Supporting Information

Modular allylation of $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ bonds by combining decatungstate photocatalysis and HWE olefination in flow

Luca Capaldo, ${ }^{1, \dagger}$ Stefano Bonciolini, ${ }^{1, \dagger}$ Antonio Pulcinella, ${ }^{1}$ Manuel Nuño, ${ }^{2}$ Timothy Noël ${ }^{1, *}$
${ }^{1}$ Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

${ }^{2}$ Vapourtec Ltd., Park Farm Business Centre, Fornham St Genevieve, Bury St Edmunds, Suffolk IP28

6TS, United Kingdom.

* Email: t.noel@uva.nl

Table of Contents

1. General information S4
2. Chart of Starting Materials S5
3. Synthesis of Starting Materials S6
Synthesis of protected amines $\mathbf{1 h} \mathbf{- j}$ S6
Synthesis of protected helicin S21 S6
Synthesis of indomethacin aldehyde derivative $\mathbf{S 2 3}$ S7
Synthesis of diethyl (1-cyanovinyl)phosphonate 2'. S7
Synthesis of diethyl (3-oxobut-1-en-2-yl)phosphonate 2' ${ }^{\prime \prime}$. S7
Synthesis of diethyl (3-oxo-3-phenylprop-1-en-2-yl)phosphonate $\mathbf{2}^{\prime \prime}$. S7
Synthesis of diethyl (1-phenylvinyl)phosphonate 2'"'. S7
4. Optimization of reaction conditions S9
Optimization of reaction conditions: first step (radical addition) S9
Screening of SOMOphiles in the Giese reaction S11
Optimization of reaction conditions with (deuterated) paraformaldehyde S12
Optimization of reaction conditions with aromatic aldehydes S13
5. Mechanistic investigation S15
Kinetic Isotope Effect (KIE) in flow S15
Chemical quenching in flow S16
Mechanism proposal S17
6. General procedures S18
General procedure for the Giese-type radical addition step (GP1) S18
General procedure for the allylation with paraformaldehyde (GP2) S18
General procedure for the allylation with deuterated paraformaldehyde (GP3) S18
General procedure for the allylation with aromatic aldehydes - fed-batch (GP4) S19
General procedure for the allylation with aromatic aldehydes - telescoped (GP5) S19
General procedure for the allylation with aliphatic aldehydes - fed-batch (GP6) S20
General procedure for the synthesis of compounds 59-61 (GP7) S20
7. Characterization data of synthesized compounds S22
Characterization data of alkylphosphonates $\mathbf{3 a}, \mathbf{3 e}, \mathbf{3 f}, \mathbf{3 n - q}, \mathbf{3 u}, \mathbf{3 v}$ S22
Characterization data of compounds 4-19 S26
Characterization data of compounds $\mathbf{4 - \mathbf { d } _ { \mathbf { 2 } }}, \mathbf{2 0 - 2 3}$ S31
Characterization data of compounds 24-47 S33
Characterization data of compounds 48-52 S44
Characterization data of compounds 53-55 S47
8. Characterization data of compounds $\mathbf{5 6}, \mathbf{5 9 - 6 5}$ S49
9. Scale-up procedure (10 mmol) S53
10. Limitation of the scope S54
11. References S55
12. NMR Spectra of compounds $\mathbf{2}^{\prime}, \mathbf{2}^{\prime \prime}$. S56
13. NMR Spectra of compounds 3a, 3e, 3f, 3n-q, 3u, 3v S60
14. NMR Spectra of compounds 4-23 S78
15. NMR Spectra of compounds 24-55 S100
16. NMR Spectra of compounds 56, 59-65 S176

1. General information

All reagents and solvents were used as received without further purification, unless stated otherwise. Reagents and solvents were bought from Sigma Aldrich and TCI and, if applicable, kept under argon atmosphere. Diethyl vinylphosphonate was commercially available and use as received. Ethyl 2(diethoxyphosphoryl)acrylate was synthesized as reported in the literature. ${ }^{1}$ Technical solvents were bought from VWR International and Biosolve, and were used as received. The catalyst TBADT (tetrabutylammonium decatungstate, $\left.\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)_{4} \mathrm{~W}_{10} \mathrm{O}_{32}\right)$ was prepared according to a published procedure. ${ }^{2}$ All capillary tubing and microfluidic fittings were purchased from IDEX Health \& Science. Disposable syringes were purchased from Laboratory Glass Specialist. Syringe pumps were purchased from Chemix Inc. model Fusion 200 Touch. Product isolation was performed manually, using silica (60 , F 254 , Merck ${ }^{\mathrm{TM}}$) or by means of a Biotage system. TLC analysis was performed using Silica on aluminum foils TLC plates (F254, Supelco Sigma-Aldrich ${ }^{\mathrm{TM}}$) with visualization under ultraviolet light (254 nm and 365 nm) or appropriate TLC staining (cerium ammonium molybdate or potassium permanganate). ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}$ (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz) and ${ }^{31} \mathrm{P}(162 \mathrm{MHz})$ spectra were recorded unless stated otherwise at ambient temperature using a Bruker AV400 or a Bruker AV300. ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) downfield relative to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ and all ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm})$ unless stated otherwise. The following abbreviations have been adopted to describe the multiplicity: bs (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), hept (heptet), m (multiplet), $d d$ (double doublet), td (triple doublet), tt (triplet of triplets). ${ }^{31} \mathrm{P}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR was used for the quantitative analysis of the outcome of the photocatalyzed step (triphenyl phosphate as external standard): a 1D sequence with inverse-gated decoupling using 30° flip angle and a $\mathrm{d} 1=30 \mathrm{~s}$ was used.
Coupling constants (J) are reported in hertz (Hz). NMR data were processed using the MestReNova 14.1.0 software package. Known products were characterized through comparison with the corresponding ${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR from literature. The melting points were measured using a Büchi Melting Point M-565 apparatus. High resolution mass spectra (HRMS) were collected on an AccuTOF LC, JMS-T100LP Mass spectrometer (JEOL, Japen). The names of all products were generated using the PerkinElmer ChemBioDraw Ultra v.12.0.2 software package.
For batch experiments, a 3D-printed (PLA) reactor (inner diameter: 12.5 cm) internally coated with LED strips ($365 \mathrm{~nm}, 2.5 \mathrm{~m}, 300$ SMD5050 LEDs, 36 W) equipped with a 3D-printed (PLA) lid with 8 holes serving as vials holder was used; in this way, up to 8 reactions could be run simultaneously. Cooling was applied via a strong compressed air flow to keep the temperature below $30^{\circ} \mathrm{C}$. For flow experiments, a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil (ID $=0.75 \mathrm{~mm}$) and 60 W 365 nm LED was used for photochemical reactions in flow.
2. Chart of Starting Materials

3. Synthesis of Starting Materials

Synthesis of protected amines $\mathbf{1 h} \mathbf{- j}$.

Compounds $\mathbf{1 h} \mathbf{- j}$ were synthesized adapting a procedure reported in the literature. ${ }^{3}$ In particular, $\mathrm{Boc}_{2} \mathrm{O}(2.4 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv $)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in an oven-dried vial under inert atmosphere. In the meantime, in a 100 mL round-bottom flask, 4-DMAP ($122 \mathrm{mg}, 1 \mathrm{mmol}, 10 \mathrm{~mol} \%$) together with azetidine ($674 \mu \mathrm{~L}, 10 \mathrm{mmol}, \rho=0.847 \mathrm{~g} \mathrm{~mL}^{-1}$), pyrrolidine ($821 \mu \mathrm{~L}, 10 \mathrm{mmol}, \rho=0.866 \mathrm{~g}$ mL^{-1}) or piperidine ($988 \mu \mathrm{~L}, 10 \mathrm{mmol}, \rho=0.862 \mathrm{~g} \mathrm{~mL}^{-1}$) were dissolved in 30 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was placed in an ice bath and the $\mathrm{Boc}_{2} \mathrm{O}$ solution was added dropwise via a syringe. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 mins and then at room temperature for 20 hours. Reaction was monitored via ${ }^{1} \mathrm{H}$ NMR, quenched with water once completed and the organic phase was washed with water ($3 \times 25 \mathrm{~mL}$) and once with brine (25 mL). The resulting organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude was purified via column chromatography (SiO_{2}, Hexane: Ethyl Acetate $90: 10$). Yields: $\mathbf{1 h}$, colorless liquid, 64%; 1i, colorless liquid, $\mathbf{7 2 \%} \mathbf{\%} \mathbf{1} \mathbf{j}$, colorless liquid, 69%;

Spectroscopic data for compounds $\mathbf{1 h}, \mathbf{1 i}, \mathbf{1} \mathbf{j}$ are in accordance with those reported in the literature.
1h: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.95(\mathrm{t}, 4 \mathrm{H}), 2.18(\mathrm{p}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{4}$
1i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.30-3.28(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{3}$
1j: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.37(\mathrm{t}, 4 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{3}$

Synthesis of protected helicin $\boldsymbol{S} \mathbf{2 1}$.

Helicin was protected using a procedure reported in the literature. ${ }^{5}$ Spectroscopic data are in accordance with those reported in the literature. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 7.86\left(\mathrm{dd}, J_{1}=8, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}$, $\left.J_{1}=12, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17\left(\mathrm{dd}, J_{1}=12, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90\left(\mathrm{ddd}, J_{1}=10, J_{2}=5 \mathrm{~Hz}, J_{3}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}){ }^{5}$

Synthesis of indomethacin aldehyde derivative $\boldsymbol{S} 23$.

S23 was synthesized using a procedure reported in the literature. ${ }^{6}$ Spectroscopic data are in accordance with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53$ $-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.69\left(\mathrm{dd}, J_{1}=9, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 H) .{ }^{6}$

Synthesis of diethyl (1-cyanovinyl)phosphonate 2'.

Synthesized according to a procedure present in literature. ${ }^{7}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,148.1,116.6,114.8,114.7,114.7,64.0,63.9,16.3,16.3$.
${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.2$.
${ }^{2}$
HRMS (FI+) (m/z): [M+H]+ calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{P}, 190.0633$; found, 190.0628 .
Synthesis of diethyl (3-oxobut-1-en-2-yl)phosphonate 2'.
Synthesized according to a procedure present in literature. ${ }^{7}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83\left(\mathrm{dd}, J_{1}=17 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.72\left(\mathrm{dd}, J_{1}=6 \mathrm{~Hz}, J_{2}=1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,196.3,141.9,141.0,141.0,140.1,62.8,62.7,27.9,27.9$, 16.5, 16.4.
${ }^{31}$ P NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.4$.

Synthesis of diethyl (3-oxo-3-phenylprop-1-en-2-yl)phosphonate 2'".

Synthesized according to a procedure present in literature. Spectroscopic data in accordance with literature. ${ }^{7}$

Synthesis of diethyl (1-phenylvinyl)phosphonate 2'"'.

A solution of n -BuLi ($2.3 \mathrm{M}, 3.4 \mathrm{~mL}$, 1.4 equiv.) in hexane was added dropwise into an oven-dried two-neck round-bottom flask containing a solution of diethyl benzylphosphonate ($1.27 \mathrm{~g}, 5.6 \mathrm{mmol}$) in $\mathrm{THF}(12.0 \mathrm{~mL})$ at -
$78^{\circ} \mathrm{C}$ under N_{2}. The solution was stirred at this temperature for 15 min until a bright yellow color appeared. Paraformaldehyde ($0.42 \mathrm{~g}, 14 \mathrm{mmol}$) was then added and the cooling bath was removed. The reaction was continued at room temperature with stirring overnight. Then the solution was acidified by HCl 2 M , stirred for 30 minutes and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The resulting organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude was purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 70:30) to get 0.503 g of $\mathbf{2}^{\prime \prime \prime \prime}$ as a colorless oil (38% yield). Spectroscopic data are in accordance with those reported in the literature. ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 6.34\left(\mathrm{dd}, J_{1}=22, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.16\left(\mathrm{dd}, J_{1}=46 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right) 4.23-3.98(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.8(\mathrm{~d}, J=175 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=12 \mathrm{~Hz}), 131.8(\mathrm{~d}$, $J=8 \mathrm{~Hz}), 128.5,128.4,127.6(\mathrm{~d}, J=6 \mathrm{~Hz}), 62.3(\mathrm{~d}, J=6 \mathrm{~Hz}), 16.4(\mathrm{~d}, J=6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 17.1.

4. Optimization of reaction conditions

Optimization of reaction conditions: first step (radical addition)

The preliminary optimization of the first step of the telescoped approach, namely the Giese-type radical addition, was performed in batch conditions (Table S 1 , entries $1-8$) by studying the radical addition of cyclohexane (10) onto ethyl 2-(diethoxyphosphoryl)acrylate in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. Afterwards, we adapted our chemistry to flow conditions (Table S1, entries 9-17). As a quantification method a proton-decoupled, inverse-gated quantitative ${ }^{31} \mathrm{P}-\mathrm{NMR}$ was used since the starting material and the product show very defined peaks at 12.2 ppm and 23.5 ppm , respectively. Triphenyl phosphate was selected as the external standard (-16.2 ppm).

Reaction conditions for the optimization in batch: In a 7 mL borosilicate glass vial equipped with a screw cap, ethyl 2-(diethoxyphosphoryl)acrylate ($2,0.025-0.2 \mathrm{M}$), $\mathbf{1 o}$ (3-20 equiv) and TBADT ($1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. The resulting solution was Ar-bubbled for 1 min and irradiated with UV-A LEDs ($\lambda=365 \mathrm{~nm}, 36 \mathrm{~W}$) for 20 hours. After irradiation, the vial was opened and triphenyl phosphate was added as an external standard. The mixture was sonicated for 2 minutes to ensure complete solubilization of the standard, finally an aliquot was withdrawn to perform quantitative ${ }^{31} \mathrm{P}-\mathrm{NMR}$ to evaluate consumption and yield.

Reaction conditions for the optimization in flow: In a 7 mL borosilicate glass vial, ethyl 2(diethoxyphosphoryl)acrylate ($2,0.1 \mathrm{M}$), $\mathbf{1 0}$ (20 equiv) and TBADT ($1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) and the vial was sealed with a septum. The resulting solution was Ar-bubbled for 1 min and taken up with a syringe. Finally, the syringe was mounted on a syringe pump and pushed into a Vapourtec UV-150 equipped with UV-A or blue LEDs $(\lambda=365$ or $456 \mathrm{~nm}, 60 \mathrm{~W})$ for the required residence time. The outflow was collected in a 10 mL round-bottom flask and triphenyl phosphate was added as an external standard. The mixture was sonicated for 2 minutes to ensure complete solubilization of the standard, finally an aliquot was withdrawn to perform quantitative ${ }^{31} \mathrm{P}-\mathrm{NMR}$ to evaluate consumption and yield.

