General Electrochemical Minisci Alkylation of \boldsymbol{N}-Heteroarenes with

 Alkyl HalidesRoberto del Río-Rodríguez, ${ }^{1}$ Lorena Fragoso-Jarillo, ${ }^{1}$ Alberto F. Garrido-Castro, ${ }^{1}$ Carmen Maestro-Rubio, ${ }^{1}$ Jose A. Fernández-Salas, ${ }^{* 1,2}$ and José Alemán*1,2,3
${ }^{1}$ Organic Chemistry Department, Módulo 2, Universidad Autónoma de Madrid, 28049 Madrid (Spain).
${ }^{2}$ Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid (Spain).
${ }^{3}$ Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (Spain).
* E-mail: j.fernandez@uam.es; jose.aleman@uam.es; web page: www.uam.es/jose.aleman

1. General methods and starting materials... 3
2. Optimization tables ... 4
3. General procedure A: Alkylation of heteroaryl compounds... 6
4. General procedure B: Alkylation, allylation and benzylation of acridine 18
5. General procedure C: Derivatizations ... 22
6. Nuclear magnetic resonance spectra... 24
7. Cyclic Voltammetry ... 61
8. References.. 63

1. General methods and starting materials

Starting materials $\mathbf{1 a} \mathbf{- h}, \mathbf{1 k} \mathbf{- 1} \mathbf{y}, \mathbf{2 a - p}$ as well as solvents for the reactions, were acquired from commercial sources (tetrahydrofuran was inhibitor free, water was tab water). Starting materials $\mathbf{1 i} \mathbf{i} \mathbf{1 j}$ and $\mathbf{1 0}$ were synthesized following a procedure described in the literature. ${ }^{1}$ For thin layer chromatography (TLC), silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of potassium permanganate in water followed by heating. Flash column chromatography was performed using Geduran ${ }^{\circledR}$ Silica Gel 60 (0.040-0.063 nm). Cyclohexane, ethyl acetate, dichloromethane and methanol for flash chromatography were acquired from commercial sources and were used without previous purification. NMR spectra were acquired on a Bruker Avance 300 MHz spectrometer, running at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra were acquired on a Bruker Avance 500 MHz spectrometer, running at 471 MHz . Chemical shifts (δ) are reported in ppm relative to residual solvent signals $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 77.2 ppm for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right) .{ }^{13} \mathrm{C}$-NMR was acquired on a broad band decoupled mode. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), bs (broad singlet), tt (triplet of triplets), td (triplet of doublets). Electrospray ionization has been used for measuring the exact mass (indicated for each case): MS (ESI) (Electrospray ionization mass spectroscopy) was acquired with an Agilent Technologies 6120 Quadrupole LC/MS. In this technique, MassWorks software ver. 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is a MS calibration software which calibrates for isotope profile as well as for mass accuracy, allowing highly accurate comparisons between calibrated and theoretical spectra. ${ }^{2}$

2. Optimization tables

Table 1. Alkylation of 4-methylquinoline.

Entry $^{\boldsymbol{a}}$	Solvent (3 mL)	Current (mA)	Time (min)	W (+) / C (-)	Conv. (\%)
$\mathbf{1}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	-	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	-
$\mathbf{2}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	73
$\mathbf{3}^{\boldsymbol{d}}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	24
$\mathbf{4}^{\boldsymbol{e}}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	38
$\mathbf{5}^{f}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	43
$\mathbf{6}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	30	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	56
$\mathbf{7}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	3	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	46
$\mathbf{8}$	$\mathrm{MeTHF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	27
$\mathbf{9}$	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	23
$\mathbf{1 0}$	$\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	41
$\mathbf{1 1}$	THF	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	17
$\mathbf{1 2}$	DMF	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	65
$\mathbf{1 3}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	30
$\mathbf{1 4}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Ni}$ foam	65
$\mathbf{1 5}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{Zn}$	-
$\mathbf{1 6}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	$\mathrm{RVC} / \mathrm{RVC}$	-
$\mathbf{1 7}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(\mathbf{2 : 1)}$	$\mathbf{1 0}$	$\mathbf{1 2 0}$	$\mathrm{RVC} / \mathrm{Ni}$ foam	$>98(92)^{\text {c }}$
$\mathbf{1 8}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	120	$\mathrm{RVC} / \mathrm{Ni}$ foam	$88(80)^{\mathrm{c}}$
$\mathbf{1 9}$	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	10	120	$\mathrm{RVC} / \mathrm{Ni}$ foam	$87(75)^{\mathrm{c}}$

${ }^{\text {a }}$ Standard reaction conditions: 0.1 mmol of $\mathbf{1 a}$ and 0.5 mmol of $\mathbf{2 a}$ in THF: $\mathrm{H}_{2} \mathrm{O}$ ($2: 1,3 \mathrm{~mL}$) with $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.5 \mathrm{mmol})$ and diphenyl phosphate (0.1 mmol), under air atmosphere, were set at constant current for indicated time at room temperature. ${ }^{\text {b }}$ Conversions were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{\text {I Isolated yield in }}$ brackets. ${ }^{d}$ No diphenyl phosphate. ${ }^{e}$ TFA instead of diphenyl phosphate. ${ }^{f} p \mathrm{TsOH}$ instead of diphenyl phosphate. ${ }^{5} \mathrm{TBAPF}_{6}$ instead of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. ${ }^{\mathrm{h}} \mathrm{NH}_{4} \mathrm{BF}_{4}$ instead of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. ${ }^{\mathrm{i}} 0.02 \mathrm{mmol}$ of diphenyl phosphate. ${ }^{\mathrm{j}} 0.02 \mathrm{mmol}$ of diphenyl phosphate and 0.2 equiv. of $\mathbf{2 a}$.

Table 2. Alkylation, allylation and benzylation of acridine.

