Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Recyclable Fluorous-Tag Assisted Two Directional Oligosaccharide Synthesis Enabled by Interrupted Pummerer Reaction Mediated Glycosylation

Lei Cai, Qi Chen, Jian Guo, Zhihua Liang, Dengxian Fu, Lingkui Meng, Jing Zeng^{*} and Qian Wan^{*}

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China

E-mail: wanqian@hust.edu.cn; zengjing0052@hust.edu.cn

Table of Contents

1. General Comments	S3
2. Materials	S3
3. General Procedure A for PTFE assisted filtration	S4
4. Preparation of fluorous-tag (Scheme 1)	S4
5. Preparation of fluorous-tagged glycosyl donor 7 (Scheme 2)	S5
6. IPRm glycosylation of fluorous-tagged glycosyl donor 7 (Scheme 2)	S7
7. Regeneration of fluorous-tag (Scheme 2)	S8
8. Preparation of donors	S8
9. Preparation of fluorous-tagged acceptors 12	S9
10. Orthogonal glycosylations of fluorous-tagged acceptors (Table 1)	S16
11. Table S1. Preparation of OPSB ^F glycosyl donors 14	S23
12. Table S2. Preparation of acceptors 15	S28
13. IPRm glycosylations of OPSB ^F glycosyl donors (Scheme 3)	S29
14. Fluorous-tag assisted two-directional syntheses of ST14 repeating units (Sc 4)	heme:
15. References	S 54
16. NMR Spectra	S56

1. General Comments

All reactions were monitored by thin-layer chromatography over silica-gel-coated TLC plates (Yantai Chemical Industry Research Institute). The spots on TLC were visualized by warming 10% H₂SO₄ (10% H₂SO₄ in ethanol) or 0.5% KMnO₄ (0.5% KMnO₄ in water) sprayed plates on a hot plate. Column chromategraphy was performed using silica gel (Qingdao Marine Chemical Inc., China). NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz), Bruker Ascend TM-600 spectrometer (600 MHz) and Bruker AVANCE NEO 600 (600 MHz) and the ¹H NMR and ¹³C NMR chemical shifts were referenced to the solvent or solvent impurity peaks for CDCl₃ at $\delta_{\rm H}$ 7.24 and $\delta_{\rm C}$ 77.23. All reaction were heated by metal sand bath (WATTCAS, http://www.xinweier.com/Product/Product_Info.aspx?ProductID=4140). Z100500. The matrix-assisted laser desorption ionization time-of-flight mass spectra (MALDI-TOF MS) were obtained with an AB SCIEX 5800MALDI-TOF/TOF mass spectrometer in linear mode using 2,5-dihydroxybenzoic acid (DHB) as matrix. High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF II spectrometer using electrospray ionization (ESI). Optical rotations were measured at 20 $\,^\circ C$ with a Rudolph Autopol IV automatic polarimeter using a quartz cell with 1 mL capacity and a 1 dm path length. Concentrations (c) are given in g/100 mL.

2. Materials

Prior to running the glycosylation reactions, all reagents except Tf₂O and those with low boiling point (<180 $^{\circ}$ C) were dried by repeated azeotropic removal of water using toluene and a rotary evaporator at 30 °C. Unless otherwise noted, all reactions were performed under argon atmosphere. Solvents for reactions were dried on an Innovative Technologies Pure Solv400 solvent purifier. Molecular sieves (4Å, powder $< 50 \mu m$) for reactions were flame dried immediately before use. Trifluoromethanesulfonic anhydride (Tf₂O) was purchased from TCI. 2,6-Di-tert-butyl-4-methylpyridine (DTBMP) was purchased from Acros. Polytetrafluoroethylene (PTFE) powder was from Sigma (200)µm particle size, SKU: 737992-100G). purchased [Bis(trifluoroacetoxy)iodo]benzene (PIFA) and all other chemicals were purchased from Adamas and used without further purification.

3. General Procedure A for PTFE assisted filtration: PTFE powder (200 µm particle size, roughly 5-10 times the mass of fluorous-tagged product) was added to the crude reaction residue followed by adding a solvent mixture of acetone/H₂O (6:4, v:v, roughly 2 mL/g PTFE). The resulting mixtures were stirred at room temperature for 10-20 min and filtrated through a sand core funnel, washed with additional acetone/H₂O (3-10 times) to thoroughly remove non-fluorous components that remained in solution. Finally, PTFE was washed with dichloromethane or ethyl acetate (3-5 times), the filtrate was dried over anhydrous Na₂SO₄, concentrated under reduced pressure to provide the fluorous-tagged products. PTFE was recovered and used for the next purification.

4. Preparation of fluorous-tag (Scheme 1)

1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl 4-methylbenzenesulfonate (2)

TsO C₆F₁₃

To a stirred solution of compound $\mathbf{1}^{[1]}$ (6.2 g, 7.90 mmol, 1.0 equiv) and tosyl chloride (3.8 g, 19.8 mmol, 2.5 equiv) in anhydrous CH₂Cl₂ (10.0 mL) were added a solution of Et₃N (2.7 mL, 19.8 mmol, 2.5 equiv) and DMAP (193 mg, 1.58 mmol, 0.2 equiv) in

CH₂Cl₂ (6.0 mL) at 0 °C, the resulting mixture was stirred at room temperature overnight and extracted with EtOAc, the organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **2** (7.3 g, yield 89%) as white solid, $R_f = 0.4$ (petroleum ether-EtOAc 8:1). m.p. 58.3-59.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 2H, Ar-H), 7.30 (d, J = 8.0 Hz, 2H, Ar-H), 4.62 (dt, J = 4.8, 9.6 Hz, 1H), 3.67-3.55 (m, 8H), 2.41 (s, 3H, CH₃), 2.29-2.16 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 134.1, 129.9, 128.2, 79.0, 69.6, 63.5 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 31.5 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₂₆H₂₀C₅SNa⁺ [M+Na]⁺: 961.0508, found: 961.0545.

Methyl 2-[(1,3-bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)thio]benzoate (3)

To a stirred solution of compound **2** (7.3 g, 7.77 mmol, 1.0 equiv) and K_2CO_3 (2.1 g, 15.54 mmol, 2.0 equiv) in DMF (25.9 mL) was added methyl thiosalicylate (1.6 mL, 11.66 mmol, 1.5 equiv) at 0 °C. After stirring at 60 °C overnight, the reaction mixture was extracted with EtOAc, the organic phase was washed with H₂O and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*.

Then, the crude product was purified by the General Procedure A to give compound **3** (5.5 g, yield 75%) as white solid, $R_f = 0.66$ (petroleum ether-EtOAc 5:1). m.p. 119.5-120.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 1H, Ar-H),7.44-7.40 (m, 2H, Ar-H), 7.22-7.18 (m, 1H, Ar-H), 3.89 (s, 3H, OMe), 3.75-3.70 (m, 8H), 3.58-3.52 (m, J = 6.4 Hz, 1H, SCH), 2.44-2.31 (m, 4H, C<u>H₂CH₂C₆F₁₃). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 138.8, 132.4, 131.3, 130.5, 128.3, 125.4, 70.4, 63.3 (t, J = 4.0 Hz, <u>CH₂CH₂C₆F₁₃), 52.4, 46.1, 31.6 (t, J = 21.0 Hz, CH₂<u>CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₂₇H₂₀F₂₆O₄SNa⁺ [M+Na]⁺: 957.0559, found: 957.0560.</u></u></u>

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzenemethanol (4)

To a stirred suspension of LiAlH₄ (436 mg, 11.77 mmol, 2.0 equiv) in anhydrous THF (19.0 mL) was added a solution of compound **3** (5.5 g, 5.89 mmol, 1.0 equiv) in anhydrous THF (10.0 mL) slowly at 0 %. The resulting mixture was allowed to stir at room temperature overnight. H₂O (0.44 mL) was added to the reaction

mixture slowly, followed by addition of 15% NaOH (0.44 mL) and H₂O (1.33 mL). Then, the mixture was filtered through a sand core funnel. The filtrate was diluted and extracted with EtOAc, the organic phase was washed with H₂O and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **4** (5.1 g, yield 97%) as colorless liquid, R_{f} = 0.27 (petroleum ether-EtOAc 6:1). ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.47 (m, 1H, Ar-H), 7.38 (dd, *J* = 1.2, 6.6 Hz, 1H, Ar-H), 7.29-7.25 (m, 2H, Ar-H), 4.77 (d, *J* = 6.6 Hz, 2H, PhCH₂), 3.70 (t, *J* = 6.6 Hz, 4H), 3.66-3.62 (m, 4H), 3.37-3.33 (m, *J* = 6.0 Hz, 1H, SCH), 2.94 (t, *J* = 6.6 Hz, 1H, OH), 2.40-2.32 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 134.3, 133.1, 129.6, 128.7, 128.6, 70.6, 64.4, 63.3 (t, *J* = 4.0 Hz, CH₂CH₂C₆F₁₃), 49.4, 31.5 (t, *J* = 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₂₆H₂₀F₂₆O₃SNa⁺ [M+Na]⁺: 929.0610, found: 929.0612.

5. Preparation of fluorous-tagged glycosyl donor 7 (Scheme 2)

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranoside (6)

A suspension of compound **4** (188 mg, 0.21 mmol, 1.0 euqiv) and compound $5^{[2]}$ (158.5 mg, 0.25 mmol, 1.2 equiv) containing activated 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (2.0 mL) was stirred at room temperature for 5 min under argon. After cooling to -20 °C, TMSOTf (19

 μ L, 0.10 mmol, 0.5 equiv) was added. The reaction mixture was stirred at -20 °C for 1 h and quenched by addition of Et₃N (0.5 mL). The suspension was diluted with EtOAc and filtered through Celite. The filtrate was concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 6 (258 mg, yield 90%) as colorless syrup, $R_f = 0.2$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} - 4.3$ (c, 1.14 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.15 (m, 19H, Ar-H), 5.06 (dd, J = 8.0, 9.2 Hz, 1H, H-2), 5.02 (d, J = 13.2 Hz, 1H, PhCH₂), 4.77 (d, J = 10.8 Hz, 1H, PhCH₂), 4.77 (d, J = 11.2 Hz, 1H, PhCH₂), 4.75 (d, J = 11.2 Hz, 1H, PhCH₂), 4.64 (d, J = 11.6 Hz, 1H, PhCH₂), 4.61 (d, J = 12.0 Hz, 1H, PhCH₂), 4.54 (d, J = 10.8 Hz, 1H, PhCH₂), 4.53 (d, J = 12.4 Hz, 1H, PhCH₂), 4.43 (d, J = 8.0 Hz, 1H, H-1), 3.77-3.57 (m, 12H), 3.48 (ddd, J = 2.4, 4.8, 9.6 Hz, 1H, H-5), 3.33-3.28 (m, 1H, SCH), 2.39-2.26 (m, 4H, CH₂CH₂C₆F₁₃), 1.92 (s, 3H, OAc). ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 139.4, 138.4, 138.3, 138.1, 133.3, 132.5, 128.9, 128.6, 128.6, 128.6, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 100.4 (C-1), 83.2, 78.2, 75.5, 75.3, 75.3, 73.7, 73.4, 70.4, 70.4, 69.0, 68.9, 63.2 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 48.4, 31.5 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 21.1. HRMS (ESI⁺): calc. for C₅₅H₅₀F₂₆O₉SNa⁺ [M+Na]⁺: 1403.2653, found: 1403.2640.

2-[(1,**3**-Bis(3,3,4,4,5,5,6,6,7,7,**8**,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzyl 2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranoside (7)

To a stirred solution of compound **6** (258 mg, 0.19 mmol, 1.0 equiv) in MeCN/H₂O (9:1, v:v, 1.9 mL) was added PIFA (96.4 mg, 0.22 mmol, 1.2 equiv). The resulting mixture was stirred at room temperature for 30 min. The reaction mixture was extracted with EtOAc. The organic phase was washed with saturated Na₂S₂O₃, saturated

NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give compound **7** (242.5 mg, yield 93%) as white foam, $R_f = 0.33$ (petroleum ether-EtOAc 2:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.87 (m, 4H, Ar-H), 7.52-7.43 (m, 6H, Ar-H), 7.32-7.25 (m, 20H, Ar-H), 7.22-7.15 (m, 10H, Ar-H), 5.03 (dd, *J* = 8.0, 9.2 Hz, 1H), 5.01 (dd, *J* = 8.0, 9.2 Hz, 1H), 4.94 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.92 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.78-4.43 (m, 16H), 3.78-3.44 (m, 26H), 3.24-3.18 (m, 2H, SCH), 2.38-2.08 (m, 8H, CH₂CH₂C₆F₁₃), 1.93 (s, 3H, OAc), 1.87 (s, 3H, OAc). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.6, 141.3, 140.6, 138.3, 138.2, 138.2, 138.1, 135.6, 135.2, 131.3, 131.3, 130.0, 129.5, 129.1, 128.9, 128.6, 128.6, 128.1, 128.0, 127.9, 127.9, 125.2, 125.1, 100.4 (C-1), 100.3 (C-1), 83.2, 83.1, 78.1, 78.0, 75.4, 75.3, 75.3, 75.2, 73.7, 73.7, 73.1, 73.1, 68.8, 67.0, 66.5, 64.3, 64.2, 63.4 (t, *J* = 4.0 Hz, CH₂CH₂C₆F₁₃), 63.0 (t, *J* = 4.0 Hz, CH₂CH₂C₆F₁₃),

62.9, 31.4 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 31.3 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 20.9. HRMS (ESI⁺): calc. for C₅₅H₅₀F₂₆O₁₀SNa⁺ [M+Na]⁺: 1419.2602, found: 1419.2589.

6. IPRm glycosylation of fluorous-tagged glycosyl donor 7 (Scheme 2)

A solution of compound **7** (50 mg, 0.036 mmol, 1.2 equiv) and $\mathbf{8}^{[3]}$ (13.9 mg, 0.030 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (0.60 mL) in the presence of 4Å MS (100 wt%) was stirred for 10 min at 0 °C. After the addition of Tf₂O (6.0 µL, 0.036 mmol, 1.2 equiv), the solution was stirred at 0 °C for 30 min and quenched by addition of H₂O (1.0 mL). The mixture was filtered through Celite and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give compound **9** (25.6 mg, yield 91%) and compound **10** (28.7 mg, yield 87%).

Methyl 4-*O*-(2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,6-tri-*O*benzyl-α-D-galactopyranoside (9)

Colorless syrup, $R_f = 0.63$ (petroleum ether-EtOAc 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.25 (m, 28H, Ar-H), 7.18-7.16 (m, 2H, Ar-H), 4.99 (t, J = 8.4 Hz, 1H), 4.81-4.73 (m, 4H), 4.69-4.63 (m, 4H), 4.58 (d, J = 12.0 Hz, 1H, PhCH₂), 4.55 (d, J = 11.2 Hz, 1H, PhCH₂), 4.49-4.46 (m, 3H), 4.40 (d, J = 12.0

Hz, 1H, PhCH₂), 4.03 (d, J = 2.0 Hz, 1H), 3.89-3.83 (m, 2H), 3.81-3.77 (m, 2H), 3.71-3.60 (m, 5H), 3.39-3.36 (m, 1H), 3.35 (s, 3H, OMe), 1.74 (s, 3H, OAc). ¹H NMR data for **9** were the same as those reported in the literature.^[4]

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzenemethanol (10)

White solid, $R_f = 0.22$ (petroleum ether-EtOAc 2:1). m.p. 58.9-60.3 °C. A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 1H, Ar-H), 7.49-7.43 (m, 3H, Ar-H), 4.85 (dd, *J* = 6.0, 12.8 Hz, 1H, PhCH₂), 4.69 (dd, *J* = 6.0, 12.8 Hz, 1H, PhCH₂), 3.79-3.52 (m, 8H), 3.44-3.38 (m, 1H, SCH), 2.98 (t,

J = 6.0 Hz, 1H, OH), 2.38-2.14 (m, 4H, C<u>H</u>₂C<u>H</u>₂C₆F₁₃). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 139.6, 131.8, 130.2, 128.8, 126.0, 67.1, 64.5, 63.7, 63.5 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 62.4, 31.4 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃). HRMS (ESI⁺): calc. for C₂₆H₂₀F₂₆O₄SNa⁺ [M+Na]⁺: 945.0559, found: 945.0558.

7. Regeneration of fluorous-tag (Scheme 2)

To a stirred solution of compound **10** (23.5 mg, 0.025 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.25 mL) was added thiosalicylic acid (11.8 mg, 0.076 mmol, 3.0 equiv) and I_2 (50 µL, 0.05 M in CH_2Cl_2 , 2.55 µmol, 0.1 equiv). The resulting mixture was stirred at room temperature for 11 h and extracted with EtOAc. The organic phase was washed with saturated $Na_2S_2O_3$, saturated $NaHCO_3$ and brine, dried over anhydrous Na_2SO_4 , concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **4** (21.2 mg, yield 92%) as colorless liquid. ¹H NMR data of regenerated **4** were exactly the same as shown on page S5.

8. Preparation of donors

Compound **5**,^[2] **11a**,^[4] **11b**,^[5] **11c**,^[6] **11d**,^[7] were synthesised according to the reported procedures.

2-*O*-Benzoyl-3,4,5-tri-*O*-benzyl-*α*-D-mannopyranosyl cyclopropylethynylbenzoate (11e)

ortho-

To a stirred solution of $S1^{[8]}$ (298 mg, 0.54 mmol, 1.0 equiv) and *ortho*-cyclopropylethynyl benzoic acid S2 (120 mg, 0.64 mmol, 1.2 equiv) in anhydrous CH₂Cl₂ (5.4 mL) was added DMAP (65.9 mg, 0.54 mmol, 1.0 equiv), EDCI (154.5 mg, 0.80 mmol, 1.5 equiv) and DIPEA (0.16 mL, 0.97 mmol, 1.8 equiv). The resulting mixture was stirred at room temperature

overnight. The mixture was extracted with EtOAc, washed with H₂O, saturated NaHCO3 and brine, dried over anhydrous Na2SO4, concentrated in vacuo and purified by flash column chromatography on silica gel to give **11e** (351 mg, yield 90%, α/β 1.2:1). α isomer: Colorless syrup, $R_f = 0.67$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} + 10.6$ $(c, 0.64 \text{ in CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 1.2, 8.4 Hz, 2H, Ar-H),7.83 (dd, J = 0.8, 8.0 Hz, 1H, Ar-H), 7.55 (tt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.46 (dd, J = 1.2, 8.0 Hz, 1H, Ar-H), 7.43 (dd, J = 1.2, 6.8 Hz, 1H, Ar-H), 7.41-7.22 (m, 16H, Ar-H), 7.16-7.14 (m, 4H, Ar-H), 6.50 (d, J = 2.0 Hz, 1H, H-1), 5.76 (t, J = 2.8 Hz, 1H, H-2), 4.86 (d, J = 10.4 Hz, 1H, PhCH₂), 4.84 (d, J = 11.2 Hz, 1H, PhCH₂), 4.77 (d, J = 12.0 Hz, 1H, PhCH₂), 4.61 (d, J = 11.2 Hz, 1H, PhCH₂), 4.57 (d, J = 10.4 Hz, 1H, PhCH₂), 4.55 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.30 (dd, *J* = 3.2, 9.6 Hz, 1H, H-3), 4.25 (t, *J* = 9.6 Hz, 1H, H-4), 4.11 (ddd, *J* = 1.2, 3.2, 9.6 Hz, 1H, H-5), 3.95 (dd, *J* = 3.2, 11.2) Hz, 1H, H-6a), 3.79 (dd, J = 1.6, 11.2 Hz, 1H, H-6b), 1.58-1.51 (m, 1H), 0.81-0.69 (m,4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 164.2, 138.7, 138.5, 137.9, 134.8, 133.5, 132.4, 131.0, 130.7, 130.3, 129.8, 128.7, 128.6, 128.5, 128.4, 128.2, 127.9, 127.7, 127.7, 127.3, 125.1, 100.4 (C-1), 92.4, 78.1, 75.7, 74.9, 74.7, 74.0, 73.8, 72.1, 68.9, 68.3, 9.3, 0.9. HRMS (ESI⁺): calc. for C₄₆H₄₂O₈Na⁺ [M+Na]⁺: 745.2772, found: 745.2765. β isomer: Colorless syrup, $R_f = 0.65$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} - 12.9$ (c, 0.45) in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.2 Hz, 2H, Ar-H), 7.70 (d, J = 8.0 Hz, 1H, Ar-H), 7.56 (t, J = 7.6 Hz, 1H, Ar-H), 7.42-7.25 (m, 17H, Ar-H), 7.22-7.20 (m, 2H, Ar-H), 7.08 (dt, J = 1.2, 8.0 Hz, 1H, Ar-H), 6.07 (s, 1H, H-1), 5.94 (d, J = 2.8 Hz, 1H, H-2), 4.89 (d, J = 10.8 Hz, 1H, PhCH₂), 4.83 (d, J = 11.2 Hz, 1H, PhCH₂), 4.74 (d, J = 12.0 Hz, 1H, PhCH₂), 4.58 (d, J = 11.2 Hz, 2H, PhCH₂), 4.54 (d, J = 12.0 Hz, 1H, PhCH₂), 4.16 (t, J = 9.6 Hz, 1H, H-4), 3.94-3.90 (m, 2H), 3.86 (dd, J = 1.6, 11.2 Hz, 1H), 3.73 (ddd, J = 1.6, 3.2, 9.6 Hz, 1H, H-5), 1.50-1.44 (m, 1H), 0.86-0.80 (m, 4H). 13 C NMR (100 MHz, CDCl₃) δ 166.1, 163.5, 138.6, 138.4, 137.6, 134.4, 133.4, 132.3, 130.9, 130.3, 130.1, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.7, 127.7, 127.1, 125.8, 100.4 (C-1), 92.0, 80.2, 76.5, 75.5, 74.5, 74.0, 73.6, 71.7, 68.9, 68.5, 9.1, 9.1, 0.9. HRMS (ESI⁺): calc. for C₄₆H₄₂O₈Na⁺ [M+Na]⁺: 745.2772, found: 745.2777.

9. Preparation of fluorous-tagged acceptors 12

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-benzoyl-3-*O*-benzyl-4,6-*O*-benzylidene-β-D-glucopyranoside (S4)

A suspension of PTB^F-OH (500 mg, 0.55 mmol, 1.0 equiv), $S3^{[9]}$ (376 mg, 0.66 mmol, 1.2 equiv) containing activated 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (6.6 mL) was stirred at 0 °C for 10 min under argon. Then, *N*-iodosuccinimide (186 mg, 0.83 mmol, 1.5 equiv) and

TfOH (10 μ L, 0.11 mmol, 0.2 equiv) were added. After stirring at 0 °C for 1 h, the reaction was quenched by addition of Et₃N (0.3 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound S4 (640 mg, yield 85%) as yellow foam, $R_f =$ 0.20 (petroleum ether-EtOAc 8:1). $[\alpha]_D^{20}$ +4.4 (c, 1.08 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H, Ar-H), 7.57 (t, J = 7.6 Hz, 1H, Ar-H), 7.50-7.48 (m, 2H, Ar-H), 7.44-7.36 (m, 5H, Ar-H), 7.33 (d, J = 7.6 Hz, 1H, Ar-H), 7.28 (t, J = 7.2 Hz, 1H, Ar-H), 7.16-7.10 (m, 4H, Ar-H), 7.07-6.99 (m, 3H, Ar-H), 5.60 (s, 1H), 5.35 (t, J = 8.4 Hz, 1H), 4.98 (d, J = 12.8 Hz, 1H, PhCH₂), 4.80 (d, J = 12.4 Hz, 2H, PhCH₂), 4.67 (d, J = 12.0 Hz, 1H, PhCH₂), 4.66 (d, J = 8.0 Hz, 1H, H-1), 4.40 (dd, J = 4.8, 10.4 Hz, 1H), 3.89-3.81 (m, 3H), 3.66-3.61 (m, 4H), 3.54-3.47 (m, 5H), 3.23-3.17 (m, J = 6.0 Hz, 1H, SCH), 2.38-2.25 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 138.9, 138.1, 137.5, 133.2, 132.5, 130.2, 130.1, 129.3, 128.9, 128.5, 128.5, 128.4, 128.4, 128.2, 127.8, 127.7, 126.2, 101.6, 100.9 (C-1), 81.9, 78.2, 74.2, 73.6, 70.3, 70.3, 69.1, 69.0, 66.6, 63.2 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 48.3, 31.5 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₅₃H₄₄F₂₆O₉SNa⁺ [M+Na]⁺: 1373.2183, found: 1373.2157.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-benzoyl-3,6-di-*O*-benzyl-β-D-glucopyranoside (12a)

A suspension of **S4** (300 mg, 0.22 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (1.1 mL) was stirred at 0 \degree for 10 min under argon. Then, Et₃SiH (0.18 mL, 1.11 mmol, 5.0 equiv) and CF₃COOH (83 µL, 1.11 mmol, 5.0 equiv) were added at 0 \degree . The mixture was

warmed up to room temperature and stirred for 4 h. The suspension was filtered through Celite and extracted with EtOAc. The organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **12a** (183.6 mg, yield 61%) as colorless syrup (the General Procedure A wasn't used due to the existence of a small amount of fluorous by-products, which were difficult to be separated by fluorous based purification). $R_f = 0.20$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} -5.5$ (*c*, 1.26 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 2H, Ar-H), 7.64 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.49 (t, *J* = 7.6 Hz, 2H, Ar-H), 7.42-7.32 (m, 9H, Ar-H), 7.22-7.20 (m, 4H, Ar-H), 7.10 (dt, *J* = 0.8, 7.6 Hz, 1H, Ar-H), 5.40 (dd, *J* = 8.0, 9.6 Hz, 1H, H-2), 5.06 (d, *J* = 12.8 Hz, 1H, PhCH₂), 4.73 (d, *J* = 11.6 Hz, 1H, PhCH₂), 4.71 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.67 (d, *J* = 8.0 Hz, 1H, H-1), 4.65 (d, *J* = 11.6, 1H, PhCH₂), 3.91 (dd, *J* = 2.4, 9.2 Hz, 1H, H-

6a), 3.88 (d, J = 4.4 Hz, 2H), 3.75-3.67 (m, 5H), 3.62 (dd, J = 4.4, 9.6 Hz, 1H, H-6b), 3.59-3.53 (m, 4H), 3.30-3.25 (m, J = 6.0 Hz, 1H, SCH), 2.80 (d, J = 2.4 Hz, 1H, OH), 2.45-2.32 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 139.2, 138.2, 133.3, 133.1, 132.4, 130.2, 130.1, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 128.0, 127.7, 100.4 (C-1), 82.4, 74.7, 74.3, 74.0, 73.6, 72.5, 70.5, 70.3, 70.2, 68.8, 63.2 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 48.2, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₅₃H₄₆F₂₆O₉SNa⁺ [M+Na]⁺: 1375.2340, found: 1375.2341.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-benzoyl-3,4-di-*O*-benzyl-β-D-glucopyranoside (12b)

A suspension of S4 (300 mg, 0.22 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (2.2 mL) was stirred at 0 $^{\circ}$ C for 10 min under argon. Then, BH₃ THF (1.1 mL, 1 M in THF, 1.1 mmol, 5.0 equiv) and Cu(OTf)₂ (12.0 mg, 0.03 mmol, 0.15 equiv) were added at 0 $^{\circ}$ C.