Table S1. Optimization of reaction conditions in batch and in flow for the Giese-type radical addition.

				conditions	EtOOC	
	Entry	10 (eq.)	[2]	Reaction conditions	2a consumption	Yield ${ }^{\text {a }}$
$\begin{aligned} & \frac{1}{3} \\ & 0 \\ & \hline 0 \end{aligned}$	1	5	0.025 M	TBADT ($1 \mathrm{~mol} \%$) $\operatorname{MeCN}(1 \mathrm{~mL})$, rt, N_{2} 36 W LED ($\lambda=365 \mathrm{~nm}$) 20 h	quant.	19\%
	2	"	0.05 M	"	quant.	28\%
	3	"	0.075 M	"	quant.	34\%
	4	"	0.1 M	"	quant.	40\%
	5	${ }^{\prime}$	0.2 M	"	quant.	40\%
	6	3	0.1 M	"	quant.	31%
	7	10	"	"	quant.	52%
	8	$20^{\text {b }}$	${ }^{\prime}$	"	quant.	62%
	9	10	"	TBADT ($1 \mathrm{~mol} \%$) $\operatorname{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{N}_{2}$ no light, 20 h	11\%	n.d.
	10	10	"	no TBADT MeCN (1 mL), rt, N_{2} 36 W LED ($\lambda=365 \mathrm{~nm}$) 20 h	<5\%	n.d.
	11	"	"	TBADT ($1 \mathrm{~mol} \%$) $\operatorname{MeCN}(1 \mathrm{~mL})$, rt, N_{2} 60 W LED $(\lambda=365 \mathrm{~nm})$ $\tau_{\mathrm{r}}: 5 \mathrm{~min}$	quant.	$\begin{aligned} & 65 \% \\ & (64 \%) \end{aligned}$
	12	"	"	$\begin{gathered} \text { TBADT }(1 \mathrm{~mol} \%) \\ \mathrm{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=365 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 3 \mathrm{~min} \end{gathered}$	87\%	46\%
	13	"	"	$\begin{gathered} \text { TBADT }(1 \mathrm{~mol} \%) \\ \text { MeCN }(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=365 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 1 \mathrm{~min} \end{gathered}$	43\%	25\%
	14	${ }^{\prime}$	"	```BP (1 mol%) MeCN (1 mL), rt, N2 60 W LED (}\lambda=365\textrm{nm} \taur: 5 min```	38\%	7\%
$\frac{5}{6}$	15	"	"	$\begin{gathered} \mathrm{BP}(10 \mathrm{~mol} \%) \\ \mathrm{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=365 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 5 \mathrm{~min} \end{gathered}$	88\%	45\%
	16	${ }^{\prime}$	"	$\begin{gathered} \mathrm{BP}(20 \mathrm{~mol} \%) \\ \mathrm{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=365 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 5 \mathrm{~min} \end{gathered}$	quant.	68\%
	17	"	"	$\begin{gathered} \mathrm{EY}(10 \mathrm{~mol} \%) \\ \mathrm{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=450 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 5 \mathrm{~min} \end{gathered}$	12\%	n.d.
	18	${ }^{\prime}$	"	$\begin{gathered} \text { FL }(10 \mathrm{~mol} \%) \\ \mathrm{MeCN}(1 \mathrm{~mL}), \mathrm{rt}, \mathrm{~N}_{2} \\ 60 \mathrm{~W} \text { LED }(\lambda=365 \mathrm{~nm}) \\ \tau_{\mathrm{r}}: 5 \mathrm{~min} \end{gathered}$	21\%	n.d.
	$19^{\text {c }}$	"	"	AQ or PT (10 mol\%) MeCN (1 mL), rt, N_{2}	n.a.	n.a.

${ }^{\text {a }}$ Yields determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy, triphenyl phosphate as the external standard. ${ }^{\mathrm{b}}$ the solution was gently heated up prior to irradiation to promote complete solubilization of $\mathbf{1 0} .{ }^{c}$ the reaction mixture was not homogeneous even upon prolonged sonication and heating, and could not be used under flow conditions. n.d.: not detected; n.a.: not available. BP: benzophenone; EY: Eosin Y; FL: fluorenone; AQ: anthraquinone; PT: 5,7,12,14-pentacenetetrone

Screening of SOMOphiles in the Giese reaction

In a typical experiment, (substituted) vinylphosphonate (0.2 mmol), $\mathbf{1 a}(115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5$ equiv) and TBADT ($34 \mathrm{mg}, 5 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.68 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(1 \mathrm{~min})$. The mixture was taken up with a 2 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.

Scheme 1. Screening of different SOMOphiles.

Optimization of reaction conditions with (deuterated) paraformaldehyde

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(5 \mathrm{~min})$. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial a stock solution of $\mathbf{S 1}$ or $\mathbf{S 1 - d _ { 2 }}$ in dry THF was prepared and LiOtBu 1 M in dry THF was added to obtain final concentrations as shown in Table S2. Upon addition of LiOtBu and following sonication (10 min) the suspension turned to a flowable solution. This stock solution was taken up with a 10 mL syringe and mounted on a syringe pump (Feed B).

Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.802 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was loaded on both syringe pumps to push the combined feeds into a PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) kept in an ultrasonic bath at $40^{\circ} \mathrm{C}$. Finally, the resulting reaction crude was directly collected into a sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ or trichloroethylene as the external standard).

Table S2. Optimization of the reaction with (deuterated) paraformaldehyde.

[^0]
Optimization of reaction conditions with aromatic aldehydes

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(2 \mathrm{~min})$. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs. Then Method A or Method B was applied.

Method A (Telescoped)

Parallelly, in an oven-dried vial a stock solution of benzaldehyde $\mathbf{S} \mathbf{2}$ in dry THF was prepared under N_{2} atmosphere, to which LiOtBu 1 M in dry THF was added. This stock solution was taken up with a 10 mL syringe and mounted on a syringe pump.
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.420 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was loaded on both syringe pumps to push the combined feeds into a PFA coil $(\mathrm{ID}=0.75 \mathrm{~mm})$ at $1.032 \mathrm{~mL} \mathrm{~min}^{-1}$ for the required residence time. Finally, the resulting reaction crude was directly collected into a sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio.

Method B (Fed-batch)

Parallelly, in an oven-dried vial benzaldehyde $\mathbf{S} 2$ was dissolved in dry THF under N_{2} atmosphere. The solution was kept under inert atmosphere with a balloon filled with N_{2}.
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. Before the first drop of the outflow of the photoreactor entered in contact with the aldehyde solution, LiOtBu 1 M in dry THF ($0.550 \mathrm{~mL}, 0.55 \mathrm{mmol}, 1.1$ equiv) was added in one portion to the latter to obtain a final concentration of benzaldehyde of 0.54 M . The blue outflow of the latter was directly added to aldehyde solution via a needle. After all Feed A was added, the solution was kept stirring at room temperature for the indicated time. Eventually, the solution was quenched with sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio.

Table S3. Optimization of the reaction with aromatic aldehydes.

Entry	[S2]	τ_{r}	${ }^{1} \mathrm{H}$-NMR yield ${ }^{\text {a }}$	RSM
1	0.47 M (1.3 equiv)	11 min	24\%	49\%
$2^{\text {b }}$	0.47 M (1.3 equiv)	11 min	27\%	48\%
$3^{\text {c }}$	0.47 M (1.3 equiv)	11 min	40\%	29\%
$4^{\text {c }}$	0.47 M (1.3 equiv)	51 min	67\%	10\%
$5^{\text {d }}$	0.47 M (1.3 equiv)	11 min	61\%	10\%
$6^{\text {d }}$	0.55 M (1.5 equiv)	60 min	68\%	traces
7	1.08 M (3.0 equiv)	11 min	41\%	45\%
$8{ }^{\text {d }}$	1.08 M (3.0 equiv)	11 min	60\%	11\%

Fed-batch				
Entry	S2 (equiv)	time (h$)$	${ }^{1} \mathrm{H}-\mathrm{NMR}$ yield ${ }^{\mathrm{a}}$	RSM
1	1.3 equiv. $(0.54 \mathrm{M})$	1	49%	22%
2	1.3 equiv. $(0.54 \mathrm{M})$	2	63%	8%
3	1.3 equiv. $(0.54 \mathrm{M})$	3	62%	7%
$\mathbf{4}$	$\mathbf{1 . 5}$ equiv. $(\mathbf{0 . 5 4} \mathbf{~ M})$	$\mathbf{3}$	$\mathbf{6 5 \%}$ (60\%)	traces

${ }^{\text {a }}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the external standard. ${ }^{\mathrm{b}}$ the coil for the second step (HWE olefination) was heated at $30{ }^{\circ} \mathrm{C}$ by means of a water bath. ${ }^{\mathrm{c}}$ the coil for the second step (HWE olefination) was heated at $50^{\circ} \mathrm{C}$ by means of a water bath. ${ }^{\mathrm{d}}$ the coil for the second step (HWE olefination) was heated at $60^{\circ} \mathrm{C}$ by means of a water bath; a back-pressure regulator (BPR, 2.8 bar) was used.

5. Mechanistic investigation

Kinetic Isotope Effect (KIE) in flow

a)

b)

In a 7 mL borosilicate glass vial, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 0.1 \mathrm{M}$), $\mathbf{1 0}$ or $\mathbf{1 0}-\boldsymbol{d}_{\mathbf{1 2}}$ (10 equiv) and TBADT ($1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and the vial was sealed with a septum. The resulting solution was N_{2}-bubbled for 1 min and taken up with a syringe. Finally, the syringe was mounted on a syringe pump and pushed into a Vapourtec UV-150 equipped with UV-A or blue LEDs ($\lambda=365 \mathrm{~nm}, 60 \mathrm{~W}$) for the required residence time ($\tau_{\mathrm{r}}=0.75,1.25,1.50,2.00 \mathrm{~min}$). The outflow was collected in a 10 mL round-bottom flask and triphenyl phosphate was added as an external standard. The mixture was sonicated for 2 minutes to ensure complete solubilization of the standard, finally an aliquot was withdrawn to perform quantitative ${ }^{31} \mathrm{P}-\mathrm{NMR}$ to evaluate the yield.

Residence time (min)	Yield (\%) for reaction a)	Yield (\%) for reaction b)
0	0	0
0.75	24	12
1.25	36	20
1.50	45	22
2.00	52	27

Yield for reactions a) and b) was plotted vs residence time (Figure S1) to give a linear correlation and the KIE was calculated as the ratio between the slopes of the two curves to be $\mathbf{1 . 9}$.

Figure S1. Yield vs residence time for the evaluation of the KIE.

Chemical quenching in flow

In a 7 mL borosilicate glass vial, ethyl 2-(diethoxyphosphoryl)acrylate (2, 0.1 M), TEMPO (5 equiv) and TBADT ($1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and the vial was sealed with a septum. The resulting solution was N_{2}-bubbled for $1 \mathrm{~min}, \mathbf{1 0}$ was added and the reaction mixture was taken up with a syringe. Finally, the syringe was mounted on a syringe pump and pushed into a Vapourtec UV-150 equipped with UV-A or blue LEDs $(\lambda=365 \mathrm{~nm}, 60 \mathrm{~W})$ for the required residence time $\left(\tau_{\mathrm{r}}=5 \mathrm{~min}\right)$. The outflow was collected in a 10 mL round-bottom flask and triphenyl phosphate was added as an external standard. The mixture was sonicated for 2 minutes to ensure complete solubilization of the standard, finally an aliquot was withdrawn to perform quantitative ${ }^{31} \mathrm{P}-\mathrm{NMR}$ to evaluate the yield. Product $\mathbf{3 0}$ was not detected.

Mechanism proposal

Scheme 2. Mechanism proposal for the modular allylation of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds via the combination of decatungstate photocatalysis and HWE olefination.

6. General procedures

General procedure for the Giese-type radical addition step (GP1)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(5 \mathrm{~min})$. In the case of volatile compounds, these were added after degassing via syringe through the septum. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was collected in a round-bottom flask. Finally, the solvent was removed and the reaction crude was purified via column chromatography. This procedure was used for compounds $\mathbf{3 a}, \mathbf{3 e}, \mathbf{3 f}, \mathbf{3 n}-\mathbf{q}, \mathbf{3 u}, \mathbf{3 v}$.

General procedure for the allylation with paraformaldehyde (GP2)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(5 \mathrm{~min})$. In the case of volatile compounds, these were added after degassing via syringe through the septum. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.

Parallelly, in an oven-dried vial a stock solution 0.23 M in paraformaldehyde (S1) and 0.084 M in LiOtBu (a 1 M in dry THF solution was used) was prepared. Upon addition of LiOtBu and following sonication (10 min) the suspension turned to a flowable solution. This stock solution was taken up with a 10 mL syringe and mounted on a syringe pump (Feed B).
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.802 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was loaded on both syringe pumps to push the combined feeds into a 7.10 mL PFA coil (ID $=0.75 \mathrm{~mm}$) at $1.414 \mathrm{~mL} \mathrm{~min}^{-1}\left(\tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. This second coil was kept in an ultrasonic bath at $40^{\circ} \mathrm{C}$. Finally, the resulting reaction crude was directly collected into a sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard $)$ and then purified via column chromatography.
This procedure was used for compounds 4-19.

General procedure for the allylation with deuterated paraformaldehyde (GP3)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(5 \mathrm{~min})$. In the case of volatile
compounds, these were added after degassing via syringe through the septum. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial a stock solution 0.11 M in deuterated paraformaldehyde ($\mathbf{S 1} 1 \mathbf{d}_{\mathbf{2}}$) and 0.084 M in LiOtBu (a 1 M in dry THF solution was used) was prepared. Upon addition of LiOtBu and following sonication (20 min) the suspension turned to a flowable solution. This stock solution was taken up with a 10 mL syringe and mounted on a syringe pump (Feed B).
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.802 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was loaded on both syringe pumps to push the combined feeds into a 11.3 mL PFA coil (ID $=0.75 \mathrm{~mm}$) at $1.414 \mathrm{~mL} \mathrm{~min}^{-1}\left(\tau_{\mathrm{R}}=8 \mathrm{~min}\right)$. This second coil was kept in an ultrasonic bath at $40^{\circ} \mathrm{C}$. Finally, the resulting reaction crude was directly collected into sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard $)$ and then purified via column chromatography.

This procedure was used for compounds 4-d $\mathbf{4}, \mathbf{2 0 - 2 3}$.

General procedure for the allylation with aromatic aldehydes - fed-batch (GP4)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(2 \mathrm{~min})$. In the case of volatile compounds, these were added after degassing via syringe through the septum. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial benzaldehyde ($\mathbf{S 2}, 76 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.04 \mathrm{~g} \mathrm{~mL}^{-1}$) was dissolved in dry THF $(830 \mu \mathrm{~L})$ under N_{2} atmosphere. The solution was kept under inert atmosphere with a balloon filled with N_{2} (Batch).
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. Before the first drop of the outflow of the photoreactor entered in contact with the Batch solution, LiOtBu 1 M in dry THF ($0.550 \mathrm{~mL}, 0.55 \mathrm{mmol}, 1.1$ equiv) was added in one portion to the latter to obtain a final concentration of benzaldehyde of 0.54 M . After all Feed A was added, the solution was kept stirring at room temperature for the indicated time. Eventually, the solution was quenched with sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio and then purified via column chromatography. This procedure was used for compounds 24-35, 40-47, 53.

General procedure for the allylation with aromatic aldehydes - telescoped (GP5)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(2 \mathrm{~min})$. The mixture was taken
up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 1.35 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial a stock solution 0.54 M in 2-(trifluoromethyl)benzaldehyde $\mathbf{S 6}$ and 0.40 M in LiOtBu (a 1 M in dry THF solution was used) was prepared. This stock solution was taken up with a 10 mL syringe and mounted on a syringe pump (Feed B).
Feed A was pumped at $0.270 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=1.35 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.190 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was used to push the combined feeds into a 14.4 mL PFA coil $(\mathrm{ID}=0.75 \mathrm{~mm})$ at $0.46 \mathrm{~mL} \mathrm{~min}^{-1}$ at $40^{\circ} \mathrm{C}\left(\tau_{\mathrm{R}}=30 \mathrm{~min}\right)$ or $0.24 \mathrm{~mL} \mathrm{~min}^{-1}$ at $60^{\circ} \mathrm{C}\left(\tau_{\mathrm{R}}\right.$ $=60 \mathrm{~min}$, BPR: 2.8 bar). Finally, the resulting reaction crude was directly collected into a sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio and then purified via column chromatography.
This procedure was used for compounds 24, 26-30, 33, 35-41, 45.