			$\xrightarrow[\substack{\text { Solvent }(3 \mathrm{~mL}) \\ \mathrm{W}(+) / \mathrm{C}(-) \\ \mathrm{x} \mathrm{~mA}, \mathrm{xh}}]{\substack{\mathrm{H}^{+} \text {source (x equiv.) } \\ \text { Electrolite }(\mathrm{x} \mathrm{M})}}$		 4	
Entry ${ }^{\text {a }}$	$X-R$	Solvent (3 mL)	Current (mA)	Time (min)	W (+) / C (-)	Conv. (\%) ${ }^{\text {b }}$
1	$I^{-t} \mathrm{Bu}$	THF/ $\mathrm{H}_{2} \mathrm{O}$ (2:1)	10	42	RVC / Zn	>98 (80) ${ }^{\text {c }}$
2	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	RVC / Zn	-
3^{d}	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	RVC / Ni foam	70
$4^{\text {d,e }}$	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}$ (2:1)	10	42	RVC / Ni foam	90 (62) ${ }^{\text {c }}$
$5^{\text {d,e }}$	Br-Allyl	DMF	10	42	RVC / Ni foam	-
$6^{\text {d,e,f }}$	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	RVC / Ni foam	-
$7^{\text {d,e }}$	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	3	42	RVC / Ni foam	-
$8^{\text {d,e }}$	Br-Allyl	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	15	42	RVC / Ni foam	55
9^{d}	$\mathrm{Br}-\mathrm{Bn}$	THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	10	42	RVC / Ni foam	66
$10^{\text {d }}$	$\mathrm{Br}-\mathrm{Bn}$	THF/ $\mathrm{H}_{2} \mathrm{O}$ (2:1)	10	42	RVC / Zn	$100(70)^{\text {c }}$
11^{d}	$\mathrm{Br}-\mathrm{Bn}$	MeTHF/ $\mathrm{H}_{2} \mathrm{O}$ (2:1)	10	42	RVC / Zn	100 (81) ${ }^{\text {c }}$

${ }^{\text {a }}$ Standard reaction conditions: 0.1 mmol of $\mathbf{1 v}$ and 0.5 mmol of $\mathbf{2 a}$ in THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1, 3 mL) with $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.5 \mathrm{mmol})$ and diphenyl phosphate (0.1 mmol), under air atmosphere, were set at constant current for indicated time at room temperature. ${ }^{\text {b }}$ Conversions were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{\text {I Isolated yield in }}$ brackets. ${ }^{\text {d TFA }}$ instead of diphenyl phosphate. ${ }^{e} 1 \mathrm{mmol}$ of allyl bromide and $\mathrm{NH}_{4} \mathrm{PF}_{6} .{ }^{\mathrm{f}} \mathrm{TBAPF}_{6}$ instead of $\mathrm{NH}_{4} \mathrm{PF}_{6}$.

3. General procedure A: Alkylation of heteroaryl compounds

Diphenyl phosphate ($25.0 \mathrm{mg}, 1$ equiv.), ammonium hexafluorophosphate ($81.5 \mathrm{mg}, 5$ equiv.) and a magnetic stirrer were added to a 5 mL ElectraSyn vial. Reagents were dissolved in THF (2 mL) and to the stirred solution were added $\mathbf{1}(0.1 \mathrm{mmol}$) and $\mathbf{2}$ (5 equiv.), followed by water (1 mL). The vial was closed, reticulated vitreous carbon was used as working electrode and nickel foam as counter electrode, ElectraSyn 2.0 was set at constant current (10 mA) during 120 min . The crude mixture was then diluted with ethyl acetate, extracted with saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$, washed with brine $(3 \times 30 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography using silica gel and the eluent indicated in each case.

2-Cyclohexyl-4-methylquinoline (3a)

Following the general procedure A; 4-methylquinoline 1a $13.2 \mu \mathrm{~L}, 0.1$ mmol) and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product 3a(92\% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{tt}, \mathrm{J}=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}$, $2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{3}$

The reaction was scaled up to 1.0 mmol . Procedure A was followed using a 10 mL ElectraSyn vial as 6 mL of THF and 3 mL of water were used as solvents. The reaction was carried out at 10 mA for 16 hours. After workup and purification as described above, $\mathbf{3 a}$ ($167 \mathrm{mg}, 75 \%$ yield) was obtained as a slightly yellow oil.

2-Isopropyl-4-methylquinoline (3b)

 Following the general procedure A; 4-methylquinoline 1a (13.2 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) and 2-iodopropane $\mathbf{2 b}$ ($49.1 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $\mathbf{3 b}$ (55% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

4-Methyl-2-(tetrahydro-2H-pyran-4-yl)quinoline (3c)

Following the general procedure A; 4-methylquinoline 1a (13.2 $\mu \mathrm{L}, 0.1$ mmol) and 4-iodotetrahydro-2H-pyran 2c (106 mg, 0.5 mmol) gave product 3c (82% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=11.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{td}, J=11.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{tt}, J=11.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.86(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

tert-Butyl 4-(4-methylquinolin-2-yl)piperidine-1-carboxylate (3d)

Following the general procedure A; 4-methylquinoline $1 \mathrm{a}(13.2 \mu \mathrm{~L}, 0.1$ mmol) and tert-butyl 4-iodopiperidine-1-carboxylate 2d (155.5 mg, 0.5 mmol) gave product 3d (70\% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.03(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{tt}, J=11.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.69(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{4}$

2-Cyclopentyl-4-methylquinoline (3e)

Following the general procedure A; 4-methylquinoline 1a (13.2 $\mu \mathrm{L}, 0.1$ mmol) and iodocyclopentane $\mathbf{2 e}(57.8 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $\mathbf{3 e}(65 \%$ yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.80$ $-1.68(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
Spectra data are consistent with those reported in the literature. ${ }^{3}$

