
1σ

z
2σ

z
3σ

z
4 it may be decomposed into single-qubit rotation gates and two-qubit CNOT

gate [9] as

1 • •
2 • •
3 • •

4 Rz(2θ)

. (24)

Other operators may be decomposed to similar circuits other than some different in single

rotations. Generally, a time evolution of single Pauli string with length m (Note ignore

the identity operator), assume n out of the m is Pauli Z operator, and the rest is either

Pauli X or Y , then the corresponding gate number would be 2(m − 1)(CNOT gates) and

1 + 2(m − n)(single-qubit gates) and the corresponding gate-depth would be 2(m − 1) + 1

when (m ̸= n) or 2(m − 1) + 3 when (m ̸= n). Note the above analysis does not take any

hardware constraint into consideration, such as only allow nearest two-qubit gate and we

also assume the basis-rotation single qubit gate can be implemented in parallel, so that 2

more extra depth is required when m ̸= n.

According to ESVQE, each operators corresponding to one parameter. The operator

did not selected into the operator pools shall disapper in et̂−t̂† will be eliminated and the
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corresponding Pauli strings in the quantum circuit shall disappear, leading to significant

reduction to the circuit depth.

III. NUMERICAL RESULTS

A. Convergence of the DMET algorithm

In our simulation the DMET cost function L(µglobal) typically converges within a few

round of iterations. In Table I, we display the convergence of the DMET cost functions

in DMET iterations using different basis sets of the H10 system. Each DMET iteration

corresponds to a certain number of ESVQE runs, depending on the fragmentation of the

system. It is found that, regardless of the basis set used, the convergence of the cost function

is reached within 3 to 4 iterations. Here the convergence threshold is set as 1× 10−5.

TABLE I. Convergence of the DMET cost function L(µglobal) in DMET iteration for the H10

system.

Basis Set STO-3G 6-31G

Bond Distance 1.0 2.0 2.8 1.0 2.0 2.8

Iteration 1 −2.2× 10−3 1.3× 10−3 6.2× 10−5 1.1× 10−2 4.4× 10−2 6.1× 10−2

Iteration 2 −1.3× 10−3 2.1× 10−3 2.8× 10−4 1.2× 10−2 4.6× 10−2 6.1× 10−2

Iteration 3 9.2× 10−9 −4.2× 10−5 3.0× 10−9 −2.2× 10−5 1.9× 10−3 −5.3× 10−5

Iteration 4 — — — — −2.7× 10−5 —

B. Absolute energies

In Table II, we list the absolute HF (either restricted or unrestricted), B3LYP, CCSD

and DMET-ESVQE energies for the specified geometries of C6H8 hydrogenation and the C18

molecule. All methods except HF are non-variational, so direct comparisons of the absolute

energies are of limited indication.
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TABLE II. Absolute energies of the specified geometries of the systems invested in the main text

by HF, B3LYP, CCSD and DMET-ESVQE. The meanings of the ”Symbol”s can be found in the

corresponding main text.

System Basis Symbol HF B3LYP CCSD DMET-ESVQE

C6H8+H2 STO-3G ETS -229.853 -231.361 -230.371 -230.275

C18 STO-3G Ecumu -672.783 -676.324 -673.799 -674.325

C18 cc-pVDZ Ecumu -681.204 -684.962 -683.223 -682.624

C. Analysis of the errors

Here we discuss the errors for DMET-ESVQE simulation in length to gain more insight

into ESVQE and DMET. In Fig. 1 we show the relative error for the results derived by

CCSD, ESVQE and DMET-ESVQE in the H10 system with STO-3G and 6-31G basis set.

The reference ground truth is the results given by FCI in the respective basis set. In both

panel (a) and panel (b) the convergence failure for CCSD is clearly visible. For STO-3G

basis set, the results for conventional ESVQE is worse than DMET-ESVQE proposed here.

This outcome might be surprising in the sense that the simulation of conventional ESVQE

requires more qubits than DMET-ESVQE. Indeed, in the case where FCI is used as the

high-level solver (DMET-FCI), DMET-FCI is apparently an approximation to the original

FCI method and the role of DMET is to reduce the computational cost. The accuracy

of DMET-FCI can be improved by using larger fragment size until the fragment size is

equal to half of the whole system. However, the situation is not the same if approximate

quantum chemistry solvers such as CCSD and ESVQE are considered. In the specific case of

H10 with each single H atom as a fragment, it is well established that DMET-FCI produces

the exact result in the dissociation limit [1]. The result is natural to understand in that

DMET effectively adds up energies of individual H atoms which are treated at the FCI

level. The key point of the H10 case is that DMET-CCSD or DMET-ESVQE is equivalent to

DMET-FCI because the fragment+bath problem is a two-electron two-orbital problem. As

a result, DMET-CCSD or DMET-ESVQE becomes more accurate than CCSD or ESVQE

respectively at the dissociation limit. Despite the argument here, we do not anticipate

that the DMET framework is able to reduce computational cost and improve accuracy
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FIG. 1. Relative error for the homogeneous stretching of a evenly-spaced hydrogen chain composed

of 10 atoms in (a) STO-3G and (b) 6-31G basis set.

simultaneously for general chemical systems. For 6-31G basis set, the error of DMET-

ESVQE deviates from the error of DMET-FCI at the dissociation limit, which might be due

to the energy sorting truncation of the ESVQE ansatz and the Trotter error [10]. Using

more expensive VQE solver such as ADAPT-VQE [11] is possible to alleviate the problem.

We term this approach as DMET-ADAPT. The implementation we use for ADAPT-VQE

is Qiskit [12] (qiskit nature version: 0.3.2) with default parameters, which means that the

energy convergence threshold is set to 1×10−5. It is shown in Fig. 1 that, as a more expensive

method, DMET-ADAPT yields more accurate results than DMET-ESVQE. However, the

simulation is much more time consuming, and the error at long bond distance compared to

DMET-FCI is still visible.

The potential energy curves by CCSD and DMET-ESVQE shown in the main text are

not well aligned. In Fig. 2 we explore its origin by checking the convergence of fragment

size with STO-3G basis set using CCSD as the high-level solver, termed as DMET-CCSD.

Here we have replaced ESVQE with CCSD because their performance should be of the

same level. The fragment size is defined as the number of carbon atoms contained in each

fragment. For the θ = 16◦ geometry and the θ = 18◦ geometry we find that by increasing

the fragment size the energy obtained by DMET-CCSD converges to the energy obtained

by CCSD and E − ECCSD approaches to zero. When the number of carbon atoms in the

fragment is 9, DMET-CCSD effectively reduces to CCSD. For the θ = 20◦ geometry, the

difference between DMET-CCSD and CCSD abruptly increases when there are 3 carbon

atoms in each fragment. This is actually a known issue of DMET that using larger fragment

size might deteriorate the outcome [1] and strategies to improve this shortcoming are under
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FIG. 2. The convergence of DMET with respect to the fragment size using CCSD as the high level

solver. The reference energy ECCSD is obtained by solving the whole C18 molecule using CCSD.

The fragment size is defined as the number of carbon atoms in each fragment.

active development [13–15]. In principle, using a larger fragment size produces more

accurate DMET energy. However, such a tendency may suffer from different issues. The

DMET method itself is not variational and the fragment size is not identical to the size of

active space in CI methods. Besides, increasing the DMET fragment size has a side effect

that may increase the error of the high-level solver. When a larger DMET fragment size is

used, the embedded problem becomes more complex and the high-level solver might be less

efficient and hence become more inaccurate, leading to deteriorated results. This effect is

manifested in Fig. 1 of the supporting information and is discussed in detail.
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