Electronic Supplementary Information (ESI) for

Why Heterogeneous Single-Atom Catalysts Preferentially Produce

CO in the Electrochemical CO₂ Reduction Reaction

Yu Wang,[‡] Tianyang Liu[‡] and Yafei Li^{*}

Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

To whom correspondence should be addressed. Email: <u>liyafei@njnu.edu.cn(YL)</u>

[‡]Y.W. and T.L. contributed equally.

Fig. S1 Top and side views of the geometric structures of the (a) Bi–N–C SAC and (b) Bi nanosheet. The grey, blue, violet, and white spheres represent C, N, Bi, and H atoms, respectively.

Fig. S2 Evolution of the total energy of first-principles molecular dynamics simulation for the Bi–N–C SAC at 300K. The inset is snapshot of structure at 10 ps. The NVT ensemble was employed in the first-principles molecular dynamics simulation, and the temperature was controlled by using the Nosé-Hoover method.

Fig. S3 Mechanistic scheme commonly employed in thermodynamic calculations in literature for the electroreduction of CO_2 to form CO and formate.

Fig. S4 Scheme for the structural transformation from chemisorbed CO_2 (* CO_2) to *COOH and *OCHO.

Fig. S5 Views of CO adsorbed on the Bi–N–C SAC at U = -0.50, -1.00, and -1.50 V after structure optimization. The numbers represent the distance between Bi and C atoms.

Fig. S6 Kinetic barriers ΔG^{\ddagger} of the protonation of physisorbed CO₂ to form *COOH and *OCHO on the Bi nanosheet (i.e., surface hydrogenation mechanism) as a function of electrode potential *U*.

Fig. S7 Kinetic barriers ΔG^{\ddagger} of the protonation of *CO₂ to form *COOH and *OCHO on the Co–N–C SAC as a function of electrode potential *U*.

Fig. S8 Snapshoots of the path for the protonation of $*CO_2$ to *COOH on the Co–N–C SAC.

Fig. S9 Snapshoots of the path for the protonation of $*CO_2$ to *OCHO on the Co–N–C SAC.

Fig. S10 Calculated total energies of *COOH and *OCHO of the (a) Fe–N–C, (b) Co–N–C, (c) Ni–N–C, (d) In–N–C SACs as a function of electrode potential *U*.

Fig. S11 Calculated total energies of chemisorbed and physisorbed CO_2 on (a) Ag and (b) Au as a function of electrode potential U.