4-Methyl-2-(tetrahydrofuran-3-yl)quinoline (3f)

Following a slightly modified procedure A; 4-methylquinoline 1a (13.2 $\mu \mathrm{L}$, $0.1 \mathrm{mmol})$ and 3-iodotetrahydrofuran $\mathbf{2 f}(44.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $3 f(54 \%$ yield) as a colorless oil when the reaction was carried out at 10 mA for 4 hours. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ - $3.67(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

2-(tert-Butyl)-4-methylquinoline (3g)

Following a slightly modified procedure A; 4-methylquinoline 1a (13.2 $\mu \mathrm{L}, 0.1$ $\mathbf{m m o l}$) and 2-iodo-2-methylpropane $\mathbf{2 g}(59.6 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $\mathbf{3 g}$ (78% yield) as a colorless oil, when Zn was used as counterelectrode. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.07(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}$, 1H), 7.36 (s, 1H), $2.69(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

2-Ethyl-4-methylquinoline (3h)

Following a slightly modified procedure A; 4-methylquinoline 1a ($6.6 \mu \mathrm{~L}, 0.05$ $\mathrm{mmol})$ and iodoetane $\mathbf{2 h}(40.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $\mathbf{3 h}$ (63% yield) as a colorless oil when the reaction was carried out at 10 mA for 4 hours in 2 mL of THF and 1 mL of $\mathrm{H}_{2} \mathrm{O}$ with 1 equivalent of diphenyl phosphate and 5 equivalents of electrolyte. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{3}$

4-Methyl-2-phenethylquinoline (3i)

Following a slightly modified procedure A; 4-methylquinoline 1a ($6.6 \mu \mathrm{~L}$, 0.05 mmol) and (2-iodoethyl)benzene 2 i ($72.4 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $3 \mathbf{i}$ (41% yield) as a colorless oil when the reaction was carried
out at 10 mA for 4 hours in 2 mL of THF and 1 mL of $\mathrm{H}_{2} \mathrm{O}$ with 1 equivalent of diphenyl phosphate and 5 equivalents of electrolyte. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.07$ (m, 2H), $2.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{5}$

2-Cyclohexyl-7-methoxy-4-methylquinoline (3j)

Following the general procedure A; 7-methoxy-4-methylquinoline $\mathbf{1 b}$ ($20.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $3 \mathbf{j}$ (68% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 3.94(\mathrm{~s}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{tt}, J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 167.12,160.5,149.6,144.4,124.9,122.2,118.5,118.4,107.8,55.7,47.9,33.1$ (2C), 26.8 (2C), 26.3, 19.0 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}:$256.1696; found: 256.1638 .

7-Bromo-2-cyclohexyl-4-methylquinoline (3k)

Following the general procedure A; 7-bromo-4-methylquinoline 1c ($22.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2 a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3k (64\% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{tt}, J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.94-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.35(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 167.9,148.7,144.5,132.0,128.9,125.9,125.2,123.2,121.0,47.6,32.9$ (2C), 26.7 (2C), 26.3, 18.9 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}[\mathrm{M}-\mathrm{H}]^{+}$: 304.0695; found: 304.0639.

6-Bromo-2-cyclohexyl-4-methylquinoline (3I)

Following the general procedure A; 6-bromo-4-methylquinoline 1d ($22.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 31 (73% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 2.84(\mathrm{tt}, \mathrm{J}=11.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 167.2,146.5,143.6,132.5,131.5,128.5,126.2,121.3,119.4,47.7,32.9$ (2C), 26.7 (2C), 26.3, 19.0 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}[\mathrm{M}-\mathrm{H}]^{+}$: 304.0695; found: 304.0670.

2-Cyclohexyl-4-phenylquinoline (3m)

Following the general procedure A; 4-phenylquinoline 1e (20.5 mg, 0.1 mmol) and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $\mathbf{3 m}(54 \%$ yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.43$ (ddd, J=8.4, 6.9, 1.2 Hz, 1H), $7.27(\mathrm{~s}, 1 \mathrm{H}), 3.05-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 2 \mathrm{H})$, $1.39-1.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

2-(2-Cyclohexylquinolin-4-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3n)

Following a slightly modified procedure A; 2-(quinolin-4-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one 1f ($31.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $\mathbf{3 n}$ (63% yield) as a yellow oil when it was carried out at 7.5 mA for 4 hours. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.68$ (ddd, $J=$ $8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{tt}, J=$ 11.7, 3.3 Hz, 1H), $2.07-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}$, 2H), $1.53-1.24(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 195.6,166.6,148.3,140.4,139.2,135.08(q, J=32.8 \mathrm{~Hz}), 130.1,129.5,129.0(2 \mathrm{C})$, 126.4, 126.3, 126.1 ($q, J=3.7 \mathrm{~Hz}, 2 C$), $123.7(q, J=272.8 \mathrm{~Hz}), 123.3,121.6,47.6,42.9,32.9$ (2C), 26.7 (2C), 26.2 ppm .
${ }^{19}$ F-NMR: δ-63.2 ppm.
HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 398.1726; found: 398.1787.

4-Bromo-2-cyclohexylquinoline (30)

Following a slightly modified procedure A; 4-bromoquinoline $\mathbf{1 g}(20.8 \mathrm{mg}$, $0.1 \mathrm{mmol})$ and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product 30 (44% yield) as a colorless oil when it was carried out at 5 mA for 1 hour. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.61$ - $7.53(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{tt}, \mathrm{J}=11.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
Spectra data are consistent with those reported in the literature. ${ }^{5}$

Methyl 6-bromo-2-cyclohexylquinoline-4-carboxylate (3p)

Following a slightly modified procedure A; ethyl 6-bromoquinoline-4carboxylate 1 h ($26.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}$, 0.5 mmol) gave product 3 p (46% yield) as a colorless oil when the reaction was carried out at 5 mA for 90 minutes. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.93(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{tt}, \mathrm{J}=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 166.9,166.6,147.6,134.2,133.2,131.4,128.0,125.0,122.3,121.8,53.0,47.5,32.7$ (2C), 26.6 (2C), 26.2 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 348.0594$; found: 348.0600.