The mixture was warmed up to room temperature and stirred for 2.5 h and quenched by addition of MeOH (0.5 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give 12b (280.9 mg, yield 94%) as white solid, $R_f = 0.37$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20} + 8.1$ (c, 3.81 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6 Hz, 2H, Ar-H), 7.55 (t, J = 7.6 Hz, 1H, Ar-H), 7.43-7.27 (m, 9H, Ar-H), 7.18-7.02 (m, 7H, Ar-H), 5.30 (t, J = 8.8 Hz, 1H, H-2), 4.95 (d, J = 12.4 Hz, 1H, PhCH₂), 4.85 (d, J = 11.2 Hz, 1H, PhCH₂), 4.83 (d, J = 12.8 Hz, 1H, PhCH₂), 4.72 (d, J = 11.2 Hz, 1H, PhCH₂), 4.66 (d, J = 10.8 Hz, 1H, PhCH₂), 4.64 (d, J = 10.0 Hz, 1H, PhCH₂), 4.62 (d, J = 7.6 Hz, 1H, H-1), 3.88 (ddd, J = 2.4, 5.6, 11.6 Hz, 1H), 3.81 (t, J = 9.2 Hz, 1H, H-3), 3.75-3.63 (m, 6H), 3.57-3.49 (m, 4H), 3.44 (ddd, J = 2.4, 4.4, 9.6 Hz, 1H, H-5), 3.28-3.22 (m, J = 6.0 Hz, 1H, SCH), 2.38-2.28 (m, 4H, CH₂CH₂C₆F₁₃), 2.00 (t, J = 6.0Hz, 1H, OH). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 139.1, 138.0, 137.9, 133.3, 133.3, 132.6, 130.2, 130.0, 129.1, 128.7, 128.5, 128.5, 128.3, 128.2, 127.9, 127.8, 100.3 (C-1), 82.8, 77.9, 75.7, 75.3, 73.9, 70.3, 70.3, 69.0, 63.2 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 48.2, 31.4 (t, J = 21.0 Hz, $CH_2C_6F_{13}$). HRMS (ESI⁺): calc. for $C_{53}H_{46}F_{26}O_9SNa^+$ [M+Na]⁺: 1975.2340, found: 1975.2369.

4-Methylphenyl 2-*O*-benzoyl-3-*O*-(*tert*-butyldimethylsilyl)-4-*O*-benzyl-1-thio-β-Dglucopyranoside (S6)

To a stirred soltuion of $S5^{[10]}$ (980 mg, 2.01 mmol, 1.0 equiv) in pyridine (10.0 mL) was added benzoyl chloride (1.2 mL, 10.03 mmol, 5.0 equiv). The mixture was warmed up to 80 °C, stirred overnight and extracted with EtOAc. The organic phase was washed with 1 M

HCl, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* to give crude product. A suspension of the above crude product and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (10.0 mL) was stirred at 0 °C for 10 min under argon. Then, BH₃ THF (10.0 mL, 1 M in THF, 10.0 mmol, 5.0 equiv) and TMSOTf (54 µL, 0.30 mmol, 0.15 equiv) were added at 0 °C. The mixture was warmed up to room temperature and stirred for 4 h and quenched by addition of Et_3N (0.5 mL). The suspension was filtered through Celite and extracted with EtOAc, washed with H₂O and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by flash column chromatography on silica gel to give S6 (1.15 g, 96% yield for two steps) as colorless syrup, $R_f = 0.47$ (petroleum ether-EtOAc 6:1). [α]_D²⁰+16.6 (*c*, 1.00 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.06-8.05 (m, 2H, Ar-H), 7.58 (t, J = 7.8 Hz, 1H, Ar-H), 7.45 (t, J = 7.8 Hz, 2H, Ar-H), 7.34-7.26 (m, 7H, Ar-H), 7.06 (d, J = 7.8 Hz, 2H, Ar-H), 5.16 (t, J = 9.6 Hz, 1H), 4.83 (d, J = 12.0 Hz, 1H, PhCH₂), 4.71 (d, J = 10.2 Hz, 1H, H-1), 4.61 (d, J = 12.0 Hz, 1H, PhCH₂), 3.93 (t, J = 9.0 Hz, 1H), 3.85 (d, J = 10.8Hz, 1H), 3.65 (dd, J = 3.6, 12.0 Hz, 1H), 3.53 (t, J = 9.6 Hz, 1H), 3.44 (ddd, J = 2.4, 4.2, 9.6 Hz, 1H), 2.30 (s, 3H, CH₃), 1.92 (brs, 1H, OH), 0.76 (s, 9H, C(CH₃)₃), -0.01 (s, 3H, CH₃), -0.18 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 165.6, 138.4, 138.1, 133.3, 133.2, 130.4, 130.1, 129.9, 129.3, 128.6, 128.6, 127.9, 127.8, 87.1 (C-1), 79.8, 78.5, 76.8, 75.3, 73.5, 62.2, 25.9, 21.3, 18.0, -3.8, -4.1. HRMS (ESI⁺): calc. for C₃₃H₄₂O₆SSiNa⁺ [M+Na]⁺: 617.2363, found: 617.2362.

4-Methylphenyl 2-*O*-benzoyl-3-*O*-(*tert*-butyldimethylsilyl)-4-*O*-benzyl-6-*O*-levulinyl-1-thio-β-D-glucopyranoside (S7)

To a stirred solution of **S6** (500 mg, 0.84 mmol, 1.0 equiv), EDCI (322 mg, 1.68 mmol, 2.0 equiv) and DMAP (21 mg, 0.17 mmol, 0.2 equiv) in anhydrous CH_2Cl_2 (8.4 mL) was added levulinic acid (0.17

mL, 1.68 mmol, 2.0 equiv) at 0 $^{\circ}$ C. The resulting mixture was warmed up to room temperature, stirred overnight and extracted with EtOAc. The organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated

in vacuo and purified by flash column chromatography on silica gel to give **S7** (410 mg, yield 70%) as colorless syrup, $R_f = 0.26$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} + 21.1$ (*c*, 1.00 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2H, Ar-H), 7.57 (t, J = 7.6 Hz, 1H, Ar-H), 7.44 (t, J = 7.6 Hz, 2H, Ar-H), 7.34-7.26 (m, 7H, Ar-H), 7.04 (d, J = 8.0 Hz, 2H, Ar-H), 5.14 (t, J = 9.6 Hz, 1H), 4.84 (d, J = 11.6 Hz, 1H, PhCH₂), 4.66 (d, J = 10.0 Hz, 1H, **H-1**), 4.53 (d, J = 11.2 Hz, 1H, PhCH₂), 4.41 (dd, J = 2.0, 12.0 Hz, 1H, H-6a), 4.10 (dd, J = 5.2, 12.0 Hz, 1H, H-6b), 3.92 (t, J = 8.8 Hz, 1H), 3.58 (ddd, J = 2.0, 5.2, 9.6 Hz, 1H, H-5), 3.48 (t, J = 9.6 Hz, 1H), 2.73 (t, J = 6.8 Hz, 2H), 2.59-2.56 (m, 2H), 2.29 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 0.76 (s, 9H, C(CH₃)₃), 0.02 (s, 6H, CH₃ × 2). ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 172.5, 165.6, 138.2, 137.8, 133.3, 133.2, 130.5, 130.1, 129.7, 129.5, 128.6, 128.6, 128.0, 127.9, 87.1 (C-1), 78.7, 77.3, 77.0, 75.4, 73.2, 63.5, 38.1, 30.1, 28.1, 25.9, 21.3, 18.0, -3.8, -4.0. HRMS (ESI⁺): calc. for C₃₈H₃₈O₈SSiNa⁺ [M+Na]⁺: 715.2731, found: 715.2721.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-O-benzoyl-3-O-(*tert* $-butyldimethylsilyl)-4-O-benzyl-6-O-levulinyl-<math>\beta$ -D-glucopyranoside (S8)

A suspension of **S7** (358 mg, 0.52 mmol, 1.2 equiv), PTB^F-OH (395 mg, 0.44 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (2.9 mL) was stirred at 0 \degree for 10 min. Then, *N*-iodosuccinimide (147 mg, 0.65mmol, 1.5 equiv) and TfOH (3.9 µL, 0.06 mmol, 0.1 equiv) were added at 0 \degree . The reaction mixture was

stirred at 0 °C for 1 h and then quenched by addition of Et₃N (0.2 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound S8 (579 mg, yield 90%) as colorless syrup, $R_f = 0.25$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} + 4.1$ (c, 1.00 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 1.6, 8.4 Hz, 2H, Ar-H), 7.54 (t, J = 7.6 Hz, 1H, Ar-H), 7.40 (t, J = 7.6 Hz, 2H, Ar-H), 7.35-7.25 (m, 7H, Ar-H), 7.13 (dt, J = 1.6, 7.6 Hz, 1H, Ar-H), 6.99 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 5.22 (dd, J = 8.0, 9.2 Hz, 1H, Ar-H), 4.93 (d, J = 12.8 Hz, 1H, PhCH₂), 4.86 (d, J = 11.6 Hz, 1H, PhCH₂), 4.78 (d, J = 13.2 Hz, 1H, PhCH₂), 4.55 (d, J = 11.2 Hz, 1H, PhCH₂), 4.52 (d, J = 8.0 Hz, 1H, H-**1**), 4.41 (d, J = 11.2 Hz, 1H), 4.16 (dd, J = 4.0, 12.0 Hz, 1H, H-6a), 3.93-3.89 (m, 1H), 3.63 (q, J = 6.8 Hz, 4H), 3.57-3.47 (m, 6H), 3.21-3.16 (m, J = 5.6 Hz, 1H, SCH), 2.75-2.70 (m, 2H), 2.60-2.57 (m, 2H), 2.39-2.26 (m, 4H, CH₂CH₂C₆F₁₃), 2.16 (s, 3H, CH₃), 0.77 (s, 9H, C(CH₃)₃), -0.01 (s, 3H, CH₃), -0.02 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) *b* 206.6, 172.6, 165.4, 139.2, 137.9, 133.2, 133.2, 132.4, 130.5, 130.2, 128.9, 128.6, 128.4, 128.3, 128.0, 127.9, 127.7, 100.1 (C-1), 78.9, 75.5, 75.3, 74.5, 73.3, 70.3, 70.2, 68.7, 63.2 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 48.2, 38.1, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 30.0, 28.1, 25.9, 18.0, -3.9, -4.1. HRMS (ESI⁺): calc. for $C_{57}H_{60}F_{26}O_{11}SSiNa^{+}[M+Na]^{+}: 1497.3103$, found: 1497.3124.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-benzoyl-4-*O*-benzyl-6-*O*-levulinyl-β-D-glucopyranoside (12c)

To a stirred solution of **S8** (320 mg, 0.22 mmol, 1.0 equiv) in MeCN (2.2 mL) was added BF₃ Et₂O (30 μ L, 0.24 mmol, 1.1 equiv) at 0 °C, the resulting mixture was stirred for 0.5 h and extracted with EtOAc. The organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*.

Then, the crude product was purified by the General Procedure A to give compound **12c** (259 mg, yield 88%) as colorless syrup, $R_f = 0.30$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20} - 8.0 (c, 2.70 \text{ in CHCl}_3).$ ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 1.2, 8.4 Hz, 2H, Ar-H), 7.55 (t, J = 7.6 Hz, 1H, Ar-H), 7.43-7.31 (m, 9H, Ar-H), 7.18 (dt, J = 1.6, 7.6 Hz, 1H, Ar-H), 7.09 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 5.09 (dd, J = 8.0, 9.6 Hz, 1H), 4.98 (d, J = 12.8 Hz, 1H, PhCH₂), 4.86 (d, J = 11.2 Hz, 1H, PhCH₂), 4.83 (d, J = 12.4 Hz, 1H, PhCH₂), 4.70 (d, J = 11.2 Hz, 1H, PhCH₂), 4.63 (d, J = 7.6 Hz, 1H, **H-1**), 4.41 (dd, J = 2.0, 12.4 Hz, 1H, H-6a), 4.32 (dd, J = 4.4, 12.0 Hz, 1H, H-6b), 3.91-3.88 (dt, J = 4.0, 8.8 Hz, 1H), 3.66-3.58 (m, 6H), 3.55-3.49 (m, 4H), 3.25-3.20 (m, J = 6.0 Hz, 1H, SCH), 2.76-2.72 (m, 3H), 2.60 (t, J = 6.4 Hz, 2H), 2.37-2.24 (m, 4H, C**H**₂C**H**₂C₆F₁₃), 2.17 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 172.7, 166.6, 138.9, 138.0, 133.6, 133.5, 132.4, 130.2, 129.8, 129.2, 128.8, 128.5, 128.5, 128.5, 128.4, 128.3, 127.7, 99.8 (C-1), 78.1, 76.5, 75.1, 75.1, 73.2, 70.3, 70.3, 69.0, 63.2 (t, J = 4.0 Hz, **CH**₂CH₂C₆F₁₃), 48.3, 38.1, 31.4 (t, J = 21.0 Hz, CH₂C₆F₁₃), 30.0, 28.1. HRMS (ESI⁺): calc. for C₅₁H₄6F₂₆O₁₁SNa⁺ [M+Na]⁺: 1383.2238, found: 1383.2233.

 $2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2,3-di-O-benzoyl-4,6-O-benzylidene-<math>\beta$ -D-galactopyranoside (S10)

A suspension of **S9**^[11] (110 mg, 0.19 mmol, 1.2 equiv), PTB^F-OH (143 mg, 0.16 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (1.9 mL) was stirred at 0 \degree for 10 min. Then, *N*-iodosuccinimide (54.4 mg, 0.24 mmol, 1.5 equiv) and TfOH (2.3 µL, 0.03 mmol, 0.2 equiv) were added at 0 \degree . The reaction mixture was stirred at

0 °C for 2 h and then quenched by addition of Et₃N (0.2 mL). The suspension was filtered through Celite and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **S10** (197 mg, yield 76%) as white foam, $R_f = 0.50$ (petroleum ether-EtOAc 4:1). $[\alpha]_D^{20}$ +45.3 (*c*, 2.97 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 2H, Ar-H), 7.92 (d, J = 8.4 Hz, 2H, Ar-H), 7.52-7.45 (m, 4H, Ar-H), 7.39-7.32 (m, 9H, Ar-H), 7.16 (dt, J = 0.8, 7.6 Hz, 1H, Ar-H), 7.05 (t, J = 7.6 Hz, 1H, Ar-H), 5.92 (dd, J = 8.0, 10.0 Hz, 1H, H-2), 5.55 (s, 1H, PhCH), 5.33 (dd, J = 3.6, 10.4 Hz, 1H, H-3), 5.11 (d, J = 12.8 Hz, 1H, PhCH₂), 4.89 (d, J = 13.2 Hz, 1H, PhCH₂), 4.81 (d, J = 8.0 Hz, 1H, **H-1**), 4.58 (d, J = 3.6 Hz, 1H, H-4), 4.43

(d, J = 12.8 Hz, 1H, H-6a), 4.14 (dd, J = 1.2, 12.4 Hz, 1H, H-6b), 3.67-3.62 (m, 5H), 3.58-3.50 (m, 4H), 3.25-3.20 (m, J = 5.6 Hz, 1H, SCH), 2.38-2.23 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 165.4, 139.3, 137.7, 133.6, 133.3, 133.2, 132.8, 130.2, 130.0, 130.0, 129.3, 129.2, 129.1, 128.6, 128.5, 128.4, 128.3, 127.9, 126.5, 101.1, 100.4 (C-1), 73.8, 73.0, 70.3, 70.2, 69.4, 69.1, 68.8, 66.8, 63.2 (brs, CH₂CH₂C₆F₁₃), 48.4, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₅₃H₄₂F₂₆O₁₀SNa⁺ [M+Na]⁺: 1387.1976, found: 1387.1976.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2,3-di-*O*-benzoyl-4-*O*-benzyl-β-D-galactopyranoside (12d)

A suspension of **S10** (267 mg, 0.20 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH_2Cl_2 (1.9 mL) was stirred at 0 $^{\circ}$ C for 10 min under argon. Then, BH₃ THF (1.0 mL, 1 M in THF, 1.0 mmol, 5.0 equiv) and Cu(OTf)₂ (10.7 mg, 0.03 mmol, 0.15 equiv) were added at 0 $^{\circ}$ C. The

mixture was warmed up to room temperature, stirred for 2 h and quenched by addition of Et₃N (0.3 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound **12d** (219 mg, yield 82%) as colorless syrup, $R_f = 0.50$ (petroleum ether-EtOAc 4:1). $[\alpha]_D^{20}$ +19.2 (c, 2.50 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 1.6, 8.4 Hz, 2H, Ar-H), 7.90 (dd, J = 1.2, 8.4 Hz, 2H, Ar-H), 7.52-7.46 (m, 2H, Ar-H), 7.39-7.31 (m, 6H, Ar-H), 7.26-7.21 (m, 5H, Ar-H), 7.17 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.06 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 5.89 (dd, J = 8.0, 10.4 Hz, 1H), 5.29 (dd, J = 3.2, 4.4 Hz, 1H, Ar-H), 5.00 (d, J = 12.8 Hz, 1H, PhCH₂), 4.92 (d, J = 12.8 Hz, 1H, PhCH₂), 4.77 (d, J = 11.6 Hz, 1H, PhCH₂), 4.72 (d, J = 8.0 Hz, 1H, H-1), 4.47 (d, J = 12.0 Hz, 1H, PhCH₂), 4.12 (d, J = 2.8 Hz, 1H), 3.88 (dd, J = 7.2, 11.2 Hz, 1H), 3.70 (t, J = 6.0Hz, 1H), 3.67-3.67 (dt, J = 1.6, 6.4 Hz, 1H), 3.57-3.49 (m, 4H), 3.26-3.20 (m, J = 6.4 Hz, 1H, SCH), 2.39-2.26 (m, 4H, CH₂CH₂C₆F₁₃), 1.73 (d, J = 3.6 Hz, 1H, OH). ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 165.5, 139.0, 137.5, 133.7, 133.5, 133.2, 132.6, 130.1, 130.0, 129.9, 129.3, 129.2, 128.8, 128.7, 128.7, 128.5, 128.4, 127.8, 100.4 (C-1), 75.4, 75.0, 75.0, 73.5, 70.3, 70.3, 68.7, 63.2 (brs, $\underline{C}H_2CH_2C_6F_{13}$), 62.0, 48.4, 31.4 (t, J = 21.0Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₅₃H₄₄F₂₆O₁₀SNa⁺ [M+Na]⁺: 1389.2132, found: 1389.2150.

To a stirred solution of **12c** (230 mg, 0.17 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (1.7 mL) was successively added AcOH (0.29 mL, 5.07 mmol, 30.0 equiv), pyridine (0.41 mL, 5.07 mmol, 30.0 equiv) and N₂H₄-H₂O (16.4 μ L, 0.34 mmol, 2.0 equiv) at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 30

min. The mixture was extracted with EtOAc, the organic phase was washed with 1 M HCl, saturated NaHCO3 and brine, dried over anhydrous Na2SO4 and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 12e (180 mg, yield 84%) as colorless syrup, $R_f = 0.25$ (petroleum ether-EtOAc 3:1). [α]_D²⁰ -7.0 (c, 0.43 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.2 Hz, 2H, Ar-H), 7.56 (t, J = 7.2 Hz, 1H, Ar-H), 7.44-7.28 (m, 9H, Ar-H), 7.19 (dt, *J* = 0.8, 7.2 Hz, 1H, Ar-H), 7.09 (dt, *J* = 0.8, 7.2 Hz, 1H, Ar-H), 5.08 (dd, *J* = 8.0, 9.2 Hz, 1H, H-2), 4.98 (d, J = 12.4 Hz, 1H, PhCH₂), 4.85 (d, J = 12.8 Hz, 1H, PhCH₂), 4.84 (d, J = 11.2 Hz, 1H, PhCH₂), 4.74 (d, J = 11.2 Hz, 1H, PhCH₂), 4.67 (d, J = 8.0 Hz, 1H, **H-1**), 3.93-3.88 (m, 2H), 3.75 (ddd, *J* = 4.4, 7.2, 12.0 Hz, 1H), 3.68-3.61 (m, 5H), 3.57-3.50 (m, 4H), 3.43 (ddd, *J* = 2.8, 4.4, 9.6 Hz, 1H, H-5), 3.30-3.24 (m, *J* = 5.6 Hz, 1H, SCH), 2.60 (d, J = 4.0 Hz, 1H, OH), 2.40-2.26 (m, 4H, CH₂CH₂C₆F₁₃), 2.04 (t, J = 6.4 Hz, 1H, OH). ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 139.0, 138.1, 133.6, 133.5, 132.6, 130.2, 129.8, 129.3, 128.8, 128.6, 128.6, 128.4, 128.3, 127.8, 100.0 (C-1), 78.1, 76.2, 75.5, 75.1, 75.1, 70.3, 70.3, 69.2, 63.2 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 62.1, 48.3, 31.4 (t, J = 21.0 Hz, $CH_2C_6F_{13}$). HRMS (ESI⁺): calc. for C₄₆H₄₀F₂₆O₉SNa⁺ [M+Na]⁺: 1285.1870, found:1285.1884.

10. Orthogonal glycosylations of fluorous-tagged acceptors (Table 1)

A solution of glycosyl donor **5** (19.8 mg, 0.031 mmol, 1.5 equiv), fluorous acceptor **12a** (35 mg, 0.026 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.52 mL) in the presence of 4Å MS (100 wt%) was stirred at 0 °C for 10 min. After addition of TMSOTf (1.4 µL, 0.008 mmol, 0.3 equiv), the solution was stirred at 0 °C for 2 h and quenched by addition of Et₃N (0.2 mL). The mixture was filtered through Celite and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **13a** (44.1 mg, yield 93%) as colorless syrup.

A solution of glycosyl donor **11a** (17.9 mg, 0.027 mmol, 1.2 equiv), fluorous acceptor **12a** (30 mg, 0.022 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.44 mL) in the presence of 4Å MS (100 wt%) was stirred at 0 °C for 10 min. After addition of Tf₂O (4.5 µL, 0.027 mmol, 1.2 equiv), the solution was stirred at 0 °C for 30 min and quenched by addition of saturated aqueous NaHCO₃ (0.2 mL). The mixture was filtered through Celite and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **13a** (36.9 mg, yield 91%) as colorless syrup.

$\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 4-O-(2-O-acetyl-3,4,6-tri-O-benzyl-$\beta-D-glucopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-$\beta-D-glucopyranoside (13a) }$

Colorless syrup. $R_f = 0.50$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20} + 10.7$ (*c*, 2.99 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.2 Hz, 2H, Ar-H), 7.53 (t, J = 7.2 Hz, 1H, Ar-H), 7.39-7.25 (m, 18H, Ar-H), 7.23-7.08 (m, 9H, Ar-H),

7.03-6.93 (m, 4H, Ar-H), 5.31 (dd, J = 8.0, 9.2 Hz, 1H), 4.98 (dd, J = 8.0, 9.2 Hz, 1H), 4.98 (d, J = 13.2 Hz, 1H, PhCH₂), 4.89 (d, J = 12.0 Hz, 1H, PhCH₂), 4.80-4.70 (m, 4H, PhCH₂), 4.64 (d, J = 11.6 Hz, 1H, PhCH₂), 4.61 (d, J = 11.2 Hz, 1H, PhCH₂), 4.56 (d, J = 7.6 Hz, 1H, **H-1**), 4.54 (d, J = 11.2 Hz, 1H, PhCH₂), 4.53 (d, J = 7.6 Hz, 1H, **H-1**'), 4.51 (d, J = 11.6 Hz, 1H, PhCH₂), 4.39 (t, J = 12.0 Hz, 2H, PhCH₂), 4.10 (t, 1H, J = 9.2 Hz), 3.76-3.57 (m, 10H), 3.55-3.47 (m, 5H), 3.42 (dt, J = 2.4, 9.6 Hz, 1H), 3.32-3.29 (m, 1H), 3.22-3.16 (m, J = 6.0 Hz, 1H, SCH), 2.36-2.23 (m, 4H, C**H**₂C**H**₂C₆F₁₃), 1.89 (s, 3H, OAc). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 165.3, 139.3, 138.7, 138.5, 138.4, 138.2, 138.2, 133.0, 133.0, 132.4, 130.4, 130.1, 128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.3, 100.5 (**C-1**), 100.4 (**C-1'**), 83.2, 80.4, 78.2, 75.6, 75.4, 75.3, 75.1, 74.5, 73.9, 73.9, 73.6, 73.3, 70.3, 70.2, 68.8, 68.7, 68.0, 63.1 (t, J = 4.0 Hz, **C**₄CH₂CH₂C₆F₁₃), 48.2, 31.5 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 21.1. HRMS (ESI⁺): calc. for C₈₂H₇₆F₂₆O₁₅SNa⁺ [M+Na]⁺: 1849.4382, found: 1849.4357.

 $\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 6-O-(2,3,4-tri-O-acetyl-\alpha-L-rhamnopyranosyl)-2-O-benzoyl-3,4-di-O-benzyl-\beta-D-glucopyranoside (13b)$

A solution of glycosyl donor **11b** (21.6 mg, 0.044 mmol, 1.2 equiv), fluorous acceptor **12b** (50 mg, 0.037 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.74 mL) in the presence of 4Å MS

(100 wt%) was stirred at 0 $^{\circ}$ C for 10 min, then Tf₂O (7.5 µL, 0.044 mmol, 1.2 equiv) was added. The reaction mixture was stirred at 0 $\,^{\circ}$ C for 30 min and guenched by addition of Et₃N (0.2 mL). The mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 13b (58.9 mg, yield 98%) as yellow syrup, $R_f = 0.50$ (petroleum ether-EtOAc 4:1). [α]_D²⁰ -6.7 (c, 1.40 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H, Ar-H), 7.54 (t, J = 7.2 Hz, 1H, Ar-H), 7.40 (t, J = 7.2 Hz, 2H, Ar-H), 7.33-7.27 (m, 6H, Ar-H), 7.17-7.03 (m, 8H, Ar-H), 5.33-5.26 (m, 3H, H-1'), 5.05 (t, J = 10.0 Hz, 1H), 4.93 (d, J = 12.4 Hz, 1H, PhCH₂), 4.89 (d, J = 11.2 Hz, 1H, PhCH₂), $4.77 (d, J = 14.4 Hz, 2H, PhCH_2), 4.71 (d, J = 10.8 Hz, 1H), 4.63 (d, J = 11.2 Hz, 2H)$ PhCH₂), 4.56 (d, J = 8.0 Hz, 1H, **H-1**), 4.00-3.91 (m, 2H), 3.79 (t, J = 8.8 Hz, 1H), 3.72-3.65 (m, 2H), 3.61 (q, J = 6.8 Hz, 4H), 3.54-3.44 (m, 5H), 3.22-3.16 (m, J = 6.0 m)Hz, 1H, SCH), 2.36-2.25 (m, 4H, CH₂CH₂C₆F₁₃), 2.11 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.16 (d, J = 6.4 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.2, 170.1, 165.3, 138.8, 138.1, 137.8, 133.8, 133.2, 132.1, 130.3, 130.1, 129.3, 128.7, 128.5, 128.2, 128.2, 128.1, 127.9, 127.5, 100.0 (C-1), 97.9 (C-1'), 83.1, 78.1, 75.4, 75.3, 74.9, 73.9, 71.1, 70.3, 70.2, 69.9, 69.4, 68.9, 66.8, 66.7, 63.1 (t, J = 4.0 Hz, $CH_2CH_2C_6F_{13}$, 48.1, 31.4 (t, J = 21.0 Hz, $CH_2C_6F_{13}$), 21.1, 20.9, 17.5. HRMS (ESI^{+}) : calc. for C₆₅H₆₂F₂₆O₁₆SNa⁺ [M+Na]⁺: 1647.3236, found: 1647.3240.

