Supporting Information

Reducing the Internal Reorganization Energy via Symmetry Controlled π -electron Delocalization

Chi-Chi Wu^a, Elise Y. Li^{a*} and Pi-Tai Chou^{b*}

^a Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingchow Road, Taipei 116, Taiwan.

^b Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.

Table S1. Computational results (and experimental values in parentheses) of absorption and emission wavelength (in nm) for cyanine systems with different

<u>(a)</u>						
	SJ	/m	Asym			
	Absorption	Emission	Absorption	Emission		
Cy5	506.8 (652)	588.5(675)	409.8	574.8		
Cy6	390.1	531.9	438.7	663.0		
Cy7	590 (750)	694.7(775)	436.5	647.2		
Cy8	416.0	598.0	466.3	712.3		
Cy7-trimer	489.6	588.4	446.9	603.7		
Por-tetracene	925.3	1189.6	668.4	1342.1		

functionals (a) ω B97XD (b) B3LYP

(b)

	رS	/m	Asj	/m
	Absorption	Emission	Absorption	Emission
Cy5	539.5 (652)	628.8(675)	490.8	600.8
Cy6	462.8	575.6	561.6	708.9
Cy7	601.4 (750)	699.4(775)	444.7	690.3
Cy8	507.6	646.9	603.2	766.4

Table S2. Optical excitation and molecular orbital contributions of cyanine models (a) symmetric and asymmetric linear cyanines (b) symmetric and asymmetric trimeric cyanines (c) symmetric and asymmetric porphyrin-6, 13, 19,

26-tetracene

(a)							
		no.	E/eV	nm	f	Contribution	weight
s <i>ym-</i> Cy5-c	Absorption	S_1	2.45	506.8	2.1805	HOMO→LUMO	95%
	(@S ₀ -opt)	S_2	4.16	297.7	0.0423	HOMO-1→LUMO	82%
	Emission	S_1	2.11	588.5	2.3071	HOMO→LUMO	95%
	(@S ₁ -opt)	S_2	3.85	321.8	0.0166	HOMO-1→LUMO	81%
	Absorption	S_1	3.02	409.8	2.1639	HOMO→LUMO	91%
<i>asym</i> -Cy5-n		S_2	4.40	281.4	0.1231	HOMO-1→LUMO	53%
	(@S0-0hr)					HOMO→LUMO+1	33%