2-Cyclohexyl-N-methylquinoline-4-carboxamide (3q)

Following a slightly modified procedure A; N-methylquinoline-4carboxamide $\mathbf{1 j}$ ($18.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5$ mmol) gave product $3 \mathbf{q}$ (55% yield) as a colorless oil when the reaction was carried out at 15 mA for 1 hour. Eluent: cyclohexane: ethyl acetate from

100:0 to 80:20.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=4.7,3 \mathrm{H}), 2.87(\mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.73(\mathrm{~m}, 6 \mathrm{H})$, $1.68-1.21(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 168.7,166.5,148.4,142.6,130.0,129.5,126.8,125.1,123.3,117.3,47.6,32.9$ (2C), 26.9, 26.6 (2C), 26.2 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}$: 269.1648; found: 269.1605.

4-Cyclohexyl-2-methylquinoline (3r)

Following the general procedure A; 2-methylquinoline $11(13.1 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ and iodocyclohexane $\mathbf{2 a}$ ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3 r (76% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.09-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}$, 1H), $3.39-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.23(\mathrm{~m}$, 2H) ppm.

Spectra data are consistent with those reported in the literature. ${ }^{3}$

6-Chloro-4-cyclohexyl-2-methylquinoline (3s)

Following the general procedure A; 6-chloro-2-methylquinoline 1m (17.8 $\mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3 s (69\% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.24-3.12(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 159.4,152.8,146.7,131.3,131.3,129.8,126.1,122.2,119.4,39.0,33.7$ (2C), 27.0 (2C), 26.4, 25.7 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{CIN}[\mathrm{M}-\mathrm{H}]^{+}$: 260.1201; found: 260.1190 .

Methyl 4-cyclohexyl-2-methylquinoline-6-carboxylate (3t)

Following the general procedure A; ethyl 2-methylquinoline-6carboxylate 1 n ($20.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}$, 0.5 mmol) gave product 3t (66% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}$, $1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.47$ - $1.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 167.3,161.6,155.1,150.4,130.0,128.6,127.0,126.3,124.6,119.4,52.6,38.8,34.0$ (2C), 27.0 (2C), 26.4, 25.9 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$: 284.1645; found: 284.1637.

2-Cyclohexylquinoline (3u) and 4-Cyclohexylquinoline (3u')

Following a slightly modified procedure A; quinoline $1 \mathbf{w}$ (11.8 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $3 \mathbf{u}\left(26 \%\right.$ yield) and $3 \mathbf{u}^{\prime}$ (24% yield) as a colorless oil when the reaction was carried out at 5 mA for 60 minutes. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.

${ }^{1}$ H-NMR: $\delta 8.13-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.47 (dd, $J=8.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.11-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.45(\mathrm{~m}$, 2H), $1.38-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.80(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
Spectra data are consistent with those reported in the literature. ${ }^{9}$

${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.85(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (ddd, $J=8.4,6.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.28(\mathrm{~m}$, 1H), $2.08-1.81(\mathrm{~m}, 6 \mathrm{H}), 0.99-0.79(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{9}$

1-Cyclohexyl-3-methylisoquinolin-4-ol (3v)

 Following the general procedure A; 3-methylisoquinoline 1x ($14.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3 v (77% yield) as a slightly yellow solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.21-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.42(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (tt, $J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 157.3,142.2,133.0,128.8,128.0,126.0$ (2C), 124.8, 121.1, 41.4, 32.8 (2C), 27.1 (2C), 26.4, 18.7 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}:$242.1539; found: 242.1544 .

2-Cyclohexyl-4,7-diphenyl-1,10-phenanthroline (3w)

Following a slightly modified procedure A; 4,7-diphenyl-1,10phenanthroline $\mathbf{1 y}$ ($33.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a (64.7 $\mu \mathrm{L}, 0.5 \mathrm{mmol}$) gave product 3 w (35% yield) as a yellowish oil when the reaction was carried out at 5 mA . Eluent: cyclohexane: ethyl acetate from 100:0 to 50:50.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 9.28(\mathrm{dd}, J=4.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=3.0,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 12 \mathrm{H}), 3.41$ $(\mathrm{tt}, \mathrm{J}=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.45-$ $1.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{10}$

6-Cyclohexylphenanthridine (3x)

Following the general procedure A; phenanthridine 10 ($17.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product $\mathbf{3 x}$ (70% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=11.3$ Hz, 1H), $2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.40(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{6}$

2-Cyclohexylbenzo[d]thiazole (3y)

Following a slightly modified procedure A; benzo[d]thiazole $\mathbf{1 p}(10.9 \mu \mathrm{~L}, 0.1$
 mmol) and iodocyclohexane $\mathbf{2 a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product 3 y (60% yield) as a colorless oil when the reaction was carried out during 8 hours. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.00-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 1 \mathrm{H})$, $3.11(\mathrm{tt}, \mathrm{J}=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.53$ - $1.22(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{6}$

2-Cyclohexyl-1-methyl-1H-benzo[d]imidazole (3z)

Following a slightly modified procedure A; 1-methyl-1H-benzo[d]imidazole 1q ($13.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane $\mathbf{2 a}$ ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $3 z$ (56% yield) as a colorless oil when the reaction was carried out during 8 hours. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.80-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{tt}, \mathrm{J}=11.6,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.32(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{3}$

5,7-Dichloro-2-cyclohexyl-4-(4-fluorophenoxy)quinoline (3aa)