 $\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 6-O-(2,3,4-tri-O-acetyl-6-deoxy-$\beta-L-galactopyranosyl)-2-O-benzoyl-3,4-di-O-benzyl-$\beta-D-glucopyranoside (13c)}$

To a stirred mixture of donor **11c** (11.1 mg, 0.033 mmol, 1.5 equiv), fluorous acceptor **12b** (30 mg, 0.022 mmol, 1.0 equiv), diazo compound **S11** (8.4 mg, 0.040 mmol, 1.8 equiv) in anhydrous CH_2Cl_2 (0.74 mL) in the presence of 4Å MS (100 wt%) was added

Rh₂(oct)₄ (17.2 μL, 5 mg/mL in CH₂Cl₂, 0.5 mol%). The resulting mixture was stirred at 0 °C for 30 min until the yellow color disappeared. Then, TfOH (0.4 μL, 0.004 mmol, 0.2 equiv) was added and the resulting mixture was stirred at 0 °C for 1 h, quenched by addition of saturated aqueous NaHCO₃ (0.2 mL). The mixture was filtered through Celite and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **13c** (33.5 mg, yield 94%) as colorless syrup, R_f = 0.30 (petroleum ether-EtOAc 3:1). [α]_D²⁰ +7.9 (*c*, 2.10 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.54 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.40 (t, *J* = 7.6 Hz, 2H, Ar-H), 7.34 (dd, *J* = 0.8, 8.0 Hz, 2H, Ar-H), 7.30-7.26 (m, 5H, Ar-H), 7.17 (dt, *J* = 1.2, 7.2 Hz, 1H, Ar-H), 7.11-7.06 (m, 6H, Ar-H), 5.28-5.21 (m, 3H), 5.00 (dd,

J = 3.2, 10.4 Hz, 1H), 4.93 (d, *J* = 13.2 Hz, 1H, PhCH₂), 4.80 (d, *J* = 13.2 Hz, 1H, PhCH₂), 4.79 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.72 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.70 (d, *J* = 10.4 Hz, 1H, PhCH₂), 4.63 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.61 (d, *J* = 8.0 Hz, 1H, **H-1**), 4.55 (d, *J* = 8.0 Hz, 1H, **H-1'**), 4.17 (dd, *J* = 2.8, 12.4 Hz, 1H, H-6a), 3.87 (dd, *J* = 0.8, 12.0 Hz, 1H, H-6b), 3.78-3.70 (m, 3H), 3.67-3.61 (m, 4H), 3.53-3.51 (m, 4H), 3.43 (d, *J* = 8.0 Hz, 1H), 3.26-3.20 (m, *J* = 6.0 Hz, 1H, SCH), 2.37-2.26 (m, 4H, C**H**₂C**H**₂C₆F₁₃), 2.16 (s, 3H, OAc), 2.14 (s, 3H, OAc), 1.98 (s, 3H, OAc), 1.20 (d, *J* = 6.4 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.4, 170.1, 165.4, 139.2, 138.3, 138.1, 133.2, 133.1, 131.9, 130.2, 130.0, 128.8, 128.6, 128.5, 128.4, 128.4, 128.3, 128.1, 128.0, 127.8, 127.6, 101.7 (C-1), 100.6 (C-1'), 82.4, 75.4, 75.3, 75.1, 73.8, 71.6, 70.5, 70.3, 70.2, 69.4, 69.2, 68.9, 67.1, 63.2 (brs, **C**H₂CH₂C₆F₁₃), 48.1, 31.4 (t, *J* = 21.0 Hz, CH₂**C**H₂C₆F₁₃), 21.3, 20.9, 20.8, 16.3. HRMS (ESI⁺): calc. for C₆₅H₆₂F₂₆O₁₆SNa⁺ [M+Na]⁺: 1647.3236, found: 1647.3230.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 3-*O*-(2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2-*O*-benzoyl-4-*O*-benzyl-6-*O*-levulinyl-β-D-glucopyranoside (13d)

A stirred mixture of donor **11d** (30.9 mg, 0.055 mmol, 2.5 equiv), fluorous acceptor **12c** (30 mg, 0.022 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (0.44 mL) in the presence of 4Å MS (100 wt%) was stirred at 0 \degree for 10 min, then *N*-iodosuccinimide (14.9 mg, 0.066 mmol, 3.0

equiv) and TMSOTf (2.4 µL, 0.013 mmol, 0.6 equiv) was added. After stirring at 0 °C for 1 h, the reaction mixture was quenched by addition of Et₃N (0.2 mL). The mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 13d (36.4 mg, yield 90%) as colorless syrup, $R_f = 0.41$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20} + 4.1$ (c, 2.2 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H, Ar-H), 7.60 (t, J = 7.6 Hz, 1H, Ar-H), 7.46 (t, J = 7.6 Hz, 2H, Ar-H), 7.33 (dd, J = 1.2, 7.6 Hz, 3H, Ar-H), 7.28-7.22 (m, 15H, Ar-H), 7.14 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.11-7.09 (m, 4H, Ar-H), 7.03 (dt, J = 0.8, 7.6 Hz, 1H, Ar-H), 5.24 (dd, J = 8.0, 9.6 Hz, 1H), 5.03 (d, J = 11.2 Hz, 1H, PhCH₂), 4.95 (t, J = 8.0 Hz, 1H), 4.93 (d, J = 12.8 Hz, 1H, PhCH₂), 4.75 (d, J = 12.8 Hz, 1H, PhCH₂), 4.68 (d, J = 10.4 Hz, 1H, PhCH₂), 4.59 (d, J = 10.8 Hz, 1H, PhCH₂), 4.58 (d, J = 8.0 Hz, 1H, H-1'), 4.54 (d, J = 11.2 Hz, 1H, PhCH₂), 4.46 (d, J = 10.8 Hz, 1H, PhCH₂), 4.45 (d, J = 12.4 Hz, 1H, PhCH₂), 4.44 (d, J = 8.0 Hz, 1H, H-1), 4.43 (d, J = 10.4 Hz, 1H), 4.39-4.35 (m, 2H), 4.23 (dd, J = 4.4, 11.6 Hz, 1H), 4.12 (t, J = 9.210.0 Hz, 1H), 3.25-3.17 (m, 2H), 2.70 (t, J = 6.8 Hz, 1H), 2.62-2.47 (m, 2H), 2.38-2.24 (m, 4H, CH₂CH₂C₆F₁₃), 2.16 (s, 3H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 172.7, 170.3, 164.9, 138.8, 138.4, 138.3, 138.1, 137.8, 133.4, 133.4, 132.1, 130.2, 129.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 127.9, 127.7, 127.7, 127.6, 101.1 (C-1'), 99.6 (C-1), 83.2, 80.7, 78.2, 75.7, 75.4, 75.3, 75.2, 75.0, 74.1, 73.7, 73.3, 72.9, 70.3, 70.2, 69.4, 68.8, 63.2 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 48.1, 38.1, 31.4 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 30.0, 28.1, 20.8. HRMS (ESI⁺): calc. for C₈₀H₇₆F₂₆O₁₇SNa⁺ [M+Na]⁺: 1857.4280, found: 1857.4281.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 6-*O*-(2-*O*-benzoyl-3,4,5-tri-*O*-benzyl-α-D-mannopyranosyl)-2,3-di-*O*-benzoyl-4-*O*benzyl-β-D-galactopyranoside (13e)

To a stirred mixture of donor **11e** (23.7 mg, 0.033 mmol, 1.2 equiv), fluorous acceptor **12d** (37.0 mg, 0.027 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.55 mL) in the presence of 4Å MS (100 wt%) was added freashly prepared PPh₃AuOTf (0.27 mL, 0.02 M in CH₂Cl₂, 0.006 mmol, 0.2 equiv) at room temperature. After

stirring for 4 h, the mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 13e (48.1 mg, yield 92%) as colorless syrup, $R_f = 0.49$ (petroleum ether-EtOAc 5:1). $[\alpha]_D^{20} = -0.9$ (c, 2.3 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 2H, Ar-H), 7.98 (d, J = 7.6 Hz, 2H, Ar-H), 7.90 (d, J = 7.6 Hz, 2H, Ar-H), 7.57-7.45 (m, 5H, Ar-H),7.39-7.25 (m, 18H, Ar-H), 7.23-7.11 (m, 9H, Ar-H), 7.03 (t, J = 7.6 Hz, 1H, Ar-H), 5.89 (dd, J = 8.0, 10.0 Hz, 1H), 5.47 (brs, 1H), 5.34 (dd, J = 2.8, 10.4 Hz, 1H), 5.01 (d, JJ = 13.2 Hz, 1H, PhCH₂), 4.86 (d, J = 10.8 Hz, 1H, PhCH₂), 4.80 (d, J = 11.2 Hz, 2H, PhCH₂), 4.79 (d, J = 12.8 Hz, 1H, PhCH₂), 4.73 (d, J = 11.6 Hz, 1H, PhCH₂), 4.72 (d, *J* = 2.4 Hz, 1H, **H-1**'), 4.72 (d, *J* = 7.2 Hz, 1H, **H-1**), 4.59 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.53 (d, J = 11.2 Hz, 2H, PhCH₂), 4.47 (d, J = 11.6 Hz, 1H, PhCH₂), 4.14 (d, J = 2.4 Hz, 1H), 4.09 (t, J = 9.2 Hz, 1H), 4.04 (dd, J = 2.8, 9.2 Hz, 1H), 3.91-3.80 (m, 5H), 3.49-3.42 (m, 4H), 3.21-3.16 (m, J = 6.0 Hz, 1H, SCH), 2.34-2.22 (m, 4H, CH2CH2C6F13). ¹³C NMR (100 MHz, CDCl3) δ 166.2, 165.8, 165.5, 138.8, 138.6, 138.1, 137.6, 134.4, 134.3, 133.8, 133.7, 133.4, 133.1, 132.2, 132.2, 132.2, 130.2, 130.1, 130.0, 130.0, 130.0, 129.5, 129.4, 129.3, 128.7, 128.6, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.8, 127.7, 127.5, 100.6 (C-1), 98.3 (C-1'), 78.2, 75.5, 75.3, 75.0, 74.3, 73.7, 73.6, 73.1, 72.2, 72.0, 70.3, 70.2, 69.2, 69.2, 69.1, 65.7, 63.1 (brs, $CH_2CH_2C_6F_{13}$), 48.1, 31.4 (t, J = 21.0 Hz, $CH_2CH_2C_6F_{13}$). HRMS (ESI⁺): calc. for C₈₇H₇₆F₂₆O₁₆SNa⁺ [M+Na]⁺: 1925.4331, found: 1925.4333.

 $\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 6-O-(2,3,4-tri-O-acetyl-\beta-D-xylopyranosyl)-2-O-benzoyl-3,4-di-O-benzyl-\beta-D-glucopyranoside (13f)$

A solution of glycosyl donor $11f^{[5]}$ (41.9 mg, 0.089 mmol, 1.2 equiv), fluorous acceptor 12b (100 mg, 0.074 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (0.74 mL) in the presence of 4Å MS (100 wt%) was stirred at 0 °C for 10 min, then Tf₂O (14.9 µL, 0.089 mmol, 1.2 equiv) was added. The reaction mixture was

stirred at 0 $\,^{\circ}$ C for 30 min and quenched by addition of Et₃N (0.2 mL). The mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 13f (84.6 mg, yield 71%) as colorless syrup, $R_f = 0.53$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20} - 12.3$ (c, 0.75 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H, Ar-H), 7.54 (t, J = 7.6 Hz, 1H, Ar-H), 7.39 (t, J = 7.6 Hz, 2H, Ar-H), 7.35-7.24 (m, 8H, Ar-H), 7.15 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.10-7.08 (m, 4H, Ar-H), 7.05 (dt, J = 0.8, 7.6 Hz, 1H, Ar-H), 5.27 (dd, J = 8.0, 9.2 Hz, 1H), 5.10 (t, J = 8.0 Hz, 1H), 4.97-4.88 (m, 3H), 4.83 (d, J = 10.8 Hz, 1H, PhCH₂), 4.77 (d, J = 11.2 Hz, 1H, PhCH₂), 4.69 (d, J = 11.2 Hz, 1H, PhCH₂), 4.62 (d, J = 11.2 Hz, 1H, PhCH₂), 4.59 (d, J = 11.2 Hz, 1H, PhCH₂), 4.56 (d, J = 8.0 Hz, 1H, **H-1**), 4.55 (d, J = 6.0 Hz, 1H, **H-1'**), 4.14 (dd, J = 4.4, 11.6 Hz, 1H), 4.04 (dd, J = 1.2, 10.4 Hz, 1H), 3.78 (t, J = 8.8 Hz, 1H), 3.73-3.60 (m, 6H), 3.56-3.45 (m, 5H), 3.33 (dd, J = 8.0, 12.0 Hz, 1H), 3.24-3.18 (m, J = 5.6 Hz, 1H, SCH), 2.38-2.24 (m, 4H, CH₂CH₂C₆F₁₃), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.99 (s, 3H, OAc). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta 170.2, 170.0, 169.5, 165.3, 138.9, 138.0, 137.9, 133.6, 133.2,$ 132.1, 130.2, 130.0, 129.1, 128.7, 128.5, 128.5, 128.4, 128.2, 128.1, 127.9, 127.5, 100.4 (C-1), 100.1 (C-1'), 82.9, 78.0, 75.3, 75.1, 74.9, 73.9, 71.2, 70.6, 70.3, 70.2, 68.9, 68.9, 67.7, 63.1 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 61.8, 48.1, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 20.9, 20.9. HRMS (ESI⁺): calc. for C₆₄H₆₀F₂₆O₁₆SNa⁺ [M+Na]⁺: 1633.3079, found: 1633.3066.

 $\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 3,6-di-O-(2,3,4-tri-O-acetyl-6-deoxy-\beta-D-galactopyranosyl)-2-O-benzoyl-4-O-benzyl-\beta-D-glucopyranoside (13g)$

A suspension of $11g^{[12]}$ (23.8 mg, 0.071 mmol, 3.0 equiv), fluorous acceptor 12e (30 mg, 0.024 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (0.48 mL) was stirred at 0 °C for 10 min. Then, *N*-iodosuccinimide (21.4 mg, 0.095 mmol, 4.0 equiv) and TfOH (0.63 µL,

0.007 mmol, 0.3 equiv) were added at 0 $\,$ °C. The reaction mixture was stirred at 0 $\,$ °C for 1 h and then quenched by addition of Et₃N (0.2 mL). The mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 13g (37.9 mg, yield 88%) as colorless syrup, $R_f = 0.39$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} - 5.0$ (c, 2.52 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.2 Hz, 2H, Ar-H), 7.59 (t, J = 7.2 Hz, 1H, Ar-H), 7.45 (t, *J* = 7.8 Hz, 2H, Ar-H), 7.39 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.33-7.26 (m, 5H, Ar-H), 7.14 (dt, J = 1.2, 7.8 Hz, 1H, Ar-H), 7.04 (t, J = 7.8 Hz, 1H, Ar-H), 5.25 (dd, J = 8.4, 9.0 Hz, 1H), 5.22 (dd, *J* = 7.8, 10.8 Hz, 1H), 5.19 (d, *J* = 3.6 Hz, 1H), 5.12 (d, *J* = 8.4 Hz, 1H), 5.11 (d, J = 11.4 Hz, 1H, PhCH₂), 5.09 (dd, J = 2.4, 10.2 Hz, 1H), 4.95 (d, J =12.6 Hz, 1H, PhCH₂), 4.93 (dd, J = 3.6, 10.8 Hz, 1H), 4.74 (d, J = 12.6 Hz, 1H, PhCH₂), 4.61 (d, J = 8.4 Hz, 1H, **H-1**"), 4.59 (dd, J = 2.4, 11.4 Hz, 1H), 4.51 (d, J = 10.2 Hz, 1H, PhCH₂), 4.50 (d, J = 7.8 Hz, 1H, H-1), 4.48 (d, J = 7.8 Hz, 1H, H-1'), 4.18-4.14 (m, 2H), 3.76 (dd, J = 4.8, 10.8 Hz, 1H), 3.68 (q, J = 6.6 Hz, 1H), 3.64-3.56 (m, 7H), 3.50-3.44 (m, 4H), 3.22-3.18 (m, J = 6.0 Hz, 1H, SCH), 2.36-2.25 (m, 4H, CH₂CH₂C₆F₁₃), 2.14 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.97 (s, 3H, OAc), 1.95 (s, 3H, OAc), 1.86 (s, 3H, OAc), 1.19 (d, J = 6.6 Hz, 3H, CH₃), 1.09 (d, J = 6.6 Hz, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.8, 170.4, 170.4, 170.2, 169.6, 165.0, 138.8, 138.5, 133.6, 133.5, 132.0, 130.1, 129.8, 129.0, 128.8, 128.5, 128.4, 128.4, 128.0, 127.4, 101.5 (C-1'), 100.8 (C-1"), 99.7 (C-1), 80.0, 76.0, 75.2, 75.0, 74.0, 71.7, 71.6, 70.5, 70.3, 70.3, 70.2, 69.4, 69.3, 69.1, 68.9, 68.4, 63.1 (t, J = 4.0 Hz, $CH_2CH_2C_6F_{13}$, 48.0, 31.4 (t, J = 21.0 Hz, $CH_2CH_2C_6F_{13}$), 21.1, 20.8, 20.8, 20.8, 20.7, 20.7, 16.2, 16.1. HRMS (ESI⁺): calc. for C₇₀H₇₂F₂₆O₂₃SNa⁺ [M+Na]⁺: 1829.3662, found: 1829.3666.

11. Table S1. Preparation of OPSB^F glycosyl donors 14

General procedure B for preparing OPSB^F glycosyl donors **14a-14g**: PIFA (1.2 equiv. to OPTB^F glycosides) was added to the mixture of donor **13** in MeCN/H₂O (9:1, v:v, 0.1 M) at room temperature, the resulting mixture was allowed to stirred for an appropriate time until the starting material completely consumed. The mixture was extacted with EtOAc. The organic phase was washed with saturated Na₂S₂O₃, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*. Most of the compounds colud be directly used for subsequent glycosylation reactions. For obtaining higher purity, these products such as **14a**, **14d**, **14e** and **14g** could be further purified by flash column chromatography on silica gel due to the existence of a small amount of fluorous sulfone by-products resulted from overoxidation. These by-products were difficult to be separated by fluorous based purification.

Prepared according to the General Procedure B (45.4 mg, yield 90%). Colorless syrup, $R_f = 0.16$ (petroleum ether-EtOAc 3:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.80 (d,

 $J = 7.6 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.54 \text{ (t, } J = 7.6 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.42-7.25 \text{ (m, 18H, Ar-H)}, 7.23-7.14 \text{ (m, 7H, Ar-H)}, 7.06 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}, \text{Ar-H}), 7.02-6.92 \text{ (m, 3H, Ar-H)}, 5.26 \text{ (dd, } J = 8.0, 9.2 \text{ Hz}, 1\text{H}), 4.98 \text{ (dd, } J = 8.0, 9.2 \text{ Hz}, 1\text{H}), 4.92 \text{ (d, } J = 12.4 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.88 \text{ (d, } J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.77 \text{ (d, } J = 11.2 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.65-4.59 \text{ (m, 5H, PhCH}_2, \text{H-1}), 4.54 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}, \text{H-1'}), 4.53 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.44 \text{ (d, } J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.37 \text{ (s, 2H)}, 4.07 \text{ (t, } J = 9.2 \text{ Hz}, 1\text{H}), 3.76-3.63 \text{ (m, 5H)}, 3.59-3.35 \text{ (m, 11H)}, 3.32-3.28 \text{ (m, 1H)}, 3.14-3.08 \text{ (m, 1H, SCH)}, 2.27-2.04 \text{ (m, 4H, C}\underline{H_2}C\underline{H_2}C_6F_{13}), 1.88 \text{ (s, 3H, OAc)}. ^{13}C \text{ NMR (100 MHz, CDCl}_3) \delta 169.5, 165.2, 140.5, 138.6, 138.4, 138.4, 138.2, 138.1, 135.7, 133.3, 131.2, 130.1, 130.0, 128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.1, 128$

128.1, 128.0, 128.0, 127.9, 127.9, 127.7, 127.6, 127.3, 125.1, 100.9 (C-1'), 100.5 (C-1), 83.2, 80.4, 78.2, 76.7, 75.5, 75.4, 75.3, 75.1, 74.5, 73.9, 73.9, 73.5, 73.2, 68.8, 68.0, 66.8, 66.4, 64.2, 63.3 (brs, <u>CH</u>₂CH₂C₆F₁₃), 63.1 (brs, <u>C</u>H₂CH₂C₆F₁₃), 31.4 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 31.3 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 21.0. HRMS (ESI⁺): calc. for C₈₂H₇₆F₂₆O₁₆SNa⁺ [M+Na]⁺: 1865.4331, found: 1865.4334.

$\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)sulfinyl]benzyl 6-O-(2,3,4-tri-O-acetyl-\alpha-L-rhamnopyranosyl)-2-O-benzoyl-3,4-di-O-benzyl-\beta-D-glucopyranoside (14b)$

Prepared according to the General Procedure B (117.8 mg, yield 97%). Colorless syrup, $R_f = 0.25$ (petroleum ether-EtOAc 2:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.91 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.85 (d, *J* = 7.6 Hz,

1H, Ar-H), 7.81 (d, J = 8.0 Hz, 1H, Ar-H), 7.58-7.53 (m, 2H, Ar-H), 7.45-7.25 (m, 22H, Ar-H), 7.12-7.05 (m, 8H, Ar-H), 5.30-5.24 (m, 6H, H-1), 5.06 (t, J = 9.6 Hz, 1H), 5.06 (t, J = 9.6 Hz, 1H), 4.89-4.83 (m, 4H), 4.77-4.53 (m, 12H, H-1'), 3.96-3.87 (m, 4H), 3.79 (t, J = 9.2 Hz, 1H), 3.77 (t, J = 8.8 Hz, 1H), 3.68-3.52 (m, 14H), 3.47-3.34 (m, 8H), 3.23-3.17 (m, 1H, SCH), 3.14-3.08 (m, 1H, SCH), 2.39-2.20 (m, 4H, CH₂CH₂C₆F₁₃), 2.13-2.00 (m, 16H), 1.96 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.17 (d, J = 6.0 Hz, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.3, 170.3, 170.3, 170.1, 170.1, 165.2, 141.6, 140.8, 137.9, 137.7, 134.9, 134.5, 133.5, 133.4, 131.2, 131.1, 130.5, 130.1, 129.9, 129.9, 129.0, 129.0, 128.7, 128.6, 128.6, 128.5, 128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 125.1, 125.0, 100.3 (C-1), 99.5 (C-1), 98.1 (C-1'), 97.9 (C-1'), 83.1, 83.0, 78.2, 78.0, 75.5, 75.3, 75.1, 74.9, 73.8, 73.7, 71.1, 69.9, 69.8, 69.3, 67.0, 66.9, 66.8, 66.8, 66.7, 66.7, 66.5, 66.0, 64.0, 63.3 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 62.8 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 31.3 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 31.2 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 21.0, 21.0, 20.9, 20.9, 17.6, 17.5. HRMS (ESI⁺): calc. for C₆₅H₆₂F₂₆O₁₇SNa⁺ [M+Na]⁺: 1663.3185, found: 1663.3209.

Prepared according to the General Procedure B (110 mg, yield 96%). Colorless syrup, R_f = 0.23 (petroleum ether-EtOAc 2:1). A mixture of sulfoxide *R/S* (1.3:1) isomers. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2.6H, Ar-H), 7.90 (t, *J* = 8.4 Hz, 2H, Ar-H), 7.83 (dt, *J* = 1.2, 7.2 Hz, 2.3H, Ar-H), 7.57-7.53 (m,

2.3H, Ar-H), 7.50-7.45 (m, 2.6H, Ar-H), 7.45-7.33 (m, 8.5H, Ar-H), 7.33-7.25 (m, 12.6H, Ar-H), 7.11-7.05 (m, 11H, Ar-H), 5.25-5.18 (m, 7H), 5.03 (dd, J = 3.0, 10.2 Hz, 1H), 4.99 (dd, J = 3.6, 10.2 Hz, 1.3H), 4.91 (d, J = 12.6 Hz, 1.3H, PhCH₂), 4.85 (d, J = 13.2 Hz, 1H, PhCH₂), 4.80 (d, J = 13.8 Hz, 1H, PhCH₂), 4.80 (d, J = 10.8 Hz, 1H,

PhCH₂), 4.78 (d, J = 10.8 Hz, 1.3H, PhCH₂), 4.73-4.68 (m, 4.6H), 4.66 (d, J = 12.6 Hz, 1.3H, PhCH₂), 4.62 (d, J = 7.8 Hz, 2.6H, **H-1**), 4.60 (d, J = 8.4 Hz, 1H, **H-1'**), 4.58 (d, J = 8.4 Hz, 1H, **H-1'**), 4.49 (t, J = 7.8 Hz, 2.3H), 4.16 (ddd, J = 3.0, 5.4, 12.0 Hz, 2.3H), 3.84-3.81 (m, 2.3H), 3.78-3.67 (m, 8.6H), 3.64-3.39 (m, 21H), 3.18-3.14 (m, J = 5.4 Hz, 1H, SCH), 3.11-3.07 (m, J = 5.4 Hz, 1.3H, SCH), 2.35-2.19 (m, 5H, C**H**₂C**H**₂C₆F₁₃), 2.16-2.07 (m, 18H), 1.98 (s, 3H, OAc), 1.97 (s, 3.9H, OAc), 1.21-1.18 (m, 6.9H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.9, 170.4, 169.9, 165.2, 165.2, 138.3, 138.2, 138.0, 137.9, 135.8, 135.3, 133.4, 131.4, 131.3, 130.2, 130.0, 129.9, 129.9, 129.7, 128.9, 128.9, 128.6, 128.4, 128.2, 128.1, 128.0, 128.0, 127.8, 125.2, 124.9, 101.9 (C-1), 101.7 (C-1), 100.8 (C-1'), 99.7 (C-1'), 82.5, 82.4, 77.7, 75.4, 75.3, 75.2, 75.2, 73.7, 71.5, 71.5, 70.5, 69.4, 69.3, 69.3, 67.4, 67.3, 66.8, 66.8, 66.2, 65.6, 64.2, 64.1, 63.4 (t, J = 4.0 Hz, **C**H₂CH₂C₆F₁₃), 31.2 (t, J = 21.0 Hz, CH₂**C**H₂C₆F₁₃), 31.2 (t, J = 21.0 Hz, CH₂**C**H₂C₆F₁₃), 21.2, 21.1, 20.9, 20.8, 20.8, 16.2, 162.2. HRMS (ESI⁺): calc. for C₆₅H₆₂F₂₆O₁₇SNa⁺ [M+Na]⁺: 1663.3185, found: 1663.3186.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzyl 3-*O*-(2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2-*O*benzoyl-4-*O*-benzyl-6-*O*-levulinyl-β-D-glucopyranoside (14d)

Prepared according to the General Procedure B (62.9 mg, yield 93%). Colorless syrup, $R_f = 0.18$ (petroleum ether-EtOAc 2:1). A mixture of sulfoxide *R/S* (1.3:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.2 Hz, 2.6H, Ar-H), 7.95 (d, *J* = 6.8 Hz, 2H, Ar-H), 7.83 (d, *J*