	Emission	S_1	2.16	574.8	2.4457	HOMO→LUMO	95%
	(@S ₁ -opt)	S_2	3.90	317.7	0.0468	HOMO-1→LUMO	72%
		S_1	3.18	390.1	2.6178	HOMO→LUMO	93%
	Absorption		4.28	289.7	0	HOMO-1→LUMO	28%
	(@S ₀ -opt)	S_2				HOMO-1→LUMO+2	16%
						HOMO→LUMO+1	38%
sym-Cyb-n		S_1	2.34	531.9	2.7151	HOMO→LUMO	96%
	Emission	S_2	3.96	312.6	0	HOMO-1→LUMO	54%
	(@S ₁ -opt)					HOMO→LUMO+1	17%
						HOMO→LUMO+3	17%
	Absorption	S_1	2.83	438.7	2.3539	HOMO→LUMO	85%
acum Cuf c	(@S ₀ -opt)	S_2	3.96	313.4	0.0013	HOMO-1→LUMO	70%
asym-cyo-c	Emission	S_1	1.87	663.0	2.6419	HOMO→LUMO	94%
	(@S ₁ -opt)	S_2	3.26	379.8	0.0112	HOMO-1→LUMO	83%
	Absorption	S_1	2.08	594.8	2.1143	HOMO→LUMO	94%
	(@S ₀ -opt)	S_2	3.77	328.8	0.2644	HOMO-1→LUMO	80%
sym-Cy7-c	Emission	S_1	1.75	708.2	2.2379	HOMO→LUMO	95%
	(@S ₁ -opt)	S_2	3.49	355.1	0.2632	HOMO-1→LUMO	77%
	Absorption	S_1	2.80	443.3	2.0415	HOMO→LUMO	88%
	Absorption	ç	4.03	307.6	0.2734	HOMO-1→LUMO	68%
25Vm-Cv7-n	(@S ₀ -opt)	32				HOMO→LUMO+1	20%
asynii-Cyr-n	Emission	S_1	1.82	679.6	2.2335	HOMO→LUMO	95%
	(@S_opt)	\$	3.44	359.9	0.3443	HOMO-1→LUMO	75%
	(@S1-oht)	02				HOMO→LUMO+1	17%
	Absorption	S ₁	2.98	416.0	3.1244	HOMO→LUMO	92%
cum Cu8 n	(@S ₀ -opt)	S_2	4.07	304.3	0	HOMO-1→LUMO	66%
Synn-Cyo-n	Emission	S_1	2.07	598.0	3.1792	HOMO→LUMO	96%
	(@S ₁ -opt)	S_2	3.63	341.8	0	HOMO-1→LUMO	72%
	Absorption	S_1	2.66	466.3	2.8074	HOMO→LUMO	84%
	$(@S_{a-ont})$	S	3.83	323.8	0.0258	HOMO-1→LUMO	57%
asvm-Cv8-c	(@50-ohr)	02				HOMO→LUMO+1	25%
uojiii ojo o	Emission	S_1	1.74	712.28	3.0994	HOMO→LUMO	93%
	(@S ₁ -ont)	S ₂	3.13	396.53	0.0066	HOMO-1→LUMO	78%
	(@SI 0Pt)	•2				HOMO→LUMO+1	15%
(b)							
			no. E/	/eV nm	n f	Contribution	weight
<i>sym</i> -Cy7-trim	sym-Cy7-trimer Absorption S_1 2.53 489.6 1.3143 HOMO \rightarrow LUMO 87%						

	(@S ₀ -opt)	S_2	2.55	486.9	1.099	HOMO→LUMO+1	86%
	Emission	S_1	2.11	588.4	1.4742	HOMO→LUMO	94%
	(@S ₁ -opt)	S_2	2.60	477.5	1.0403	HOMO→LUMO+1	86%
	Absorption	S_1	2.77	446.9	1.2682	HOMO→LUMO	93%
	(@S ₀ -opt)	S_2	3.49	355.1	1.1234	HOMO→LUMO+1	78%
asym-cy/-trimer	Emission	S_1	2.05	603.7	1.2613	HOMO→LUMO	94%
	(@S ₁ -opt)	S_2	2.85	434.4	1.461	HOMO→LUMO+1	88%

		no.	E/eV	nm	f	Contribution	weight
			1.34	925.27	0.0287	HOMO-1→LUMO+1	35%
	Absorption	5 1				HOMO→LUMO	65%
	(@S ₀ -opt)	c	1.72	720.81	0.051	HOMO-1→LUMO	29%
<i>sym</i> -Por-		S_2				HOMO→LUMO+1	71%
tetracene		S	1.04	1189.6	0.1290	HOMO-1→LUMO+1	28%
	Emission	01				HOMO→LUMO	80%
	(@S1-opt)	S.	1.09	1132.6	0.0127	HOMO-1→LUMO	43%
		\mathbf{O}_2				HOMO→LUMO+1	66%
	Absorption	S.	1.85	668.4	0.0341	HOMO-1→LUMO	37%
	$(@S_{a-ont})$	\mathbf{O}_1				HOMO→LUMO	60%
asvm-	(@30-oht)	S_2	2.44	509.0	0.1687	HOMO→LUMO	79%
Por-tetracene		S.	0.92	1342.1	0.0403	HOMO-1→LUMO+1	42%
	Emission	\mathbf{O}_1				HOMO→LUMO	74%
	(@S1-opt)	S	1.28	971.2	0.0238	HOMO-1→LUMO	44%
		\mathbf{U}_2				HOMO→LUMO+1	62%

(c)