General procedure for the allylation with aliphatic aldehydes - fed-batch (GP6)

In a typical experiment, ethyl 2-(diethoxyphosphoryl)acrylate ($\mathbf{2}, 118 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 a}(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv) and TBADT ($17 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.7 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(2 \mathrm{~min})$. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial a solution 0.084 M in LiOtBu (a 1 M in dry THF solution was used) was prepared. The solution was kept under inert atmosphere with a balloon filled with N_{2} (Batch).
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ through the Vapourtec system ($\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}$) and completely collected in the Batch solution. After 5 minutes of stirring, heptaldehyde ($\mathbf{1 v}, 106 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv, $\rho=0.809 \mathrm{~g} \mathrm{~mL}^{-1}$) was added in one portion. The resulting solution was kept stirring at room temperature for the indicated time. Eventually, the solution was quenched with sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio and then purified via column chromatography.
This procedure was used for compounds 48-52, 54-55.

General procedure for the synthesis of compounds 59-61 (GP7)

In a typical experiment, diethyl (1-phenylvinyl)phosphonate ($\mathbf{2}^{\prime \prime \prime \prime}, 48 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathbf{1 a}(115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$, 5 equiv) and TBADT ($7 \mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.89 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(2 \mathrm{~min})$. The mixture was taken up with a 5 mL syringe and mounted on a syringe pump (Feed A) pumped at $0.204 \mathrm{~mL} \mathrm{~min}^{-1}\left(\tau_{\mathrm{R}}=15 \mathrm{~min}\right)$ into a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil (ID $=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs. The blue outflow was collected in a 10 mL round-bottom flask and the solvent was removed under vacuum. The crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard), the
deuterated solvent was removed and the crude was stripped twice with neat tetrahydrofuran $(2 \times 5 \mathrm{~mL})$ to remove traces of MeCN. Next, an oven-dried magnetic stirrer was added and the flask was sealed with a septum; an inert atmosphere was applied. Dry THF (2 mL) was added to redissolve the crude and the solution was cooled at $-78{ }^{\circ} \mathrm{C}$. BuLi (1.2 equiv.) was added dropwise at low temperature and the resulting green solution was kept stirring for 10 minutes, then the aldehyde (dissolved in 1 mL of dry THF) was added and the flask was removed from the cold bath and stirred at room temperature overnight. Finally, the reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and diastereomeric ratio and then purified via column chromatography.

7. Characterization data of synthesized compounds

Characterization data of alkylphosphonates 3a, 3e, 3f, 3n-q, 3u, 3v

ethyl 3-(benzo[d][1,3]dioxol-2-yl)-2-(diethoxyphosphoryl)propanoate (3a). Prepared according to GP1 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as light yellow oil (148 $\mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.19\left(\mathrm{dd}, J=5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28-$ $4.09(\mathrm{~m}, 6 \mathrm{H}), 3.34-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.72\left(\mathrm{dddd}, J_{1}=15 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=7 \mathrm{~Hz}, J_{4}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44$ (dddd, $\left.J_{1}=15 \mathrm{~Hz}, J_{2}=12 \mathrm{~Hz}, J_{3}=5 \mathrm{~Hz}, J_{4}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.34\left(\mathrm{t}, J_{1}=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.33\left(\mathrm{t}, J_{1}=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.24(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,168.4,147.2,147.1,121.6,121.5,109.1,108.9,108.6$, $108.5,63.1,63.0,62.9,62.8,61.6,40.3,39.0,31.7,31.6,16.3,16.3,16.2,16.2,13.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 21.7. HRMS $(\mathrm{ESI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{P}, 359.1260$; found: 359.1247 .

When the same reaction was performed with only 1 equivalent of $\mathbf{1 a}$, product $\mathbf{3 a}$ was formed in 65% yield (${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{CH}_{2} \mathrm{Br}_{2}$ as the external standard).

ethyl 2-(diethoxyphosphoryl)-3-(1,3,5-trioxan-2-yl)propanoate (3e). Prepared according to GP1 from 1e ($225 \mathrm{mg}, 2.5 \mathrm{mmol}, 5.0$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as light colorless oil ($90 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.17-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.05(\mathrm{~m}, 6 \mathrm{H}), 3.27-3.11(\mathrm{~m}, 1 \mathrm{H})$, $2.39\left(\mathrm{dddd}, J_{1}=15 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=8 \mathrm{~Hz}, J_{4}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.14\left(\mathrm{dddd}, J_{1}=14 \mathrm{~Hz}, J_{2}=12 \mathrm{~Hz}, J_{3}=5 \mathrm{~Hz}\right.$, $\left.J_{4}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.35-1.17(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,168.7,99.8,99.6,93.2,93.2$, $63.0,63.0,62.9,62.8,61.5,40.6,39.2,31.6,31.5,16.4,16.4,16.3,16.3,14.1 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 22.1. HRMS (ESI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{8} \mathrm{P}, 327.1209$; found: 327.1197.

ethyl 2-(diethoxyphosphoryl)-3-(tetrahydrothiophen-2-yl)propanoate (3f). Prepared according to GP1 from $1 f\left(220 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=0.999 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 1:2) to afford the product as a colorless oil (104 $\mathrm{mg}, 64 \%$) as an inseparable mixture of two diastereomers in a $2: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.29$ $-4.07(\mathrm{~m}, 12 \mathrm{H}$, major + minor $), 3.45-3.28(\mathrm{~m}, 2 \mathrm{H}$, major + minor $), 3.21-3.09(\mathrm{~m}, 1 \mathrm{H}$, major $), 3.08-2.98$ (m, 1H, minor), $2.90-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{dddd}, J_{1}=13 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=7 \mathrm{~Hz}, J_{4}=4 \mathrm{~Hz}, 2 \mathrm{H}\right.$,
major + minor $), 2.29-1.81(\mathrm{~m}, 8 \mathrm{H}$, major + minor $), 1.70-1.50(\mathrm{~m}, 2 \mathrm{H}$ major + minor $), 1.38-1.22(\mathrm{~m}, 18 \mathrm{H}$, major + minor). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1$ (minor), 169.1 (minor), 169.1 (major), 169.0 (major), 63.0 (major + minor), 62.9 (1 x major +2 x minor), 62.8 (major + minor), 62.80 (major), 61.7 (minor), 61.6 (major), 47.6 (major), 47.4 (major), 47.15 (minor), 47.02 (minor), 45.7 (major + minor), 44.4 (major + minor), 37.4 (major), 36.5 (minor), 34.8 (major), 34.8 (major), 34.7 (minor), 34.6 (minor), 32.4 (minor), 32.4 (major), 30.2 (minor), 30.1 (major), 16.5 (4 x major 4 x minor), 14.3 (major), 14.2 (minor). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.4$ (major), 22.3 (minor).

ethyl 3-cyclopentyl-2-(diethoxyphosphoryl)propanoate (3n). Prepared according to GP1 from 1n (933 $\mu \mathrm{L}, 10.0 \mathrm{mmol}$, 20.0 equiv, $\rho=0.751 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 7:3 $\rightarrow 4: 6$) to afford the product as a yellowish oil (108 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22-4.06(\mathrm{~m}, 6 \mathrm{H}), 3.03-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-0.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,169.5,62.8,62.7$, $62.7,61.4,46.0,44.7,39.1,39.0,33.0,33.0,32.8,31.8,25.2,25.0,16.5,16.5,16.4,16.4,14.2 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 23.1. HRMS (ESI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}, 307.1674$; found: 307.1684.

ethyl 3-cyclohexyl-2-(diethoxyphosphoryl)propanoate (30). Prepared according to GP1 from $\mathbf{1 0}$ (1.1 mL , 10.0 mmol , 20.0 equiv, $\rho=0.774 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as colorless oil (103 mg , $64 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.15(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.1-4.0(\mathrm{~m}, 4 \mathrm{H}), 3.11-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20$ $-0.99(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.3,169.3,62.5,62.5,62.4,62.4$, $61.1,43.8,42.5,36.2,36.1,33.9,33.9,33.3,31.8,26.2,25.9,25.8,16.2,16.2,16.2,16.1,14.0 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 23.5. HRMS (ESI +) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}, 321.1831$; found: 321.1827.

ethyl 3-cycloheptyl-2-(diethoxyphosphoryl)propanoate (3p). Prepared according to GP1 from 1p (303 $\mu \mathrm{L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=0.811 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as colorless oil (100 mg , $60 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.20(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.12-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.95$
$\left(\mathrm{dddd}, J_{l}=13 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=8 \mathrm{~Hz}, J_{4}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.72-1.34(\mathrm{~m}, 12 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$ $(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6,169.6$, $62.8,62.8,62.7,62.7,61.4,44.6,43.3,37.9,37.8,35.2,34.7,34.7,32.9,28.6,28.4,26.3,26.1,16.5,16.5$, 16.5, 16.4, 14.3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 23.5. HRMS $(\mathrm{ESI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{P}, 335.1987$; found: 335.1980.

ethyl 3-cyclooctyl-2-(diethoxyphosphoryl)propanoate (3q). Prepared according to GP1 from 1q ($336 \mu \mathrm{~L}$, 2.5 mmol , 5.0 equiv, $\rho=0.834 \mathrm{~g} \mathrm{~mL}^{-1}$) and $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as colorless oil ($106 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.27-4.04(\mathrm{~m}, 6 \mathrm{H}), 3.12-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.93\left(\mathrm{dddd}, J_{1}=14 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=8\right.$ $\left.\mathrm{Hz}, J_{4}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.75-1.36(\mathrm{~m}, 14 \mathrm{H}), 1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,169.5,62.8,62.7,62.6,61.3,44.8,43.1$, $35.9,35.8,34.7,34.6,33.3,30.3,27.4,27.0,26.3,25.5,25.1,16.5,16.5,16.4,16.4,14.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 23.5. HRMS (ESI+) (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{P}, 349.2144$; found: 349.2145 .

ethyl 6-cyano-2-(diethoxyphosphoryl)-4,4-dimethylhexanoate (3u). Prepared according to GP1 from 1u $\left(1.2 \mathrm{~mL}, 10.0 \mathrm{mmol}, 20.0\right.$ equiv, $\left.\rho=0.8 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate $4: 1 \rightarrow 1: 1$) to afford the product as colorless oil ($153 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.17(\mathrm{q}, ~ J=7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.14-4.03(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.82(\mathrm{~m}$, $1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.04\left(\mathrm{ddd}, J_{I}=15 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.69\left(\mathrm{ddd}, J_{I}=16 \mathrm{~Hz}, J_{2}=15\right.$ $\left.\mathrm{Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.61-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,169.9,120.1,63.08,63.0,62.9,62.9,61.8,42.2,40.9$, $37.0,36.9,36.8,33.7,33.5,26.0,25.9,16.4,16.4,16.4,16.3,14.1,12.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 23.1. HRMS (ESI +) (m/z): [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}, 334.1777$; found: 334.1783.

ethyl 2-(diethoxyphosphoryl)-4-oxodecanoate (3v). Prepared according to GP1 from 1v ($70 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$, 1.0 equiv, $\left.\rho=0.82 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Cyclohexane:Ethyl Acetate 1:1) to afford the product as colorless oil ($130 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.16\left(\mathrm{ddd}, J_{l}=18 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, J_{3}=7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.85-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22-1.16(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.3$, $207.1,168.2,168.2,62.7,62.7,62.6,62.6,61.4,42.3,40.4,39.1,39.1,31.3,28.6,23.5,22.2,16.2,16.1$,
16.1, 13.8, 13.8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 22.6. HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}, 351.1936$; found: 351.1926 .

Characterization data of compounds 4-19

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)acrylate (4). Prepared according to GP2 from 1a ($288 \mu \mathrm{~L}, 2.5$ mmol, 5.0 equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) to afford the product as a yellowish oil ($82 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=5,1 \mathrm{H}), 5.81(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.96\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.5,147.4,133.7,129.5,121.6,109.6,108.7,61.2,37.5,14.3$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}, 234.0892$; found: 234.0879.

ethyl 2-(oxetan-2-ylmethyl)acrylate (5). Prepared according to GP2 from $\mathbf{1 b}$ ($162 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\left.\rho=0.893 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $98: 2 \rightarrow 90: 10$) to afford the product as a yellowish oil ($42 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.22(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96\left(\mathrm{qd}, J_{l}=7 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.63$ $\left(\mathrm{ddd}, J_{l}=8 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.49\left(\mathrm{dt}, J_{l}=9 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-$ $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$, 136.0, 127.1, 80.7, 68.1, 60.9, 40.0, 27.3, 14.3. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}, 170.0943$; found: 170.0952 .

ethyl 2-((tetrahydrofuran-2-yl)methyl)acrylate (6). Prepared according to GP2 from 1c (203 $\mu \mathrm{L}, 2.5$ mmol, 5.0 equiv, $\rho=0.889 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $98: 2 \rightarrow 90: 10$) to afford the product as a yellowish oil $(61 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.06-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 2.49\left(\mathrm{dd}, J_{l}=6 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.03-1.75(\mathrm{~m}, 3 \mathrm{H})$, $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,138.0,126.6,77.6,67.8,60.7$, 38.0, 31.2, 25.6, 14.3. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$, 184.1099; found: 184.1083.

ethyl 2-((tetrahydro-2H-pyran-2-yl)methyl)acrylate (7). Prepared according to GP2 from $\mathbf{1 d}$ ($245 \mu \mathrm{~L}, 2.5$ $\mathrm{mmol}, 5.0$ equiv, $\left.\rho=0.86 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10 $\rightarrow 80: 20$) to afford the product as a colorless oil ($60 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$ $(\mathrm{m}, 1 \mathrm{H}), 3.50-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.36(\mathrm{~m}, 4 \mathrm{H}) 1.30-1.22(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,137.5,126.9,76.2,68.6,60.7,39.2,31.9,26.1,23.6,14.3$. HRMS $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}, 198.1256$; found: 198.1248.

ethyl 2-((tetrahydrothiophen-2-yl)methyl)acrylate (8). Prepared according to GP2 from $\mathbf{1 f}(220 \mu \mathrm{~L}, 2.5$ mmol, 5.0 equiv, $\rho=0.999 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 20:1 \rightarrow 15:1) to afford the product as a yellowish oil ($70 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.54$ $(\mathrm{m}, 1 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.66\left(\mathrm{ddd}, J_{1}=14 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45\left(\mathrm{ddd}, J_{l}=14 \mathrm{~Hz}, J_{2}=8\right.$ $\left.\mathrm{Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,139.1,126.4,60.8,47.3,40.0,37.0,32.4,30.2,14.3$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$, 200.0871; found: 200.0879.

ethyl 2-((1,4-oxathian-3-yl)methyl)acrylate (9). Prepared according to GP2 from $\mathbf{1 g}(234 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\left.\rho=1.114 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10) to afford the product as a colorless oil ($56 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.25(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20\left(\mathrm{qd}, J_{l}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.08-$ $3.96(\mathrm{~m}, 2 \mathrm{H}), 3.70\left(\mathrm{ddd}, J_{l}=12 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, J_{3}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.49\left(\mathrm{dd}, J_{l}=12 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.03(\mathrm{~m}$, $1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.41\left(\mathrm{ddd}, J_{1}=14 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,136.9,127.5,73.5,68.6,61.0,37.8,34.4,26.6,14.3$. HRMS $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}, 216.0820$; found: 216.0814.