Following a slightly modified procedure A; 5,7-dichloro-4-(4fluorophenoxy)quinoline $1 \mathrm{r}(30.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3aa (45% yield) as a white solid when the reaction was carried out at 5 mA . Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5 to 90:10.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 2.78$ - $2.58(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.21(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{3}$
(R)-(2-Cyclohexyl-6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanol (3ab)

Following a slightly modified procedure A; (R)-(6-methoxyquinolin-4$\mathrm{yl})((1 S, 2 S, 4 S, 5 R)-5$-vinylquinuclidin-2-yl)methanol 1s $(32.4 \mathrm{mg}, 0.1$ mmol) and iodocyclohexane $2 \mathrm{a}(64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ gave product 3ab (74% yield) as a white solid when it was carried out during 4 hours. Eluent: dichloromethane: methanol from 97:3 to 93:7.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.96(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 5.82-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.88(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.20-$ $3.05(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 3 \mathrm{H})$, $1.94-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{6}$

(R)-(2-Cyclohexylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanol (3ac)

Following a slightly modified procedure $A ;(R)$-quinolin- 4 -yl((1S, $2 S, 4 S, 5 R)$ -5-vinylquinuclidin-2-yl)methanol 1t $(29.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 3ac (71% yield) as a white solid when the reaction was carried out during 4 hours. Eluent: dichloromethane: methanol from 97:3 to 93:7.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.3,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.54-$
$3.39(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{tt}, \mathrm{J}=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.20$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.59-1.38(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 166.7,149.4,148.0,142.0,129.9,129.0,125.9,124.4,122.7,116.7,114.5,72.1$, $60.4,57.3,47.9,43.5,40.1,33.0,28.2,27.7,27.1,26.7$ (2C), 26.2, 21.0 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}: 377.2587$; found: 377.2518 .
(S)-11-Cyclohexyl-4-ethyl-4-hydroxy-1,12-dihydro-14H-pyrano[3',4':6,7]indolizino[1,2-b] quinoline-3,14(4H)-dione (3ad)

Following a slightly modified procedure A; (S)-4-ethyl-4-hydroxy-1,12-dihydro-14H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H)dione $1 \mathbf{u}(34.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5$ mmol) gave product 3ad (38% yield) as a slightly yellow solid when the reaction was carried out at 5 mA . Eluent: dichloromethane: methanol from 100:0 to 95:5.
${ }^{1} \mathrm{H}$-NMR: $\delta 8.29-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{bs}, 1 \mathrm{H}), 3.64(\mathrm{bs}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.96$ - $1.78(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{6}$

Methyl 6-bromo-2-isopropylquinoline-4-carboxylate (6)

Following a slightly modified procedure A; ethyl 6-bromoquinoline-4carboxylate $\mathbf{1 h}$ ($26.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 2-iodopropane $\mathbf{2 b}$ ($49.1 \mu \mathrm{~L}, 0.5$ mmol) gave product 6 (39% yield) as a colorless oil when it was carried out at 5 mA for 90 minutes. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.93(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=9.0,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.16(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 167.7,166.6,147.6,134.3,133.2,131.4,126.0,125.0,121.9,121.8,53.0,37.3,22.4$ (2C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 308.0281$; found: 308.0259.

Methyl 2-cyclohexylquinoline-4-carboxylate (8)

Following a slightly modified procedure A; ethyl quinoline-4-carboxylate $\mathbf{1 i}$ $(18.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ and iodocyclohexane 2 a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 8 (53% yield) as a colorless oil when the reaction was carried out
during 1 hour. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62$ $-7.53(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{tt}, J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.30(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. Spectra data are consistent with those reported in the literature. ${ }^{7}$

2-Cyclohexylquinoline-4-carboxylic acid (9)

Following a slightly modified procedure A; quinoline-4-carboxylic acid $\mathbf{1 k}$ ($17.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 9 (30% yield) as a colorless oil when the reaction was carried out at 5 mA for 1 hour. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.29(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectra data are consistent with those reported in the literature. ${ }^{8}$

3-Cyclohexyl-N,2-diphenylpropanamide (11)

Following the general procedure A; N,2-diphenylacrylamide 10 (22.3 $\mathrm{mg}, 0.1 \mathrm{mmol})$ and iodocyclohexane 2a ($64.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product 11 (70% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.43(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.06$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.07$ $(\mathrm{m}, 4 \mathrm{H}), 1.04-0.85(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 172.1,140.1,138.1,129.2$ (2C), 129.1 (2C), 128.2 (2C), 127.6, 124.4, 119.9 (2C), $51.6,40.9,35.3,33.8,33.0,26.7,26.3,26.2 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}: 308.2009$; found: 308.2040.

4. General procedure B: Alkylation, allylation and benzylation of acridine

Acridine 1 ($17.9 \mathrm{mg}, 1$ equiv.), ammonium hexafluorophosphate ($82 \mathrm{mg}, 5$ equiv.) and a magnetic stirrer were added to a 5 mL ElectraSyn vial. Reagents were dissolved in 2 mL of THF (or Me-THF) and to the stirred solution were added trifluoroacetic acid ($7.3 \mu \mathrm{~L}, 1$ equiv.) and 2 (5 equiv.), followed by water (1 mL). The vial was closed, reticulated vitreous carbon was used as working electrode and zinc as counterelectrode, ElectraSyn 2.0 was set at constant current (10 mA) during 42 min . The crude mixture was then diluted with diethyl ether, extracted with saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$, wahsed with brine $(3 \times 30 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography using the eluent indicated in each case.