Table S3. Dihedral angles (D1, D2 and D3) of sym-Cy7-trimer

top view

	@S₀-opt	@S₁-opt
D1	179.11°	177.22°
D2	16.89°	10.24 °
D3	-31.44°	- 20.44 °

Table S4. Computational (and Experimental) results of Absorption and

П	Δ	5-[)-A	6-D	-A
U	Absorption	Emission	Absorption	Emission	
NH ₂	NO	452.6	631.3	417.8	504.7
NMe ₂	NO	465.6	668.6	401.6	520.6
NPh_2	NO	437.6	544.3	491.6	643.0
TPA	NO	439.1 (542)	591.3 (603)	363.7	568.3

Emission wavelength (in nm) in D-A compounds

Table S5. Optical excitation and molecular orbital contributions of donoracceptor models, 5-D-A and 6-D-A (D=NH₂, NMe₂ and TPA) (a) A=NO(b) A=NT (a)

		no.	E/eV	nm	f	Contribution	weight
	Absorption	S ₁	2.74	452.6	0.2503	HOMO→LUMO	98%
	(@S ₀ -opt)	S_2	3.63	341.9	0	HOMO→LUMO+1	94%
5-NH ₂ -NO	Emission	\mathbf{S}_{1}	1.96	631.3	0.2616	HOMO→LUMO	99%
	(@S1-opt)	S_2	0.90	426.7	0	HOMO→LUMO+1	96%
	Absorption	S ₁	2.97	417.8	0.256	HOMO→LUMO	98%
	(@S ₀ -opt)	S_2	3.38	366.6	0	HOMO-1→LUMO	98%
6-NH ₂ -NO	Emission	\mathbf{S}_{1}	2.46	504.7	0.3287	HOMO→LUMO	98%
	(@S1-opt)	S_2	3.00	412.5	0	HOMO-1→LUMO	98%
	Absorption	S ₁	2.66	465.6	0.3359	HOMO→LUMO	97%
5 NM A NO	(@S ₀ -opt)	S_2	3.56	348.6	0.0001	HOMO→LUMO+1	89%
5-INMe ₂ -INO	Emission	S_1	1.85	668.6	0.3209	HOMO→LUMO	98%
	(@S1-opt)	S_2	2.75	450.2	0	HOMO→LUMO+1	96%
	Absorption	S ₁	3.09	401.6	0.1778	HOMO→LUMO	98%
(NM & NO	(@S ₀ -opt)	S_2	3.34	370.6	0.0042	HOMO-1→LUMO	98%
o-inivie ₂ -ino	Emission	S_1	2.38	520.6	0.2385	HOMO→LUMO	98%
	(@S1-opt)	S_2	2.77	446.9	0.0057	HOMO-1→LUMO	98%
	Absorption	S ₁	2.82	439.0	1.3174	HOMO→LUMO	70%
T TRA NO	(@S ₀ -opt)	S_2	3.46	357.8	0	HOMO−1→LUMO	73%
5-1PA-NO	Emission	S_1	2.10	591.3	1.5035	HOMO→LUMO	87%
	(@S ₁ -opt)	S_2	3.10	399.4	0	HOMO−1→LUMO	73%
	Absorption	S ₁	3.12	397.2	1.1699	HOMO-2→LUMO	19%
(TDA NO	Ausorption					HOMO→LUMO	74%
0-11'A-NU	(@S ₀ -opt)	S_2	3.83	323.7	0.0011	HOMO-1→LUMO	73%
	Emission	S_1	2.18	568.3	1.2155	HOMO→LUMO	90%

$(@S_1-opt) S_2 3.42 362.2 0.0034$	HOMO-1→LUMO	84%
S_1 2.52 491.6 0.5679	HOMO→LUMO	93%
Absorption $(@S, opt) = S = 2.28 = 266.4 = 0.00$	HOMO-1 → LUMO	44%
$(ws_0-opt) = s_2 = 5.38 = 500.4 = 0.00$	HOMO→LUMO+1	51%
S-Npii_2-NO S ₁ 1.93 643.0 0.6554 Emission	HOMO→LUMO	95%
(@S ext) S = 2.00 415.2 0.00	HOMO-1 → LUMO	31%
$(@S_1-opt)$ S_2 2.33 415.2 0.00	HOMO→LUMO+1	64%
Absorption S ₁ 2.83 437.6 0.00	HOMO → LUMO	92%
Absorption S_1 2.83 437.6 0.00 (@S_0-opt) S_2 2.88 430.8 0.0994	HOMO→LUMO HOMO−1→LUMO	92% 92%
Absorption S1 2.83 437.6 0.00 (@S0-opt) S2 2.88 430.8 0.0994 6- Nph2-NO Emission S1 2.28 544.3 0.0355	HOMO→LUMO HOMO−1→LUMO HOMO→LUMO	92% 92% 96%