tert-butyl 2-(2-(ethoxycarbonyl)allyl)azetidine-1-carboxylate (10). Prepared according to GP2 from 1h ($393 \mathrm{mg}, 2.5 \mathrm{mmol}, 5.0$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 20:1 $\rightarrow 15: 1 \rightarrow 10: 1$) to afford the product as a colorless oil ($90 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 1 \mathrm{H})$, $4.17(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.91\left(\mathrm{ddd}, J_{l}=14 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.56\left(\mathrm{dd}, J_{1}=\right.$ $\left.14 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,156.6,136.8,127.0,79.3,61.0,60.8,46.3,37.5,28.5,21.6,14.3 . \operatorname{HRMS}(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}, 269.1627$; found: 269.1629 .

tert-butyl 2-(2-(ethoxycarbonyl)allyl)pyrrolidine-1-carboxylate (11). Prepared according to GP2 from 1i ($438 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=0.977 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column
chromatography on silica gel (Hexane:Ethyl Acetate $98: 2 \rightarrow 90: 10$) to afford the product as a yellowish oil ($94 \mathrm{mg}, 66 \%$ yield) as a mixture of two conformers (11a and 11b). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16$ (d, J $=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3$ (11a), 167.0 (11b), 154.6 (11a+11b), 138.2 (11a+11b), 127.1 (11b), 126.6 (11a), 79.3 (11b), 78.9 (11a), 60.7 (11a+11b), 57.0 (11a), 56.7 (11b), 46.5 (11a), 45.9 (11b), 36.5 (11b), 35.2 (11a), 30.2 (11b), 29.3 (11a), 28.5 (11a+11b), 23.6 (11a), 22.7 (11b), 14.3 (11a+11b). HRMS (FI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}, 283.1784$; found: 283.1774.

tert-butyl 2-(2-(ethoxycarbonyl)allyl)piperidine-1-carboxylate (12). Prepared according to GP2 from 1j ($463 \mathrm{mg}, 2.5 \mathrm{mmol}, 5.0$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the product as a yellowish oil ($87 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{bs}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{bs}$, $1 \mathrm{H}), 2.80\left(\mathrm{td}, J_{l}=13 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~m}, 10 \mathrm{H})$, $1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,155.2,138.1,126.9,79.3,60.7,50.0,38.5$, 32.3, 28.9, 28.4, 25.7, 19.1, 14.3. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4}, 297.1940$; found: 297.1927.

ethyl 4-(N-methylacetamido)-2-methylenebutanoate (13). Prepared according to GP2 from $\mathbf{1 k}(185 \mu \mathrm{~L}$, $2.0 \mathrm{mmol}, 4.0$ equiv, $\left.\rho=0.94 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 1:1) to afford the product as light yellow oil ($54 \mathrm{mg}, 54 \%$ yield) as a $1: 1$ mixture of two rotamers. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$ $(\mathrm{m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.44-3.38(\mathrm{~m}$, 2 H), $2.97 \& 2.91$ (rotameric singlets, 2 x 3 H), $2.58-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.06 \& 2.04$ (rotameric singlets, 2 x 3 H), $1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,170.6,167.0,166.6$, $138.0,137.1,127.8,126.8,61.1,60.9,50.3,47.1,36.7,33.4,31.7,30.1,22.0,21.2,14.3$. HRMS (FI+) (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}, 199.1208$; found: 199.1204.

ethyl 2-((2,3-dihydro-1H-inden-1-yl)methyl)acrylate (14). Prepared according to GP2 from 1m ($306 \mu \mathrm{~L}$, $2.5 \mathrm{mmol}, 5.0$ equiv, $\left.\rho=0.965 \mathrm{~g} \mathrm{~mL}{ }^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane \rightarrow Hexane:Ethyl Acetate 98:2) to afford the product colorless oil $\left(37 \mathrm{mg}, 32 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17\left(\mathrm{dd}, J_{l}=6 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.24(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38\left(\mathrm{dtd}, J_{l}=9 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}\right.$, $\left.J_{3}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.02-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.36\left(\mathrm{ddd}, J_{l}=14 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29-2.16(\mathrm{~m}, 1 \mathrm{H})$, $1.73\left(\mathrm{ddt}, J_{1}=13 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.33(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
167.4, 146.9, 144.0, 139.6, 126.6, 126.2, 126.0, 124.6, 124.0, 60.8, 43.5, 37.9, 31.8, 31.2, 14.4. HRMS $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}, 230.1307$; found: 230.1301 .

ethyl 2-(cyclopentylmethyl)acrylate (15). Prepared according to GP2 from $\mathbf{1 n}(934 \mu \mathrm{~L}, 10.0 \mathrm{mmol}, 20.0$ equiv, $\left.\rho=0.751 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane \rightarrow Hexane:Ethyl Acetate 90:10) to afford the product as a volatile colorless oil ($46 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ (hept, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.05$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,140.7,124.9,60.7,38.7,38.2,32.5,25.1,14.3$. HRMS (FI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}, 182.1307$; found: 182.1309.

ethyl 2-(cyclohexylmethyl)acrylate (16). Prepared according to GP2 from $\mathbf{1 o}$ ($544 \mu \mathrm{~L}, 5.0 \mathrm{mmol}, 10.0$ equiv, $\left.\rho=0.774 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol}$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) to afford the product as colorless oil ($52 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.18\left(\mathrm{dd}, J_{I}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.77(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}{ }^{\text {C NMR }}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,139.7,125.5,60.7,40.0,36.8,33.2,26.7,26.4,14.3$. Spectroscopic data are in accordance with those reported in the literature. ${ }^{9}$

ethyl 2-(((1S,4R)-bicyclo[2.2.1]heptan-2-yl)methyl)acrylate (17). Prepared according to GP2 from 1r ($240 \mathrm{mg}, 2.5 \mathrm{mmol}, 5.0$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane \rightarrow Hexane:Ethyl Acetate 98:2) to afford the product as colorless oil ($46 \mathrm{mg}, 44 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ $\left(\mathrm{ddd}, J_{l}=15 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.08\left(\mathrm{ddd}, J_{l}=15 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.21-0.97(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,140.0,125.0,60.7,40.8,40.5,38.7,37.9,36.8,35.3,30.0,28.9$, 14.3. Spectroscopic data are in accordance with those reported in the literature. ${ }^{10}$

exo-Ethyl 2-(((1R,4S)-7-bromobicyclo[2.2.1]heptan-2-yl)methyl)acrylate (18). Prepared according to GP2 from 1s ($317 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.38 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) to afford the product as a volatile light yellow oil ($72 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.06(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.15\left(\mathrm{ddd}, J_{l}=15 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.08(\mathrm{~d}, J$ $=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.57\left(\mathrm{dd}, J_{l}=13 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.34-1.14(\mathrm{~m}$,
$6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,139.1,125.7,60.9,57.1,47.1,43.6,39.3,38.3,35.7,28.1,26.7$, 14.3. HRMS (FI+) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrO}_{2}, 286.0568$; found: 286.0568. NOESY experiment is reported below.

ethyl 2-((3-oxocyclopentyl)methyl)acrylate (19). Prepared according to GP2 from $\mathbf{1 t}$ ($221 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\rho=0.950 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $98: 2 \rightarrow 80: 20$) to afford the product as a volatile colorless oil ($52 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.20$ $(\mathrm{m}, 5 \mathrm{H}), 2.20-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 219.1,167.0,139.0,126.1,60.9,44.9,38.4,37.8,36.0,29.2,14.3$. HRMS (FI+) (m/z): [M] ${ }^{+}$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}, 196.1099$; found: 196.1106.

Characterization data of compounds 4-d $\mathbf{2}, \mathbf{2 0 - 2 3}$

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)acrylate-d $\mathbf{d}_{\mathbf{2}}$ (4-d $\mathbf{d}_{\mathbf{2}}$. Prepared according to GP3 from $\mathbf{1 a}$ ($288 \mu \mathrm{~L}$, 2.5 mmol , 5 equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified by flash column chromatography on silica gel (Hexane:Ethyl Acetate $30: 1 \rightarrow 10: 1$) to afford the product as colorless oil ($80 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~d}, J=$ $5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.5,133.6,128.8$ (pent, $J=24$ $\mathrm{Hz}), 121.6,109.6,108.7,61.2,37.4,14.3$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{4}, 236.1018$; found: 236.1011.

tert-butyl 2-(2-(ethoxycarbonyl)allyl-3,3-d $\mathbf{2}_{2}$)-4-oxopiperidine-1-carboxylate (20). Prepared according to GP3 from $\mathbf{1 w}$ ($498 \mathrm{mg}, 2.5 \mathrm{mmol}, 5$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and TBADT ($81 \mathrm{mg}, 0.05 \mathrm{~mol}$). Purified by flash column chromatography on silica gel (Hexane:Ethyl Acetate 5:1) to afford the product as a yellowish oil ($68 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.27-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.66\left(\mathrm{dd}, J_{1}=15 \mathrm{~Hz}, J_{3}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.55-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~d}, J=15 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}$, $9 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,166.4,154.6,136.5,80.6,61.0,51.5,45.3,40.7$, $38.1,34.9,28.3,14.3 . \mathrm{CD}_{2}$ could not be detected even after 4096 scans. HRMS (FD) (m/z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{D}_{2} \mathrm{NO}_{5}$: 313.1858; found: 313.1852.

ethyl 2-((1-methyl-5-oxopyrrolidin-2-yl)methyl)acrylate-d $\mathbf{d}_{\mathbf{2}}$ (21). Prepared according to GP3 from $\mathbf{1 1}$ (241 $\mu \mathrm{L}, 2.5 \mathrm{mmol}$, 5 equiv, $\rho=1.028 \mathrm{~g} \mathrm{~mL}^{-1}$) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified by flash column chromatography on silica gel (Hexane:Ethyl Acetate $4: 1$) to afford the product as a yellowish oil (55 mg , $52 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.20\left(\mathrm{qd}, J_{1}=7 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.67\left(\mathrm{dt}, J_{l}=8 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.97-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{dt}, J_{1}=17 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.26\left(\mathrm{td}, J_{l}=11 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22-2.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.03\left(\mathrm{ddt}, J_{1}=13 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, J_{1}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67\left(\mathrm{dp}, J_{1}=14 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.29(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,166.7,136.5,127.4$ (pent, $J=24 \mathrm{~Hz}$), 61.1, 59.0, 36.0, 29.7, 28.1, 23.5, 14.3. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{NO}_{3}, 213.1334$; found: 213.1342.

yl)methyl)acrylate-d $\mathbf{d}_{\mathbf{2}}$ (22). Prepared according to GP3 from 1x ($591 \mathrm{mg}, 2.5 \mathrm{mmol}, 5$ equiv) and $\mathbf{2}$ (118 $\mathrm{mg}, 0.5 \mathrm{mmol}$). Purified by flash column chromatography on silica gel (Hexane:Ethyl Acetate 3:1) to afford the product as an inseparable mixture of diastereoisomers ($2: 1$ ratio by LC-MS) as a colorless oil (70 mg , 40%) along with 451 mg of $\mathbf{1 x}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35-3.99(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.36(\mathrm{~m}, 2 \mathrm{H})$, $1.92\left(\mathrm{dt}, J_{l}=11 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.35(\mathrm{~m}, 6 \mathrm{H}), 1.28\left(\mathrm{td}, J_{l}=7 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 2 \mathrm{H}), 1.06-0.88(\mathrm{~m}, 2 \mathrm{H})$, $0.86(\mathrm{~m}, 3 \mathrm{H}), 0.84-0.79(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$ (major), 167.3 (minor), 137.8 (minor), 137.7 (major), 126.2 (major, pent, $J=23 \mathrm{~Hz}$), 81.2 (major), 80.7 (minor), 77.1 (minor), 74.2 (major), 61.0 (minor), 60.8 (major), 59.0 (major), 57.4 (major), 57.2 (minor), 42.6 (major), 40.6 (major), 40.6 (minor), 40.1 (major), 40.1 (minor), 39.3 (major), 36.4 (minor), 36.2 (major), 33.7 (major), 33.6 (minor), 33.2 (major), 33.2 (minor), 29.4 (minor), 28.0 (major), 25.0 (minor), 21.7 (major), 21.2 (major), 21.2 (minor), 20.9 (minor), 20.7 (major), 18.5 (major), 18.5 (minor), 15.7 (minor), 15.1 (major), 14.3 (major), 14.3 (minor). $\mathrm{HRMS}(\mathrm{FI}+)(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{D}_{2} \mathrm{O}_{3}, 350.2790$; found: 350.2785 .

ethyl 2-((1-(4-methoxybenzoyl)-5-oxopyrrolidin-2-yl)methyl)acrylate-d \mathbf{d}_{2} (23). Prepared according to GP3 from 1y ($548 \mathrm{mg}, 2.5 \mathrm{mmol}, 5$ equiv) and $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. Purified by flash column chromatography on silica gel (Hexane:Ethyl Acetate 3:1) to afford the product as a colorless oil (35 mg , $21 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.71\left(\mathrm{tt}, J_{l}=8 \mathrm{~Hz}, J_{2}=\right.$ $5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21\left(\mathrm{tq}, J_{I}=7 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.94\left(\mathrm{dd}, J_{I}=14 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71-2.56$ $(\mathrm{m}, 2 \mathrm{H}), 2.47\left(\mathrm{ddd}, J_{I}=18 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, J_{3}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.26-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.91\left(\mathrm{dq}, J_{l}=13 \mathrm{~Hz}, J_{2}=5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,170.1,166.9,163.1,136.7$, 131.8, 126.8, 113.3, $61.2,57.2,55.5,35.7,32.1,23.1,14.3 . \mathrm{CD}_{2}$ could not be detected even after 4096 scans. HRMS $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{NO}_{5}, 333.1522$; found: 333.1540.

Characterization data of compounds 24-47

N.B.: A complete characterization of the two isomers is reported when d.r. was $<4: 1$. When the geometry of the double bond could not be determined directly via NOESY spectroscopy, the geometry of the isomers was assigned in analogy with other compounds for which a 3D NMR complete characterization of both isomers was possible (e.g. 25, 30, 34, 42).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-phenylacrylate (24). Prepared according to GP4 from 1a (288 $\mu \mathrm{L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 2(76 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=$ $1.04 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $2: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) to afford the two diastereomers ($93 \mathrm{mg}, 60 \%$ combined yield).

Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.86-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.19\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.37(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,147.4,143.4,135.2,129.4,128.9$ 128.6, 126.0, 121.6, 110.2, 108.7, 61.3, 33.5, 14.4. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}, 310.1205$; found: 310.1222 .

Minor (Z): colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{p}, J=2 \mathrm{~Hz}$, $4 \mathrm{H}), 6.36(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, ~ J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.05\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.08(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.7,147.5,139.4,136.0,128.5,128.2,128.1,126.9,121.6,109.8,108.7$, 61.0, 40.7, 13.8. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}, 310.1205$; found: 310.1201.