= 8.0 Hz, 1H, Ar-H), 7.78 (d, J = 8.0 Hz, 1.3H, Ar-H), 7.63 (t, J = 7.6 Hz, 2.3H, Ar-H), 7.50-7.31 (m, 15H, Ar-H), 7.25-7.21 (m, 33.6H, Ar-H), 7.10-7.07 (m, 9H, Ar-H), 5.20 (t, J = 8.8 Hz, 2.3H), 5.02 (d, J = 10.8 Hz, 2.3H, PhCH₂), 4.95-4.87 (m, 4H), 4.78 $(d, J = 13.2 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.74 (d, J = 13.2 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.69-4.32 (m, 24\text{H}, 24\text{H})$ PhCH₂, **H-1**, **H-1'**), 4.19 (dt, J = 4.4, 12.0 Hz, 2.3H), 4.14-4.07 (m, 2.6H), 3.73 (d, J = 10.8 Hz, 2.3H, PhCH₂), 3.68-3.35 (m, 28.5H), 3.19 (q, *J* = 9.2 Hz, 2.3H), 3.12-3.06 (m, 2.3H, SCH), 2.71-2.68 (m, 4.6H), 2.61-2.46 (m, 4.6H), 2.35-2.21 (m, 4.6H, CH₂CH₂C₆F₁₃), 2.15 (s, 6.9H), 2.11-2.00 (m, 4.6H, CH₂CH₂C₆F₁₃), 1.87 (s, 3H), 1.86 (s, 3.9H). ¹³C NMR (150 MHz, CDCl₃) δ 206.5, 172.6, 170.2, 164.9, 164.8, 141.1, 140.5, 138.4, 138.4, 138.2, 138.2, 138.1, 137.8, 135.1, 135.0, 133.7, 133.7, 131.2, 130.4, 129.9, 129.9, 129.7, 129.4, 129.0, 128.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 127.9, 127.9, 127.7, 127.7, 127.6, 125.1, 124.9, 101.2 (C-1'), 101.2 (C-1'), 99.9 (C-1), 99.3 (C-1), 83.2, 80.6, 80.6, 78.1, 75.7, 75.4, 75.3, 75.1, 75.1, 74.9, 74.9, 74.0, 73.7, 73.5, 73.4, 72.9, 72.9, 69.2, 66.9, 66.7, 66.2, 65.5, 64.2, 64.0, 63.7, 63.3 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 63.0 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 38.0, 38.0, 31.3 (t, J = 21.0Hz, $CH_2C_6F_{13}$), 31.2 (t, J = 21.0 Hz, $CH_2C_6F_{13}$), 30.0, 30.0, 28.0, 27.9, 20.7, 20.7. HRMS (ESI⁺): calc. for C₈₀H₇₆F₂₆O₁₈SNa⁺ [M+Na]⁺: 1873.4229, found: 1873.4223.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzyl 6-*O*-(2-*O*-benzoyl-3,4,5-tri-*O*-benzyl-α-D-mannopyranosyl)-2,3di-*O*-benzoyl-4-*O*-benzyl-β-D-galactopyranoside (14e)

Prepared according to the General Procedure B (41.8 mg, yield 83%). Colorless syrup, $R_f = 0.29$ (petroleum ether-EtOAc 3:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 4H, Ar-H), 7.97-7.91 (m, 6H, Ar-H), 7.86 (d, *J* = 7.6 Hz, 2H, Ar-H), 7.79 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.57-

7.46 (m, 7H, Ar-H), 7.43-7.24 (m, 38H, Ar-H), 7.23-7.12 (m, 20H, Ar-H), 5.83 (dd, J = 2.4, 7.6 Hz, 1H), 5.81 (dd, J = 2.4, 7.6 Hz, 1H), 5.47 (brs, 2H), 5.36-5.32 (m, 2H), 4.91-4.82 (m, 4H), 4.79-4.67 (m, 12H, PhCH₂, H-1, H-1'), 4.57 (d, J = 10.8 Hz, 2H, PhCH₂), 4.54-4.51 (m, 4H), 4.46 (d, J = 11.6 Hz, 1H, PhCH₂), 4.44 (d, J = 11.6 Hz, 1H, PhCH₂), 4.13 (dd, J = 2.4, 8.0 Hz, 2H), 4.10-4.00 (m, 4H), 3.91-3.78 (m, 10H), 3.67 (dd, J = 5.6, 10.0 Hz, 1H), 3.62-3.46 (m, 11H), 3.44-3.34 (m, 6H), 3.18-3.11 (m, 2H, SCH), 2.32-2.16 (m, 4H, CH2CH2C6F13), 2.14-1.97 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) *δ* 166.1, 166.1, 165.8, 165.4, 165.4, 141.8, 140.9, 138.6, 138.5, 138.5, 138.1, 138.0, 137.5, 137.5, 135.0, 134.7, 133.7, 133.4, 133.4, 131.2, 131.1, 130.7, 130.2, 130.0, 130.0, 129.9, 129.9, 129.7, 129.6, 129.1, 129.1, 129.0, 128.8, 128.7, 128.6, 128.6, 128.5, 128.5, 128.3, 128.3, 128.3, 128.2, 128.1, 127.9, 127.8, 127.8, 127.8, 127.7, 125.2, 125.2, 101.0 (C-1), 100.3 (C-1), 98.3 (C-1'), 78.1, 78.0, 77.4, 75.5, 75.5, 75.4, 75.3, 74.8, 74.7, 74.3, 74.3, 73.7, 73.7, 73.7, 73.6, 73.3, 72.3, 72.2, 71.9, 71.9, 70.2, 70.1, 69.2, 69.1, 69.1, 67.0, 67.0, 66.8, 66.3, 65.9, 65.7, 64.2, 64.1, 63.3 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 21.0 Hz, CH₂CH₂C₆F₁₃). HRMS (ESI⁺): calc. for C₈₇H₇₆F₂₆O₁₇SNa⁺ [M+Na]⁺: 1941.4280, found: 1941.4285.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzyl 6-*O*-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)-2-*O*-benzoyl-3,4-di-*O*-benzyl-β-D-glucopyranoside (14f)

Prepared according to the General Procedure B (60.0 mg, yield 96%). Colorless syrup, $R_f = 0.18$ (petroleum ether-EtOAc 2:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 1.2, 8.0 Hz, 2H, Ar-H), 7.90 (dd, J = 1.2, 8.4 Hz, 2H, Ar-H), 7.85 (dd, J = 1.2, 8.0 Hz, 1H,

Ar-H), 7.81 (d, J = 7.6 Hz, 1H, Ar-H), 7.57-7.53 (m, 2H, Ar-H), 7.47-7.26 (m, 20H, Ar-H), 7.11-7.05 (m, 10H), 5.25 (d, J = 8.0 Hz, 1H, **H-1**), 5.23 (d, J = 7.6 Hz, 1H, **H-1**'), 5.12 (t, J = 8.0 Hz, 1H), 5.11 (t, J = 8.0 Hz, 1H), 4.95-4.90 (m, 4H), 4.85-4.73 (m, 4H), 4.70-4.56 (m, 8H), 4.53-4.49 (m, 2H), 4.13 (dd, J = 5.2, 10.8 Hz, 1H), 4.12 (dd, J = 5.2, 10.8 Hz, 1H), 4.06 (dd, J = 1.2, 11.2 Hz, 1H), 4.00 (dd, J = 1.2, 11.2 Hz, 1H), 3.77 (t, J = 8.8 Hz, 2H), 3.73-3.53 (m, 16H), 3.50-3.29 (m, 10H), 3.18-3.11 (m, 2H, SCH), 2.38-2.25 (m, 4H, C<u>H</u>₂C<u>H</u>₂C₆F₁₃), 2.16-2.01 (m, 16H), 1.96 (s, 3H, OAc), 1.95 (s, 3H, OAc). ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.3, 170.1, 169.5, 165.2, 165.2,

141.4, 140.6, 138.0, 137.8, 137.8, 135.2, 134.7, 133.5, 133.5, 131.2, 131.2, 130.4, 130.0, 129.9, 129.9, 129.0, 129.0, 128.7, 128.6, 128.6, 128.5, 128.2, 128.1, 128.1, 128.1, 128.0, 127.9, 125.1, 125.0, 100.7 (**C-1**), 100.5 (**C-1**), 100.3 (**C-1'**), 99.4 (**C-1'**), 82.9, 78.0, 77.8, 75.3, 75.3, 75.1, 74.9, 74.8, 73.7, 71.5, 71.2, 70.8, 70.6, 68.9, 68.9, 67.8, 67.6, 66.9, 66.9, 66.4, 65.6, 64.1, 64.0, 63.3 (t, J = 4.0 Hz, **C**H₂CH₂C₆F₁₃), 62.0 (t, J = 4.0 Hz, **C**H₂CH₂C₆F₁₃), 31.3 (t, J = 21.0 Hz, CH₂**C**H₂C₆F₁₃), 31.2 (t, J = 21.0 Hz, CH₂**C**H₂C₆F₁₃), 21.0, 20.9, 20.9, 20.9. HRMS (ESI⁺): calc. for C₆₄H₆₀F₂₆O₁₇SNa⁺ [M+Na]⁺: 1649.3028, found: 1649.3034.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2yl)sulfinyl]benzyl 3,6-di-*O*-(2,3,4-tri-*O*-acetyl-6-deoxy-β-D-galactopyranosyl)-2-*O*benzoyl-4-*O*-benzyl-β-D-glucopyranoside (14g)

Prepared according to the General Procedure B (26.3 mg, yield 87%). Colorless syrup, $R_f = 0.56$ (petroleum ether-EtOAc 1:1). A mixture of sulfoxide *R/S* (1:1) isomers. ¹H NMR (600 MHz, CDCl₃) δ 8.00-7.98 (m, 2H, Ar-H), 7.95-7.93 (m, 2H, Ar-H), 7.83 (dd, J = 1.2, 8.4 Hz, 1H, Ar-H),

7.79-7.78 (m, 1H, Ar-H), 7.63-7.60 (m, 2H, Ar-H), 7.48-7.35 (m, 12H, Ar-H), 7.32-7.26 (m, 7H, Ar-H), 7.21 (dt, J = 1.2, 7.2 Hz, 1H, Ar-H), 5.23-5.19 (m, 6H), 5.14 (d, J = 10.8 Hz, 1H, PhCH₂), 5.12-5.10 (m, 3H), 5.08 (d, J = 10.8 Hz, 1H, PhCH₂), 5.07 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.97-4.92 (m, 3H), 4.82 (d, *J* = 12.6 Hz, 1H, PhCH₂), 4.72 (d, J = 12.6 Hz, 1H, PhCH₂), 4.64 (d, J = 12.6 Hz, 1H, PhCH₂), 4.59 (d, J = 7.8 Hz, 1H, H-1), 4.58 (d, J = 7.8 Hz, 1H, H-1), 4.57 (dd, J = 3.6, 5.4 Hz, 1H), 4.56 (dd, J =3.6, 5.4 Hz, 1H), 4.53 (d, J = 7.8 Hz, 1H, H-1'), 4.50 (d, J = 10.2 Hz, 2H), 4.47 (d, J = 8.4 Hz, 1H, H-1'), 4.42 (d, J = 7.8 Hz, 1H, H-1"), 4.41 (d, J = 7.8 Hz, 1H, H-1"), 4.18-4.10 (m, 4H), 3.75-3.73 (m, 2H), 3.71-3.56 (m, 14H), 3.54-3.38 (m, 10H), 3.16-3.13 (m, J = 5.4 Hz, 1H, SCH), 3.11-3.07 (m, J = 5.4 Hz, 1H, SCH), 2.37-2.18 (m, 4H, 10.5)CH2CH2C6F13), 2.13 (s, 3H, OAc), 2.13 (s, 3H, OAc), 2.12-2.02 (m, 4H, CH2CH2C6F13), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.95 (s, 3H, OAc), 1.95 (s, 3H, OAc), 1.94 (s, 3H, OAc), 1.94 (s, 3H, OAc), 1.86 (s, 3H, OAc), 1.85 (s, 3H, OAc). ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.7, 170.4, 170.4, 170.3, 170.1, 169.6, 169.6, 164.9, 164.8, 141.2, 140.5, 138.6, 138.5, 135.1, 134.8, 133.9, 131.3, 131.2, 130.4, 129.8, 129.7, 129.7, 129.0, 128.9, 128.9, 128.5, 128.4, 128.4, 128.0, 128.0, 125.1, 125.0, 101.7 (C-1"), 101.6 (C-1"), 100.8 (C-1), 100.8 (C-1), 99.8 (C-1'), 99.3 (C-1'), 80.0, 80.0, 77.4, 77.0, 75.9, 75.8, 75.0, 74.9, 74.9, 73.9, 71.7, 71.5, 70.5, 70.5, 69.4, 69.4, 69.3, 69.1, 68.9, 68.5, 68.3, 66.9, 66.8, 66.2, 65.6, 64.1, 64.0, 63.6, 63.4 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 63.3 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 62.9, 62.9, 62.8, 31.3 (t, J = 21.0 Hz, $CH_2CH_2C_6F_{13}$), 31.2 (t, J = 21.0 Hz, $CH_2CH_2C_6F_{13}$), 21.0, 20.8, 20.8, 20.7, 20.6, 16.2, 16.1, 16.1. HRMS (ESI⁺): calc. for C₇₀H₇₂F₂₆O₂₄SNa⁺ [M+Na]⁺: 1845.3611, found: 1845.3614.

12. Table S2. Preparation of acceptors 15

Compound **15a**,^[13] **15b**,^[14] **15c**,^[4] **15d**,^[15] **15e**,^[16] **15f**,^[17] **15h**,^[18] were synthesized according to the reported procedures.

(Z)-3-Hexenyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-D-glucopyranoside (S12)

A suspension of (*Z*)-3-Hexen-1-ol (81.8 μ L, 0.70 mmol, 1.0 euqiv) and compound **5**^[2] (531.3 mg, 0.83 mmol, 1.2 equiv) containing activated 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (4.7 mL) was stirred at room temperature for 10 min under

argon. After cooling to -20 °C, TMSOTf (37.4 µL, 0.21 mmol, 0.3 equiv) was added. The reaction mixture was stirred at -20 °C for 1 h and quenched by addition of Et₃N (0.3 mL). The mixture was filtered through Celite and extracted with EtOAc, washed with saturated NaHCO3 and brine, dried over anhydrous Na2SO4, concentrated in vacuo and purified by flash column chromatography on silica gel to give S12 (380 mg, yield 95%) as white solid, $R_f = 0.42$ (petroleum ether-EtOAc 5:1). m.p. 59.2-60.7 °C. $[\alpha]_D^{20}$ +2.0 (c, 1.50 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.25 (m, 13H, Ar-H), 7.17-7.15 (m, 2H, Ar-H), 5.46-5.39 (m, 1H, CH=CH), 5.31-5.24 (m, 1H, CH=CH), 5.00-4.95 (m, 1H), 4.77 (d, J = 10.8 Hz, 2H, PhCH₂), 4.65 (d, J = 11.2 Hz, 1H, PhCH₂), 4.61 (d, J = 12.0 Hz, 1H, PhCH₂), 4.54 (d, J = 12.0 Hz, 1H, PhCH₂), 4.54 (d, J = 10.8Hz, 1H, PhCH₂), 4.35 (d, J = 8.0 Hz, 1H, H-1), 3.85 (dt, J = 6.8, 9.6 Hz, 1H), 3.73 (dd, J = 2.0, 10.8 Hz, 1H), 3.72-3.61 (m, 3H), 3.49-3.40 (m, 2H), 2.30 (q, J = 6.8 Hz, 2H), 2.05-1.98 (m, 2H), 1.95 (s, 3H, OAc), 0.93 (t, J = 7.6 Hz, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 138.4, 138.3, 138.1, 134.0, 128.6, 128.6, 128.6, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 124.7, 101.2 (C-1), 83.2, 78.2, 75.4, 75.2, 75.2, 73.7, 73.3, 69.5, 69.0, 27.9, 21.1, 20.8, 14.4. HRMS (ESI⁺): calc. for C₃₅H₄₂O₇Na⁺ [M+Na]⁺: 597.2823, found: 597.2841.

(Z)-3-Hexenyl 3,4,6-tri-O-benzyl-β-D-glucopyranoside (15g)

To a stirred mixture of compound **S11** (420 mg, 0.73 mmol, 1.0 equiv) in MeOH (3.7 mL) was added NaOMe (11.8 mg, 0.22 mmol, 0.3 equiv). The mixture was stirred at 40 $^{\circ}$ C for 3 h, then Amberlyst (*R*)15 ion-exchange resin was added to neutralize the

mixture. Following removal of the resin, the filtrate was evaporated under reduced pressure and purified by flash column chromatography on silica gel to give **15g** (362 mg, yield 93%) as white solid, $R_f = 0.38$ (petroleum ether-EtOAc 5:1). m.p. 66.3-68.5 °C. [α]_D ²⁰ -7.5 (*c*, 1.70 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 13H, Ar-H), 7.16-7.14 (m, 2H, Ar-H), 5.51-5.45 (m, 1H, CH=CH), 5.36-5.29 (m, 1H, CH=CH), 4.93 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.82 (d, *J* = 11.6 Hz, 2H, PhCH₂), 4.60 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.53 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.52 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.24 (d, *J* = 7.2 Hz, 1H, **H-1**), 3.93 (ddd, *J* = 6.0, 7.2, 9.2 Hz, 1H), 3.73 (dd, *J* = 2.0, 10.8 Hz, 1H, H-6a), 3.67 (dd, *J* = 4.4, 10.4 Hz, 1H, H-6b), 3.59-3.45 (m, 5H), 2.44-2.33 (m, 3H), 2.08-2.01 (m, 2H), 0.95 (t, *J* = 7.6 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 138.3, 138.3, 134.4, 128.6, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8, 124.6, 103.0 (C-1), 84.7, 77.7, 75.4, 75.3, 75.2, 75.0, 73.7, 69.8, 69.1, 28.0, 20.8, 14.4. HRMS (ESI⁺): calc. for C₃₃H₄₀O₆Na⁺ [M+Na]⁺: 555.2717, found: 555.2717.

13. IPRm glycosylations of OPSB^F glycosyl donors (Scheme 3)

General Procedure C for preparing compounds **16a-16i**: A solution of OPSB^F donor **14** (1.0 equiv) in anhydrous CH₂Cl₂ (0.05 M) in the presence of 4Å MS (100 wt%) was stirred for 15 min at -40 °C. After addition of Tf₂O (1.0 equiv), the solution was stirred at -40 °C for 3 min, then acceptors **15** (1.2 equiv) in anhydrous CH₂Cl₂ (0.3 mL) was added. The reaction mixture was stirred at -40 °C for 0.5 h to 1 h and quenched by addition of H_2O (1.0 mL). The mixture was filtered through Celite and extracted with EtOAc, the organic phase was washed with brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by column chromatography on silica gel to give compounds **16a-16i**.

Methyl 2-*O*-acetyl-3,4,6-tri-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-*O*-benzoyl-3,6-di-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (16a)

Prepared according to the General Procedure C (18.4 mg, yield 82%). Colorless syrup, $R_f = 0.65$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} + 15.3$ (*c*, 1.55 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.82

(m, 2H, Ar-H), 7.53 (t, J = 7.6 Hz, 1H, Ar-H), 7.38 (t, J = 7.6 Hz, 2H, Ar-H), 7.34-7.25 (m, 17H, Ar-H), 7.23-7.15 (m, 18H, Ar-H), 7.06-7.04 (m, 2H, Ar-H), 7.01-6.98 (m, 1H, Ar-H), 6.94-6.90 (m, 2H, Ar-H), 5.13 (dd, J = 8.0, 9.6 Hz, 1H), 5.05 (d, J =12.0 Hz, 1H, PhCH₂), 4.99 (dd, J = 8.4, 9.6 Hz, 1H), 4.90 (d, J = 12.0 Hz, 1H, PhCH₂), 4.78-4.72 (m, 3H), 4.70 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (d, J = 12.4 Hz, 1H, PhCH₂), 4.62-4.52 (m, 5H), 4.49 (m 3.6 Hz, 1H, H-1), 4.46 (d, J = 8.4 Hz, 1H, H-1"), 4.45 (d, J = 8.0 Hz, 1H, H-1"), 4.43 $(d, J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.35 (s, 2\text{H}), 4.28 (d, J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.18 (d, J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2)$ *J* = 12.4 Hz, 1H, PhCH₂), 4.00 (t, *J* = 9.2 Hz, 1H), 3.85-3.76 (m, 2H), 3.71 (t, *J* = 9.2 Hz, 1H), 3.66 (dd, J = 0.8, 10.4 Hz, 1H), 3.58-3.51 (m, 3H), 3.50-3.38 (m, 5H), 3.33 (dd, J = 1.2, 10.8 Hz, 1H), 3.28-3.23 (m, 4H), 3.10 (dd, J = 2.0, 9.6 Hz, 1H), 1.88 (s, 10.1 Hz)3H, OAc). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 165.0, 139.9, 138.9, 138.5, 138.5, 138.4, 138.4, 138.2, 138.0, 133.1, 130.1, 130.0, 128.8, 128.6, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.2, 127.1, 100.7 (C-1"), 100.4 (C-1"), 98.5 (C-1), 83.1, 80.6, 80.4, 79.1, 78.2, 75.5, 75.3, 75.3, 75.1, 74.6, 73.9, 73.7, 73.7, 73.6, 73.5, 69.7, 68.8, 68.0, 67.8, 55.4, 21.1. HRMS (ESI⁺): calc. for C₈₄H₈₈O₁₈Na⁺ [M+Na]⁺: 1407.5863, found: 1407.5855.

Methyl 4-O-(2-O-acetyl-3,4,6-tri-O-benzyl- β -D-glucopyranosyl)-2-O-benzoyl-3,6di-O-benzyl- β -D-glucopyranoside (16b)

Prepared according to the General Procedure C with small modifications, 50.0 equiv. of MeOH was used as acceptor. (15.3 mg, yield 80%). Colorless syrup, $R_f = 0.63$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} + 26.1$ (*c*, 1.50 in

CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 2H, Ar-H), 7.53 (tt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.39 (t, J = 7.6 Hz, 2H, Ar-H), 7.34-7.25 (m, 14H, Ar-H), 7.23-7.15 (m, 6H, Ar-H), 7.10-7.08 (m, 2H, Ar-H), 7.01-6.94 (m, 3H, Ar-H), 5.21 (dd, J = 8.0, 9.2 Hz, 1H), 4.98 (dd, J = 8.0, 9.6 Hz, 1H), 4.90 (d, J = 12.0 Hz, 1H, PhCH₂), 4.78 (d, J = 11.2 Hz, 1H, PhCH₂), 4.74 (d, J = 10.8 Hz, 1H, PhCH₂), 4.71 (d, J = 12.0 Hz, 1H, PhCH₂), 4.63 (d, J = 12.0 Hz, 1H, PhCH₂), 4.61 (d, J = 11.2 Hz, 1H, PhCH₂), 4.55 (d, J = 8.0 Hz, 1H, **H-1'**), 4.54 (d, J = 10.8 Hz, 1H, PhCH₂), 4.51 (d, J = 12.0 Hz, 1H, PhCH₂), 4.38 (d, J = 8.0 Hz, 1H, **H-1**), 4.37 (brs, 2H), 4.06 (t, J = 9.2 Hz, 1H), 3.76-3.69 (m, 4H), 3.66 (dd, J = 1.6, 10.8 Hz, 1H), 3.54 (dd, J = 4.0, 10.8 Hz, 1H), 3.51 (t,

J = 9.2 Hz, 1H), 3.45-3.41 (m, 4H), 3.30 (ddd, J = 1.6, 4.0, 10.0 Hz, 1H), 1.89 (s, 3H, OAc). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 165.4, 138.7, 138.4, 138.4, 138.2, 133.1, 130.2, 130.0, 128.7, 128.6, 128.6, 128.5, 128.4, 128.1, 128.0, 128.0, 127.9, 127.9, 127.7, 127.6, 127.2, 102.2 (C-1), 100.5 (C-1'), 83.2, 80.5, 78.2, 75.5, 75.4, 75.3, 75.1, 74.5, 73.9, 73.8, 73.5, 73.2, 68.8, 68.0, 56.8, 21.1. HRMS (ESI⁺): calc. for C₅₇H₆₀O₁₃Na⁺ [M+Na]⁺: 975.3926, found: 975.3940.

N-Benzyl-*N*-benzyloxycarbonyl-5-pentyl 4-*O*-(2-*O*-acetyl-3,4,6-tri-*O*-benzyl- β -D-glucopyranosyl)-2-*O*-benzoyl-3,6-di-*O*-benzyl- β -D-glucopyranoside (16c)

Prepared according to the General Procedure C (29.9 mg, yield 85%). Colorless syrup, $R_f = 0.31$ (petroleum ether-EtOAc 3:1). $[\alpha]_D$ ²⁰ +18.8 (*c*, 1.77 in CHCl₃). ¹H NMR (600 MHz,

CDCl₃) δ 7.86 (d, J = 7.2 Hz, 2H, Ar-H), 7.44 (t, J = 7.2 Hz, 1H, Ar-H), 7.33-7.24 (m, 21H, Ar-H), 7.23-6.95 (m, 16H, Ar-H), 5.18 (t, J = 9.0 Hz, 1H), 5.11 (d, J = 6.0 Hz, 2H), 4.98 (dd, J = 8.4, 9.6 Hz, 1H), 4.88 (d, J = 12.0 Hz, 1H, PhCH₂), 4.77 (d, J = 11.4 Hz, 1H, PhCH₂), 4.74 (d, J = 10.8 Hz, 1H, PhCH₂), 4.70 (d, J = 12.0 Hz, 1H, PhCH₂), 4.63 (d, J = 12.0 Hz, 1H, PhCH₂), 4.61 (d, J = 11.4 Hz, 1H, PhCH₂), 4.55 (d, J = 7.8 Hz, 1H, **H**-**1'**), 4.54 (d, J = 11.4 Hz, 1H, PhCH₂), 4.49 (d, J = 12.6 Hz, 1H, PhCH₂), 4.41-4.32 (m, 5H, **H**-**1**), 4.04 (t, J = 9.0 Hz, 1H), 3.79-3.68 (m, 5H), 3.67 (dd, J = 1.8, 10.8 Hz, 1H), 3.55 (dd, J = 4.2, 10.8 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.40 (brd, J = 7.8 Hz, 1H), 3.35-3.29 (m, 2H), 3.02-2.91 (m, 2H), 1.89 (s, 3H, OAc), 1.46-1.29 (m, 4H), 1.15-1.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 165.3, 138.8, 138.4, 138.4, 138.2, 133.1, 130.3, 129.9, 128.7, 128.6, 128.6, 128.5, 128.4, 128.1, 1

Prepared according to the General Procedure C (19.6 mg, yield 73%). Colorless syrup, $R_f = 0.49$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20}$ –2.8 (*c*, 1.00 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ

7.95-7.93 (m, 2H, Ar-H), 7.54 (tt, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.42-7.26 (m, 12H, Ar-H), 7.13-7.09 (m, 5H, Ar-H), 6.63 (d, J = 2.0 Hz, 1H, Ar-H), 6.50 (dd, J = 2.0, 8.0 Hz, 1H, Ar-H), 6.43 (d, J = 8.0 Hz, 1H, Ar-H), 5.28-5.22 (m, 3H), 5.04 (t, J = 9.6 Hz, 1H), 4.93 (m, 2H), 4.88 (d, J = 11.2 Hz, 1H, PhCH₂), 4.74 (d, J = 1.2 Hz, 1H, **H-1'**), 4.71 (d, J = 11.2 Hz, 1H, PhCH₂), 4.63 (d, J = 11.2 Hz, 1H, PhCH₂), 4.60 (d, J = 11.2 Hz, 1H, PhCH₂), 4.49 (d, J = 7.6 Hz, 1H, **H-1**), 4.04-3.99 (m, 1H), 3.96-3.87 (m, 2H), 3.79 (t, J = 8.8 Hz, 1H), 3.77 (s, 3H, OMe), 3.64 (dd, J = 5.6, 11.2 Hz, 1H), 3.62-3.50 (m, 3H), 2.70 (dt, J = 2.0, 6.8 Hz, 2H), 2.08 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.15 (d, J = 6.4 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.2,

170.1, 165.4, 149.5, 146.7, 138.0, 137.8, 137.6, 133.2, 132.0, 130.2, 129.9, 128.7, 128.7, 128.6, 128.5, 128.3, 128.2, 128.2, 127.9, 127.9, 127.4, 120.9, 114.0, 113.0, 101.2 (**C**-1), 98.0 (**C**-1'), 83.0, 78.2, 75.4, 75.3, 75.0, 73.9, 71.2, 71.1, 70.7, 69.9, 69.4, 67.0, 66.6, 56.1, 35.8, 21.1, 21.0, 20.9, 17.5. HRMS (ESI⁺): calc. for $C_{55}H_{60}O_{16}Na^+$ [M+Na]⁺: 999.3774, found: 999.3797.

p-Methoxyphenyl 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 6)$ -2-*O*-benzoyl-3,4-di-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3-di-*O*-benzoyl-6-*O*-tertbutyldiphenylsilyl- β -D-glucopyranoside (16e)

Prepared according to the General Procedure C (31.2 mg, yield 64%). Colorless syrup, $R_f = 0.42$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20}$ +16.2 (*c*, 1.70 in

CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.92 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.77 (d, J = 7.8 Hz, 2H, Ar-H), 7.72 (d, J = 7.2 Hz, 2H, Ar-H), 7.69 (d, J = 7.2 Hz, 2H, Ar-H), 7.48-7.42 (m, 4H, Ar-H), 7.41-7.27 (m, 10H, Ar-H), 7.22-7.18 (m, 6H, Ar-H), 7.12-7.06 (m, 5H, Ar-H), 5.72 (dd, *J* = 7.8, 9.6 Hz, 1H), 5.66 (t, *J* = 9.0 Hz, 1H), 5.32 (dd, J = 3.6, 9.6 Hz, 1H), 5.27 (dd, J = 1.8, 3.6 Hz, 1H), 5.14 (dd, J =7.8, 9.6 Hz, 1H), 5.06 (t, J = 9.6 Hz, 1H), 5.01 (d, J = 7.8 Hz, 1H, H-1), 4.91 (d, J =7.8 Hz, 1H, H-1'), 4.76 (d, J = 11.4 Hz, 1H, PhCH₂), 4.67 (s, 1H, H-1''), 4.66 (d, J =10.8 Hz, 1H, PhCH₂), 4.57 (d, J = 10.8 Hz, 1H, PhCH₂), 4.47-4.42 (m, 2H), 3.88 (dd, J = 0.6, 11.4 Hz, 1H), 3.82 (dd, J = 3.0, 11.4 Hz, 1H), 3.76 (dq, J = 6.0, 10.2 Hz, 1H), 3.70 (s, 3H, OMe), 3.65 (t, J = 9.0 Hz, 1H), 3.56 (dd, J = 1.2, 10.8 Hz, 1H), 3.46-3.41(m, 2H), 3.19 (t, J = 9.0 Hz, 1H), 2.83 (dd, J = 1.2, 11.4 Hz, 1H), 2.24 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.97 (s, 3H, OAc), 1.15 (d, J = 6.0 Hz, 3H, CH₃), 1.08 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.2, 169.8, 165.8, 165.2, 164.8, 155.6, 151.6, 137.8, 137.7, 136.2, 135.8, 134.0, 133.2, 130.4, 130.1, 130.0, 129.9, 129.9, 129.8, 129.6, 128.7, 128.6, 128.5, 128.5, 128.5, 128.2, 128.2, 128.1, 128.1, 127.9, 127.9, 119.1, 114.6, 101.1 (C-1), 99.6 (C-1'), 97.7 (C-1"), 83.1, 78.4, 75.9, 75.5, 75.3, 75.2, 74.1, 73.7, 73.3, 72.2, 71.6, 70.2, 69.0, 66.6, 66.6, 61.4, 55.8, 27.0, 21.2, 21.1, 20.9, 19.4, 17.7. HRMS (ESI⁺): calc. for C₈₂H₈₆O₂₂SiNa⁺ [M+Na]⁺: 1473.5272, found: 1473.5252.