9-(tert-Butyl)-9,10-dihydroacridine (4a)

Following the general procedure B; acridine $\mathbf{1 v}(17.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2-iodo-2-methypropane $\mathbf{2 g}$ ($59.6 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) gave product $\mathbf{4 a}$ (80% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, 1H), 0.81 (s, 9H) ppm.
${ }^{13}$ C-NMR: $\delta 141.4$ (2C), 131.3 (2C), 127.0 (2C), 121.8 (2C), 120.1 (2C), 113.7 (2C), 53.4, 38.5, 27.5 (3C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}$: 238.1590; found: 238.1603.

9-Allyl-9,10-dihydroacridine (4b)

Following a modified procedure B; acridine $1 v(17.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3 -bromoprop-1-ene $\mathbf{2 j}$ ($86.6 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) when employing ammonium hexafluorophosphate ($164 \mathrm{mg}, 10$ equiv.) and trifluoroacetic acid ($14.5 \mu \mathrm{~L}, 2$ equiv.) with a Ni foam counterelectrode instead of Zn , gave product $\mathbf{4 b}$ (62\% yield) as a slightly yellow solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.17-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}$, $1 \mathrm{H}), 5.71(\mathrm{ddt}, J=17.1,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=19.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 139.8$ (2C), 135.9, 129.0 (2C), 127.1 (2C), 123.8 (2C), 120.8 (2C), 117.0, 113.6 (2C), 44.4, 43.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}$: 222.1277; found: 222.1237.

9-Benzyl-9,10-dihydroacridine (4c)

Following a slightly modified procedure B; acridine $\mathbf{1 v}(17.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and (bromomethyl)benzene $2 k$ ($59.5 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) in Me-THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product 4c (81\% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 90:10.
${ }^{1}$ H-NMR: $\delta 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.75$ $(\mathrm{m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 139.9$ (2C), 139.2, 130.1 (2C), 129.1 (2C), 127.9 (2C), 127.1 (2C), 126.1, 123.5 (2C), 120.6 (2C), 113.5 (2C), 46.2, 45.4 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}$: 272.1434; found: 272.1494.

9-(4-Chlorobenzyl)-9,10-dihydroacridine (4d)

Following a slightly modified procedure B; acridine $1 v(17.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and 1-(bromomethyl)-4-chlorobenzene $\mathbf{2 l}$ ($102.7 \mathrm{mg}, 0.5 \mathrm{mmol}$) in Me-THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product 4d (85% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.15-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{td}, \mathrm{J}=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-$ $6.60(\mathrm{~m}, 4 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 139.9$ (2C), 137.5, 132.0, 131.4 (2C), 129.0 (2C), 128.0 (2C), 127.3 (2C), 123.0 (2C), 120.7 (2C), 113.5 (2C), 45.6, 45.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{CIN}[\mathrm{M}-\mathrm{H}]^{+}: 306.1044$; found: 306.1045.

9-(2-lodobenzyl)-9,10-dihydroacridine (4e)

Following a slightly modified procedure B; acridine $1 \mathbf{1 v}$ ($17.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 1-(bromomethyl)-2-iodobenzene 2 m ($148.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) in Me THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product $4 \mathrm{e}(65 \%$ yield) as a yellowish solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 80:20.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.84(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-$ 6.75 (m, 7H), 6.49 (dd, J = 7.6, 1.7 Hz, 1H), 6.16 (s, 1H), $4.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 141.7,140.0$ (2C), 139.4, 132.1, 129.2 (2C), 128.1, 127.7, 127.3 (2C), 123.2 (2C), 120.7 (2C), 113.6 (2C), 101.4, 49.4, 43.1 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{IN}[\mathrm{M}-\mathrm{H}]^{+}$: 398.0400; found: 396.0370.

9-(4-(Trifluoromethyl)benzyl)-9,10-dihydroacridine (4f)

Following a slightly modified procedure B; acridine 1v (17.9 mg, 0.1 mmol) and 1-(bromomethyl)-4-(trifluoromethyl)benzene 2 n (119.5 mg , 0.5 mmol) in Me-THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product 4 f (53% yield) as a slightly yellow solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.79(\mathrm{~m}, 6 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 143.2,139.9$ (2C), 130.3 (2C), 129.0 (2C), 128.6 ($q, J=9.0 \mathrm{~Hz}$), 127.4 (2C), 127.3 (q, J $=137.1 \mathrm{~Hz}), 124.7(\mathrm{q}, J=3.8 \mathrm{~Hz}, 2 \mathrm{C}), 122.8(2 \mathrm{C}), 120.8(2 \mathrm{C}), 113.6(2 \mathrm{C}), 46.0,45.0 \mathrm{ppm}$.
${ }^{19}$ F-NMR: δ-62.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}: 340.1308$; found: 340.1263 .

9-(3,5-Dimethoxybenzyl)-9,10-dihydroacridine (4g)

Following a slightly modified procedure B; acridine 1v (17.9 mg, 0.1 mmol) and 1-(bromomethyl)-3,5-dimethoxybenzene $\mathbf{2 0}$ (115.5 mg, 0.5 mmol) in Me-THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product $\mathbf{4 g}$ (75% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} H-N M R: \delta 7.10$ (td, $\left.J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (td, $J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.39-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 6 \mathrm{H}), 2.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 160.3$ (2C), 141.3, 139.9 (2C), 129.1 (2C), 127.2 (2C), 123.4 (2C), 120.7 (2C), 113.5 (2C), 107.8 (2C), 106.7, 99.0, 55.3 (2C), 46.5, 45.2 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$: 332.1645; found: 332.1673.