The reaction was also performed using GP5 (HWE: $60^{\circ} \mathrm{C}, 60 \mathrm{~min}, 2.8$ bar) to afford 24 in 65% yield ($E: Z$ 2:1).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(3,4,5-trimethoxyphenyl)acrylate (25). Prepared according to GP4 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 3}(147 \mathrm{mg}, 0.75$ mmol, 1.5 equiv). Reaction time: $16 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $2: 1$. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) afforded the two diastereomers ($114 \mathrm{mg}, 57 \%$ combined yield).
Major (E): white solid, m.p.: 89-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.70(\mathrm{~m}$, $6 \mathrm{H}), 6.47(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.28\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.37(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,153.2,147.5,143.4,138.8,130.4,125.1$, $121.8,110.3,108.7,106.8,61.3,61.0,56.1,33.7,14.4$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}$, 400.1522; found: 400.1516. NOESY experiments is reported below.

Minor (Z): colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 6.85-6.75(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.55-6.51$ (m,
$2 \mathrm{H}), 6.34(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, ~ J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.03\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.13(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,153.0,147.5,138.7,138.3,131.4,126.6$, $121.6,109.8,108.7,105.9,61.1,61.0,56.2,40.8,14.0$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}$, 400.1522; found: 400.1521 . NOESY experiments is reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(4-(trifluoromethyl)phenyl)acrylate (26). Prepared according to GP4 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 4$ $\left(102 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv, $\rho=1.275 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be ca. 1:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $98: 2 \rightarrow 90: 10)$ to afford the two diastereomers ($119 \mathrm{mg}, 63 \%$ combined yield).
Isomer 1 (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.79(\mathrm{~m}$, $2 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,147.2,141.7,138.8,130.6(\mathrm{q}, J=32 \mathrm{~Hz}), 129.5$, $128.0,125.6(\mathrm{q}, ~ J=4 \mathrm{~Hz}), 121.8,109.8,108.7,61.6,33.5,14.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}, 378.1079$; found: 378.1072.
Isomer $2(\mathrm{Z})$: colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.86-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.37(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.07\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.06(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,147.5,139.8,138.2,130.0(\mathrm{q}, J=32 \mathrm{~Hz}), 129.0$, 128.7, $125.1\left(\mathrm{q}, ~ J=4 \mathrm{~Hz}\right.$), 121.7, 109.5, 108.7, $61.2,40.6,13.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}, 378.1079$; found: 378.1091.
The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$) to afford 26 in 60% yield ($E: Z 1: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(3-(trifluoromethyl)phenyl)acrylate (27). Prepared according to GP4 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 5}$ ($100 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.301 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be 1:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) to afford the two diastereomers ($98 \mathrm{mg}, 52 \%$ combined yield).
Isomer $1(E)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.74\left(\mathrm{dq}, J_{1}=2 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.37(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,147.1,141.6,135.8,132.1,131.0(\mathrm{q}, J=32 \mathrm{~Hz}), 129.0,127.7,125.9(\mathrm{q}, J=4 \mathrm{~Hz}), 125.2(\mathrm{q}$, $J=4 \mathrm{~Hz}), 123.8(\mathrm{q}, J=272 \mathrm{~Hz}), 121.6,109.7,108.6,61.4,33.4,14.3 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.8$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}, 378.1079$; found: 378.1072.
Isomer $2(Z)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1\right.$
$\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.37(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.07\left(\mathrm{dd}, J_{I}=5\right.$ $\left.\mathrm{Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.06(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,147.3,137.8,136.7,131.6$ $(\mathrm{q}, J=1 \mathrm{~Hz}), 130.5(\mathrm{q}, J=32 \mathrm{~Hz}), 128.6,128.5,125.2(\mathrm{q}, J=4 \mathrm{~Hz}), 124.6(\mathrm{q}, J=4 \mathrm{~Hz}), 124.0(\mathrm{q}, J=272$ $\mathrm{Hz}), 121.6,109.4,108.6,61.1,40.4,13.6 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7$. HRMS (FI+) (m/z): [M] ${ }^{+}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}, 378.1079$; found: 378.1068.
The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$) to afford 27 in 54% yield ($E: Z 1: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(2-(trifluoromethyl)phenyl)acrylate (28). Prepared according to GP4 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and S6 ($99 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.32 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be 5:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) to afford the afford the two diastereomers ($130 \mathrm{mg}, 69 \%$ combined yield).

Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{q}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.94\left(\mathrm{dd}, J_{1}=5, J_{2}\right.$ $=1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,147.2,140.3,133.9(\mathrm{q}, J=2 \mathrm{~Hz})$, $131.8,130.5,128.8,128.7(\mathrm{q}, J=30 \mathrm{~Hz}), 128.4,126.1(\mathrm{q}, J=5 \mathrm{~Hz}), 124.0(\mathrm{q}, J=274 \mathrm{~Hz}), 121.6,109.6,108.6$, $61.5,33.8,14.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.6$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}$, 378.1079; found: 378.1086. NOESY experiment is reported below.

The reaction was also performed using GP5 to afford 28 in 72% yield ($E: Z 1: 1$)

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(2-nitrophenyl)acrylate (29). Prepared according to GP4 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 7(113 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1.5 equiv). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $5: 1$. Purified via flash column chromatography on silica gel (Hexane:MTBE 85:15) to afford the two diastereomers (113 mg, 64\% combined yield).
Major (E) : colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 8.16\left(\mathrm{dd}, J_{1}=8 \mathrm{~Hz}, J_{2}=1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55\left(\mathrm{td}, J_{l}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.64(\mathrm{~m}, 4 \mathrm{H}), 6.32(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,147.7,147.1,141.2,133.7,131.7,130.9,129.3,126.9,124.9,121.6,109.4,108.6,61.6$, 33.5, 14.4. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6}, 355.1056$; found: 355.1064. NOESY experiment is reported below.
The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$) to afford 29 in 76% yield ($E: Z 5: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(2-cyanophenyl)acrylate (30). Prepared according to GP4 from $1 \mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 8}(87 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv, $\rho=1.585 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be 5:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the desired product ($140 \mathrm{mg}, 72 \%$ combined yield).

Major (E): waxy solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.59\left(\mathrm{dd}, J_{I}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45$ $\left(\mathrm{dd}, J_{1}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21\left(\mathrm{td}, J_{1}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{td}, J_{1}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.83$ $-6.70(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,147.2,142.8,135.7,132.8,130.5,130.0,127.5,127.4,124.0,121.6$, 109.8, 108.7, 61.5, 33.5, 14.4. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{4}, 388.0310$; found: 388.0310 . NOESY experiment is reported below.
Minor (Z): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55\left(\mathrm{dd}, J_{1}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25-7.11(\mathrm{~m}$, $3 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.42(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}\right.$ $=1 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,147.5,140.2,137.3,132.3,130.1$, $129.4,128.2,126.8,122.9,121.6,109.8,108.7,60.9,39.9,13.7 . \operatorname{HRMS}(F I+)(m / z):[M]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{4}, 388.0310$; found: 388.0310 . NOESY experiment is reported below.
The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}$, 30 min) to afford $\mathbf{3 0}$ in 73% yield ($E: Z 5: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(o-tolyl)acrylate (31). Prepared according to GP4 from 1a $\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}\right), 2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 9}(88 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.019 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $16 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $7: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the desired product (94 $\mathrm{mg}, 58 \%$ yield).
Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.31\left(\mathrm{dd}, J_{I}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10\left(\mathrm{dt}, J_{l}=8 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.72\left(\mathrm{dt}, J_{l}=5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.40(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.03\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,147.3,143.3,136.7,134.6,130.1,128.6,128.5,126.7$, $125.9,121.5,109.9,108.6,61.3,33.3,20.0,14.4$. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}, 324.1362$; found: 324.1351 . NOESY experiment is reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(2,2-difluorobenzo[d][1,3]dioxol-4-yl)acrylate
(32).

Prepared according to GP4 from 1a (288 $\mu \mathrm{L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$
and $\mathbf{S 1 0}$ ($118 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.423 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $3: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the desired product ($105 \mathrm{mg}, 54 \%$ yield).
Major (E): white solid. m.p.: 62-64 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{t}, J=5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.17\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.9,147.2,143.8,141.7,134.2,131.5(\mathrm{t}, J=256 \mathrm{~Hz}), 129.5,124.1,123.7,121.7,118.6,109.8$, 109.7, 108.7, 61.7, 33.9, 14.4. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-49.7. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{6}, 390.0915$; found: 390.0922 . NOESY experiment is reported below.
Minor (Z): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.75(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{t}, J$ $=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.09\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.11(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,147.4,143.6,141.4,131.5(\mathrm{t}, J=255 \mathrm{~Hz}), 131.3,130.5,124.0,123.2,121.7$, $119.5,109.5,109.2,108.7,61.3,40.5,13.8 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-49.7$. HRMS (FI+) (m/z): $[\mathrm{M}]^{+}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{6}, 390.0915$; found: 390.0920 . NOESY experiment is reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(naphthalen-1-yl)acrylate (33). Prepared according to GP4 from $1 \mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), 2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 11(102 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be 7:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the desired product ($104 \mathrm{mg}, 58 \%$ yield).
Major (E): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47-8.40(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.80\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}\right.$ $=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.39\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.79-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.53(\mathrm{~m}$, $2 \mathrm{H}), 6.42(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.07\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.42(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,147.2,142.4,133.5,132.6,131.5,128.9,128.6,128.3,126.5,126.4$, $126.3,125.4,124.9,121.5,109.8,108.5,61.4,33.7,14.5$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}$, 360.1362; found: 360.1347 . NOESY experiment is reported below.

The reaction was also performed using GP5 (HWE: $60^{\circ} \mathrm{C}, 60 \mathrm{~min}, 2.8 \mathrm{bar}$) to afford $\mathbf{3 3}$ in 56% yield ($E: Z$ 7:1).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(naphthalen-2-yl)acrylate (34). Prepared according to GP4 from $1 \mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), 2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 12(117 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1.5 equiv). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $2: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford the two diastereomers (103 $\mathrm{mg}, 57 \%$ combined yield).

Major (E): colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 2 \mathrm{H})$, $7.70-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.54\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.55(\mathrm{t}, J$ $=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27\left(\mathrm{dd}, J_{I}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.40(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,147.4,143.5,133.3,133.2,132.6,129.2,128.6,128.3,127.7,127.0,126.8$, 126.6, 126.1, 121.7, 110.3, 108.8, 61.4, 33.8, 14.5. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}, 360.1362$; found: 360.1377. NOESY, COSY experiments are reported below.
Minor (Z) : colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1 \mathrm{~Hz}, 4 \mathrm{H}), 6.41(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}$, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.05(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.8,147.5,139.4,133.4,133.1,133.1,128.3,128.2,127.7,127.6,127.1,126.5,126.4,126.3,121.7,109.8$, 108.7, 61.0, 40.9, 13.9. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}, 360.1362$; found: 360.1372. NOESY, HSQC experiments are reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(pyridin-2-yl)acrylate (35). Prepared according to GP4 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 13(71 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.126 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 3 h . N.B.: the reaction was quenched with sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then neutralized with sat'd NaHCO_{3} solution before the extraction. $\mathrm{E}: \mathrm{Z}$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $3: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $90: 10 \rightarrow 80: 20$) to afford the two diastereomers ($113 \mathrm{mg}, 72 \%$ yield).
$\underline{M a j o r}(E)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59\left(\mathrm{ddd}, J_{l}=5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78$ $(\mathrm{s}, 1 \mathrm{H}), 7.68\left(\mathrm{td}, J_{l}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40\left(\mathrm{dt}, J_{l}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{ddd}, J_{l}=8 \mathrm{~Hz}, J_{2}=5\right.$ $\left.\mathrm{Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}\right.$, $\left.J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.33(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,154.4,149.7,147.5,139.3$, 136.5, 129.6, 126.6, 123.1, 121.3, 110.9, 108.6, 61.4, 32.8, 14.4. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}, 311.1158$; found: 311.1153 .
$\underline{\text { Minor }(Z): ~ c o l o r l e s s ~ o i l . ~}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53\left(\mathrm{ddd}, J_{1}=5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63$ $\left(\mathrm{td}, J_{1}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23\left(\mathrm{dt}, J_{l}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{ddd}, J_{1}=8 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=1 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dd}$, $\left.J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.17(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,153.7,149.2,147.4$, 136.3, 134.7, 130.9, 123.7, 122.7, 121.7, 109.4, 108.8, 61.1, 40.5, 14.0. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}, 311.1158$; found: 311.1147.
The reaction was also performed using GP5 (HWE: $\left.40^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ to afford 35 in 77% yield ($E: Z 3: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(pyridin-3-yl)acrylate (36). Prepared according to GP5 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$. and $\mathbf{S} 14$. Residence time: 30 min $\left(40{ }^{\circ} \mathrm{C}\right) . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $1: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 4:1) to afford the two diastereomers (103 mg, 66\%
yield).
Isomer $1(E)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.50-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H})$, $7.78-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.63(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.08(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,150.1,149.5$, $147.2,139.4,136.3,131.2,128.3,123.5,121.8,109.7,108.7,61.6,33.4,14.4$. HRMS (FD+) (m/z): $[\mathrm{M}]^{+}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}, 311.1158$; found: 311.1149 .
Isomer $2(\mathrm{Z})$: colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53-8.45(\mathrm{~m}, 2 \mathrm{H}), 7.61\left(\mathrm{dt}, J_{1}=8 \mathrm{~Hz}, J_{2}=2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.08\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.08(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,149.3$, 148.7, 147.4, 136.3, 135.8, 132.0, 129.2, 123.0, 121.7, 109.5, 108.7, 61.2, 40.6, 13.9 HRMS (FD+) (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}, 311.1158$; found: 311.1144

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(2-chloropyridin-3-yl)acrylate (37). Prepared according to GP5 from 1a $\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and S15. Residence time: $30 \mathrm{~min}\left(40^{\circ} \mathrm{C}\right) . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $3: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $90: 10 \rightarrow 80: 20$) to afford the two diastereomers (104 $\mathrm{mg}, 60 \%$ yield).
$\underline{\text { Major }(E)}$: white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.84$ $\left(\mathrm{dd}, J_{1}=8, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{dd}, J_{l}=8, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.83-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.42(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ $(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,150.7$, $149.5,147.0,138.9,138.4,130.5,129.2,122.4,121.8,109.4,108.7,61.7,33.5,14.4$. HRMS (FD+) (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{4}, 345.0768$; found: 345.0774
$\underline{\text { Minor }(Z): ~ c o l o r l e s s ~ o i l . ~}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54\left(\mathrm{dd}, J_{l}=8\right.$ $\left.\mathrm{Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{t}, J=5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.03(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,149.7,149.0,147.4,138.9,136.4,131.8,129.8,121.8,121.7,109.5,108.7,61.2$, 40.0, 13.9. HRMS (FD+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{4}, 345.0768$; found: 345.0753.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(5-bromopyridin-3-yl)acrylate (38). Prepared according to GP5 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and S16. Residence time: $30 \mathrm{~min}\left(40^{\circ} \mathrm{C}\right) . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $1: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10 $\rightarrow 80: 20$) to afford the two diastereomers (125 $\mathrm{mg}, 64 \%$ yield).