Methyl 2,3,4-tri-*O*-acetyl-6-deoxy- β -L-galactopyranosyl- $(1\rightarrow 6)$ -2-*O*-benzoyl-3,4-di-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (16f)

Prepared according to the General Procedure C (38.1 mg, yield 75%). Colorless syrup, $R_f = 0.47$ (petroleum ether-EtOAc 2:1). [α]_D²⁰ +28.5 (*c*, 2.45 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.45 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.31-7.22 (m, 20H,

Ar-H), 7.10-7.08 (m, 7H, Ar-H), 5.23 (t, *J* = 8.4 Hz, 1H), 5.22 (dd, *J* = 8.0, 10.4 Hz, 1H), 5.15 (d, *J* = 3.2 Hz, 1H), 5.01 (dd, *J* = 3.6, 10.4 Hz, 1H), 4.85 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.79 (d, *J* = 10.4 Hz, 1H, PhCH₂), 4.73 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.72 (d,

J = 12.4 Hz, 1H, PhCH₂), 4.70-4.64 (m, 4H, PhCH₂, **H-1'**), 4.57 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.56 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.44 (d, *J* = 8.0 Hz, 1H, **H-1''**), 4.41 (d, *J* = 3.6 Hz, 1H, **H-1**), 4.35 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.13 (dd, *J* = 3.2, 12.0 Hz, 1H), 4.03 (d, *J* = 9.6 Hz, 1H), 3.89-3.83 (m, 2H), 3.78-3.73 (m, 2H), 3.71-3.61 (m, 3H), 3.40-3.35 (m, 3H), 3.18 (s, 3H, OMe), 2.13 (s, 3H, OAc), 2.12 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.14 (d, *J* = 6.4 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.2, 170.0, 165.2, 138.9, 138.5, 138.3, 138.2, 138.0, 133.2, 130.0, 129.9, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.7, 127.7, 127.6, 101.6 (**C-1''**), 101.5 (**C-1'**), 98.1 (**C-1**), 82.3, 82.1, 80.0, 77.7, 77.6, 75.8, 75.4, 75.3, 75.0, 74.8, 73.8, 73.5, 71.5, 70.4, 69.9, 69.3, 69.1, 68.5, 67.0, 55.1, 21.2, 20.8, 20.8, 16.2. HRMS (ESI⁺): calc. for C₆₇H₇₄O₁₉Na⁺ [M+Na]⁺: 1205.4717, found: 1205.4721.

Isopropyl 2-*O*-benzoyl-3,4,5-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3-di-*O*-benzoyl-4-*O*-benzyl- β -D-galactopyranosyl- $(1\rightarrow 3)$ -2,4,6-tri-*O*-benzoyl-1-thio- β -D-galactopyranoside (16g)

Prepared according to the General Procedure C (21.7 mg, yield 63%). Colorless syrup, $R_f = 0.32$ (petroleum ether-EtOAc 3:1). $[\alpha]_D^{20}$ +22.0 (*c*, 0.80 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J* = 1.2, 8.0 Hz, 2H, Ar-H), 8.01-7.97 (m, 4H, Ar-H), 7.84-7.81 (m, 4H, Ar-H), 7.57-7.41 (m, 8H, Ar-H), 7.40-7.25 (m, 19H, Ar-H), 7.23-7.08

(m, 13H, Ar-H), 5.80 (d, J = 3.2 Hz, 1H), 5.59 (dd, J = 8.0, 10.4 Hz, 1H), 5.58 (t, J = 9.6 Hz, 1H), 5.46 (dd, J = 2.4, 3.2 Hz, 1H), 5.03 (dd, J = 2.8, 10.4 Hz, 1H), 4.86 (d, J = 10.8 Hz, 1H), 4.79 (d, J = 8.0 Hz, 1H, H-1'), 4.76 (d, J = 11.6 Hz, 1H, PhCH₂), 4.74 $(d, J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.71 (d, J = 10.0 \text{ Hz}, 1\text{H}, \text{H-1}), 4.66 (d, J = 2.4 \text{ Hz}, 1\text{H}, 1)$ **H-1''**), 4.64 (d, J = 12.0 Hz, 1H, PhCH₂), 4.56 (d, J = 10.8 Hz, 1H, PhCH₂), 4.54 (d, J= 11.2 Hz, 1H, PhCH₂), 4.54 (d, J = 12.0 Hz, 1H, PhCH₂), 4.44 (dd, J = 4.8, 11.6 Hz, 1H), 4.37 (dd, J = 3.6, 9.6 Hz, 1H), 4.33 (dd, J = 8.0, 12.0 Hz, 1H), 4.30 (d, J = 12.0Hz, 1H, PhCH₂), 4.14-4.09 (m, 2H), 4.04 (dd, *J* = 3.2, 9.6 Hz, 1H), 3.97 (d, *J* = 2.8 Hz, 1H), 3.93 (dd, J = 3.6, 10.8 Hz, 1H), 3.87-3.79 (m, 3H), 3.66 (t, J = 6.8 Hz, 1H), 3.39 (dd, J = 7.6, 9.6 Hz, 1H), 3.09-3.02 (m, J = 6.8 Hz, 1H, SCH), 1.14 (d, J = 6.8 Hz, 3H, CH₃), 1.12 (d, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 166.1, 166.0, 165.8, 165.0, 164.9, 138.7, 138.5, 138.1, 137.6, 133.6, 133.4, 133.4, 133.3, 133.1, 132.7, 130.3, 130.2, 130.0, 129.9, 129.8, 129.7, 129.7, 129.5, 129.0, 128.7, 128.6, 128.6, 128.5, 128.5, 128.5, 128.5, 128.3, 128.2, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 100.8 (C-1'), 97.8 (C-1''), 83.9 (C-1), 78.4, 77.4, 76.6, 75.8, 75.5, 75.0, 74.7, 74.3, 73.7, 73.3, 73.1, 72.2, 71.9, 70.9, 70.5, 70.1, 69.2, 69.1, 65.4, 63.6, 35.7, 24.1, 23.9. HRMS (ESI⁺): calc. for C₉₁H₈₆O₂₁SNa⁺ [M+Na]⁺: 1569.5275, found: 1569.5274.

(Z)-3-Hexenyl 2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl-(1 \rightarrow 6)-2-*O*-benzoyl-3,4-di-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl- β -D-glucopyranoside (16h)

Prepared according to the General Procedure C (31.5 mg, yield 86%). Colorless syrup, $R_f = 0.71$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20}$ –5.7 (*c*, 2.35 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H, Ar-H), 7.46 (t, *J* = 7.2 Hz, 1H, Ar-H),

7.36-7.24 (m, 12H, Ar-H), 7.24-7.18 (m, 6H, Ar-H), 7.13-7.07 (m, 7H, Ar-H), 7.03-7.01 (m, 2H, Ar-H), 5.51-5.39 (m, 2H), 5.26 (dd, J = 8.0, 9.2 Hz, 1H), 5.20-5.15 (m, J = 4.4 Hz, 1H), 5.04 (d, J = 7.6 Hz, 1H, **H-1**′), 4.94 (dd, J = 4.8, 8.8 Hz, 1H), 4.91 (d, J = 5.2 Hz, 1H, **H-1**′′), 4.91 (d, J = 4.0 Hz, 1H), 4.81 (d, J = 10.8 Hz, 1H, PhCH₂), 4.69 (d, J = 10.8 Hz, 1H, PhCH₂), 4.64 (d, J = 11.2 Hz, 1H, PhCH₂), 4.61-4.54 (m, 6H), 4.43 (d, J = 10.8 Hz, 1H, PhCH₂), 4.36 (d, J = 7.6 Hz, 1H, **H-1**), 4.09 (dd, J = 5.2, 11.6 Hz, 1H), 4.01 (d, J = 10.8 Hz, 1H, PhCH₂), 3.85 (dt, J = 7.6, 9.6 Hz, 1H), 3.80-3.71 (m, 4H), 3.66 (dd, J = 5.2, 11.2 Hz, 1H), 3.61-3.49 (m, 5H), 3.44-3.37 (m, 2H), 2.38 (q, J = 6.8 Hz, 2H), 2.11-2.04 (m, 2H), 2.00 (s, 3H, OAc), 1.97 (s, 3H, OAc), 1.96 (s, 3H, OAc), 0.98 (t, J = 7.6 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 169.7, 165.3, 138.7, 138.5, 138.2, 137.8, 137.7, 133.8, 133.2, 129.9, 129.8, 128.8, 128.5, 128.4, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 125.0, 102.2 (C-1), 100.3 (C-1'), 100.3 (C-1''), 85.2, 83.2, 79.5, 78.3, 75.8, 75.4, 75.3, 75.2, 74.9, 74.3, 73.7, 72.0, 71.4, 70.1, 69.5, 69.2, 67.6, 62.0, 28.2, 21.0, 20.9, 14.5. HRMS (ESI⁺): calc. for C₇₁H₈₀O₁₉Na⁺ [M+Na]⁺: 1259.5186, found: 1259.5184.

2-Isopropylmercaptobenzyl 2-*O*-benzoyl-4-*O*-benzyl-3,6-di-*O*-(2,3,4-tri-*O*-acetyl-6-deoxy- β -D-galactopyranosyl)- β -D-glucopyranosyl-(1 \rightarrow 4)-2,3-*O*-isopropylidene- α -L-rhamnopyranoside (16i)

Prepared according to the General Procedure C (24.8 mg, yield 78%). Colorless syrup, $R_f = 0.19$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20}$ –22.4 (*c*, 2.28 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.05-8.04 (m, 2H, Ar-H), 7.58 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.44 (t, *J* = 7.2 Hz, 2H, Ar-H), 7.40-7.38

(m, 3H, Ar-H), 7.30-7.25 (m, 4H, Ar-H), 7.21 (dt, J = 1.2, 7.8 Hz, 1H, Ar-H), 7.15 (dt, J = 1.2, 7.8 Hz, 1H, Ar-H), 5.21-5.18 (m, 2H), 5.14-5.07 (m, 4H), 4.97 (s, 1H, H-1), 4.95 (dd, J = 3.0, 10.2 Hz, 1H), 4.92 (d, J = 8.4 Hz, 1H, H-1'), 4.74 (d, J = 11.4 Hz, 1H, PhCH₂), 4.61 (dd, J = 2.4, 10.8 Hz, 1H), 4.60 (d, J = 7.8 Hz, 1H, H-1'''), 4.53 (t, J = 12.0 Hz, 2H, PhCH₂), 4.48 (d, J = 8.4 Hz, 1H, H-1''), 4.20 (dd, J = 8.4, 9.0 Hz, 1H), 4.09 (dd, J = 1.2, 11.4 Hz, 1H), 3.95 (d, J = 6.0 Hz, 1H), 3.86 (dd, J = 6.0, 7.2 Hz, 1H), 3.76 (dd, J = 5.4, 11.4 Hz, 1H), 3.70 (dd, J = 6.6, 13.8 Hz, 1H), 3.66-3.61 (m, 2H), 3.58-3.52 (m, 2H), 3.46 (dd, J = 7.2, 10.2 Hz, 1H), 3.32-3.25 (m, 1H, J = 6.6 Hz, SCH), 2.17 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.87 (s, 3H, OAc), 1.44 (s, 3H, CH₃), 1.26 (d, J = 6.0 Hz, 3H, CH₃), 1.21-1.19 (m, 12H, CH₃ × 4), 1.08 (d, J = 6.0 Hz, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 170.8, 170.5, 170.4, 170.2, 169.7, 165.3, 138.7, 138.5, 135.5, 133.5, 132.6, 130.1, 129.9, 129.6, 128.8, 128.5, 128.5, 128.3, 127.9, 127.0, 109.2, 101.4 (C-1''), 100.7 (C-1''), 100.1 (C-1'), 96.5 (C-1), 80.1, 80.0, 78.4, 76.3, 76.1, 75.0, 74.9, 74.2, 71.9, 71.6, 120.

70.6, 70.3, 69.4, 69.2, 68.9, 68.5, 67.7, 64.5, 38.8, 28.1, 26.4, 23.3, 23.3, 21.1, 20.9, 20.8, 20.8, 20.8, 17.7, 16.2, 16.2. HRMS (ESI⁺): calc. for $C_{63}H_{80}O_{25}SNa^+$ [M+Na]⁺: 1291.4602, found: 1291.4600.

14. Fluorous-tag assisted two-directional syntheses of ST14 repeating units (Scheme 4)

Preparation of donors 17a, 17b, 18a, 18b

Compound **17a**,^[19] **17b**,^[20] were synthesized according to the reported procedures.

2-Isopropylmercaptobenzyl 2-*O*-acetyl-3,4,6-tri-*O*-benzyl-β-D-galactopyranoside (S14)

To a mixture of PTB-OH^[4] (544 mg, 2.99 mmol, 1.0 equiv), **S13**^[21] (2.28 g, 3.59 mmol, 1.2 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (15.0 mL) was added TMSOTf (108 μ L, 0.6 mmol, 0.2 equiv) at -20 °C, The mixture was stirred for 1 h and

quenched by addition of Et₃N (0.3 mL). The mixture was filtered through Celite and extracted with EtOAc. The organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **S14** (1.88 g, yield 80%) as white foam, R_f = 0.16 (petroleum ether-EtOAc 8:1). [α]_D ²⁰ –10.3 (*c*, 0.95 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.17 (m, 4H, Ar-H), 5.43 (dd, *J* = 8.0, 10.0 Hz, 1H, H-2), 4.96 (d, *J* = 13.2 Hz, 1H, PhCH₂), 4.65 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.59 (d, *J* = 11.6 Hz, 1H, PhCH₂), 4.76 (d, *J* = 13.2 Hz, 1H, PhCH₂), 4.45-4.41 (m, 2H), 4.40 (d, *J* = 7.6 Hz, 1H, **H-1**), 3.95 (d, *J* = 2.4 Hz, 1H, H-4), 3.65 (d, *J* = 6.4 Hz, 2H), 3.56 (t, *J* = 6.4 Hz, 1H), 3.49 (dd, *J* =

2.4, 10.0 Hz, 1H, H-6a), 3.33-3.26 (m, J = 6.4 Hz, 1H, SCH), 1.99 (s, 3H, OAc), 1.22 (d, J = 6.4 Hz, 6H, CH₃ × 2). ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 139.3, 138.7, 138.2, 138.1, 134.0, 132.5, 128.7, 128.6, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.15, 100.7 (**C-1**), 80.6, 74.7, 73.9, 73.8, 72.8, 72.2, 71.7, 68.8, 68.8, 38.7, 23.3, 23.3, 21.3. HRMS (ESI⁺): calc. for C₃₉H₄₄O₇SNa⁺ [M+Na]⁺: 679.2700, found: 679.2708.

2-Isopropylmercaptobenzyl galactopyranoside (S15)

2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-

To a stirred mixture of compound **S14** (788 mg, 1.20 mmol, 1.0 equiv) in MeOH (6.0 mL) was added NaOMe (19.4 mg, 0.36 mmol, 0.3 equiv). The mixture was stirred at 40 $^{\circ}$ C overnight, then Amberlyst (*R*) 15 ion-exchange resin was added to neutralize

the mixture. Following removal of the resin, the filtrate was evaporated under reduced pressure. To a stirred solution of the above crude product in pyridine/CH₂Cl₂ (1:1, v:v, 12.0 mL) was added benzoyl chloride (0.49 mL, 4.20 mmol, 3.5 equiv) at 0 °C, then warmed up to 40 °C and stirred overnight. The reaction mixture was extracted with EtOAc. The organic phase was washed with 1 M HCl, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by flash column chromatography on silica gel to give S15 (690 mg, 80% yield for two steps) as white foam, $R_f = 0.25$ (petroleum ether-EtOAc 7:1). $[\alpha]_D^{20} + 3.1$ (*c*, 0.97 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 2H, Ar-H), 7.55 (t, J = 7.2 Hz, 1H, Ar-H), 7.34 (t, J = 7.2 Hz, 1H, Ar-H), 7.37-7.26 (12H, m, Ar-H), 7.19-7.07 (6H, m, Ar-H), 6.95 (t, J = 7.6 Hz, 1H, Ar-H), 5.72 (dd, J = 8.0, 10.0 Hz, 1H), 4.99 (d, J = 12.0 Hz, 1H, PhCH₂), 4.92 (d, J = 13.6 Hz, 1H, PhCH₂), 4.83 (d, J = 13.2 Hz, 1H, PhCH₂), 4.64 $(d, J = 11.6 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.62 (d, J = 12.4 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.52 (d, J = 8.0 \text{ Hz}, 10.0 \text{ Hz})$ 1H, H-1), 4.50-4.42 (m, 3H), 4.01 (d, J = 2.4 Hz, 1H, H-4), 3.72-3.65 (m, 2H), 3.63-3.58 (m, 2H), 3.22-3.12 (m, J = 6.8 Hz, 1H, SCH), 1.11 (d, J = 6.8 Hz, 3H, CH₃), 1.11 (d, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 139.2, 138.6, 138.1, 137.9, 134.0, 133.0, 132.4, 130.5, 130.1, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 127.9, 127.8, 127.8, 127.1, 100.5 (C-1), 80.1, 74.7, 73.9, 73.8, 72.6, 72.2, 71.9, 68.8, 68.4, 38.6, 23.2, 23.2. HRMS (ESI⁺): calc. for C₄₄H₄₆O₇SNa⁺ [M+Na]⁺: 741.2856, found: 741.2858.

2-Isopropylsulfinylbenzyl 2-O-benzoyl-3,4,6-tri
-O-benzyl- β -D-galactopyranoside (18a)

To a stirred solution of **S15** (690 mg, 0.96 mmol, 1.0 equiv) in MeCN/H₂O (9:1, v:v, 10.0 mL) was added PIFA (454 mg, 1.06 mmol, 1.1 equiv), the mixture was stirred at room temperature for 1 h. The reaction mixture was extracted with EtOAc, washed

successively with saturated Na₂S₂O₃, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **18a** (569 mg, yield 81%) as white foam, R_f = 0.25 (petroleum ether-EtOAc 7:1). A mixture of sulfoxide *R/S* (1.3:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.2 Hz, 2.6H, Ar-H), 7.89 (d, *J* = 7.6 Hz, 2H, Ar-H),
7.78 (d, J = 7.6 Hz, 1H, Ar-H), 7.75 (d, J = 8.0 Hz, 1.3H, Ar-H), 7.60-7.54 (m, 2.6H, Ar-H), 7.46-7.25 (m, 34.6H, Ar-H), 7.18-7.11 (m, 11H, Ar-H), 5.67 (dd, J = 8.0, 9.6 Hz, 1.3H), 5.63 (dd, J = 8.0, 9.6 Hz, 1H), 4.97 (d, J = 11.6 Hz, 1H, PhCH₂), 4.96 (d, J = 11.6 Hz, 1.3H, PhCH₂), 4.89 (d, J = 12.0 Hz, 1.3H, PhCH₂), 4.84 (d, J = 12.8 Hz, 1H, PhCH₂), 4.71-4.58 (m, 8.3H), 4.48-4.43 (m, 7.6H), 4.00 (d, J = 2.4 Hz, 2.3H), 3.69-3.57 (m, 9.3H), 2.83-2.73 (m, 2.3H, SCH), 1.13 (d, J = 6.8 Hz, 3H, CH₃), 1.03 (d, J = 6.8 Hz, 3.9H, CH₃), 0.90 (d, J = 6.4 Hz, 3H, CH₃), 0.85 (d, J = 6.8 Hz, 3.9H, CH₃), 1.30 (d, J = 6.4 Hz, 3H, CH₃), 0.85 (d, J = 6.8 Hz, 3.9H, CH₃), 1.30 (d, J = 12.8, 1.38.5, 138.0, 137.9, 137.7, 135.2, 133.4, 133.3, 130.9, 130.8, 130.2, 130.1, 130.1, 130.0, 129.8, 128.7, 128.6, 128.6, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.1, 128.0, 127.9, 127.9, 125.2, 125.2, 100.9 (C-1), 99.9 (C-1), 80.0, 80.0, 74.8, 74.8, 74.1, 74.0, 73.9, 73.8, 72.5, 72.5, 72.0, 71.9, 71.8, 68.8, 66.4, 65.5, 17.4, 17.3, 12.9, 12.6. HRMS (ESI⁺): calc. for C₄₄H₄₆O₈SNa⁺ [M+Na]⁺: 757.2806, found: 757.2798.

2-Isopropylmercaptobenzyl 2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranoside (S17)

A suspension of PTB-OH (2.2 g, 12.20 mmol, 2.0 equiv) and **S16**^[22] (3.0 g, 6.09 mmol, 1.0 equiv) containing activated 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (12.0 mL) was stirred at room temperature for 10 min under argon. After cooling to -20 °C, TMSOTf (0.44 mL, 2.44 mmol, 0.4 equiv) was added. The

reaction mixture was stirred at -20 °C for 1 h and quenched by addition of Et₃N (1.0 mL). The mixture was filtered through Celite and extracted with EtOAc, washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **S17** (2.86 g, yield 92%) as colorless syrup, $R_f = 0.22$ (petroleum ether-EtOAc 3:1). [α]_D ²⁰ –22.4 (*c*, 2.8 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 2.0, 7.6 Hz, 1H, Ar-H), 7.37 (dd, J = 2.4, 7.6 Hz, 1H, Ar-H), 7.26-7.20 (m, 2H), 5.37 (dd, J = 0.8, 3.6 Hz, 1H, H-4), 5.26 (dd, J = 8.0, 10.4 Hz, 1H, H-2), 5.01-4.95 (m, 2H), 4.82 (d, J = 12.4 Hz, 1H, PhCH₂), 4.52 (d, J = 8.0 Hz, 1H, **H-1**), 4.21 (dd, J = 6.4, 11.2 Hz, 1H, H-6a), 4.13 (dd, J = 7.2, 11.2 Hz, 1H, H-6b), 3.89 (dt, J = 0.8, 6.8 Hz, 1H, H-5), 3.38-3.28 (m, J = 6.8 Hz, 1H,

SCH), 2.13 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.95 (s, 3H, OAc), 1.25 (d, J = 6.8 Hz, 6H, CH₃ × 2). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 170.4, 169.7, 138.3, 134.7, 132.4, 128.8, 128.4, 127.1, 100.3 (C-1), 71.1, 70.9, 69.3, 69.0, 67.3, 61.5, 38.7, 23.3, 23.3, 21.1, 20.9, 20.9, 20.8. HRMS (ESI⁺): calc. for C₂₄H₃₂O₁₀SNa⁺ [M+Na]⁺: 535.1608, found: 535.1597.

2-Isopropylmercaptobenzyl 4,6-*O*-benzylidene-β-D-galactopyranoside (S18)

To a stirred mixture of **S17** (2.56 g, 4.99 mmol, 1.0 equiv) in MeOH (16.6 mL) was added NaOMe (80.9 mg, 1.50 mmol, 0.3 equiv). The mixture was stirred at room temperature for 1 h, then Amberlyst (R) 15 ion-exchange resin was added to neutralize the mixture. After removal of the resin, the filtrate was evaporated

under reduced pressure. To a stirred solution of the above crude product in MeCN (4.9 mL) was added CSA (232 mg, 1.00 mmol, 0.2 equiv) and PhCH(OMe)₂ (1.1 mL, 7.50 mmol, 1.5 equiv). The mixture was stirred at room temperature overnight and quenched by addition of Et₃N (0.5 mL). The mixture was extracted with EtOAc, washed with H₂O, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and recrystallized with petroleum ether/CH₂Cl₂ to give S18 (1.82 g, 84% yield for two steps) as white solid, $R_f = 0.42$ (petroleum ether-EtOAc 4:1). m.p. 89.8-90.5 °C. [α]_D²⁰-29.4 (c, 1.90 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.47 (m, 2H, Ar-H), 7.45 (dd, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.40 (dd, J = 1.2, 7.6 Hz, 1H, Ar-H), 7.35-7.33 (m, 3H, Ar-H), 7.27 (dd, J = 1.6, 7.2 Hz, 1H, Ar-H), 7.40 (dd, J = 1.6, 7.2 Hz, 1H, Ar-H), 5.54 (s, 1H, PhCH), 5.03 (d, J = 12.0 Hz, 1H, PhCH₂), 4.83 (d, J = 12.0 Hz, 1H, PhCH₂), 4.37 (d, J = 7.6 Hz, 1H, **H-1**), 4.35 (dd, J = 1.2, 11.2 Hz, 1H, H-6a), 4.18 (d, J = 3.6 Hz, 1H, H-4), 4.07 (dd, J = 1.6, 12.4 Hz, 1H, H-6b), 3.80 (dd, J = 7.6, 9.6 Hz, 1H, H-2), 3.68 (dd, J = 4.0, 9.6 Hz, 1H, H-3), 3.46 (brd, J = 0.8 Hz, 1H, H-5), 3.44-3.37 (m, J = 6.8 Hz, 1H, SCH), 2.54 (brs, 2H, OH \times 2), 1.28 (d, J = 6.8 Hz, 6H, CH₃ ×2). ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.7, 135.4, 131.4, 129.7, 129.4, 128.7, 128.4, 126.8, 126.6, 102.0, 101.6 (C-1), 75.5, 72.8, 71.9, 69.7, 69.3, 66.9, 38.1, 23.3, 23.2. HRMS (ESI⁺): calc. for C₂₃H₂₈O₆SNa⁺ [M+Na]⁺: 455.1499, found: 455.1511.

2-Isopropylmercaptobenzyl 3-*O*-*tert*-butyldimethylsilyl-4,6-*O*-benzylidene-β-D-galactopyranoside (S19)

To a stirred solution of compound **S18** (1.77 g, 4.10 mmol, 1.0 equiv) in DMF (8.2 mL) was added imidazole (1.23 g, 8.18 mmol, 3.0 equiv) and *tert*-butyldimethylsilyl chloride (835.6 mg, 12.30 mmol, 3.0 equiv) at 0 $^{\circ}$ C. The mixture was stirred at room temperature overnight and extracted with EtOAc, washed with 1

M HCl, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **S19** (848 mg, yield 39%) as colorless syrup, $R_f = 0.25$ (petroleum ether-EtOAc 4:1). $[\alpha]_D^{20} -2.2$ (*c*, 1.08 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.48 (m, 3H, Ar-H), 7.42-7.38 (m, 4H, Ar-H), 7.35-7.29 (m, 3H, Ar-H), 7.24-7.20 (m, 2H, Ar-H), 5.51 (s, 1H, PhCH), 5.04 (d, J = 12.4 Hz, 1H, PhCH₂), 4.86 (d, J = 12.4 Hz, 1H, PhCH₂), 4.37 (d, J = 7.6

Hz, 1H, **H-1**), 4.36 (dd, J = 1.2, 12.0 Hz, 1H), 4.06 (dd, J = 1.6, 12.4 Hz, 1H), 4.01 (d, J = 3.2 Hz, 1H), 3.88 (t, J = 8.0 Hz, 1H), 3.70 (dd, J = 4.0, 9.6 Hz, 1H), 3.41 (brs, 1H), 3.40-3.32 (m, J = 6.4 Hz, 1H, SCH), 2.38 (brs, 1H), 1.27 (d, J = 6.8 Hz, 3H, CH₃), 1.26 (d, J = 6.4 Hz, 3H, CH₃), 0.89 (s, 9H, C(CH₃)₃), 0.10 (s, 3H, CH₃), 0.09 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 138.2, 134.8, 132.2, 129.2, 128.9, 128.3, 128.2, 127.0, 126.4, 102.3, 101.1 (C-1), 76.8, 74.3, 71.2, 69.5, 69.1, 67.0, 38.5, 26.0, 23.3, 23.3, 18.5, -4.1, -4.5. HRMS (ESI⁺): calc. for C₂₉H₄₂O₆SSiNa⁺ [M+Na]⁺: 569.2364, found: 569.2364.

2-Isopropylmercaptobenzyl 2-*O*-benzoyl-**3**-*O*-tert-butyldimethylsilyl-4,6-*O*-benzylidene-β-D-galactopyranoside (S20)

To a stirred soltuion of compound **S19** (848 mg, 1.55 mmol, 1.0 equiv) in CH₂Cl₂/pyridine (1:1, v:v, 7.8 mL) was added benzoyl chloride (0.9 mL, 7.75 mmol, 5.0 equiv) at 0 °C. The mixture was warmed up to 80 °C, stirred overnight and extracted with EtOAc, washed with 1 M HCl, saturated NaHCO₃ and brine,

dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography on silica gel to give **S20** (962 mg, yield 96%) as yellow solid, $R_f = 0.20$ (petroleum ether-EtOAc 6:1). m.p. 109.6-110.5 °C. [α]_D ²⁰ +26.7 (*c*, 1.73 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 0.8, 8.0 Hz, 2H, Ar-H), 7.58-7.51 (m, 3H, Ar-H), 7.42-7.30 (m, 7H, Ar-H), 7.11 (dt, J = 0.8, 7.6 Hz, 1H, Ar-H), 6.96 (dt, J = 0.8, 7.2 Hz, 1H, Ar-H), 5.59 (dd, J = 8.4, 9.2 Hz, 1H, H-2), 5.55 (s, 1H, PhCH), 4.97 (d, J = 13.6 Hz, 1H, PhCH₂), 4.92 (d, J = 13.6 Hz, 1H, PhCH₂), 4.60 (d, J = 8.0 Hz, 1H, H-1), 4.42 (dd, J = 0.8, 12.4 Hz, 1H, H-6a), 4.11 (d, J = 12.4 Hz, 1H, H-6b), 4.09 (d, J = 3.6 Hz, 1H, H-4), 3.98 (dd, J = 3.6, 9.6 Hz, 1H, H-3), 3.47 (s, 1H, H-5), 3.24-3.14 (m, J = 6.8 Hz, 1H, SCH), 1.14 (d, J = 6.4 Hz, 6H, CH₃ × 2), 0.74 (s, 9H, C(CH₃)₃), 0.02 (s, 3H, CH₃), -0.14 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 139.4, 138.0, 134.0, 132.9, 132.6, 130.7, 130.4, 130.0, 129.0, 128.7, 128.5, 128.4, 128.3, 127.8, 127.2, 126.5, 101.1, 100.3 (C-1), 76.8, 72.6, 72.4, 69.3, 68.2, 67.0, 38.7, 25.6, 23.3, 23.2, 18.1, -4.4, -4.5. HRMS (ESI⁺): calc. for C₃₆H₄₆O₇SSiNa⁺ [M+Na]⁺: 673.2626, found: 673.2625.

2-Isopropylmercaptobenzyl 2-O-benzoyl-3-O-tert-butyl
dimethylsilyl-4-O-benzyl- β -D-galactopyranoside (S21)

To a stirred suspention of **S20** (914.6 mg, 1.41 mmol, 1.0 equiv) and 4Å MS (100 wt%) in CH₂Cl₂ (14.0 mL) was added BH₃ THF (7.0 mL, 1 M in THF, 7.03 mmol, 5.0 equiv) and TMSOTf (0.13 mL, 0.70 mmol, 0.5 equiv) at 0 °C. The mixture was stirred at room temperature for 3 h and quenched by addition of Et₃N (0.2

mL). The reaction mixture was extracted with EtOAc, washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* to afford **S21** (871 mg, yield 95%) as white foam, R_f = 0.39 (petroleum ether-EtOAc 3:1). [α]_D ²⁰ –6.5 (*c*, 1.92 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 1.6, 8.4 Hz, 2H, Ar-H), 7.54 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.43-7.27 (m, 9H, Ar-H), 7.12 (dt, *J* = 1.2, 7.6 Hz, 1H, Ar-H),

6.95 (dt, J = 1.2, 7.6 Hz, 1H, Ar-H), 5.66 (dd, J = 8.0, 9.6 Hz, 1H, H-2), 5.08 (d, J = 11.6 Hz, 1H, PhCH₂), 4.92 (d, J = 13.6 Hz, 1H, PhCH₂), 4.88 (d, J = 13.6 Hz, 1H, PhCH₂), 4.60 (d, J = 11.6 Hz, 1H, PhCH₂), 4.52 (d, J = 8.0 Hz, 1H, H-1), 3.91 (dd, J = 2.4, 9.6 Hz, 1H, H-3), 3.86 (dd, J = 6.8, 10.8 Hz, 1H, H-6a), 3.72 (d, J = 2.4 Hz, 1H, H-4), 3.61-3.51 (m, 2H, H-5, H-6b), 3.24-3.14 (m, J = 6.8 Hz, 1H, SCH), 1.65 (s, 1H, OH), 1.15 (d, J = 6.8 Hz, 6H, CH₃ ×2), 0.78 (s, 9H, C(CH₃)₃), 0.09 (s, 3H, CH₃), -0.11 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 139.0, 138.6, 134.2, 133.0, 132.4, 130.6, 130.1, 128.7, 128.7, 128.5, 128.4, 128.1, 127.9, 127.1, 100.4 (C-1), 76.6, 75.1, 75.0, 74.7, 73.0, 68.2, 62.3, 38.7, 25.8, 23.2, 23.1, 18.0, -3.9, -4.8. HRMS (ESI⁺): calc. for C₃₆H₄₈O₇SSiNa⁺ [M+Na]⁺: 675.2782, found: 675.2780.

2-Isopropylmercaptobenzyl 2-*O*-benzoyl-3-*O*-levulinyl-4-*O*-benzyl-6-*O*-acetyl-β-D-galactopyranoside (S22)

To a stirred solution of **S21** (500 mg, 0.77 mmol, 1.0 equiv) and DMAP (18.7 mg, 0.15 mmol, 0.2 equiv) in anhydrous CH₂Cl₂ (3.0 mL) were successively added Et₃N (0.2 mL, 1.53 mmol, 2.0 equiv) and acetic anhydride (75.2 μ L, 1.53 mmol, 2.0 equiv) at 0 °C. The mixture was warmed up to room temperature, stirred

for 0.5 h and extracted with EtOAc, washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo to give crude product. To a stirred solution of the above crude product in MeCN (3.0 mL) was added BF₃ Et₂O (0.12 mL, 0.92 mmol, 1.2 equiv) at 0 $\,$ °C. The mixture was stirred at 0 $\,$ °C for 0.5 h, quenched by addition of saturated NaHCO₃ (0.5 mL) and extracted with EtOAc, washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo to give crude product. To a stirred solution of the above crude product, DCC (316 mg, 1.53 mmol, 2.0 equiv) and DMAP (46.8 mg, 0.38 mmol, 0.5 equiv) in CH₂Cl₂ (3.0 mL) were successively added Et₃N (0.2 mL, 1.53 mmol, 2.0 equiv) and levulinic acid (0.16 mL, 1.53 mmol, 2.0 equiv) at 0 $^{\circ}$ C. The resulting mixture was warmed up to room temperature, stirred overnight and filtered through Celite and washed with CH₂Cl₂. The organic phase was concentrated in vacuo and purified by flash column chromatography on silica gel to give S22 (353 mg, 68% yield for three steps) as white solid, $R_f = 0.25$ (petroleum ether-EtOAc 3:1). m.p. 105.2-106.4 °C. $[\alpha]_D^{20}$ -6.5 (c, 1.92 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 1H, Ar-H), 7.55 (t, J = 7.2 Hz, 1H, Ar-H), 7.43-7.26 (m, 9H, Ar-H), 7.13 (t, J = 7.6 Hz, 1H, Ar-H), 6.98 (t, J = 7.6 Hz, 1H, Ar-H), 5.71 (dd, J = 8.0, 10.4 Hz, 1H, H-2), 5.13 (dd, J = 2.8, 10.4 Hz, 1H, H-3), 4.93 (d, J = 13.2 Hz, 1H, PhCH₂), 4.87 (d, J = 13.2 Hz, 1H, PhCH₂), 4.85 (d, J = 11.6 Hz, 1H, PhCH₂), 4.61 (d, J = 10.8 Hz, 1H, PhCH₂), 4.60 (d, J = 8.4 Hz, 1H, H-1), 4.32 (dd, J = 6.4, 11.2 Hz, 1H, H-6a), 4.08 (dd, J = 6.8, 11.2 Hz, 1H, H-6b), 3.96 (d, J = 2.8 Hz, 1H, H-4), 3.74 (t, J = 6.4 Hz, 1H, H-5), 3.23-3.13 (m, J = 6.8 Hz, 1H, SCH), 2.67-2.57 (m, 1H), 2.54-2.49 (m, 1H), 2.48-2.43 (m, 1H), 2.36-2.27 (m, 1H), 2.00 (s, 3H), 1.99 (s, 3H), 1.12 (d, J = 6.8 Hz, 3H, CH₃), 1.12 (d, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 206.2, 172.4, 170.6, 165.4, 138.6, 137.8, 134.4, 133.3, 132.4, 130.1, 129.9, 128.7, 128.6, 128.5, 128.5, 128.1, 128.0, 127.0, 100.1 (C-1), 75.1, 74.3, 73.7,

72.3, 70.3, 68.6, 62.4, 38.6, 37.8, 29.7, 28.1, 23.2, 23.1, 21.0. HRMS (ESI⁺): calc. for $C_{37}H_{42}O_{10}SNa^+$ [M+Na]⁺: 701.2391, found: 701.2391.

2-Isopropylsulfinylbenzyl 2-O-benzoyl-3-O-levulinyl-4-O-benzyl-6-O-acetyl- β -D-galactopyranoside (18b)

To a stirred solution of **S22** (333 mg, 0.49 mmol, 1.0 equiv) in MeCN/H₂O (9:1, v:v, 6.0 mL) was added PIFA (232 mg, 0.54 mmol, 1.1 equiv), the mixture was stirred for 1 h and extracted with EtOAc, washed with saturated Na₂S₂O₃, saturated NaHCO₃

and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by flash column chromatography on silica gel to give 18b (290 mg, yield 85%) as colorless syrup, $R_f = 0.3$ (petroleum ether-EtOAc 1:1). A mixture of sulfoxide R/S (1.4:1) isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2.8H, Ar-H), 7.91-7.89 (m, 2H, Ar-H), 7.80 (d, J = 8.0 Hz, 1H, Ar-H), 7.76 (d, J = 7.6 Hz, 1.4H, Ar-H), 7.59-7.54 (m, 2.4H, Ar-H), 7.46-7.20 (m, 24H, Ar-H), 5.70-5.63 (m, 2.4H), 5.17 (dd, *J* = 2.8, 10.4 Hz, 1.4H), 5.11 (dd, *J* = 2.8, 10.4 Hz, 1H), 4.92-4.83 (m, 4.8H), 4.76-4.69 (m, 4H), 4.61-4.56 (m, 3.4H), 4.31 (dd, J = 6.4, 11.2 Hz, 1H), 4.24 (dd, J = 6.4, 11.2 Hz, 1.4H), 4.10 (dd, J = 6.4, 11.2 Hz, 1H), 4.04 (dd, J = 6.8, 11.2 Hz, 1.4H), 3.97 (t, J = 2.4 Hz, 2.4H), 3.76 (t, *J* = 6.8 Hz, 2.4H), 2.84-2.75 (m, 2.4H), 2.64-2.58 (m, 2.4H), 2.53-2.44 (m, 4.8H), 2.34-2.26 (m, 2.4H), 2.02-1.99 (m, 14.4H), 1.15 (d, J = 7.2 Hz, 3H), 1.06 (d, J = 7.2 Hz, 4.2H), 0.92 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 7.2 Hz, 4.2H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 172.4, 172.4, 170.7, 170.6, 165.3, 137.7, 137.7, 134.8, 134.3, 133.6, 133.6, 131.0, 130.8, 130.2, 130.0, 130.0, 129.7, 129.6, 129.6, 129.0, 128.9, 128.7, 128.7, 128.7, 128.6, 128.5, 128.2, 128.2, 125.3, 125.3, 100.8 (C-1), 99.6 (C-1), 75.2, 74.1, 73.7, 73.6, 72.7, 72.6, 70.1, 70.0, 66.8, 65.6, 62.5, 62.3, 53.9, 53.6, 37.8, 29.7, 28.1, 21.0, 17.3, 12.8, 12.6. HRMS (ESI⁺): calc. for C₃₇H₄₂O₁₁SNa⁺ [M+Na]⁺: 717.2340, found: 717.2321.

Synthesis of ST14 tetrasaccharide 22

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 3-*O*-benzyl-4-*O*-fluorenylmethoxycarbonyl-6-*O*-levulinyl-2-deoxy-2trichloroacetamino-β-D-glucopyranoside (19)

A solution of $17a^{[19]}$ (1.50 g, 1.93 mmol, 1.2 equiv), PTB^F-OH (1.45 g, 1.60 mmol, 1.0 equiv) and 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (16.0 mL) was stirred at -20 °C for 10 min, then *N*-iodosuccinimide (541.3 mg, 2.40 mmol, 1.5 equiv) and TfOH (28.4 µL, 0.32 mmol, 0.2 equiv) were added. The reaction mixture was stirred

at -20 °C for 1 h and quenched by addition of Et₃N (0.5 mL). The suspension was filtered through Celite and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **19** (2.45 g, yield 94%) as white solid, R_f = 0.33 (petroleum ether-EtOAc 3:1). m.p. 88.5-90.8 °C. [α]_D ²⁰ +9.6 (*c*, 0.51 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 3.2, 7.2 Hz, 2H, Ar-H), 7.58 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.54 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.46-7.35 (m, 4H, Ar-H), 7.32-7.14 (m, 9H, Ar-H), 6.96 (d, *J* = 7.6 Hz, 1H, NH), 5.03 (d, *J* = 12.0 Hz, 1H, PhCH₂), 5.01 (d, *J* = 7.6 Hz, 1H, **H-1**), 4.93 (t, *J* = 9.2 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.60 (d, *J* = 11.2 Hz, 1H, PhCH₂), 4.57 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.47 (dd, *J* = 6.8, 10.4 Hz, 1H), 4.36-4.22 (m, 4H), 4.17 (t, *J* = 7.2 Hz, 1H, H-2), 3.79-3.74 (m, 1H), 3.70 (t, *J* = 6.8 Hz, 4H), 3.67-3.57 (m, 5H), 3.34-3.28 (m, *J* = 5.6 Hz, 1H, SCH), 2.74-2.69 (m, 2H), 2.62-2.57 (m, 2H), 2.42-2.29 (m, 4H, C<u>H</u>₂C<u>H</u>₂C₆F₁₃), 2.13 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 172.6, 162.1, 154.4, 143.5, 143.2, 141.5, 141.5, 138.7, 137.4, 133.9, 132.7, 129.5, 128.9, 128.6, 128.2, 128.1, 128.1, 128.0, 127.9, 127.4, 125.3, 125.1,

120.3, 120.3, 98.5 (**C-1**), 92.5, 77.1, 75.3, 74.8, 71.9, 70.5, 70.4, 69.5, 63.3 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 62.7, 58.4, 48.6, 46.9, 38.0, 31.5 (t, J = 21.0 Hz, CH₂<u>CH</u>₂C₆F₁₃), 30.0, 28.1. HRMS (ESI⁺): calc. for C₆₁H₅₂Cl₃F₂₆NO₁₂SNa⁺ [M+Na]⁺: 1644.1753, found: 1644.1760.

$\label{eq:2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio] benzyl 3-O-benzyl-6-O-levulinyl-2-deoxy-2-trichloroacetamino-β-D-glucopyranoside (S23)$

To a stirred solution of **19** (1.1 g, 0.68 mmol) in CH₂Cl₂ (13.0 mL) was added Et₃N (1.3 mL). The resulting mixture was stirred at room temperature for 3 h and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **S23** (885 mg, yield 93%) as white solid. $R_f = 0.26$ (petroleum ether-EtOAc 2:1). m.p. 82.5-83.3 °C. [α]_D²⁰

-14.1 (*c*, 2.14 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H, Ar-H), 7.31-7.26 (m, 5H, Ar-H), 7.23-7.20 (m, 2H, Ar-H), 6.89 (d, J = 8.0 Hz, 1H, NH), 5.02 (d, J = 12.4 Hz, 1H, PhCH₂), 4.87 (d, J = 8.4 Hz, 1H, **H-1**), 4.80-4.73 (m, 3H), 4.61 (dd, J = 3.6, 12.0 Hz, 1H, H-6a), 4.24 (dd, J = 2.4, 12.0 Hz, 1H, H-6b), 3.94 (dd, J = 8.8, 10.0 Hz, 1H, H-2), 3.70 (t, J = 6.8 Hz, 4H), 3.66-3.57 (m, 6H), 3.49 (ddd, J = 2.4, 3.6, 9.6 Hz, 1H, H-5), 3.33-3.28 (m, J = 6.0 Hz, 1H, SCH), 3.03 (d, J = 4.0 Hz, 1H, OH), 2.79-2.75 (m, 2H), 2.62-3.58 (m, 2H), 2.41-2.29 (m, 4H, C**H**₂C**H**₂C₆F₁₃), 2.17 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 173.7, 162.0, 138.9, 138.1, 133.6, 132.5, 129.3, 128.8, 128.7, 128.3, 128.2, 127.9, 99.1 (**C-1**), 92.7, 79.5, 74.9, 74.2, 71.1, 70.3, 69.3, 63.3 (t, J = 4.0 Hz, **C**H₂CH₂C₆F₁₃), 30.0, 28.1. HRMS (ESI⁺): calc. for C₄₆H₄₂Cl₃F₂₆NO₁₀SNa⁺ [M+Na]⁺: 1422.1072, found: 1422.1090.

A solution of **18a** (220.3 mg, 0.30 mmol, 1.2 equiv) and DTBMP (76.9 mg, 0.37 mmol, 1.5 equiv) in CH₂Cl₂ (3.3 mL) in the presence of 4Å MS (100 wt%) was stirred for 15 min at -40 °C. After addition of Tf₂O (50.3 μ L, 0.30 mmol, 1.2 equiv), the solution was stirred at -40 °C for 3 min, and then **S23** (350 mg, 0.25 mmol, 1.0

equiv) in CH₂Cl₂ (1.7 mL) was added. The reaction mixture was stirred at -40 °C for 30 min, quenched by addition of Et₃N (0.2 mL) and extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **S24** (421 mg, yield 87%) as colorless syrup, $R_f = 0.47$ (petroleum ether-EtOAc 2:1). [α]_D ²⁰ -2.1 (*c*, 2.32 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H, Ar-H), 7.56 (t, *J* = 7.2 Hz,

1H, Ar-H), 7.45-7.38 (m, 3H, Ar-H), 7.36-7.25 (m, 10H, Ar-H), 7.22-7.11 (m, 13H, Ar-H), 6.99 (d, J = 8.4 Hz, 1H, NH), 5.64 (dd, J = 8.0, 10.0 Hz, 1H), 4.99 (d, J = 11.2 Hz, 1H, PhCH₂), 4.92 (d, J = 11.2 Hz, 1H, PhCH₂), 4.90 (d, J = 12.8 Hz, 1H, PhCH₂), 4.72 (d, J = 7.2 Hz, 1H, H-1), 4.64 (d, J = 7.6 Hz, 1H, H-1'), 4.63 (d, J = 12.0 Hz, 1H, PhCH₂), 4.62 (d, J = 10.8 Hz, 1H, PhCH₂), 4.56 (d, J = 11.6 Hz, 1H, PhCH₂), 4.54 (d, J = 11.6 Hz, 1H, PhCH₂), 4.50 (d, J = 12.8 Hz, 1H, PhCH₂), 4.34 (d, J = 11.6 Hz, 1H, PhCH₂), 4.29 (dd, J = 4.0, 11.6 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H, PhCH₂), 4.17 (dd, J = 3.6, 11.6 Hz, 1H), 4.00 (d, J = 2.4 Hz, 1H), 3.93-3.77 (m, 4H), 3.72 (dd, J = 6.0, 7.2 Hz, 1H), 3.68-3.63 (m, 4H), 3.61-3.54 (m, 4H), 3.53-3.47 (m, 2H), 3.37 (dd, J = 5.2, 9.2 Hz, 1H), 3.28-3.22 (m, J = 6.0 Hz, 1H, SCH), 2.77 (ddd, J = 4.4, 8.4, 18.0 Hz, 1H), 2.60-2.48 (m, 2H), 2.42-2.27 (m, 5H, CH₂CH₂C₆F₁₃), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) *b* 206.5, 172.6, 165.6, 162.0, 139.0, 138.9, 138.3, 138.1, 138.0, 133.4, 133.2, 132.5, 130.2, 129.9, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 101.2 (C-1'), 99.2 (C-1), 92.6, 80.0, 77.9, 76.3, 74.9, 74.5, 73.8, 73.7, 73.5, 73.2, 72.6, 72.1, 70.3, 69.1, 68.4, 63.2 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 56.4, 48.4, 38.0, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 30.0, 28.0. HRMS (ESI⁺): calc. for C₈₀H₇₄Cl₃F₂₆NO₁₆SNa⁺ [M+Na]⁺: 1958.3271, found: 1958.3266.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-*O*-benzoyl-3,4,6-tri-*O*-benzyl- β -D-galactopyranosyl-(1 \rightarrow 4)-3-*O*-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranoside (S25)

To a solution of **S24** (421 mg, 0.22 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (2.2 mL) was successively added AcOH (0.37 mL, 6.52 mmol, 30.0 equiv), pyridine (0.53 mL, 6.52 mmol, 30.0 equiv) and N₂H₄-H₂O (21.1 μ L, 0.44 mmol, 2.0 equiv) at 0 °C. The resulting mixture was

warmed up to room temperature, stirred for 1 h and extracted with EtOAc, washed with 1 M HCl, saturated NaHCO3 and brine, dried over anhydrous Na₂SO4, concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound S25 (371.7 mg, yield 93%) as white foam, $R_f = 0.32$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} = -0.2$ (c, 1.65 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (dd, J = 1.2, 7.8 Hz, 2H, Ar-H), 7.58 (tt, J = 1.2, 7.8 Hz, 1H, Ar-H), 7.44 (t, J = 7.8 Hz, 2H, Ar-H), 7.41-7.40 (m, 1H, Ar-H), 7.35-7.34 (m, 1H, Ar-H), 7.33-7.25 (m, 10H, Ar-H), 7.21-7.10 (m, 12H, Ar-H), 6.86 (d, J = 7.8 Hz, 1H, NH), 5.64 (dd, J = 7.8, 10.2 Hz, 1H), 4.99 (t, J = 12.0 Hz, 2H, PhCH₂), 4.92 (d, J = 12.0 Hz, 1H, PhCH₂), 4.79 (d, J = 7.8 Hz, 1H, H-1), 4.64 (d, J = 8.4 Hz, 1H, H-1'), 4.63 (d, J = 12.8 Hz, 1H, PhCH₂), 4.61 $(d, J = 12.4 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.58 (d, J = 10.8 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.54 (d, J = 11.4 \text{ Hz}, 10.8 \text{ H$ 1H, PhCH₂), 4.46 (d, J = 12.4 Hz, 1H, PhCH₂), 4.32 (d, J = 12.0 Hz, 1H, PhCH₂), 4.24 $(d, J = 11.4 Hz, 1H, PhCH_2), 4.01 (d, J = 2.4 Hz, 1H), 3.91-3.87 (m, 2H), 3.69-3.55$ (m, 14H), 3.51 (t, J = 9.0 Hz, 1H), 3.34 (dd, J = 4.8, 9.0 Hz, 1H), 3.31-3.27 (m, J = 6.0Hz, 1H, SCH), 3.26-3.24 (m, 1H, OH), 2.37-2.28 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta 165.4, 161.9, 139.0, 138.8, 138.3, 138.1, 137.8, 133.4, 133.3,$ 132.7, 130.0, 129.2, 128.7, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.9, 127.8, 127.6, 101.2 (**C-1**'), 99.4 (**C-1**), 92.7, 79.8, 78.0, 76.2, 75.9, 75.0, 74.9, 73.8, 73.7, 72.9, 72.6, 71.8, 70.3, 70.2, 69.4, 68.2, 63.3 (t, J = 4.0 Hz, **C**H₂CH₂C₆F₁₃), 61.1, 57.6, 48.3, 31.4 (t, J = 21.0 Hz, CH₂**C**H₂C₆F₁₃). HRMS (ESI⁺): calc. for C₇₅H₆₈Cl₃F₂₆NO₁₄SNa⁺ [M+Na]⁺: 1860.2903, found: 1860.2906.