9-(Benzo[d][1,3]dioxol-5-ylmethyl)-9,10-dihydroacridine (4h)

Following a slightly modified procedure B; acridine 1v (17.9 mg, 0.1 mmol) and 5-(bromomethyl)benzo[d][1,3]dioxole 2p (107.5 mg, 0.5 mmol) in Me-THF: $\mathrm{H}_{2} \mathrm{O}$ (2:1) gave product $\mathbf{4 h}$ (79% yield) as a white solid. Eluent: cyclohexane: ethyl acetate from 100:0 to 95:5.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.10(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, $4.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 147.2,145.9,139.8$ (2C), 133.0, 129.1 (2C), 127.2 (2C), 123.4 (2C), 123.0, 120.7 (2C), 113.5 (2C), 110.4, 107.8, 100.8, 45.9, 45.5 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 316.1332$; found: 316.1269.

5. General procedure C: Derivatizations

6-Bromo-2-isopropylquinoline-4-carboxylic acid (7)

1 M lithium hydroxide aqueous solution (0.3 mL) was added to a vial containing methyl 6-bromo-2-isopropylquinoline-4-carboxylate ($6,6 \mathrm{mg}, 0.05 \mathrm{mmol}$) in methanol (0.5 mL). The reaction was stirred at room temperature for two hours. Then 1 M HCl aqueous solution was added until $\mathrm{pH}=1$. The crude was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Crude was purified by flash column chromatography using cyclohexane: ethyl acetate/methanol/acetic acid (3/1/2\%) from 100:0 to 80:20. 6-Bromo-2-isopropylquinoline-4-carboxylic acid (7, 80\% yield) was obtained as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\right.$ few drops $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 9.01(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=$ 9.0, 2.0 Hz 1H), 3.41-3.22 (m, 1H), 1.40 (d, J=6.9 Hz, 6H) ppm.
${ }^{13}$ C-NMR $\left(\mathrm{CDCl}_{3}+\right.$ few drops $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 167.9(2 \mathrm{C}), 147.3,133.1(2 \mathrm{C}), 130.9,128.2,125.3$, 122.0, 121.6, 37.2, 22.3 (2C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}:$293.0046; found: 293.0090.

9-(Benzo[d][1,3]dioxol-5-ylmethyl)acridine (5)

MnO_{2} (55 mg, 10 equiv.) was added to a vial containing 9-(Benzo[d][1,3]dioxol-5-ylmethyl)-9,10-dihydroacridine ($4 \mathrm{~h}, 20 \mathrm{mg}, 0.06 \mathrm{mmol}$) in tetrahydrofuran (1.0 mL). The reaction was stirred at room temperature 16 h . Crude was purified by flash column chromatography using cyclohexane: ethyl acetate from 100:0 to 95:5 to 90:10. 9-(Benzo[d][1,3]dioxol-5ylmethyl)acridine ($5,85 \%$ yield) was obtained as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 8.31-8.18(\mathrm{~m}, 4 \mathrm{H}), 7.84-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 1 \mathrm{H})$, $6.62-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR: $\delta 149.1$ (2C), 148.1, 146.3, 143.6, 133.4, 130.6 (2C), 130.0 (2C), 126.3 (2C), 125.8 (2C), 124.8 (2C), 121.3, 108.8, 108.6, 101.1, 32.9 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$: 314.1176; found: 314.1157.

6. Nuclear magnetic resonance spectra

2-Cyclohexyl-4-methylquinoline (3a)

2-Isopropyl-4-methylquinoline (3b)

4-Methyl-2-(tetrahydro-2H-pyran-4-yl)quinoline (3c)

tert-Butyl 4-(4-methylquinolin-2-yl)piperidine-1-carboxylate (3d)

2-Cyclopentyl-4-methylquinoline (3e)

4-Methyl-2-(tetrahydrofuran-3-yl)quinoline (3f)

2-(tert-Butyl)-4-methylquinoline (3g)

2-Ethyl-4-methylquinoline (3h)

4-Methyl-2-phenethylquinoline (3i)

2-Cyclohexyl-7-methoxy-4-methylquinoline (3j)

7-Bromo-2-cyclohexyl-4-methylquinoline (3k)

6-Bromo-2-cyclohexyl-4-methylquinoline (3I)

2-Cyclohexyl-4-phenylquinoline (3m)

2-(2-Cyclohexylquinolin-4-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3n)

4-Bromo-2-cyclohexylquinoline (30)

Methyl 6-bromo-2-cyclohexylquinoline-4-carboxylate (3p)

2-Cyclohexyl-N-methylquinoline-4-carboxamide (3q)

4-Cyclohexyl-2-methylquinoline (3r)

6-Chloro-4-cyclohexyl-2-methylquinoline (3s)

Methyl 4-cyclohexyl-2-methylquinoline-6-carboxylate (3t)

2-Cyclohexylquinoline (3u)

4-Cyclohexylquinoline (3u')

1-Cyclohexyl-3-methylisoquinolin-4-ol (3v)

2-Cyclohexyl-4,7-diphenyl-1,10-phenanthroline (3w)

6-Cyclohexylphenanthridine (3x)

2-Cyclohexylbenzo[d]thiazole (3y)

2-Cyclohexyl-1-methyl-1H-benzo[d]imidazole (3z)

5,7-Dichloro-2-cyclohexyl-4-(4-fluorophenoxy)quinoline (3aa)

(R)-(2-Cyclohexyl-6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanol (3ab)

(R)-(2-Cyclohexylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanol (3ac)

(S)-11-Cyclohexyl-4-ethyl-4-hydroxy-1,12-dihydro-14H-pyrano[3',4':6,7]indolizino[1,2-b] quinoline-3,14(4H)-dione (3ad)

Methyl 6-bromo-2-isopropylquinoline-4-carboxylate (6)

Methyl 2-cyclohexylquinoline-4-carboxylate (8)

2-Cyclohexylquinoline-4-carboxylic acid (9)

3-Cyclohexyl-N,2-diphenylpropanamide (11)

9-(tert-Butyl)-9,10-dihydroacridine (4a)

9-Allyl-9,10-dihydroacridine (4b)

9-Benzyl-9,10-dihydroacridine (4c)

9-(4-Chlorobenzyl)-9,10-dihydroacridine (4d)

9-(2-Iodobenzyl)-9,10-dihydroacridine (4e)

9-(4-(Trifluoromethyl)benzyl)-9,10-dihydroacridine (4f)

(1000

9-(3,5-Dimethoxybenzyl)-9,10-dihydroacridine (4g)

9-(Benzo[d][1,3]dioxol-5-ylmethyl)-9,10-dihydroacridine (4h)

6-Bromo-2-isopropylquinoline-4-carboxylic acid (7) NMR Solvents: $\mathrm{CDCl}_{3}+$ few drops $\mathrm{CD}_{3} O D$

9-(Benzo[d][1,3]dioxol-5-ylmethyl)acridine (5)

7. Cyclic Voltammetry

CVs were performed under argon atmosphere at room temperature, using 0.25 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ solution in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ as electrolyte. Measurements were carried out by using an Ivium CompaqStat potentiostat interfaced with a computer. A standard three-electrode electrochemical cell was used. Potentials were referred to an $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{TBAPF}_{6} 0.4 \mathrm{M}$ reference electrode in ethylene glycol, and measured potentials were calibrated using an internal Fc/Fc+ standard. The working electrode used to perform the experiments was a glassy carbon electrode. The counterelectrode consisted of a Pt electrode immersed in a conductive solution.

Figure S1. Cyclic voltammetry of 4-methylquinoline (1a) (blue) vs 4-methylquinoline (1a) activated with 1 equivalent of diphenyl phosphate (black). They were measured in $\mathrm{CH}_{3} \mathrm{CN}(0.25$ $\mathrm{M} \mathrm{TBAPF}_{6}$) at $100 \mathrm{mV} / \mathrm{s}$ using glassy carbon electrode as $\mathrm{WE}, \mathrm{Ag} / \mathrm{AgCl}$ as RE and Pt bar as CE.

Figure S2. Cyclic voltammogram of iodocyclohexane (2a) under argon (orange) vs iodocyclohexane (2a) with the oxygen from the solvent (purple). They were measured in $\mathrm{CH}_{3} \mathrm{CN}(0.25 \mathrm{M} \mathrm{TBAPF}$) at $100 \mathrm{mV} / \mathrm{s}$ using glassy carbon electrode as $\mathrm{WE}, \mathrm{Ag} / \mathrm{AgCl}$ as RE and Pt bar as CE.

8. References

1. For the synthesis of starting material $\mathbf{1 i}$ and $\mathbf{1 j}$ see: Taylor, Alexander M., WO2018218133, 2018. For the synthesis of starting material 10 see: Fei, H.; Xu, Z.; Wu, H.; Zhu, L.; Jalani, H. B.; Li, G.; Fu, Y.; Lu, H. Stereospecific Electrophilic Fluorocyclization of α, β-Unsaturated Amides with Selectfluor. Org. Lett., 22 (7), 2651-2656 (2020).
2. a) Wang, Y.; Gu, M. The Concept of Spectral Accuracy for MS. Anal. Chem., 82, 7055-7062 (2010); b) Y. Wang, Methods for Operating MS Instrument Systems, United States Patent N ${ }^{\circ}$. 6,983,213, 2006; c) Ochiaia, N.; Sasamoto, K.; MacNamara, K. Characterization of sulfur compounds in whisky by full evaporation dynamic headspace and selectable one-dimensional/two-dimensional retention time locked gas chromatography-mass spectrometry with simultaneous element-specific detection. Journal of Chromatography A, 1270, 296-304 (2012); d) Ho, H.; Lee, R.; Chen, C.; Wang, S.; Li Z.; Lee, M. Identification of new minor metabolites of penicillin G in human serum by multiple-stage tandem mass spectrometry. Rapid Commun Mass Spectrom., 25, 25-32 (2011).
3. Li, Z.; Wang, X.; Xia, S.; Jin, J. Ligand-Accelerated Iron Photocatalysis Enabling Decarboxylative Alkylation of Heteroarenes. Org. Lett., 21, 4259-4265 (2019).
4. Presset, M.; Fleury-Brégeot, N.; Oehlrich, D.; Rombouts, F.; Molander, G.A. Synthesis and Minisci Reactions of Organotrifluoroborato Building Blocks. J. Org. Chem., 78, 4615-4619 (2013).
5. Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Visible-Light-Initiated, Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with N -Heterocycles. Org. Lett., 20, 4686-4690 (2018).
6. Hu, X.; Li, G.-X.; He, G.; Chen, G. Minisci C-H alkylation of N-heteroarenes with aliphatic alcohols via β-scission of alkoxy radical intermediates. Org. Chem. Front., 6, 3205-3209 (2019).
7. Wang, J.; Li, G.-X.; He, G.; Chen, G. Photoredox-Mediated Minisci Alkylation of NHeteroarenes using Carboxylic Acids and Hypervalent lodine. Asian J. Org. Chem., 7, 13071310 (2018).
8. Chen, X.; Sun, W.; Huang, S.; Zhang, H.; Lin, G.; Li, H.; Qiao, J.; Li, L.; Yang, S. Discovery of Potent Small-Molecule SIRT6 Activators: Structure-Activity Relationship and AntiPancreatic Ductal Adenocarcinoma Activity. J. Med. Chem., 63, 10474-10495 (2020).
9. Rammal, F.; Gao, D.; Boujnah, S.; Gaumont, A.-C.; Hussein, A. A.; Lakhdar, Sami. Visible-Light-Mediated C-H Alkylation of Pyridine Derivatives. Organic Letters, 22, 7671-7675 (2020).
10. Dong, J.; Lyu, X.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Visible-light-mediated Minisci C-H alkylation of heteroarenes with unactivated alkyl halides using O 2 as an oxidant. Chem. Sci., 10, 976-982 (2019).