Isomer $1(E)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ ($\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$) . ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,150.6,148.1,147.0,138.6,138.0,132.6,129.5$, 121.9, 120.7, 109.6, 108.8, 61.8, 33.7, 14.4. HRMS (FD+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{4}, 389.0262$; found: 389.0278 .
Isomer $2(\mathrm{Z})$:colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.45-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08\left(\mathrm{dd}, J_{l}=5\right.$ $\left.\mathrm{Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.11(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,149.9,147.6,147.3,138.1$, $134.8,133.5,130.4,121.8,120.1,109.3,108.7,61.4,40.5,13.9$. HRMS (FD+) (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{4}, 389.0262$; found: 389.0279.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(4,6-dichloropyridin-3-yl)acrylate (39). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 17$. Residence time: $30 \mathrm{~min}\left(40^{\circ} \mathrm{C}\right) . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $4: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $95: 5 \rightarrow 90: 10$) to afford the two diastereomers (133 mg , 70% yield).
Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.69$ $(\mathrm{m}, 4 \mathrm{H}), 6.37(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,151.9,150.0,147.0,145.5,135.5,130.4,129.4,124.6,121.9,109.2,108.8$, 61.9, 33.7, 14.4. HRMS (FD+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{4}, 379.0378$; found: 379.0387.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(4-methylthiazol-5-yl)acrylate (40). Prepared according to GP4 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 18(95 \mathrm{mg}, 0.75$ mmol, 1.5 equiv). Reaction time: $3 \mathrm{~h} . \mathrm{N.B.:} \mathrm{the} \mathrm{reaction} \mathrm{was} \mathrm{quenched} \mathrm{with} \mathrm{sat'd} \mathrm{NH}_{4} \mathrm{Cl}$ solution and then neutralized with sat'd NaHCO_{3} solution before the extraction. $\mathrm{E}: \mathrm{Z}$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $8: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 80:20) to afford the major diastereomer as a deliquescent colorless solid ($100 \mathrm{mg}, 60 \%$ yield).

Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.76(\mathrm{~m}$, $2 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,157.4,153.3,147.2,132.1,125.6,123.6,121.7$, $109.8,108.7,61.5,34.3,16.2,14.4$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}, 331.0878$; found: 331.0881 .

The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$) to afford 40 in 59% yield ($E: Z 8: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(4-bromothiophen-2-yl)acrylate (41). Prepared according to GP4 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 1 9}(143 \mathrm{mg}, 0.75$ mmol, 1.5 equiv). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the reaction crude to be ca. 1:1. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10) afforded the two diastereomers an inseparable mixture as a yellowish oil ($130 \mathrm{mg}, 66 \%$ yield) .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.31\left(\mathrm{ddd}, J_{l}=11 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-7.19(\mathrm{~m}$, $2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.72(\mathrm{~m}, 8 \mathrm{H}), 6.42(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31\left(\mathrm{qd}, J_{l}=\right.$ $\left.7 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.31(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.35(\mathrm{q}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,166.7,147.4,147.2,139.0,138.6,135.9,134.6,134.5,133.8,127.8,126.3$, $123.8,121.8,121.7,121.7,110.8,109.8,109.8,109.6,108.8,108.7,61.5,61.3,40.9,34.4,14.4,14.3$.
The reaction was also performed using GP5 (HWE: $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$) to afford $\mathbf{4 1}$ in 76% yield ($E: Z 5: 1$).

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(5-iodofuran-2-yl)acrylate (42). Prepared according to GP4 from $\mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} \mathbf{2 0}(166 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1.5 equiv). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $3: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10) to afford the two diastereomers ($106 \mathrm{mg}, 50 \%$ combined yield).
$\underline{\text { Major }(E)}$: yellowish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,156.4,147.4,127.5,122.8,122.2,121.6,118.7,110.2$, 108.7, 92.3, 61.4, 33.8, 14.4. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IO}_{5}, 425.9964$; found: 425.9968. NOESY experiment is reported below.
Minor (Z): colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.01\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.33(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,155.9,147.4,126.8,122.9,122.2,121.7$, 117.2, 109.8, 108.8, 90.3, 61.2, 40.8, 14.4. HRMS (FD+) (m/z): [M] calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IO}_{5}, 425.9964$; found: 425.9956. NOESY experiment is reported below.

(E)-ethyl 2-(cycloheptylmethyl)-3-(naphthalen-1-yl)acrylate (43). Prepared according to GP4 from 1p ($302 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=0.811 \mathrm{~g} \mathrm{~mL}^{-1}$), $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 11(102 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Only one diastereomer was detected via ${ }^{1} \mathrm{H}$ NMR of the reaction crude. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) afforded the desired product as a colorless oil ($73 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (s, $1 \mathrm{H}), 7.95-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36\left(\mathrm{dt}, J_{1}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.34(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.13(\mathrm{~m}, 5 \mathrm{H}), 0.92$ $\left(\mathrm{dtd}, J_{l}=14 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, J_{3}=3 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,138.2,135.6,133.8$, $133.5,131.7,128.55,128.3,126.3,126.2,126.2,125.3,125.1,60.9,38.8,35.4,34.3,28.5,26.1,14.5$. HRMS $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2}, 336.2089$; found: 336.2090. NOESY, COSY, HSQC, HMBC experiments are reported below.

(E)-ethyl 3-(naphthalen-1-yl)-2-((tetrahydrothiophen-2-yl)methyl)acrylate (44). Prepared according to GP4 from $\mathbf{1 f}\left(220 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.0 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 11(102 \mu \mathrm{~L}, 0.75$ mmol, 1.5 equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Only one diastereomer was detected via ${ }^{1} \mathrm{H}$ NMR of the reaction crude. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) afforded the desired product as a colorless oil ($77 \mathrm{mg}, 47 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.20(\mathrm{t}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.42(\mathrm{~m}, 4 \mathrm{H}), 4.35(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.52(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.9,139.4,134.1,133.5,133.2,131.6,128.6,128.6,126.4,126.4,126.2,125.3,124.9,61.1$, $47.5,36.5,34.9,32.3,29.6,14.5$. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}, 326.1340$; found: 326.1339. NOESY experiment is reported below.

(E)-ethyl 3-(naphthalen-1-yl)-2-((tetrahydrofuran-2-yl)methyl)acrylate (45). Prepared according to GP4 from 1c ($203 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\rho=0.889 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 11(102 \mu \mathrm{~L}, 0.75$ mmol, 1.5 equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Only one isomer was detected via ${ }^{1} \mathrm{H}$ NMR of the reaction crude. Purification via flash column chromatography on silica gel (Hexane \rightarrow Hexane:Ethyl Acetate 95:5) afforded the desired product as a colorless oil ($107 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.59\left(\mathrm{dt}, J_{1}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.70\left(\mathrm{dd}, J_{l}=13 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59\left(\mathrm{ddd}, J_{l}=13 \mathrm{~Hz}\right.$, $\left.J_{2}=6 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.88\left(\mathrm{ddt}, J_{1}=12 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.1,139.3,133.5,133.2,132.8,131.6$,
128.5 (2x), 126.6, 126.4, 126.1, 125.4, 124.9, 77.9, 67.6, 61.0, 33.9, 31.4, 25.6, 14.4. HRMS (FI+) (m/z): [M$]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}, 310.1569$; found: 310.1582. NOESY experiment is reported below.
The reaction was also performed using GP5 (HWE: $60^{\circ} \mathrm{C}, 60 \mathrm{~min}, 2.8 \mathrm{bar}$) to afford $\mathbf{4 5}$ in 60% yield ($E: Z>$ 20:1).

(E)-tert-butyl 2-(2-(ethoxycarbonyl)-3-(naphthalen-1-yl)allyl)piperidine-1-carboxylate (46). Prepared according to GP4 from $\mathbf{1 j}\left(480 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=0.964 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 1 1}$ ($102 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Only one isomer was detected via ${ }^{1} \mathrm{H}$ NMR of the reaction crude. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate $90: 10$) afforded the desired product as a colorless oil ($108 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.34$ $(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 2.85\left(\mathrm{dd}, J_{1}=14 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38\left(\mathrm{dd}, J_{1}=14 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.90(\mathrm{bs}, 1 \mathrm{H}), 1.54-1.36(\mathrm{~m}, 14 \mathrm{H}), 1.33-0.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,154.8,139.5$, $133.7,133.5,131.3,128.5,126.4,126.2,126.2,125.4,125.1,79.2,61.0,50.3,38.3,29.5,28.5,28.5,25.5$, 19.1, 14.4. HRMS (FI +) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{4}, 423.2410$; found: 423.2400. HSQC experiment is reported below. The geometry of 42 was assigned in analogy with compounds 39-41.

(E)-ethyl 4-(N-methylacetamido)-2-(naphthalen-1-ylmethylene)butanoate (47). Prepared according to GP4 from $\mathbf{1 k}\left(186 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 4.0\right.$ equiv, $\left.\rho=0.937 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 11(102 \mu \mathrm{~L}, 0.75$ mmol, 1.5 equiv, $\rho=1.15 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Only one diastereomer was detected via ${ }^{1} \mathrm{H}$ NMR of the reaction crude. Purification via flash column chromatography on silica gel (Hexane:Ethyl Acetate $60: 40)$ afforded the desired product as a colorless oil ($90 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.28(\mathrm{~d}, J=1 \mathrm{~Hz}, 2 \mathrm{H}), 7.96-7.77(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7 \mathrm{~Hz}, 4 \mathrm{H})$, $3.51(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 10 \mathrm{H}) 1.79 \& 1.78$ (rotameric singlets, 2 x 3 H), $1.41(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,170.5,167.8,167.4,141.1,139.7,133.6,133.5$, $132.9,132.8,132.4,132.0,131.6,131.2,129.1,128.9,128.8,128.7,126.8,126.6,126.5,126.5,126.2,125.6$, $125.5,125.3,124.7,124.7,61.4,61.2,50.2,47.1,36.1,33.2,31.0,27.2,25.9,21.7,20.8,14.5$. HRMS (FI+) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}, 325.1678$; found: 325.1670. The geometry of 43 was assigned in analogy with compounds 39-41.

Characterization data of compounds 48-52

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)non-2-enoate (48). Prepared according to GP6 from 1a (288 $\mu \mathrm{L}$, $2.5 \mathrm{mmol}, 5.0$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{1 v}(104 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=$ $0.82 \mathrm{~g} \mathrm{~mL}{ }^{-1}$). Reaction time: 3 h. d.r. was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $2: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) to afford the two diastereomers as an inseparable mixture as a colorless oil ($113 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02(\mathrm{t}, J=8 \mathrm{~Hz}$, 1 H , major $), 6.85-6.71(\mathrm{~m}, 8 \mathrm{H}$, major + minor $), 6.28(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}$, major $), 6.26(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}$, minor $)$, $6.13\left(\mathrm{tt}, J_{l}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor $), 4.23(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $4.22(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, major $), 2.96$ (d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}$, major), 2.87 (dd, $J_{I}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $2.51(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $2.23(\mathrm{q}$, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$, major $), 1.50-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 12 \mathrm{H}), 1.31(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}$, major+minor) 0.93 $-0.83\left(\mathrm{~m}, 6 \mathrm{H}\right.$, major + minor). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 167.4 (major), 167.3 (minor), 148.7 (minor), 147.9 (major), 147.6 (minor), 147.5 (major), 124.8 (major), 124.4 (minor), 121.5 (major), 121.5 (minor), 110.3 (major), 110.2 (minor), 108.6 (major), 108.6 (minor), 60.9 (major), 60.5 (minor), 40.2 (minor), 32.6 (major), 31.8 (major), 31.8 (minor), 30.0 (minor), 29.3 (major+minor), 29.2 (major), 29.1 (minor), 28.7 (major), 22.7 (minor), 22.7 (major), 14.4 (major), 14.4 (minor), 14.2 (major + minor). HRMS major (FI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}, 318.1831$; found: 318.1830. HRMS minor $(\mathrm{FI}+)(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}, 318.1831$; found: 318.1831.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-5-phenylpent-2-enoate (49). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 2 1}(100 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\left.\rho=1.01 \mathrm{~g} \mathrm{~mL}^{-1}\right)$. Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $1: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) to afford the two diastereomers as an inseparable mixture as a colorless oil ($111 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.74(\mathrm{~m}, 8 \mathrm{H}), 6.27(\mathrm{t}, J=$ $5 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24\left(\mathrm{qd}, J_{1}=7 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.96(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.68(\mathrm{~m}$, $8 \mathrm{H}), 2.58(\mathrm{q}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32\left(\mathrm{td}, J_{1}=7 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,167.0$, $147.5,147.5,147.0,146.3,141.4,141.1,128.6$ (2x), 128.5, 128.5, 126.3, 126.1, 125.5, 125.2, 121.6, 121.5, 110.2, 110.1, 108.6, 108.6, 60.9, 60.6, 40.1, 35.4, 34.8, 32.6, 31.5, 31.1, 14.4 (2x). HRMS isomer 1 (FI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}, 338.1518$; found: 338.1528. HRMS isomer 2 ($\mathrm{FI}+$) (m / z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}, 338.1518$; found: 338.1520.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-cyclopropylacrylate (50). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}$), $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 22(56 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv, $\rho=0.93 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: $3 \mathrm{~h} . E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be ca. 1:1. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2 \rightarrow 95:5) to afford the two diastereomers as an inseparable mixture as a colorless oil ($79 \mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.71(\mathrm{~m}, 8 \mathrm{H}), 6.37(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}$, $J=5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.84(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67\left(\mathrm{dddd}, J_{l}=11 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, J_{3}=5 \mathrm{~Hz}, J_{4}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.75-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 4 \mathrm{H}), 0.72-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.50(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,167.2,154.2,152.4,147.5,147.5,122.3,121.6,121.5,121.4,110.4$, $110.2,108.5,108.5,60.7,60.5,39.9,32.7,14.4(2 \mathrm{x}), 12.6,12.2,9.0,8.8$. HRMS isomer $1(\mathrm{FI}+)(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}, 274.1205$; found: 274.1207. HRMS isomer $2(\mathrm{FI}+)(\mathrm{m} / \mathrm{z})$: [M] calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$, 274.1205; found: 274.1210.

tert-butyl
4-(2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-ethoxy-3-oxoprop-1-en-1-yl)piperidine-1carboxylate (51). Prepared according to GP6 from $1 \mathbf{1 a}\left(288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0\right.$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}$ ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{S 2 3}(160 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv). Reaction time: $16 \mathrm{~h} . Z: E$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $5: 1$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5 \rightarrow 90:10) to afford the two diastereomers as an inseparable mixture as a colorless oil (142 mg , 68\%).
$\underline{\text { Major }(Z): ~}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.64(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.9,154.9,151.0,147.5$, $123.9,121.5,109.9,108.4,79.5,60.7,43.5,39.9,36.6,31.4,28.5,14.3$. HRMS (ESI +) (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6}, 440.2049$; found: 440.2048. NOESY, HSQC experiments are reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(1-benzylpiperidin-4-yl)acrylate (52). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5.0 equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 2 4}(145 \mu \mathrm{~L}, 0.75$ mmol, 1.5 equiv, $\rho=1.05 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 16 h . Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $95: 5 \rightarrow 90: 10$) to afford the two diastereomers ($Z: E$ ratio $5: 1$ by NMR) as an inseparable mixture as a colorless oil ($122 \mathrm{mg}, 60 \%$).

Major (Z): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 4 \mathrm{H}), 6.33-6.25(\mathrm{~m}$, $1 \mathrm{H}), 5.97(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 4 \mathrm{H})$ $2.02\left(\mathrm{tdd}, J_{l}=14 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, J_{3}=4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.79-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.1,152.1,147.5,138.5,129.3,128.3,127.0,123.5,121.4,110.1,108.4$, 63.6, 60.6, 53.3, 40.0, 36.6, 31.8, 14.3. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4}, 407.2097$; found: 407.2104. NOESY experiment is reported below.