 $\begin{array}{l} 2\mbox{-}[(1,3\mbox{-}Bis(3,3,4,4,5,5,6,6,7,7,8,8,8\mbox{-}tridecafluorooctyloxy)propan-2-yl)thio]benzyl \\ 2\mbox{-}O\mbox{-}benzyl\mbox{-}3,6\mbox{-}di\mbox{-}O\mbox{-}benzyl\mbox{-}4\mbox{-}O\mbox{-}glucopyranosyl\mbox{-}0\mbox{-}glucopyranosyl\mbox{-}3\mbox{-}O\mbox{-}benzyl\mbox{-}2\mbox{-}benzyl\mbox{-}\beta\mbox{-}D\mbox{-}glactopyranosyl\mbox{-}3\mbox{-}O\mbox{-}benzyl\mbox{-}2\mbox{-}deoxy\mbox{-}2\mbox{-}trichloroacetamino\mbox{-}\beta\mbox{-}D\mbox{-}glucopyranoside (S26) \\ \end{array}$

A solution of $17b^{[20]}$ (156.1 mg, 0.21 mmol, 1.5 equiv), S25 (262 mg, 0.14 mmol, 1.0 equiv) containing 4Å MS (100 wt%) in anhydrous CH₂Cl₂ (16.0 mL) was stirred at -20 °C for 10 min, then *N*-iodosuccinimide (64.1 mg, 0.28 mmol, 2.0 equiv) and TfOH (2.5 µL, 0.03 mmol, 0.2 equiv) were added. The reaction mixture was

stirred at -20 °C for 1 h and quenched by addition of Et₃N (0.2 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound S26 (303.7 mg, yield 85%) as colorless syrup, $R_f = 0.33$ (petroleum ether-EtOAc 4:1). $[\alpha]_D^{20} + 6.2$ (*c*, 2.20 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, J = 1.2, 7.8 Hz, 2H, Ar-H), 7.77-7.73 (m, 4H, Ar-H), 7.57 (dd, *J* = 0.6, 7.8 Hz, 1H, Ar-H), 7.55-7.52 (m, 2H, Ar-H), 7.43 (tt, *J* = 1.2, 7.2 Hz, 1H, Ar-H), 7.40-7.35 (m, 5H, Ar-H), 7.32-7.25 (m, 13H, Ar-H), 7.24-7.14 (m, 19H, Ar-H), 7.09-7.02 (m, 6H, Ar-H, NH), 5.11 (dd, J = 7.8, 10.2 Hz, 1H), 5.24 (dd, J = 7.8, 9.6 Hz, 1H), 4.99 (t, J = 9.6 Hz, 1H), 4.92 (d, J = 11.4 Hz, 1H, PhCH₂), 4.70 (d, J = 12.6 Hz, 1H, PhCH₂), 4.68 (d, J = 11.4 Hz, 1H, PhCH₂), 4.62 (d, J = 12.6 Hz, 1H, PhCH₂), 4.57 (d, *J* = 11.4 Hz, 1H, PhCH₂), 4.56 (d, *J* = 11.4 Hz, 1H, PhCH₂), 4.54 (d, J = 11.4 Hz, 1H, PhCH₂), 4.51 (d, J = 11.4 Hz, 1H, PhCH₂), 4.50 (d, J = 7.8 Hz, 1H, **H-1''**), 4.48 (d, J = 12.6 Hz, 1H, PhCH₂), 4.42 (d, J = 6.6 Hz, 1H, **H-1**), 4.41 (d, J =12.6 Hz, 1H, PhCH₂), 4.40 (d, J = 12.0 Hz, 1H, PhCH₂), 4.37 (d, J = 7.8 Hz, 1H, H-1'), 4.35-4.32 (m, 3H), 4.30 (dd, J = 7.8, 10.8 Hz, 1H), 4.24 (d, J = 13.2 Hz, 1H, PhCH₂), 4.12 (t, J = 7.2 Hz, 1H), 4.01 (d, J = 2.4 Hz, 1H), 3.97-3.92 (m, 3H), 3.78 (t, J = 9.6Hz, 1H), 3.71-3.68 (m, 2H), 3.67-3.50 (m, 14H), 3.46 (q, J = 6.0 Hz, 1H), 3.41 (dd, J = 4.8, 9.0 Hz, 1H), 3.27-3.24 (m, 1H, SCH), 2.36-2.25 (m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 165.0, 162.0, 154.4, 143.5, 143.3, 141.5, 141.5, 139.5, 138.8, 138.4, 138.2, 138.1, 138.1, 137.6, 133.5, 133.4, 132.8, 132.4, 130.0, 130.0, 129.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.8, 127.8, 127.7, 127.7, 127.6, 127.5, 127.4, 125.3, 125.2, 120.3, 101.4 (C-1'), 100.4 (C-1''), 99.8 (C-1), 92.7, 80.2, 79.6, 78.6, 75.9, 75.8, 74.9, 74.9, 74.2, 73.6, 73.6, 73.4, 73.1, 73.0, 72.8, 72.1, 70.3, 70.2, 70.2, 69.8, 69.0, 68.9, 68.1, 63.1 (t, J = 4.0 Hz, <u>CH</u>₂CH₂C₆F₁₃), 55.3, 48.3, 46.9, 31.4 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃). HRMS (ESI⁺): calc. for $C_{117}H_{104}Cl_3F_{26}NO_{22}SNa^+$ [M+Na]⁺: 2528.5313, found: 2528.5314.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-O-benzoyl-3,6-di-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β -D-galactopyranosyl)-3-O-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranoside (S27)

To a stirred solution of **S26** (303.7 mg, 0.12 mmol) in CH₂Cl₂ (2.4 mL) was added Et₃N (0.24 mL). The resulting mixture was stirred at room temperature for 3 h and concentrated *in vacuo*. Then, the crude product was purified by the General Procedure A to give compound **S27** (237 mg, yield 86%) as white foam, $R_f = 0.32$

(petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} + 0.3$ (c, 3.37 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 2H, Ar-H), 7.75 (d, J = 7.2 Hz, 2H, Ar-H), 7.54 (t, J = 7.6 Hz, 1H, Ar-H), 7.45-7.13 (m, 40H, Ar-H, NH), 5.51 (dd, J = 8.0, 10.0 Hz, 1H), 5.18 (dd, J = 7.6, 9.2 Hz, 1H), 4.93 (d, J = 11.2 Hz, 1H, PhCH₂), 4.73-4.61 (m, 6H), 4.58 (d, J = 11.2 Hz, 1H, PhCH₂), 4.58 (m, 6H), 10.4 Hz, 1H, PhCH₂), 4.54 (d, J = 1.2 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H, H-1"), 4.50 (d, J = 12.0 Hz, 1H, PhCH₂), 4.43 (d, J = 12.4 Hz, 1H, PhCH₂), 4.43 (d, J = 7.8 Hz, 1H, **H-1**), 4.41 (d, J = 9.0 Hz, 1H, **H-1'**), 4.40 (d, J = 10.8 Hz, 1H, PhCH₂), 4.33 (d, J =11.6 Hz, 1H, PhCH₂), 4.16 (d, J = 13.2 Hz, 1H, PhCH₂), 4.00-3.97 (m, 3H), 3.93 (dd, J = 6.8, 10.0 Hz, 1H), 3.80 (dd, J = 1.6, 10.0 Hz, 1H), 3.77-3.51 (m, 16H), 3.47-3.37 (m, 3H), 3.27-3.22 (m, J = 6.0 Hz, 1H, SCH), 2.91 (d, J = 2.0 Hz, 1H, OH), 2.39-2.23(m, 4H, CH₂CH₂C₆F₁₃). ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 165.3, 162.1, 139.6, 138.8, 138.4, 138.2, 138.2, 138.1, 137.8, 133.4, 133.4, 132.7, 132.6, 130.1, 129.9, 129.8, 128.7, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 127.9, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 101.4 (C-1'), 100.3 (C-1''), 99.9 (C-1), 92.7, 82.1, 80.2, 78.5, 76.1, 74.9, 74.6, 73.9, 73.8, 73.7, 73.6, 73.4, 73.1, 72.9, 72.8, 72.2, 70.9, 70.3, 70.2, 69.0, 68.6, 68.3, 63.1 (brs, <u>CH</u>₂CH₂C₆F₁₃), 55.1, 48.4, 31.4 (t, J = 21.0Hz, $CH_2CH_2C_6F_{13}$). HRMS (ESI⁺): calc. for $C_{102}H_{94}Cl_3F_{26}NO_{20}SNa^+$ [M+Na]⁺: 2306.4633, found: 2306.4682.

 $\begin{array}{l} 2\mbox{-}[(1,3\mbox{-}Bis(3,3,4,4,5,5,6,6,7,7,8,8,8\mbox{-}tridecafluorooctyloxy)propan-2-yl)thio]benzyl 2-O-benzoyl-3-O-levulinyl-4-O-benzyl-6-O-acetyl-β-D-galactopyranosyl-(1$-$4])-2-O-benzoyl-3,6\mbox{-}di-O-benzyl-β-D-glucopyranosyl-(1$-$6])-4-O-(2-O-benzoyl-3,4,6\mbox{-}tri-O-benzyl-β-D-galactopyranosyl)-3-O-benzyl-2-deoxy-2-trichloroacetamino-β-D-glucopyranoside (20)} \\ \end{array}$

A solution of **18b** (79.0 mg, 0.114 mmol, 2.5 equiv) and DTBMP (23.4 mg, 0.114 mmol, 2.5 equiv) in anhydrous CH₂Cl₂ (1.1 mL) in the presence of 4Å MS (100 wt%) was stirred for 15 min at -40 °C. After addition of Tf₂O (19.1 μ L, 0.114 mmol, 2.5 equiv), the solution was stirred at -40 °C

for 3 min, and then **S27** (104 mg, 0.046 mmol, 1.0 equiv) in CH₂Cl₂ (0.4 mL) was added.

The reaction mixture was stirred at -40 °C for 1 h, quenched by addition of Et₃N (0.2 mL). The suspension was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 20 (162 mg, yield 92%) as white foam, $R_f = 0.23$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} = -0.2$ (c, 1.20) in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz, 4H, Ar-H), 7.67-7.65 (m, 2H, Ar-H), 7.56 (t, J = 7.8 Hz, 1H, Ar-H), 7.50 (t, J = 7.8 Hz, 1H, Ar-H), 7.43 (t, J = 7.8 Hz, 2H, Ar-H), 7.39-7.25 (m, 23H, Ar-H), 7.23-7.05 (m, 20H, Ar-H), 7.00 (t, J = 7.8 Hz, 2H, Ar-H, NH), 5.62 (dd, J = 7.8, 10.2 Hz, 1H), 5.45 (dd, J = 7.8, 10.2 Hz, 1H), 5.14 (dd, J = 7.8, 9.6 Hz, 1H), 5.00 (dd, J = 3.0, 10.8 Hz, 1H), 4.88 (t, J = 11.4 Hz, 2H, PhCH₂), 4.82 (d, J = 12.0 Hz, 1H, PhCH₂), 4.67 (d, J = 7.8 Hz, 1H, H-1"), 4.66 (d, J= 12.4 Hz, 1H, PhCH₂), 4.62 (d, J = 12.0 Hz, 1H, PhCH₂), 4.60 (d, J = 12.6 Hz, 1H, PhCH₂), 4.59 (d, J = 11.4 Hz, 1H, PhCH₂), 4.55 (d, J = 12.0 Hz, 2H, PhCH₂), 4.53 (d, J = 12.6 Hz, 1H, PhCH₂), 4.52 (d, J = 11.4 Hz, 1H, PhCH₂), 4.46 (d, J = 12.0 Hz, 1H, PhCH₂), 4.41 (d, J = 8.4 Hz, 1H, **H-1**), 4.41 (d, J = 6.0 Hz, 1H, **H-1**^{'''}), 4.38 (d, J =11.4 Hz, 1H, PhCH₂), 4.29 (d, J = 12.0 Hz, 1H, PhCH₂), 4.19 (d, J = 14.4 Hz, 1H, PhCH₂), 4.17 (d, J = 12.6 Hz, 1H, PhCH₂), 4.14 (d, J = 7.8 Hz, 1H, H-1'), 4.07 (t, J = 9.6 Hz, 1H), 4.01-3.98 (m, 2H), 3.96-3.86 (m, 5H), 3.67-3.47 (m, 16H), 3.41 (dd, J = 6.0, 10.8 Hz, 1H), 3.38 (dd, J = 1.2, 10.8 Hz, 1H), 3.35 (dd, J = 5.4, 9.0 Hz, 1H), 3.24-3.20 (m, 1H, SCH), 3.00 (ddd, J = 1.8, 3.0, 9.6 Hz, 1H), 2.62 (ddd, J = 4.8, 8.4, 18.6 Hz, 1H), 2.53-2.45 (m, 2H), 2.35-2.23 (m, 5H, CH2CH2C6F13), 2.00 (s, 3H), 1.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.1, 172.3, 170.4, 165.7, 165.3, 165.1, 162.0, 139.5, 138.8, 138.6, 138.4, 138.2, 138.2, 138.1, 138.1, 133.7, 133.4, 133.3, 132.8, 132.5, 130.3, 129.9, 129.9, 129.7, 129.5, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 127.8, 127.8, 127.7, 127.6, 127.4, 127.4, 101.4 (C-1'), 100.5 (C-1", C-1"'), 99.8 (C-1), 92.7, 80.3, 80.1, 78.4, 76.4, 76.0, 75.2, 74.9, 74.8, 74.7, 74.7, 74.2, 74.0, 73.6, 73.6, 73.6, 73.2, 73.0, 72.9, 72.2, 72.2, 70.8, 70.2, 70.2, 69.0, 68.7, 68.0, 67.9, 63.1 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 62.0, 55.2, 48.3, 37.9, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 29.7, 28.2, 20.9. HRMS (ESI⁺): calc. for C₁₂₉H₁₂₂Cl₃F₂₆NO₂₉SNa⁺ [M+Na]⁺: 2802.6366, found: 2802.6369.

To a stirred solution of **20** (130 mg, 0.047 mmol, 1.0 equiv) in MeCN/H₂O (9:1, v:v, 0.93 mL) was added PIFA (22.1 mg, 0.051 mmol, 1.1 equiv), the mixture was stirred at room temperature for 20 min. The reaction mixture was extracted with EtOAc, washed with saturated Na₂S₂O₃, saturated NaHCO₃

and brine, dried over anhydrous Na_2SO_4 , concentrated *in vacuo* and purified by flash column chromatography on silica gel to give compound **21** (110 mg, yield 84%) as

white foam, $R_f = 0.59$ (petroleum ether-EtOAc 1:1). A mixture of sulfoxide R/S (1:1) isomers. ¹H NMR (600 MHz, CDCl₃) δ 7.96-7.92 (m, 8H, Ar-H), 7.85 (dd, J = 1.2, 7.8 Hz, 1H, Ar-H), 7.79 (dd, J = 0.6, 7.8 Hz, 1H, Ar-H), 7.76 (dd, J = 1.2, 7.8 Hz, 2H, Ar-H), 7.69 (dd, J = 1.2, 8.4 Hz, 2H, Ar-H), 7.57 (tt, J = 1.2, 7.8 Hz, 1H, Ar-H), 7.54-7.49 (m, 3H, Ar-H), 7.46-7.40 (m, 8H, Ar-H), 7.38-7.25 (m, 40H, Ar-H), 7.23-7.06 (m, 39H, Ar-H), 7.02-6.99 (m, 4H, Ar-H), 6.93 (d, J = 9.0 Hz, 1H, NH), 5.65 (dd, J = 7.8, 10.8 Hz, 1H), 5.64 (dd, J = 7.8, 10.2 Hz, 1H), 5.48 (dd, J = 7.8, 10.2 Hz, 1H), 5.47 (dd, J = 7.8, 10.2 Hz, 1H), 5.12 (dd, J = 7.8, 9.6 Hz, 1H), 5.10 (dd, J = 7.8, 9.6 Hz, 1H), 5.04 (dd, J = 3.0, 10.2 Hz, 1H), 5.01 (dd, J = 3.0, 10.8 Hz, 1H), 4.92-4.87 (m, 4H), 4.84 (d, J = 3.0, 10.8 Hz, 10.8 Hz)J = 12.0 Hz, 1H, PhCH₂), 4.83 (d, J = 11.4 Hz, 1H, PhCH₂), 4.67 (d, J = 7.8 Hz, 2H, **H-1''**, **H-1''**), 4.63-4.41 (m, 19H, **H-1**), 4.38-4.35 (m, 4H, **H-1'''**, **H-1'''**), 4.28 (d, J =11.4 Hz, 2H, PhCH₂), 4.25 (d, J = 7.2 Hz, 1H, H-1), 4.23 (d, J = 12.0 Hz, 1H, PhCH₂), 4.17 (d, J = 12.0 Hz, 1H, PhCH₂), 4.07-3.94 (m, 12H, H-1', H-1'), 3.91 (dd, J = 2.4, 9.0 Hz, 2H), 3.87-3.80 (m, 6H), 3.70-3.42 (m, 33H), 3.40-3.31 (m, 5H), 3.17-3.13 (m, *J* = 6.0 Hz, 1H, SCH), 3.08-3.05 (m, *J* = 6.0 Hz, 1H, SCH), 2.95-2.91 (m, 2H), 2.66-2.60 (m, 2H), 2.54-2.46 (m, 4H), 2.35-2.30 (m, 2H), 2.28-2.08 (m, 8H, CH₂CH₂C₆F₁₃), 2.01 (s, 6H), 1.93 (s, 3H), 1.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.1, 172.3, 170.4, 170.3, 165.6, 165.6, 165.3, 165.3, 165.1, 165.0, 162.1, 162.0, 140.7, 140.7, 138.8, 138.7, 138.5, 138.2, 138.2, 138.1, 138.1, 138.1, 138.0, 138.0, 135.6, 135.5, 133.7, 133.7, 133.6, 133.3, 131.3, 131.3, 130.3, 130.2, 130.2, 130.0, 129.9, 129.9, 129.8, 129.8, 129.8, 129.5, 128.9, 128.8, 128.6, 128.6, 128.6, 128.4, 128.3, 128.3, 128.2, 128 128.1, 128.1, 128.0, 128.0, 128.0, 127.9, 127.7, 127.7, 127.6, 127.5, 127.5, 127.4, 125.2, 124.9, 101.7 (C-1'), 101.5 (C-1'), 100.6 (C-1''), 100.6 (C-1''), 100.5 (C-1'''), 100.2 (C-1^{'''}), 99.9 (C-1), 99.8 (C-1), 92.6, 92.6, 80.2, 80.2, 80.0, 79.9, 78.9, 78.2, 77.0, 76.7, 76.4, 75.9, 75.8, 75.2, 74.9, 74.9, 74.8, 74.7, 74.6, 74.5, 74.2, 74.1, 74.0, 74.0, 73.6, 73.5, 73.5, 73.5, 73.3, 73.1, 73.0, 72.9, 72.9, 72.7, 72.7, 72.2, 72.2, 72.1, 72.1, 70.8, 70.8, 69.2, 69.0, 68.1, 68.0, 67.2, 66.7, 66.6, 66.5, 64.3, 63.8, 63.3 (brs, <u>CH</u>₂CH₂C₆F₁₃), 63.0 (brs, $CH_2CH_2C_6F_{13}$), 62.0, 61.9, 55.2, 54.8, 37.9, 31.2 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 29.7, 28.1, 20.9. HRMS (ESI⁺): calc. for C₁₂₉H₁₂₂Cl₃F₂₆NO₃₀SNa⁺ [M+Na]⁺: 2818.6315, found: 2818.6366.

2-Azidoethyl 2-O-benzoyl-3-O-levulinyl-4-O-benzyl-6-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2-O-benzoyl-3,6-di-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β -D-galactopyranosyl)-3-O-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranoside (22)

A solution of glycosyl donor **21** (30 mg, 0.011 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (0.36 mL) in the presence of 4Å MS (100 wt%) was stirred at $-40 \ \C$ for 20 min. Tf₂O (3.6 µL, 0.021 mmol, 2.0 equiv) and 2-azidoethanol (40.6 µL, 0.536 mmol, 50.0 equiv) were successively added. The resulting mixture was stirred at $-40 \ \C$ for 1 h and quenched by addition of H₂O (0.5 mL). The mixture was

filtered through Celite and extracted with EtOAc, washed with brine, dried over

anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography on silica gel to give compound 22 (17.3 mg, yield 82%) as colorless syrup, $R_f = 0.31$ (petroleum ether-EtOAc 3:2). $[\alpha]_D^{20} + 3.6$ (c, 1.70 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.96-7.92 (m, 4H, Ar-H), 7.78 (d, J = 7.8 Hz, 2H, Ar-H), 7.58 (t, J = 7.8 Hz, 1H, Ar-H), 7.53 (t, J = 7.2 Hz, 1H, Ar-H), 7.46-7.43 (m, 3H, Ar-H), 7.37-7.25 (m, 20H, Ar-H), 7.23-6.99 (m, 20H, Ar-H, NH), 5.63 (dd, J = 7.8, 10.2 Hz, 1H), 5.48 (dd, J = 7.8, 10.2 Hz, 1H), 5.11 (dd, J = 7.8, 9.0 Hz, 1H), 5.01 (dd, J = 3.0, 10.8 Hz, 1H), 5.91 (d, J = 11.4 Hz, 1H, PhCH₂), 4.87 (d, J = 11.4 Hz, 1H, PhCH₂), 4.82 (d, J = 11.4 Hz, 1H, PhCH₂), 4.68 (d, J = 10.8 Hz, 1H, PhCH₂), 4.67 (d, J = 8.4 Hz, 1H, H-1"), 4.60 $(d, J = 11.4 Hz, 1H, PhCH_2), 4.59 (d, J = 12.0 Hz, 1H, PhCH_2), 4.58-4.54 (m, 3H),$ 4.51 (d, J = 11.4 Hz, 1H, PhCH₂), 4.43 (d, J = 12.0 Hz, 1H, PhCH₂), 4.42 (d, J = 7.8 Hz, 1H, H-1'''), 4.40 (d, J = 6.6 Hz, 1H, H-1), 4.35 (d, J = 11.4 Hz, 1H, PhCH₂), 4.27 (d, J = 11.4 Hz, 1H, PhCH₂), 4.23 (d, J = 12.0 Hz, 1H, PhCH₂), 4.14 (d, J = 7.8 Hz, 1H, H-1'), 4.07 (t, J = 9.0 Hz, 1H), 4.00 (dd, J = 5.4, 10.8 Hz, 1H), 3.96 (d, J = 2.4 Hz, 1H), 3.94 (dd, J = 7.8, 10.8 Hz, 1H), 3.90 (d, J = 2.4 Hz, 1H), 3.82 (dd, J = 4.8, 9.6 Hz, 1H), 3.78 (t, J = 5.4 Hz, 1H), 3.72-3.68 (m, 2H), 3.61-3.53 (m, 5H), 3.50-3.41 (m, 5H), 3.32 (dd, J = 5.4, 9.0 Hz, 1H), 3.10-3.00 (m, 3H), 2.96-2.93 (m, 1H), 2.65-2.60 (m, 1H), 2.53-2.45 (m, 2H), 2.34-2.29 (m, 1H), 2.01 (s, 3H), 1.93 (s, 3H). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta 206.1, 172.3, 170.4, 165.6, 165.3, 165.1, 162.0, 138.7, 138.5,$ 138.4, 138.2, 138.0, 138.0, 133.7, 133.5, 133.3, 130.3, 129.9, 129.9, 129.9, 129.8, 129.5, 128.9, 128.8, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 101.5 (C-1'), 100.5 (C-1''), 100.5 (C-1""), 99.7 (C-1), 92.6, 80.3, 80.1, 78.2, 76.4, 75.6, 75.5, 75.2, 74.9, 74.7, 74.6, 74.2, 73.9, 73.6, 73.6, 73.5, 73.5, 73.3, 72.9, 72.7, 72.2, 72.0, 70.8, 68.9, 68.1, 68.0, 62.0, 55.8, 50.5, 37.9, 29.7, 28.1, 21.0. HRMS (ESI⁺): calc. for C₁₀₅H₁₀₇Cl₃N₄O₂₇Na⁺ [M+Na]⁺: 1983.6080, found: 1983.6060.

Synthesis of ST14 octasaccharide 25

 $\begin{array}{l} 2\text{-}[(1,3\text{-}Bis(3,3,4,4,5,5,6,6,7,7,8,8,8\text{-}tridecafluorooctyloxy)propan-2-yl)thio]benzyl \\ 2\text{-}O\text{-}benzoyl\text{-}4\text{-}O\text{-}benzyl\text{-}6\text{-}O\text{-}acetyl-\beta\text{-}D\text{-}galactopyranosyl-}(1\rightarrow 4)\text{-}2\text{-}O\text{-}benzoyl- \\ 3,6\text{-}di\text{-}O\text{-}benzyl\text{-}\beta\text{-}D\text{-}glucopyranosyl-}(1\rightarrow 6)\text{-}4\text{-}O\text{-}(2\text{-}O\text{-}benzoyl\text{-}3,4,6\text{-}tri\text{-}O\text{-}benzyl- \\ \beta\text{-}D\text{-}galactopyranosyl})\text{-}3\text{-}O\text{-}benzyl\text{-}2\text{-}deoxy\text{-}2\text{-}trichloroacetamino-}\beta\text{-}D\text{-}glucopyranoside} (828)\end{array}$

To a stirred solution of **20** (100 mg, 0.036 mmol, 1.0 equiv) in CH₂Cl₂ (0.72 mL) was successively added AcOH (61.7 μ L, 1.078 mmol, 30.0 equiv), pyridine (87.2 μ L, 1.078 mmol, 30.0 equiv) and N₂H₄-H₂O (3.5 μ L, 0.072 mmol, 2.0 equiv) at 0 °C. The resulting mixture was warmed up to room temperature,

stirred for 1 h and extracted with EtOAc, washed with 1 M HCl, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by flash column chromatography on silica gel to give compound S28 (86 mg, yield 89%) as white foam, $R_f = 0.35$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} - 2.2$ (*c*, 1.00 in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.96-7.92 (m, 4H, Ar-H), 7.67 (d, J = 7.2 Hz, 2H, Ar-H), 7.55 (t, J = 7.8 Hz, 1H, Ar-H), 7.50 (t, J = 7.8 Hz, 1H, Ar-H), 7.41 (t, J = 7.8 Hz, 2H, Ar-H), 7.38-7.25 (m, 24H, Ar-H), 7.20-7.08 (m, 18H, Ar-H), 7.07 (d, J = 7.2 Hz, 1H, Ar-H), 7.02 (t, J = 7.8 Hz, 2H, Ar-H, NH), 5.46 (dd, J = 7.8, 9.6 Hz, 1H), 5.25 (dd, J = 7.8, 10.2 Hz, 1H), 5.15 (dd, J = 7.8, 9.0 Hz, 1H), 4.88 (t, J = 11.4 Hz, 2H, PhCH₂), 4.74 (d, J = 12.0 Hz, 1H, PhCH₂), 4.70 (d, J = 11.4 Hz, 1H, PhCH₂), 4.68 (d, J = 13.2 Hz, 1H, PhCH₂), 4.65 (d, J = 12.0 Hz, 1H, PhCH₂), 4.63 (d, J = 7.8 Hz, 1H, H-1"), 4.60 (d, J = 12.6 Hz, 1H, PhCH₂), 4.59 (d, J = 10.8 Hz, 1H, PhCH₂), 4.58 (d, J = 12.6Hz, 1H, PhCH₂), 4.56 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.51 (d, *J* = 11.4 Hz, 1H, PhCH₂), 4.45 (d, J = 12.0 Hz, 1H, PhCH₂), 4.43 (d, J = 6.6 Hz, 1H, H-1), 4.43 (d, J = 8.4 Hz, 1H, H-1""), 4.38 (d, J = 12.0 Hz, 2H, PhCH₂), 4.29 (d, J = 11.4 Hz, 1H, PhCH₂), 4.24 $(d, J = 12.0 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.21 (d, J = 13.2 \text{ Hz}, 1\text{H}, \text{PhCH}_2), 4.17 (d, J = 7.8 \text{ Hz}, 10.1 \text{ Hz})$ 1H, **H-1'**), 4.11-4.08 (m, 2H), 4.00 (dd, J = 7.8, 10.8 Hz, 1H), 3.98 (d, J = 2.4 Hz, 1H), 3.93-3.86 (m, 3H), 3.80-3.77 (m, 2H), 3.69-3.48 (m, 17H), 3.42 (dd, J = 6.0, 10.8 Hz, 1H), 3.34 (dd, J = 4.8, 9.0 Hz, 1H), 3.24-3.20 (m, 1H, SCH), 3.06 (ddd, J = 2.4, 3.0, 10.2 Hz, 1H), 2.34-2.23 (m, 5H, CH2CH2C6F13, OH), 1.98 (s, 3H, OAc). ¹³C NMR (150 MHz, CDCl₃) δ 170.5, 166.7, 165.7, 165.1, 162.0, 139.5, 138.8, 138.6, 138.4, 138.3, 138.2, 138.1, 137.9, 133.7, 133.4, 133.3, 132.8, 132.5, 131.8, 130.2, 130.0, 129.9, 129.9, 129.8, 129.7, 128.8, 128.8, 128.8, 128.7, 128.7, 128.7, 128.7, 128.6, 128.5, 128.4, 128.3, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 127.4, 127.4, 101.4 (C-1'), 100.5 (C-1'''), 100.2 (C-1''), 99.8 (C-1), 92.7, 80.4, 80.2, 78.4, 76.7, 76.3, 76.0, 75.9, 75.0, 74.9, 74.8, 74.5, 74.5, 73.7, 73.6, 73.6, 73.4, 73.2, 73.0, 72.8, 72.3, 72.2, 70.2, 70.2, 69.1, 68.6, 68.1, 68.0, 67.0, 64.5, 63.7, 63.1 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 62.3, 55.3, 48.3, 31.4 (t, J = 21.0 Hz, CH₂CH₂C₆F₁₃), 21.0. HRMS (ESI⁺): calc. for C₁₂₄H₁₁₆Cl₃F₂₆NO₂₇SNa⁺ [M+Na]⁺: 2704.5998, found: 2704.5993.

2-[(1,3-Bis(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy)propan-2-yl)thio]benzyl [2-*O*-benzoyl-3-*O*-levulinyl-4-*O*-benzyl-6-*O*-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3,6-di-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl- β -D-galactopyranosyl)-3-*O*-benzyl-2-deoxy-2-trichloroacetamino]-(1 \rightarrow 3)-2-*O*-benzoyl-4-*O*-benzyl-6-*O*-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3,6-di-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl- β -D-galactopyranosyl)-3-*O*-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranosyl)-3-*O*-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranosyl-(2-3)

A solution of glycosyl donor 21 (62.6 mg, 0.022 mmol, 2.0 equiv), fluorous acceptor S28 (30 mg, 0.011 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (0.37 mL) in the presence of 4Å MS

(100 wt%) was stirred at -40 °C for 20 min. After addition of Tf₂O (3.8 µL, 0.022 mmol, 2.0 equiv), the solution was stirred at -40 °C for 3 h and quenched by addition of H₂O (0.5 mL). The mixture was filtered through Celite and concentrated in vacuo. Then, the crude product was purified by the General Procedure A to give compound 23 (43.6 mg, yield 85%) as white foam, $R_f = 0.23$ (petroleum ether-EtOAc 2:1). $[\alpha]_D^{20} + 2.4$ (c, 2.14) in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz, 2H, Ar-H), 7.93 (d, J = 5.4 Hz, 6H, Ar-H), 7.73 (brs, 2H, Ar-H), 7.66 (d, J = 7.2 Hz, 2H, Ar-H), 7.58 (t, J = 7.8 Hz, 1H, Ar-H), 7.53-7.26 (m, 35H, Ar-H), 7.23-6.99 (m, 55H, Ar-H), 6.94 (t, J = 7.2 Hz, 2H, Ar-H, NH), 6.83 (d, J = 8.4 Hz, 1H, NH), 5.62 (t, J = 9.6 Hz, 1H), 5.51 (t, J = 9.0 Hz, 1H), 5.44 (t, J = 9.0 Hz, 1H), 5.38 (t, J = 9.0 Hz, 1H), 5.14 (t, J = 9.0 Hz, 1H), 5.10 (t, J = 8.4 Hz, 1H), 4.99 (d, J = 10.8 Hz, 1H), 4.89-4.81 (m, 6H), 4.66-4.48 (m, 18H), 4.44-4.33 (m, 7H), 4.29-4.14 (m, 6H), 4.08-3.81 (m, 16H), 3.69 (d, J = 10.2Hz, 1H), 3.65-3.51 (m, 19H), 3.47-3.44 (m, 3H), 3.40-3.34 (m, 4H), 3.32-3.20 (m, 6H), 2.99 (d, J = 9.6 Hz, 1H), 2.93 (d, J = 9.6 Hz, 1H), 2.65-2.60 (m, 1H), 2.53-2.45 (m, 2H), 2.34-2.24 (m, 5H, CH₂CH₂C₆F₁₃), 2.01 (s, 3H), 1.91 (s, 3H), 1.80 (s, 3H). 13 C NMR (150 MHz, CDCl₃) δ 206.1, 172.3, 170.7, 170.4, 165.7, 165.6, 165.3, 165.2, 165.0, 165.0, 162.0, 139.6, 138.8, 138.8, 138.8, 138.7, 138.5, 138.5, 138.4, 138.3, 138.2, 138.1, 138.1, 138.1, 138.0, 138.0, 133.8, 133.7, 133.5, 133.5, 133.4, 133.2, 132.8, 132.6, 130.3, 130.2, 130.1, 130.0, 129.9, 129.9, 129.7, 129.5, 129.0, 128.9, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.1, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 127.6, 127.4, 127.4, 127.4, 127.3, 127.3, 127.2, 101.8, 101.4, 100.6, 100.5, 100.4, 99.8, 92.7, 92.1, 80.6, 80.2, 80.2, 80.1, 80.1, 78.5, 78.4, 76.8, 76.2, 76.0, 75.9, 75.9, 75.2, 74.9, 74.8, 74.8, 74.6, 74.5, 74.1, 73.9, 73.7, 73.7, 73.6, 73.5, 73.5, 73.1, 73.0, 73.0, 72.9, 72.9, 72.7, 72.3, 72.3, 72.2, 72.2, 72.1, 72.0, 70.8, 70.2, 70.2, 69.1, 68.6, 68.4, 68.0, 67.8, 67.8, 63.5, 63.1 (t, J = 4.0 Hz, CH₂CH₂C₆F₁₃), 62.0, 55.5, 55.2, 48.3, 37.9, 31.4 (t, *J* = 21.0 Hz, CH₂CH₂C₆F₁₃), 29.7,

28.1, 20.9. MALDI-TOF MS: calc. for C₂₂₇H₂₁₈Cl₆F₂₆N₂O₅₃SNa⁺ [M+Na]⁺: 4578.1754, found: 4578.8472.

To a stirred solution of 23 (50 mg, 0.011 mmol, 1.0 equiv) in MeCN/H₂O (9:1, v:v, 0.4 mL) was added PIFA (5.2 mg, 0.012 mmol, 1.1 equiv), the mixture was stirred at room temperature for 10 min. The reaction mixture

was extracted with EtOAc, washed with saturated Na₂S₂O₃, saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give compound 24 (47.4 mg, yield 94%) as white foam, $R_f = 0.28$ (petroleum ether-EtOAc 3:2). A mixture of sulfoxide R/S (1:1) isomers. ¹H NMR (600 MHz, CDCl₃) δ 8.10-8.09 (m, 3H, Ar-H), 7.96-7.94 (m, 11H, Ar-H), 7.86 (d, J = 7.8 Hz, 1H, Ar-H), 7.81-7.73 (m, 9H, Ar-H), 7.60 (t, J = 7.2 Hz, 2H, Ar-H), 7.55-7.25 (m, 95H, Ar-H), 7.23-6.97 (m, 87H, Ar-H), 6.86 (brd, J = 7.2 Hz, 2H, NH), 5.67-5.64 (m, 2H), 5.58-5.55 (m, 2H), 5.52-5.48 (m, 2H), 5.43-5.40 (m, 2H), 5.19-5.15 (m, 2H), 5.12-5.07 (m, 2H), 5.03-5.01 (m, 2H), 4.95-4.85 (m, 12H), 4.69-4.25 (m, 56H), 4.20-4.08 (m, 8H), 4.01-3.90 (m, 24H), 3.84-3.29 (m, 70H), 3.19-3.17 (m, J = 5.4 Hz, 1H, SCH), 3.10-3.09 (m, J = 5.4 Hz, 1H, SCH), 3.01 (brs, 2H), 2.89 (brs, 1H), 2.84 (brs, 1H), 2.67-2.62 (m, 2H), 2.55-2.48 (m, 4H), 2.37-2.32 (m, 2H), 2.31-2.09 (m, 8H, CH2CH2C6F13), 2.02 (s, 6H), 1.94 (s, 3H), 1.93 (s, 3H), 1.83 (s, 3H), 1.82 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.1, 172.3, 170.6, 170.3, 165.7, 165.6, 165.5, 165.5, 165.2, 165.1, 165.0, 165.0, 162.0, 161.9, 161.9, 140.7, 140.6, 138.8, 138.8, 138.7, 138.7, 138.6, 138.4, 138.4, 138.3, 138.2, 138.1, 138.1, 138.0, 138.0, 137.9, 135.6, 135.5, 133.8, 133.7, 133.7, 133.6, 133.6, 133.5, 133.4, 133.2, 131.3, 130.4, 130.2, 130.0, 130.0, 130.0, 129.9, 129.8, 129.8, 129.7, 129.5, 128.9, 128.8, 128.8, 128.7, 128.6, 128.5, 128.5, 128.3, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.1, 128.1, 128.0, 128.0, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5, 127.5, 127.4, 127.4, 127.3, 125.2, 124.8, 101.7, 101.6, 101.5, 101.3, 100.8, 100.6, 100.6, 100.5, 100.4, 100.4, 99.8, 92.6, 92.6, 92.0, 80.5, 80.1, 80.1, 80.1, 79.9, 79.8, 79.8, 79.0, 78.4, 78.1, 76.7, 76.5, 76.2, 76.0, 75.9, 75.5, 75.2, 74.9, 74.9, 74.8, 74.8, 74.7, 74.7, 74.6, 74.5, 74.1, 73.9, 73.7, 73.5, 73.5, 73.4, 73.3, 73.2, 73.2, 73.1, 73.0, 72.9, 72.8, 72.7, 72.7, 72.3, 72.2, 72.1, 72.0, 72.0, 70.8, 68.9, 68.4, 68.1, 67.9, 67.8, 67.3, 66.6, 66.6, 64.3, 64.3,

63.9, 63.4, 63.3 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 63.0 (t, J = 4.0 Hz, <u>C</u>H₂CH₂C₆F₁₃), 61.9, 55.6, 54.9, 37.8, 31.1 (t, J = 21.0 Hz, CH₂<u>C</u>H₂C₆F₁₃), 29.6, 28.1, 20.9. MALDI-TOF MS: calc. for C₂₂₇H₂₁₈Cl₆F₂₆N₂O₅₄SNa⁺ [M+Na]⁺: 4594.1703, found: 4594.8735.

2-Azidoethyl [2-O-benzoyl-3-O-levulinyl-4-O-benzyl-6-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2-O-benzoyl-3,6-di-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β -D-galactopyranosyl)-3-O-benzyl-2-deoxy-2-trichloroacetamino]-(1 \rightarrow 3)-2-O-benzoyl-4-O-benzyl-6-O-acetyl- β -Dgalactopyranosyl-(1 \rightarrow 4)-2-O-benzoyl-3,6-di-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 6)-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β -D-galactopyranosyl)-3-O-benzyl-2-deoxy-2-trichloroacetamino- β -D-glucopyranoside (25)

A solution of glycosyl donor **24** (26 mg, 0.006 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (0.19 mL) in the presence of 4Å MS (100 wt%) was stirred at -40 °C for 20 min. Tf₂O (1.9 µL, 0.011 mmol, 2.0 equiv) and 2-azidoethanol (21.5 µL, 0.284 mmol, 50.0 equiv) were

successively added. The resulting mixture was stirred at -40 °C for 1 h and guenched by addition of H₂O (0.5 mL). The mixture was filtered through Celite and extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography on silica gel to give compound 25 (16.1 mg, yield 76%) as white foam, $R_f = 0.25$ (petroleum ether-EtOAc 3:2). $[\alpha]_D^{20} + 4.0$ (c, 1.05) in CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H, Ar-H), 7.93-7.91 (m, 6H, Ar-H), 7.76-7.72 (m, 4H, Ar-H), 7.58 (t, J = 7.2 Hz, 1H, Ar-H), 7.53-7.48 (m, 3H, Ar-H), 7.45-7.40 (m, 5H, Ar-H), 7.36-7.26 (m, 28H, Ar-H), 7.23-6.98 (m, 49H, Ar-H), 6.95 (t, J = 7.2 Hz, 3H, Ar-H, NH), 6.82 (d, J = 9.0 Hz, 1H, NH), 5.62 (dd, J = 7.8, 10.2 Hz, 1H), 5.51 (dd, J = 8.4, 10.2 Hz, 1H), 5.47 (dd, J = 7.8, 10.2 Hz, 1H), 5.38 (dd, J = 7.8, 10.2 Hz, 1H), 5.13 (dd, J = 7.8, 9.6 Hz, 1H), 5.06 (dd, J = 7.8, 9.0 Hz, 1H), 4.99 (dd, J = 3.0, 10.8 Hz, 1H), 4.90 (d, J = 11.4 Hz, 1H, PhCH₂), 4.88-4.81 (m, 5H), 4.69 (d, J = 11.4 Hz, 1H, PhCH₂), 4.64 (d, J = 7.8 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H, PhCH₂), 4.59-4.52 (m, 8H), 4.50-4.47 (m, 6H), 4.41-4.35 (m, 5H), 4.32 (d, J = 8.4 Hz, 1H), 4.29 (d, J = 9.0 Hz, 1H), 4.27 (d, J = 12.0 Hz, 1H, PhCH₂), 4.22 (d, J = 11.4 Hz, 1H, PhCH₂), 4.22 (d, J = 12.0 Hz, 1H, PhCH₂), 4.15 (d, J = 12.0 Hz, 1H, PhCH₂), 4.13 (d, J = 7.8 Hz, 1H), 4.06 (t, J = 9.6 Hz, 1H), 4.01-3.94 (m, 5H), 3.92-3.87 (m, 7H),3.75 (dd, *J* = 3.6, 9.6 Hz, 1H), 3.71-3.58 (m, 8H), 3.56-3.39 (m, 13H), 3.35 (d, *J* = 10.2 Hz, 1H), 3.31-3.24 (m, 5H), 3.09-3.04 (m, 2H), 2.98 (brd, J = 9.6 Hz, 1H), 2.94-2.89(m, 2H), 2.65-2.60 (m, 1H), 2.53-2.45 (m, 2H), 2.34-2.29 (m, 1H), 2.00 (s, 3H), 1.91 (s, 3H), 1.81 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.1, 172.3, 170.7, 170.4, 165.7, 165.5, 165.3, 165.1, 165.0, 165.0, 162.0, 162.0, 138.8, 138.8, 138.7, 138.5, 138.4, 138.3, 138.2, 138.1, 138.1, 138.0, 138.0, 133.8, 133.7, 133.6, 133.4, 133.3, 130.3, 130.2, 130.1, 130.0, 129.9, 129.9, 129.8, 129.7, 129.5, 129.0, 128.9, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.3, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.1, 128.0, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.6, 127.4, 127.4, 127.3, 127.2, 101.8, 101.5, 101.4, 100.7, 100.6, 100.5, 100.4, 99.6, 92.6, 92.1, 80.6, 80.2, 80.1, 80.0, 78.5, 78.3, 76.8, 76.3, 76.0, 76.0, 75.9, 75.4, 75.2, 75.2, 74.9, 74.8, 74.8, 74.8, 74.6, 74.5, 74.1, 73.9, 73.7, 73.6, 73.5, 73.5, 73.5, 73.3, 73.0, 72.9, 72.9, 72.8, 72.7, 72.3, 72.3, 72.2, 72.0, 72.0, 70.8, 68.9, 68.5, 68.1, 68.0, 68.0, 67.8, 67.8, 63.5, 62.0, 56.1, 55.6, 50.5, 37.9, 29.7, 28.1, 21.0, 20.9. MALDI-TOF MS: calc. for $C_{203}H_{203}Cl_6N_5O_{51}Na^+$ [M+Na]⁺: 3759.1468, found: 3759.0154.

15. References

[1] Y.-H. Chai, Y.-L. Feng, J.-J. Wu, C.-Q. Deng, A.-Y. Liu and Q. Zhang, *Chin. Chem. Lett.*, 2017, **28**, 1693-1700.

[2] J. Zhang, C. Li, L. Sun, G. Yu and H. Guan, *Eur. J. Org. Chem.*, 2015, 4246-4253.
[3] N. Tanaka, I. Ogawa, S. Yoshigase and J. Nokami, *Carbohydr. Res.*, 2008, 343, 2675-2679.

[4] P. Shu, X. Xiao, Y. Zhao, Y. Xu, W. Yao, J. Tao, H. Wang, G. Yao, Z. Lu, J. Zeng and Q. Wan, *Angew. Chem. Int. Ed.*, 2015, **54**, 14432-14436.

[5] X. Xiao, Y. Zhao, P. Shu, X. Zhao, Y. Liu, J. Sun, Q. Zhang, J. Zeng and Q. Wan, *J. Am. Chem. Soc.*, 2016, **138**, 13402-13407.

[6] B. Ruttens and P. Kováč, Synthesis, 2004, 15, 2505-2508.

[7] A. Mallick, Y. Mallikharjunarao, P. Rajasekaran, R. Roy and Y. D. Vankar, *Eur. J. Org. Chem.*, 2016, 579-588.

[8] S. R. Sanapala and S. S. Kulkarni, Chem. Eur. J., 2014, 20, 3578-3583.

[9] M. W. Weishaupt, S. Matthies, M. Hurevich, C. L. Pereira, H. S. Hahm and P. H. Seeberger, *Beilstein J. Org. Chem.*, 2016, **12**, 1440-1446.

[10] Q. Zhao, H. Zhang, Y. Zhang, S. Zhou and J. Gao, *Org. Biomol. Chem.*, 2020, **18**, 6549-6557.

[11] Z. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov and C.-H. Wong, J. Am. Chem. Soc., 1999, **121**, 734-753.

[12] S. Kopitzki, K. A. Dilmaghani and J. Thiem, Tetrahedron, 2013, 69, 10621-10636.

[13] M.-J. Xia, W. Yao, X.-B. Meng, Q.-H. Lou and Z.-J. Li, *Tetrahedron Lett.*, 2017, **58**, 2389-2392.

[14] C. Noti, J. L. de Paz, L. Polito and P. H. Seeberger, *Chem. Eur. J.*, 2006, **12**, 8664-8686.

[15] S. Yan, N. Ding, W. Zhang, P. Wang, Y. Li and M. Li, *Carbohydr. Res.*, 2012, **354**, 6-20.

[16] Y. J. Jeong, J. H. Lee, E. S. Park and C. M. Yoon, *J. Chem. Soc.*, *Perkin Trans. 1*, 2002, 1223-1225.

[17] X. Xiao, J. Zeng, J. Fang, J. Sun, T. Li, Z. Song, L. Cai and Q. Wan, *J. Am. Chem. Soc.*, 2020, **142**, 5498-5503.

[18] Y. Liu, J. Zeng, J. Sun, L. Cai, Y. Zhao, J. Fang, B. Hu, P. Shu, L. Meng and Q. Wan, *Org. Chem. Front.*, 2018, **5**, 2427-2431.

[19] H. S. Hahm, F. Broecker, F. Kawasaki, M. Mietzsch, R. Heilbronn, M. Fukuda

and P. H. Seeberger, Chem, 2017, 2, 114-124.

[20] L. Kröck, D. Esposito, B. Castagner, C.-C. Wang, P. Bindschädler and P. H. Seeberger, *Chem. Sci.*, 2012, **3**, 1617-1622.

[21] L. Lay, F. Nicotra, L. Panza, G. Russo and E. Adobati, *Helv. Chim. Acta*, 1994, **77**, 509-514.

[22] T. Ren, G. Zhang and D. Liu, Tetrahedron Lett., 2001, 42, 1007-1010.

16. NMR Spectra

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2

Figure S4. ¹³C NMR (100 MHz, CDCl₃) spectrum of 3

Figure S6. ¹³C NMR (150 MHz, CDCl₃) spectrum of 4

Figure S7. ¹H NMR (400 MHz, CDCl₃) spectrum of 6

Figure S8. ¹³C NMR (150 MHz, CDCl₃) spectrum of 6

Figure S10. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectrum of 9

Figure S12. ¹H NMR (400 MHz, CDCl₃) spectrum of 10

Figure S14. ¹H NMR (400 MHz, CDCl₃) spectrum of 11e (α)

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of 11e (β)

Figure S18. ¹H NMR (400 MHz, CDCl₃) spectrum of S4

Figure S20. ¹H NMR (400 MHz, CDCl₃) spectrum of 12a

5

Figure S22. ¹H NMR (400 MHz, CDCl₃) spectrum of 12b

Figure S24. ¹H NMR (600 MHz, CDCl₃) spectrum of S6

Figure S28. ¹H NMR (400 MHz, CDCl₃) spectrum of S8

Figure S30. ¹H NMR (400 MHz, CDCl₃) spectrum of 12c

Figure S31. ¹³C NMR (100 MHz, CDCl₃) spectrum of 12c

Figure S32. ¹H NMR (400 MHz, CDCl₃) spectrum of S10

Figure S34. ¹H NMR (400 MHz, CDCl₃) spectrum of 12d

Figure S38. ¹H NMR (400 MHz, CDCl₃) spectrum of 13a

Figure S40. ¹H NMR (400 MHz, CDCl₃) spectrum of 13b

Figure S42. ¹H NMR (400 MHz, CDCl₃) spectrum of 13c

Figure S44. ¹H NMR (400 MHz, CDCl₃) spectrum of 13d

Figure S46. ¹H NMR (400 MHz, CDCl₃) spectrum of 13e

Figure S48. ¹H NMR (400 MHz, CDCl₃) spectrum of 13f

Figure S50. ¹H NMR (600 MHz, CDCl₃) spectrum of 13g

Figure S52. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 13g

Figure S53. HSQC spectrum of 13g

Figure S54. ¹H NMR (400 MHz, CDCl₃) spectrum of 14a

Figure S56. ¹H NMR (400 MHz, CDCl₃) spectrum of 14b

Figure S58. ¹H NMR (600 MHz, CDCl₃) spectrum of 14c

Figure S60. ¹H NMR (400 MHz, CDCl₃) spectrum of 14d

Figure S61. ¹³C NMR (150 MHz, CDCl₃) spectrum of 14d

Figure S62. ¹H NMR (400 MHz, CDCl₃) spectrum of 14e

Figure S64. ¹H NMR (400 MHz, CDCl₃) spectrum of 14f

Figure S66. ¹H NMR (600 MHz, CDCl₃) spectrum of 14g

Figure S68. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 14g

Figure S70. ¹H NMR (400 MHz, CDCl₃) spectrum of S12

Figure S72. ¹H NMR (400 MHz, CDCl₃) spectrum of 15g

Figure S74. ¹H NMR (400 MHz, CDCl₃) spectrum of 16a

Figure S76. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 16a

Figure S77. HSQC spectrum of 16a

Figure S78. ¹H NMR (400 MHz, CDCl₃) spectrum of 16b

Figure S80. ¹H NMR (600 MHz, CDCl₃) spectrum of 16c

Figure S82. ¹H NMR (400 MHz, CDCl₃) spectrum of 16d

Figure S84. ¹H NMR (600 MHz, CDCl₃) spectrum of 16e

Figure S86. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 16e

Figure S88. ¹H NMR (400 MHz, CDCl₃) spectrum of 16f

Figure S90. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of 16f

Figure S92. ¹H NMR (400 MHz, CDCl₃) spectrum of 16g

Figure S94. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 16g

Figure S95. HSQC spectrum of 16g

Figure S96. ¹H NMR (400 MHz, CDCl₃) spectrum of 16h

Figure S98. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of 16h

Figure S100. ¹H NMR (600 MHz, CDCl₃) spectrum of 16i

Figure S102. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 16i

Figure S104. ¹H NMR (400 MHz, CDCl₃) spectrum of S14

Figure S106. ¹H NMR (400 MHz, CDCl₃) spectrum of S15

Figure S108. ¹H NMR (400 MHz, CDCl₃) spectrum of 18a

Figure S110. 1 H NMR (400 MHz, CDCl₃) spectrum of S17

Figure S112. ¹H NMR (400 MHz, CDCl₃) spectrum of S18

Figure S114. ¹H NMR (400 MHz, CDCl₃) spectrum of S19

Figure S116. ¹H NMR (400 MHz, CDCl₃) spectrum of S20

Figure S118. ¹H NMR (400 MHz, CDCl₃) spectrum of S21

Figure S120. ¹H NMR (400 MHz, CDCl₃) spectrum of S22

Figure S122. ¹H NMR (400 MHz, CDCl₃) spectrum of 18b

Figure S124. ¹H NMR (400 MHz, CDCl₃) spectrum of 19

Figure S126. ¹H NMR (400 MHz, CDCl₃) spectrum of S23

Figure S128. ¹H NMR (400 MHz, CDCl₃) spectrum of S24

Figure S130. ¹H NMR (600 MHz, CDCl₃) spectrum of S25

Figure S132. ¹H NMR (600 MHz, CDCl₃) spectrum of S26

Figure S134. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of S26

Figure S136. ¹H NMR (400 MHz, CDCl₃) spectrum of S27

Figure S138. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of S27

Figure S139. HSQC spectrum of S27

Figure S140. ¹H NMR (600 MHz, CDCl₃) spectrum of 20

Figure S142. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 20

Figure S143. HSQC spectrum of 20

Figure S144. ¹H NMR (600 MHz, CDCl₃) spectrum of 21

Figure S146. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 21

Figure S148. ¹H NMR (600 MHz, CDCl₃) spectrum of 22

Figure S149. ¹³C NMR (150 MHz, CDCl₃) spectrum of 22

Figure S150. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 22

Figure S152. ¹H NMR (600 MHz, CDCl₃) spectrum of S28

OAd

Figure S154. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of S28

Figure S156. ¹H NMR (600 MHz, CDCl₃) spectrum of 23

Figure S158. ¹H NMR (600 MHz, CDCl₃) spectrum of 24

Figure S160. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 24

Figure S161. HSQC spectrum of 24

Figure S162. ¹H NMR (600 MHz, CDCl₃) spectrum of 25

Figure S164. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of 25

Figure S165. HSQC spectrum of 25