(b)

		no.	E/eV	nm	f	Contribution	weight
5-NH ₂ -NT	Absorption	S_1	2.67	464.8	0.1856	HOMO→LUMO	98%
	(@S ₀ -opt)	S_2	3.38	3671	0	HOMO→LUMO+1	95%
	Emission	\mathbf{S}_{1}	1.89	656.6	0.2015	HOMO→LUMO	98%
	(@S1-opt)	S_2	2.65	468.0	0	HOMO→LUMO+1	97%
	Absorption	S ₁	2.80	442.7	0.4195	HOMO→LUMO	97%
(NIL NT	(@S ₀ -opt)	S_2	3.32	372.8	0	HOMO-1→LUMO	96%
0-INH2-INI	Emission	\mathbf{S}_{1}	2.34	528.6	0.5499	HOMO→LUMO	98%
	(@S1-opt)	S_2	2.99	414.0	0	HOMO-1→LUMO	96%
	A h	S ₁	3.53	351.3	0.298	HOMO→LUMO	96%
	Absorption	S_2	3.54	350.5	0.0012	HOMO-2→LUMO+1	17%
5-NMe ₂ -NT	(@S ₀ -opt)					HOMO-1→LUMO	76%
	Emission	\mathbf{S}_{1}	1.84	671.9	0.2624	HOMO→LUMO	98%
	(@S1-opt)	S_2	2.60	477.2	0	HOMO→LUMO+1	96%
	Absorption	S ₁	2.89	428.2	0.3091	HOMO→LUMO	97%
6-NMe ₂ -NT	(@S ₀ -opt)	S_2	3.29	377.1	0.0061	HOMO-1→LUMO	97%
	Emission	S_1	2.28	542.7	0.4176	HOMO→LUMO	98%

	(@S ₁ -opt)	S ₂	2.84	436.3	0.0097	HOMO-1→LUMO	97%
	Absorption	S_1	2.73	453.8	0.9992	HOMO→LUMO	84%
	(@S ₀ -opt)	S_2	3.20	387.2	0	HOMO-1→LUMO	88%
5-TPA-NT	Emission	\mathbf{S}_1	2.21	561.2	1.1952	HOMO→LUMO	86%
	(@S ₁ -opt)	S_2	3.17	391.1	0	HOMO-1→LUMO	57%
						HOMO→LUMO+1	28%
	Absorption	S_1	3.36	368.4	0.1698	HOMO-2→LUMO	38%
	Absorption					HOMO→LUMO	57%
(TDA NT	(@S ₀ -opt)	S_2	3.57	346.8	0.0018	HOMO-1→LUMO	84%
0-1 ľA-N I	E-minsion	\mathbf{S}_1	2.63	471.1	0.2472	HOMO→LUMO	82%
		S_2	3.26	380.6	0.1115	HOMO-2→LUMO	33%
	(@S1-opt)					HOMO-1→LUMO	48%

Figure S1. Frontier molecular orbitals and transition density of symmetric and asymmetric cyanine systems (m=2)

Figure S2. Frontier molecular orbitals of symmetric and asymmetric Cy7-

. .

trimer					
	HOMO-1	НОМО	LUMO	LUMO+1	Transition Density
sym-Por-tetracene-a					
A sym-Por-tetracene-n					

Figure S3. Frontier molecular orbitals and transition density of symmetric and asymmetric Por-tetracene

Figure S4. NTO analysis and transition density of (a) 5-NMe₂-NT and NMe₂-NT

(b) 5-TPA-NT and 6-TPA-NT