Characterization data of compounds 53-55

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(2-(2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-ethoxy-3-oxoprop-1-en-1-yl)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (53). Prepared according to GP4 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 2 5}(0.75 \mathrm{mmol}, 1.5$ equiv, 339 mg). Reaction time: 24 h . Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $70: 30$) to afford the two diastereomers as an inseparable mixture ($82 \mathrm{mg}, 25 \%$ yield, $40 \% \mathrm{RSM}$). $E: Z$ ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the collected purified product to be 3:1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ ($\mathrm{s}, 1 \mathrm{H}$, major), $7.50-7.43(\mathrm{~m}, 1 \mathrm{H}$, major), $7.28-7.26(\mathrm{~m}, 1 \mathrm{H}$, minor $)$, $7.26-7.17\left(\mathrm{~m}, 1 \mathrm{H}\right.$, major), $7.05\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major), $7.00-6.94(\mathrm{~m}, 1 \mathrm{H}$ major $+2 \mathrm{H}$ minor), $6.90(\mathrm{~s}, 1 \mathrm{H}$, minor $), 6.83-6.66(\mathrm{~m}, 4 \mathrm{H}$ major +5 H minor $), 6.41(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}$, major $), 6.41(\mathrm{t}, J$ $=5 \mathrm{~Hz}, 1 \mathrm{H}$, minor $), 5.37-5.23(\mathrm{~m}, 2 \mathrm{H}$ major +2 H minor $), 5.22-5.11(\mathrm{~m}, 1 \mathrm{H}$ major +1 H minor $), 5.11-$ $4.99(\mathrm{~m}, 1 \mathrm{H}$ major +1 H minor $), 4.34-4.25(\mathrm{~m}, 3 \mathrm{H}$ major +1 H minor $), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}$ major $+1 \mathrm{H}$ minor), $4.10-4.03$ (m, 2H, minor), $3.90-3.83$ ($\mathrm{m}, 1 \mathrm{H}$ major +1 H minor), 3.06 ($\mathrm{d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}$, major), $3.01\left(\mathrm{ddd}, J_{l}=13, J_{2}=5 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, minor), $2.07(\mathrm{~s}, 3 \mathrm{H}$ major), $2.06(\mathrm{~s}, 3 \mathrm{H}$ minor), $2.04-2.03(\mathrm{~m}$, 3 H major +3 H minor), 2.02 ($\mathrm{s}, 3 \mathrm{H}$ major), 2.01 ($\mathrm{s}, 3 \mathrm{H}$ major), $2.00(\mathrm{~s}, 3 \mathrm{H}$ minor), 1.98 ($\mathrm{s}, 3 \mathrm{H}$ minor) 1.37 (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$, major), $1.03\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6$ (major), 170.6 (minor), 170.3 (major + minor), 169.5 (major), 169.5 (minor), 169.2 (minor), 169.1 (major), 168.2 (minor), 167.4 (major), 154.9 (major), 154.1 (minor), 147.5 (minor), 147.4 (minor), 147.3 (major), 147.3 (major), 138.6 (major), 135.1 (minor), 130.2 (major), 130.2 (major), 130.1 (minor), 129.5 (minor), 127.8 (minor), 126.9 (major), 126.7 (minor), 125.6 (major), 123.3 (major), 122.7 (minor), 121.6 (major), 121.6 (major), 121.5 (minor), 121.5 (minor), 115.5 (major), 114.8 (minor), 110.0 (minor), 110.0 (major), 108.7 (major), 108.7 (minor), 108.6 (minor), 108.6 (major), 99.5 (major), 99.3 (minor), 72.7 (major), 72.7 (minor), 72.2 (major), 72.1 (minor), 71.1 (minor), 70.9 (major), 68.4 (1 C major +1 C minor), 62.0 (major), 62.0 (minor), 61.3 (major), 60.8 (minor), 40.5 (minor), 33.6 (major), 20.8 - 20.5 (4C major +4 C minor), 14.3 (major), 13.8 (minor). HRMS (FD+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{14}, 656.2105$; found: 656.2101. NOESY, COSY, HSQC experiments are reported below

ethyl (S)-2-(benzo[d][1,3]dioxol-2-ylmethyl)-5,9-dimethyldeca-2,8-dienoate (54). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S 2 6}(136 \mu \mathrm{~L}, 0.75$ mmol, 1.5 equiv, $\rho=0.85 \mathrm{~g} \mathrm{~mL}^{-1}$). Reaction time: 3 h. d.r. ratio was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $2: 1$. Purified via flash column chromatography on silica gel (Hexane \rightarrow Hexane:Ethyl Acetate 98:2) to afford the two diastereomers as an inseparable mixture ($113 \mathrm{mg}, 63 \%$ combined yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$ minor), $6.77(\mathrm{~m}, 4 \mathrm{H}$ major +4 H minor $), 6.27(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$ major), 6.27 $(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$ minor), $6.14(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$ major $), 5.14-5.04(\mathrm{~m}, 1 \mathrm{H}$ major +1 H minor), $4.23(\mathrm{q}, J=7$
$\mathrm{Hz}, 2 \mathrm{H}$ major), 4.23 ($\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$ minor), $2.96(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}$ minor), 2.89 ($\mathrm{d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}$ major), $2.59-2.36$ ($\mathrm{m}, 2 \mathrm{H}$ major), $2.29-2.07(\mathrm{~m}, 2 \mathrm{H}$, minor $), 2.05-1.87(\mathrm{~m}, 2 \mathrm{H}$ major +2 H minor), $1.70(\mathrm{~s}, 3 \mathrm{H}$ major +3 H minor $), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}$ minor $), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}$ major), $1.60(\mathrm{~s}, 3 \mathrm{H}$ major), $1.60(\mathrm{~s}, 3 \mathrm{H}$ minor), $1.42-1.25(\mathrm{~m}, 4 \mathrm{H}$ major +4 H minor $), 1.25-1.13(\mathrm{~m}, 1 \mathrm{H}$ major +1 H minor $), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$ major), 0.91 ($\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$ minor). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3$ (minor), 167.3 (major), 147.6 (major), 147.5 (minor), 146.7 (major + minor), 131.6 (minor), 131.4 (major), 125.5 (minor), 125.0 (minor), 124.8 (major), 124.6 (major), 121.5 (minor), 121.5 (major), 110.3 (minor), 110.2 (major), 108.6 (major + minor), 60.9 (minor), 60.5 (major), 40.2 (major), 37.0 (minor), 37.0 (major), 36.9 (major), 36.4 (minor), 33.3 (major + minor), 32.8 (minor), 25.8 (major), 25.8 (minor), 25.7 (minor), 25.7 (major), 19.8 (minor), 19.6 (major), 17.8 (minor), 17.8 (major), 14.4 (minor), 14.4 (major). HRMS isomer 1 ($\mathrm{FI}+$) (m / z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}, 358.2144$; found: 358.2139. HRMS isomer 2 (FI+) (m / z): [M] calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$, 358.2144; found: 358.2134. COSY, HSQC experiments are reported below.

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-4-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)but-2-enoate (55). Prepared according to GP6 from 1a ($288 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $2(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{S} 27(256 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv). Reaction time: 16 h . Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 90:10) to afford the two diastereomers (54 mg , 20% combined yield, $Z: E$ ratio $3: 1$ by NMR, $43 \% \mathrm{RSM}$). Further purification afforded the clean major isomer. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.64(\mathrm{~m}, 5 \mathrm{H}), 6.28(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.10(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}$, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.91\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.5,167.1,156.1,147.4,145.5,139.3,134.8,134.3,131.3,131.1,131.0,129.2$, $125.0,121.6,117.5,115.1,111.6,110.0,108.6,101.7,60.9,55.8,40.0,24.9,14.5,13.4$. HRMS (FI+) (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{ClNO}_{6}, 407.2097$; found: 407.2104. NOESY experiment is reported below.

8. Characterization data of compounds 56, 59-65

2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-phenylacrylonitrile (56). Prepared according to GP4 from 1a (115 $\mu \mathrm{L}, 1.0 \mathrm{mmol}$, 5.0 equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}\right), \mathbf{2}^{\prime}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{S 2}(0.3 \mathrm{mmol}, 1.5$ equiv. $)$. Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 40:1) to afford product 56 (12 mg, 22\%, d.r 20:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92\left(\mathrm{dd}, J_{I}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,147.5,142.0$, 129.7, 121.6, 109.6, 108.6, 36.4, 25.7. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}, 263.0946$; found, 263.0933.

2-(2-phenylallyl)benzo[d][1,3]dioxole (59). Prepared according to GP7 from $\mathbf{1 a}$ ($115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5.0$ equiv, $\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}$), $\mathbf{2}^{\prime \prime \prime \prime}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{S} 1(18 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 99:1) to afford product $59\left(27 \mathrm{mg} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ yield of the first step: 90%; isolated yield of the second step: 64%; yield over two steps: 58%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 4 \mathrm{H})$, $6.22(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,141.5,140.5,128.6,127.9,126.3,121.6,116.6,110.2,108.7,40.8$. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}, 238.0994$; found: 238.0999.

2-(2-phenylallyl-3,3-d2)benzo[d][1,3]dioxole (60). Prepared according to GP7 from $\mathbf{1 a}$ ($115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$, 5.0 equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}^{-1}\right), \mathbf{2}^{\prime \prime \prime \prime}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{S} 1-\mathbf{d}_{2}(19 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 98:2) to afford product $\mathbf{6 0}\left(30 \mathrm{mg}\right.$; ${ }^{1} \mathrm{H}-$ NMR yield of the first step: 90%; isolated yield of the second step: 63%; yield over two steps: 57%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.73$ $(\mathrm{m}, 4 \mathrm{H}), 6.23(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 147.5,141.4,140.5,128.6,127.9,126.2,121.5,110.2,108.7,40.7$.
HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{2}, 240.1119$; found: 240.1114.

2-(2-phenyl-3-(4-(trifluoromethyl)phenyl)allyl)benzo[d][1,3]dioxole (61). Prepared according to GP7 from $\mathbf{1 a}\left(115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5.0\right.$ equiv, $\left.\rho=1.06 \mathrm{~g} \mathrm{~mL}{ }^{-1}\right), \mathbf{2} " \mathrm{l}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{S 4}(41 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$, 1.5 equiv, $\rho=1.28 \mathrm{~g} \mathrm{~mL}^{-1}$). Purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 99:1) to afford product 61 as an inseparable mixture of the two diastereomers ($E: Z 3: 1$ ratio) as a colorless oil (52 mg ; ${ }^{1} \mathrm{H}$-NMR yield of the first step: 90%; isolated yield of the second step: 68%; yield over two steps: 61\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.46(\mathrm{~m}, 6 \mathrm{H}$ major), $7.45-7.29(\mathrm{~m}, 3 \mathrm{H}$ major +5 H minor), 7.20 (dd, $J=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}$ minor), 7.05 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$ minor), 6.92 (s, 1H major), $6.86-6.68$ ($\mathrm{m}, 4 \mathrm{H}$ major + 4 H minor), $6.64\left(\mathrm{~s}, 1 \mathrm{H}\right.$ minor), $6.14\left(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ major), $6.13\left(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ minor), 3.35 (dd, $J_{l}=5$ $\mathrm{Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}$ major , 3.15 (dd, $J_{I}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}$ minor). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5$ (minor), 147.3 (major), 141.6 (major), 141.0 (major), 140.5 (minor), 139.7 (minor), 138.3 (minor), 137.5 (major), 131.2 (major), 129.4, 129.3, 129.1, 128.9, 128.8, 128.6, 128.2, 127.9, 126.9, 125.5 (major, q, $J=4$ Hz), 124.9 (minor, q, $J=4 \mathrm{~Hz}$), 124.3 (major, q, $J=272 \mathrm{~Hz}) 124.3$ (minor, q, $J=272 \mathrm{~Hz}$), 121.7 (major), 121.6 (minor), 109.8 (major), 109.6 (minor), 108.7 (minor), 108.7 (major), 45.7 (minor), 36.1 (major). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.48, -62.54.

ethyl 3-(benzo[d][1,3]dioxol-2-yl)-2-methylpropanoate (62). Prepared according to a procedure adapted from the literature. ${ }^{11}$ In particular, an oven-dried vial was charged with 10 mg of $10 \% \mathrm{Pd} / \mathrm{C}$, then compound $4(0.2 \mathrm{mmol})$ was added. Toluene (1 mL) was added, followed by acetic acid ($23 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv, ρ $=1.049 \mathrm{~g} \mathrm{~mL}^{-1}$) and $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv). The resulting mixture was stirred for 2 hours, after which it was carefully quenched with HCl 0.1 N . Finally, sat'd NaHCO_{3} was added to neutralized the excess of acid. The mixture was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$ and the collected organic phases were dried over MgSO_{4} and the solvent removed under reduced pressure. The crude was purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 97:3 $\rightarrow 95: 5$) to get 33 mg the product as a colorless oil (70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.17\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14$ (qd, $\left.J_{l}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.79\left(\mathrm{dqd}, J_{l}=8 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, J_{3}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42\left(\mathrm{ddd}, J_{l}=14 \mathrm{~Hz}, J_{2}=8\right.$ $\left.\mathrm{Hz}, J_{3}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.01\left(\mathrm{dt}, J_{I}=14 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.27(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,147.6,121.6,121.6,110.0,108.6,60.8,38.1,34.6,17.9,14.3$. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}, 236.1049$; found: 236.1054.

2-(benzo[d][1,3]dioxol-2-ylmethyl)prop-2-en-1-ol (63). Prepared according to a procedure adapted from the literature. ${ }^{12}$ In particular, in an oven-dried 10 mL round-bottom flask compound $\mathbf{4}$ was dissolved in 0.8 mL of dry toluene and DIBAL-H ($880 \mu \mathrm{~L}, 0.88 \mathrm{mmol}, 4.4$ equiv; 1 M solution in hexanes was used) was added dropwise under inert atmosphere $\left(\mathrm{N}_{2}\right)$ at $0^{\circ} \mathrm{C}$ (ice bath). After 30 minutes, the ice bath was removed ant the solution was stirred for 2 hours at room temperature. Finally, the reaction was quenched with HCl 0.1 N , neutralized with sat'd NaHCO_{3}, filtered through a pad of celite to remove aluminum salts and finally extracted with Ethyl Acetate ($3 \times 10 \mathrm{~mL}$). The organic phases were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude was purified via flash column chromatography on
silica gel (Hexane:Ethyl Acetate $80: 20$) to get 24 mg the product as a colorless oil (62% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.24(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{q}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{q}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.75\left(\mathrm{dd}, J_{I}=5 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.76(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 147.5, 142.0, 121.7, 114.9, 110.6, 108.7, 66.4, 38.4. HRMS (FI+) (m/z): [M] calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$, 192.0786; found: 192.0781.

ethyl 3-(benzo[d][1,3]dioxol-2-yl)-2-((tetrahydrofuran-2-yl)methyl)propanoate (64). Ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)acrylate ($4,0.35 \mathrm{mmol}, 81 \mathrm{mg}$) and TBADT ($58 \mathrm{mg}, 5 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{~mL})$ in an oven-dried 7 mL vial. The vial was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(3 \mathrm{~min})$. After degassing, $\mathbf{1 c}\left(142 \mu \mathrm{~L}, 1.75 \mathrm{mmol}\right.$, 5 equiv, $\left.\rho=0.89 \mathrm{~g} \mathrm{~mL}^{-1}\right)$ was added via syringe through the septum. The resulting solution was irradiated with a PR160L Kessil lamp ($390 \mathrm{~nm}, 40 \mathrm{~W}$) for 16 hours. After irradiation, the vial was opened, and the solvent was removed under reduced pressure. The crude was purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate 95:5) to afford an inseparable mixture of the two diastereomers (ca 1:1 ratio) as a colorless oil (66 $\mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83-6.69(\mathrm{~m}, 8 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.03(\mathrm{~m}$, $4 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.92\left(\mathrm{tt}, J_{l}=9 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.81\left(\mathrm{dddd}, J_{l}=9 \mathrm{~Hz}, J_{2}\right.$ $\left.=8 \mathrm{~Hz}, J_{3}=6 \mathrm{~Hz}, J_{4}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.75-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.22\left(\mathrm{t}, J_{l}=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22\left(\mathrm{t}, J_{l}=7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 175.3,175.2,147.6,147.6,147.5,121.5,121.5,121.5,109.9,108.6,108.6,108.6,77.0,76.9,67.8,67.7$, $60.7,38.7,38.4,38.0,37.9,37.3,36.7,31.7,31.6,25.7,25.7,14.3,14.2$. HRMS (FI+) (m/z): $[M]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}, 306.1467$; found: 306.1474 .

ethyl 2-(benzo[d][1,3]dioxol-2-ylmethyl)-3-(4-cyanophenyl)acrylate (65). Prepared according to a procedure adapted from the literature. ${ }^{13}$ In particular, $4(70 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 4-bromobenzonitrile (109 $\mathrm{mg}, 0.60 \mathrm{mmol}$, 2 equiv) were added in an oven-dried 5 ml Schlenk flask under under N_{2} atmosphere. Dry DMF (3.0 mL) was added, followed by triethylamine ($83 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 2$ equiv, $\rho=0.728 \mathrm{~g} \mathrm{~mL}^{-1}$), triphenylphosphine ($8.0 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05$ equiv). The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ (oil bath) for 48 h , after which it was cooled to room temperature and quenched with HCl 0.1 M . The mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the collected organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. d.r. was determined via ${ }^{1} \mathrm{H}$ NMR of the crude to be $4: 1$. The crude was purified via flash column chromatography on silica gel (Hexane:Ethyl Acetate $95: 5 \rightarrow 90: 10$) to afford the two diastereomers ($60 \mathrm{mg}, 60 \%$ combined yield).
Major (E): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}$,
$J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,147.1,141.1,139.8,132.3,129.8,128.7,121.9,118.5$, 112.3, 109.6, 108.7, 61.7, 33.5, 14.4. HRMS (FI+) (m/z): [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}, 335.1158$; found: 335.1157.

9. Scale-up procedure ($\mathbf{1 0} \mathbf{~ m m o l}$)

Ethyl 2-(diethoxyphosphoryl)acrylate ($2.4 \mathrm{~g}, 10 \mathrm{mmol}$), 1a ($5.8 \mathrm{~mL}, 50 \mathrm{mmol}, 5$ equiv) and TBADT (166 $\mathrm{mg}, 1 \mathrm{~mol} \%$) were dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ in an oven-dried 100 mL round-bottom flask. The flask was sealed with a rubber septum and the solution was sparged with $\mathrm{N}_{2}(10 \mathrm{~min})$. The mixture was taken up with a 50 mL syringe and mounted on a syringe pump (Feed A) connected to a Vapourtec system UV-150 equipped with a 3.06 mL PFA coil ($\mathrm{ID}=0.75 \mathrm{~mm}$) and 60 W 365 nm LEDs.
Parallelly, in an oven-dried vial a stock solution 0.11 M in paraformaldehyde and 0.084 M in LiOtBu (a 1 M in dry THF solution was used) was prepared. Upon addition of LiOtBu and following sonication (10 min) the suspension turned to a flowable solution. This stock solution was used for Feed B.
Feed A was pumped at $0.612 \mathrm{~mL} \mathrm{~min}^{-1}$ through the Vapourtec system $\left(\mathrm{V}=3.06 \mathrm{~mL}, \tau_{\mathrm{R}}=5 \mathrm{~min}\right)$. The blue outflow of the latter (due to the reduced form of the photocatalyst, TBADT) was then mixed with Feed B (pumped at $0.802 \mathrm{~mL} \mathrm{~min}^{-1}$) through a PEEK T-mixer. When the outflow of the photoreactor turned back to colorless (marking the end of the photoreaction), neat acetonitrile was loaded on both syringe pumps to push the combined feeds into a 11.3 mL PFA coil (ID $=0.75 \mathrm{~mm}$) at $1.414 \mathrm{~mL} \mathrm{~min}^{-1}\left(\tau_{\mathrm{R}}=8 \mathrm{~min}\right)$. This second coil was kept in an ultrasonic bath at $40^{\circ} \mathrm{C}$. Finally, the resulting reaction crude was directly collected into a sat'd $\mathrm{NH}_{4} \mathrm{Cl}$ solution for quenching (Figure S2). The mixture was extracted three times with Ethyl Acetate and the organic phases were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and rotary evaporation, the crude was analyzed via ${ }^{1} \mathrm{H}$ NMR to determine the reaction yield $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ as the external standard) and product 4 was purified via column chromatography $\left(\mathrm{SiO}_{2}\right.$, Cyclohexane: Ethyl Acetate $\left.98: 2\right)$ to afford 1.52 g of the pure compound (65% yield).

Figure S2. Picture of the experimental setup used for the 10 mmol scale-up.
10. Limitation of the scope

11. References

1. Magalhães, J. et al. Refining the structure-activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. J. Enzyme Inhib. Med. Chem. 34, 31-43 (2019).
2. Protti, S., Ravelli, D., Fagnoni, M. \& Albini, A. Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chem. Commun. 7351-7353 (2009) doi:10.1039/b917732a.
3. Abadie, B., Jardel, D., Pozzi, G., Toullec, P. \& Vincent, J. M. Dual Benzophenone/Copper-Photocatalyzed Giese-Type Alkylation of C(sp3)-H Bonds. Chem. - A Eur. J. 25, 16120-16127 (2019).
4. Ackerman, L. K. G., Martinez Alvarado, J. I. \& Doyle, A. G. Direct C-C Bond Formation from Alkanes Using Ni-Photoredox Catalysis. J. Am. Chem. Soc. 140, 14059-14063 (2018).
5. Van Quaquebeke, E. et al. 2,2,2-Trichloro-N-(\{2-[2-(dimethylamino)ethyl]-1,3-dioxo-2, 3-dihydro-1H-benzo[de]isoquinolin-5-yl\}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J. Med. Chem. 50, 4122-4134 (2007).
6. Cao, H. Q. et al. Silver-Promoted Direct Phosphorylation of Bulky C(sp2)-H Bond to Build Fully Substituted β-Phosphonodehydroamino Acids. Org. Lett. 22, 6414-6419 (2020).
7. De Fusco, C., Fuoco, T., Croce, G. \& Lattanzi, A. Noncovalent Organocatalytic Synthesis of Enantioenriched Terminal Aziridines with a Quaternary Stereogenic Center. Org. Lett. 14, 4078-4081 (2012).
8. Chen, T., Zhao, C. Q. \& Han, L. B. Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. J. Am. Chem. Soc. 140, 3139-3155 (2018).
9. Corcé, V. et al. Silicates as Latent Alkyl Radical Precursors: Visible-Light Photocatalytic Oxidation of Hypervalent Bis-Catecholato Silicon Compounds. Angew. Chem. Int. Ed. 54, 11414-11418 (2015).
10. Liang, L. et al. Copper-Catalyzed Intermolecular Alkynylation and Allylation of Unactivated C(sp3)-H Bonds via Hydrogen Atom Transfer. Org. Lett. 23, 8575-8579 (2021).
11. Russo, A. T., Amezcua, K. L., Huynh, V. A., Rousslang, Z. M. \& Cordes, D. B. A simple borohydridebased method for selective 1,4-conjugate reduction of α, β-unsaturated carbonyl compounds. Tetrahedron Lett. 52, 6823-6826 (2011).
12. Ghera, E., Yechezkel, T. \& Hassner, A. Utilization of Ethyl 2-((Phenylsulfonyl)methyl)acrylate for the Synthesis of α-Methylenevalerolactones. J. Org. Chem. 55, 5977-5982 (1990).
13. Bianco, A., Cavarischia, C. \& Guiso, M. Total synthesis of anthocyanidins via Heck reaction. Nat. Prod. Res. 20, 93-97 (2006).

12. NMR Spectra of compounds $2^{\prime}, 2^{\prime \prime}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2}^{\prime}$

ふ

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2'

${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2'

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2}^{\prime \prime}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2'
~o ~~
$\underbrace{\infty}$

${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2}^{\prime \prime}$

13. NMR Spectra of compounds 3a, 3e, 3f, 3n-q, 3u, 3v
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 e}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3e

[^1]${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3e
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3f

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

45	40	35	30	25	20	15	10	5	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 n}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 n}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3 o

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3 o

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3 o

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 p}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3p

[^2]${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 p}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q}$

${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 u}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 u}$

[^3]${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 u}$
$$
\stackrel{\hat{0}}{\stackrel{\sim}{n}}
$$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 v}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 v}$

[^4]${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 v}$

14. NMR Spectra of compounds 4-23

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4

[^5]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5
\circ
$\stackrel{0}{0}$
$\stackrel{0}{1}$
$\stackrel{1}{2}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{6}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 6

$\stackrel{\square}{1}$	$\stackrel{\square}{\circ}$
-1	-
\|	\|

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7
$\stackrel{\circ}{\stackrel{m}{0}} \stackrel{\stackrel{\infty}{c}}{\stackrel{\rightharpoonup}{\infty}} \underset{\sim}{\stackrel{\omega}{\omega}}$

$\begin{aligned} & \circ \underset{\sim}{n} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{6} \end{aligned}$	\bigcirc	N	

[^6]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9
 1/1 1/1)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 1}$

$$
\iiint \rho \int
$$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 2}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 14

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 14
～
$\underset{\sim}{i}$
\vdots
\vdots

	へ్入入へ
111	

$\begin{array}{lcccccccccc}100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 5}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 6}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7}$

$\stackrel{\infty}{\infty}$	N
$\stackrel{0}{0}$	\%
,	\|

[^7]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8}$

$\stackrel{\sim}{\sim}$	\bigcirc
$\stackrel{\text { ¢ }}{ }$	
।	\|

$-77.16 \mathrm{CDCl} 3$

$\begin{array}{lllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4-d $\mathbf{d}_{\mathbf{2}}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of compound 4-d \mathbf{d}_{2}

```
M~
```

n
$\stackrel{n}{0}$
1
1
$\stackrel{!}{\substack{2 \\ \\ 1}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compounds 20

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compounds 20

[^8]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 21

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 21

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 22

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 22

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 23

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 23

15. NMR Spectra of compounds 24-55

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 24 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 24 (major, E)

[^9]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 24 (minor, Z)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of compound 24 (minor, Z)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 25 (minor, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz, CDCl_{3}) of compound 25 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26 (isomer 1, E)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of compound 26 (isomer 1, E)

```
NO
```

[^10]${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26 (isomer 1, E)
N
$\stackrel{y}{*}$
\vdots
i

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26 (isomer 2, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26 (isomer 2, Z)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 6}$ (isomer 2, Z)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27 (isomer 1, E)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 27 (isomer 1, E)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27 (isomer 1, E)
\qquad

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27 (isomer 2, Z)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27 (isomer 2, Z)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 27 (isomer 2, Z)
N
$\stackrel{N}{i}$
i
i
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28 (major, E)

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28 (major, E)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28 (major, E)
No

ín
1

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 29 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 29 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 29 (E isomer)

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 0}$ (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 0}$ (major, E)

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 0}$ (minor, Z)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 0}$ (minor, Z)

¢	¢
1	

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 0}$ (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 1}$ (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 1}$ (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (major, E)
 1

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (major, E)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (major, E)
\qquad

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (minor, Z)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (minor, Z)
\qquad

Key HSQC correlations of compound 32 (minor, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 3}$ (major, E)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 33 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{NOESY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 33 (E isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (major, E)

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound $\mathbf{3 4}$ (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (minor, Z)

Key HSQC correlations of compound $\mathbf{3 4}$ (minor, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 35 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 35 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 35 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 35 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 6}$ (isomer 1, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 36 (isomer 1, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 36 (isomer 1, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 36 (isomer 2, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 36 (isomer 2, Z)

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound $\mathbf{3 6}$ (isomer 2, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 6}$ (isomer 2, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 7}$ (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 37 (major, E)

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 10 | 1 |
| :--- |
| $f 1(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | | | |

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 37 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 37 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 7}$ (minor, Z)

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound $\mathbf{3 7}$ (minor, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 37 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 8}$ (isomer 1, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38 (isomer 1, E)

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound $\mathbf{3 8}$ (isomer 1, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38 (isomer 1, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38 (isomer 2, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38 (isomer 2, Z)

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound $\mathbf{3 8}$ (isomer 2, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38 (isomer 2, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 39 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 39 (major, E)

[^11]Key COSY (400 MHz, CDCl_{3}) correlations of compound $\mathbf{3 9}$ (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 39 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 40 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 40 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 41

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 41

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (major, E)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (major, E)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (minor, Z)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (minor, Z)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42 (minor, Z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43 (E isomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43 (E isomer)

$-77.16 \mathrm{CDCl} 3$

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Key COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) correlations of compound 43 (E isomer)

Key HSQC correlations of compound 43 (E isomer)

Key HMBC correlations of compound 43 (E isomer)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43 (E isomer)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of compound 44 (E isomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 44 (E isomer)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 44 (E isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 45 (E isomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 45 (E isomer)

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 10 | 1 |
| :--- |

Key COSY (400 MHz, CDCl_{3}) correlations of compound 45 (E isomer)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 45 (E isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 46 (E isomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 46 (E isomer)

[^12]Key HSQC of compound 46 (E isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 47 (E isomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 47 (E isomer)

[^13]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 48

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 48

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 49

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 49

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 50

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 0}$
(
60
08
00

$\underbrace{\sim}{ }^{\circ}$

[^14]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 1}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 1}$

Key HSQC correlations of compound $\mathbf{5 1}$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 51

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 52

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 52

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 52

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 53

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 53

Key $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ correlations of compound $\mathbf{5 3}$

HSQC of compound 53

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 53

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 54

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 54

Key $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ correlations of compound 54

HSQC of compound $\mathbf{5 4}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 55

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 55

[^15]COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5}$

HSQC of compound $\mathbf{5 5}$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5}$

16. NMR Spectra of compounds 56, 59-65

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 56

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 56

COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 56

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 56

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 59

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 9}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 0}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 0}$

[^16]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 1}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(76} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 1}$

${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 1}$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 62

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 62

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 3}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 63

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 64

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 4}$

HSQC of compound 64

DEPT ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 64

60	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 5}$ (major, E)

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 65 (major, E)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 5}$

[^0]: ${ }^{\text {a }}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\mathrm{CH}_{2} \mathrm{Br}_{2}$ or trichloroethylene as the external standard.

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]: | 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |
 | :--- |
 | 1 | | | | | | | | | | | | |

[^8]:

[^9]:

[^10]: $\begin{array}{llllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^11]: 10
 $\begin{array}{llll}190 & 180 & 170\end{array}$

[^12]:

[^13]: 10

[^14]: | 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
 | :--- |

[^15]:

[^16]:

