Expanding the hydride chemistry: Antiperovskites $\mathrm{A}_{3} \mathrm{MO}_{4} \mathrm{H}(\mathrm{A}=\mathrm{Rb}$, $\mathrm{Cs} ; \boldsymbol{M}=\mathrm{Mo}, \mathrm{W}$) introducing the transition oxometalate hydrides

Alexander Mutschke, Annika Schulz, Dr. Marko Bertmer, Dr. Clemens Ritter, Prof. Dr. Antti J. Karttunen, Dr. Gregor Kieslich, Dr. Nathalie Kunkel

Table of Content

1 Experimental section 3
1.1 Synthesis 3
1.2 Powder X-ray diffraction 3
1.3 Neutron diffraction 3
1.4 Rietveld Refinement 3
1.5 Raman spectroscopy 3
1.6 UV/VIS absorption spectroscopy 3
1.7 Elemental analysis 4
1.8 Solid-state NMR 4
1.9 Quantum chemical calculations4
2 Results and discission5
2.1 Structural analysis 5
2.1.1 Neutron diffraction 5
2.1.2 Supplementary X-ray diffraction data (Hydridic samples) 13
2.2 Ionic radii for determination of the Goldschmidt tolerance factors 17
2.3 Crystal structure of the $\mathrm{K}_{3} \mathrm{SO}_{4} \mathrm{~F}$-structure type 18
2.4 Difference Fourier maps 19
$2.5 \quad{ }^{2} \mathrm{H}$ MAS NMR Spectroscopy 23
2.6 Calculated electronic band structures and UV/Vis Tauc plots 25
2.7 Vibrational Spectroscopy (experimental and DFT-PBEO) 28
2.8 Elemental Analysis 32
2.9 Optimized crystal structures as CIF (DFT-PBEO) 33
3 Literature 36

1.1 Synthesis

Due to the air and moisture sensitivity of the reactants and the resulting products, all preparative and analytical operations were carried out in argon-filled gloveboxes. The O_{2} and $\mathrm{H}_{2} \mathrm{O}$ concentrations were kept below 0.5 ppm respectively.
The transition oxometalate hydrides $A_{3} M O_{4} \mathrm{H}(A=\mathrm{Rb}, \mathrm{Cs} ; M=\mathrm{Mo}, \mathrm{W})$ can be synthesized by the solid-state reaction of in-situ formed alkaline hydride with the quasi-binary oxometalate salts $A_{2} M_{0}$. ($A=\mathrm{Rb}, \mathrm{Cs} ; M=\mathrm{Mo}, \mathrm{W}$)
The binary molybdate salts were synthesized by a solid-state reaction of MoO_{3} (Alfa Aesar, 99.5%) with $A_{2} \mathrm{CO}_{3}$. $\left(\mathrm{Rb}_{2} \mathrm{CO}_{3}\right.$: Chempur, $99.9 \% ; \mathrm{Cs}_{2} \mathrm{CO}_{3}$: Alfa Aesar, $\geq 99 \%$) in stoichiometric ratios. Thereto, the two powders were grinded thoroughly in an agate mortar, transferred in a corundum crucible and heated at $620^{\circ} \mathrm{C}$ for 15 h . If residual reactants were observed in short scan X-ray diffraction patterns, the product was reground and annealed again with the same temperature program.
The tungstate salts $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ (Chempur, 99.9%), $\mathrm{Cs}_{2} \mathrm{WO}_{4}$, (Alfa Aesar, 99\%), were purchased commercially. Before use, the binary oxometalate salts were dried under dynamic vacuum at $200^{\circ} \mathrm{C}$ for 24 h , twice, to remove any traces of moisture.
To synthesize the transition oxometalate hydrides, the alkaline metal (Rb: Alfa Aesar, 99.75\%, Cs: Alfa Aesar, 99.8%) is mixed thoroughly in an agate mortar with the dry binary transition metalate salt for several minutes. The reactive mixture is then heated in a self-made autoclave made of a hydrogen-resistant alloy (Inconel Böhler 718) at $255{ }^{\circ} \mathrm{C}$ (if $M=\mathrm{Mo}$) or at $330^{\circ} \mathrm{C}$ (if $M=\mathrm{W}$) and applied hydrogen (Westfalen AG, 99.9\%)/deuterium (AirLiquide, 99.9%) pressure of 10 bars. During the reaction, the alkaline metal is hydrogenated/deuterated to form the alkaline hydride/deuteride ($\mathrm{RbH} / \mathrm{D}$ or $\mathrm{CsH} / \mathrm{D}$) which readily reacts with the binary transition metalate salt to form the products $A_{3} M O_{4} \mathrm{H} / \mathrm{D}$.

1.2 Powder X-ray diffraction

Powder X-ray diffraction data were recorded on a Stoe STADI-P in transmission geometry with either Cu-K $\mathrm{K}_{\alpha 1}$ ($\lambda=$ $1.54059 \AA$) or with Mo- $\mathrm{K}_{\alpha 1}(\lambda=0.70930 \AA$) radiation. Both setups are equipped with a curved Ge -monochromator (111) and a Dectris Mythen DCS 1K solid-state detector. To avoid decomposition of the samples during measurements, the powders were placed in sealed in glass capillaries ($\varnothing 0.3 \mathrm{~mm}, 0.01 \mathrm{~mm}$ wall thickness). Due to severe X -ray absorption at $\mathrm{Cu}-\mathrm{K}_{\mathrm{a} 1}$ radiation and fluorescence at $\mathrm{Mo}-\mathrm{K}_{\mathrm{a} 1}$ radiation, $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H} / \mathrm{D}$ was sealed within $\varnothing 0.1 \mathrm{~mm}$ glass capillaries to minimize these effects.

1.3 Neutron diffraction

Neutron powder diffraction data of all four deuterium analogue compounds were recorded at room temperature at the two-axis high-resolution powder neutron diffractometer D2B at the Institut Laue-Langevin (ILL), Grenoble using a wavelength of $1.594 \AA$. Each powder diffraction pattern was recorded over the course of 5 h . For the measurement $\sim 4 \mathrm{~g}$ of the sample were enclosed in 9 mm vanadium cylinders and sealed airtight with indium wires

1.4 Rietveld Refinement

Crystal structure refinement of X-ray diffraction and neutron diffraction data was done using the program package FullProf ${ }^{[1]}$ with the Rietveld method and the fundamental parameter approach. Profiles were fitted using pseudoVoigt functions. The zero shift, cell parameters, three form factors (Caglioti parameters U, V, W), either two (neutron diffraction data) or four (X-ray diffraction data) asymmetry parameters, atomic positions, isotropic and if applicable, anisotropic thermal displacement parameters were refined. The background correction was done with linear interpolations between refinable background points.

1.5 Raman spectroscopy

Raman spectra were recorded on the polycrystalline samples sealed in glass capillaries ($\varnothing 0.3 \mathrm{~mm}, 0.1 \mathrm{~mm}$ wall thickness) on a Renishaw inVia Reflex Raman System equipped with a CCD detector. The wavelength of the laser was $\lambda=532 \mathrm{~nm}$ and the resulting spectra were recorded in the range of $100-1200 \mathrm{~cm}^{-1}$.

1.6 UV/VIS absorption spectroscopy

UV-Vis absorption spectra were recorded on a Shimadzu UV-3600 Plus UV-Vis-NIR spectrophotometer. Thin films of the polycrystalline samples were placed within two quartz glass slides under Argon atmosphere. The glass slides were sealed airtight with vacuum grease for measurement. Direct and possible indirect bandgaps were determined from the materials absorption α obtained by the acquired solid-state UV-Vis absorption spectra.

Applied formula:
$E(\mathrm{eV})=\frac{1240}{\lambda(\mathrm{~nm})}(\alpha \mathrm{h} v)^{\frac{1}{r}}$
r is set to $1 / 2$ for an allowed, direct transition (direct bandgap). ${ }^{[2]}$

1.7 Elemental analysis

Elemental analysis to determine and prove the hydrogen abundance of the hydridic samples has been conducted by CHNS analysis on a Vario El microanalyzer. Thereto, roughly 3 mg of the analyzed substance was packed within tin crucibles and folded within further tin crucibles to keep the samples air-tight until measurement.
Elemental analysis to determine the tungsten and molybdenum content has been conducted via alkaline pulping of the samples and consecutive photometric analysis. Thereto, 5 mg (molybdenum determination) or 12 mg (tungsten determination) of the respective samples were packed within aluminium boats beforehand and sealed airtight until measurement. The tungsten determination has slight deviations ($\sim 1 \%$) due to strong hygroscopic properties of the tungstate salts.

1.8 Solid-state NMR

Measurements were taken at a magnetic field strength of 17.6 T at frequencies of 748.43 MHz and 114.88 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$, respectively. Magic angle spinning (MAS) was done at rotation frequencies of 12 and 5 kHz . Single pulse excitation with recycle delays of 60 s and 2000 s for ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ were used, respectively. Recycle delays were chosen to be long enough for full relaxation; exact spin-lattice relaxation measurements (T_{1}) were not done. In case of ${ }^{2} \mathrm{H}$ full relaxation might not have been reached for the parent components. The transition metal hydrides with negative shifts relax much faster. Spectra are referenced indirectly to TMS or $\mathrm{d}-\mathrm{TMS}$ via the ${ }^{1} \mathrm{H}$ shift of a sample of PDMS (0.07 ppm to TMS).

1.9 Quantum chemical calculations

The geometries, electronic properties, and vibrational properties of the four compounds $A_{3} M \mathrm{O}_{4} \mathrm{H}(A=\mathrm{Rb}, \mathrm{Cs} ; M=$ Mo, W) were studied with the CRYSTAL17 program package ${ }^{[3]}$. PBEO hybrid density functional method and Gaussian-type basis sets were used. ${ }^{[4,5]}$ The basis sets for $\mathrm{Rb}, \mathrm{Cs}, \mathrm{Mo}, \mathrm{W}, \mathrm{O}$, and H have been previously derived from the molecular Karlsruhe def2 basis sets. ${ }^{[6]}$. Polarized triple-zeta-valence (TZVP) basis sets were used for Mo, W, O, and H polarized split-valence basis set for Rb and Cs (SVP) ${ }^{[7]}$. The reciprocal space was sampled using a $4 \times 4 \times 4$ Monkhorst-Pack-type k-mesh for the tetragonal structures and $3 \times 3 \times 3$ Monkhorst-Pack-type k-mesh for the orthorhombic structure of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}^{[8]}$. Tightened tolerance factors (TOLINTEG) of $8,8,8,8$ and 16 were used for the evaluation of the Coulomb and exchange integrals. Both the atomic positions and lattice constants were fully optimized within the constraints imposed by the space group symmetry. The optimized lattice parameters a and c for the tetragonal phases differed from the experimental parameters by -0.1% and $+1.2 \%$ for $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H},+0.1 \%$ and $+1.1 \%$ for $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H},+0.1 \%$ and $+0.1 \%$ for $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ respectively. The optimized and experimental lattice parameters a, b and c for the orthorhombic phase $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$ differed $+0.4 \%,+0.7 \%$, and $+0.5 \%$, respectively. Raman intensities and corresponding spectra were obtained using the computational schemes implemented in CRYSTAL. ${ }^{[9]}$ The optimized structures of the tetragonal structures were confirmed to be true local minima with no imaginary frequencies. The optimized structure of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$ showed a very small imaginary frequency of $-16.4 \mathrm{~cm}^{-1}$, which did not disappear when the structure was distorted along the mode (tungstate deformation vibration, B_{14}). We thus expect this mode to arise for example from small numerical inaccuracies in the numerical integration of the exchange-correlation functional. The Raman intensities have been calculated for a polycrystalline powder sample (total isotropic intensity in arbitrary units). For the simulation of the Raman spectra the temperature and laser wavelength were set to values corresponding to the experimental setup ($\mathrm{T}=298.15 \mathrm{~K}, \lambda=532 \mathrm{~nm}$). The peak profile of the final spectra were simulated a using pseudo-Voigt peak profile (50:50, Lorentzian: Gaussian) and FWHM of $8 \mathrm{~cm}^{-1}$.

The solid-state NMR shielding tensors were calculated with the DFT-PBE method ${ }^{[4]}$, using the CASTEP program package and the GIPAW formalism as implemented in CASTEP-NMR ${ }^{[10]}$. Ultrasoft pseudopotentials generated with the on-the-fly scheme and a plane-wave basis were applied ${ }^{[11]}$. The kinetic energy cutoff was set to 630 eV for $A_{3} M O_{4} \mathrm{H}$ ($A=\mathrm{Rb}$, Cs; $M=\mathrm{Mo}, \mathrm{W}$), while a cutoff of 450 eV was used for RbH and CsH . The reciprocal space was sampled using the following Monkhorst-Pack-type k-meshes: $4 \times 4 \times 4$ for tetragonal $A_{3} \mathrm{MO}_{4} \mathrm{H}$ structures, $2 \times 2 \times 2$ for $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$, and $8 \times 8 \times 8$ for $\mathrm{RbH}, \mathrm{CsH}$. The NMR shielding tensors of $A_{3} \mathrm{MO}_{4} \mathrm{H}$ were calculated at both the experimental geometry and DFT-PBE optimized geometry, but the resulting ${ }^{1} \mathrm{H}$ NMR shifts are practically similar at both geometries. In the geometry optimization, both the lattice parameters and atomic positions were fully optimized with a total energy convergence criterion of $0.5 \times 10^{-6} \mathrm{eV} /$ atom. Molecular SiMe_{4} was used as a reference system for calculating the ${ }^{1} \mathrm{H}$ NMR shifts. The calculations on SiMe_{4} were carried out in a primitive cubic cell ($a=15 \AA$) using a plane-wave basis set cut-off of 700 eV and Γ-point for reciprocal space sampling. The structure of the SiMe_{4} molecule was relaxed within the T_{d} point group. The isotropic ${ }^{1} \mathrm{H}$ shielding of SiMe_{4} is 31.01 ppm .

2 Results and discission

2.1 Structural analysis

2.1.1 Neutron diffraction

$\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}(\mathrm{RT})$

Figure S 1 Rietveld refinement plot of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}(14 / \mathrm{mcm}, 140)$ at room temperature based on neutron diffraction data. The grey area was cut out during refinement as this reflection was not assignable. Bragg markers from top to bottom: $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ (89.3(7) wt. \%), $\mathrm{Rb}_{2} \mathrm{MoO}_{4}$ (Pnam) (6.2(3) wt. \%), RbD (Fm${ }^{3}$) (4.6(1) wt. \%)

Table S1. Rietveld refinement paramaters of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature with the program Fullprof ${ }^{[1]}$

$\mathbf{R b}_{3} \mathbf{M o O}_{4} \mathbf{D}$	
Space group	$I 4 / \mathrm{mcm}(140)$
Calculated density $\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	3.655
Step scan increment	0.05
2θ range $\left({ }^{\circ}\right)$	$10-158$
Wavelength (\AA)	1.594
Number of profile points	2960
Temperature (K)	298
Program	Fullprof
Shape parameter η	$0.539(10)$
Caglioti parameters (U, V, W)	$U=0.484(17)$
	$V=-0.510(19)$
Number of reflections	$W=0.395(1)$
Number of refined parameters	230
$R_{\text {Bragg }}$	112
R_{p}	2.84%
$R_{\text {wp }}$	1.49%
$R_{\text {exp }}$	2.03%
Goodness of fit $\left(X^{2}\right)$	0.65%

Table S2. Crystallographic data on $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & a=7.8620(3) \AA, c=12.2998(5) \AA ; a / b=1.00, b / c=0.6392 \\ & V=760.26(5) \AA^{3} \end{aligned}$					
Atom	Wyckoff position	Site	x/a		z/c
Mo	4b	-42m	0	1/2	1/4
Rb1	8h	$m 2 m$	0.19049(13)	$\mathrm{x}+1 / 2$	0
Rb2	4a	422	0	0	1/4
O1	161	m	0.12924(13)	$\mathrm{x}+1 / 2$	0.66646(17)
D1	4 c	4/m	0	0	0

Table S3. Anisotropic displacement parameters of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data

Anisotropic displacement parameters $\left[\AA^{2}\right]$						
Atom \mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{12}	\mathbf{U}_{13}	\mathbf{U}_{23}	
$\mathrm{Mo1}$	$0.0227(9)$	$0.0227(9)$	$0.0095(14)$	0.00000	0.00000	0.00000
Rb 1	$0.0298(7)$	$0.0298(7)$	$0.0267(11)$	$-0.0054(9)$	0.00000	0.00000
Rb 2	$0.0357(11)$	$0.0357(11)$	$0.0399(18)$	0.00000	0.00000	0.00000
O 1	$0.0581(10)$	$0.0581(10)$	$0.0450(11)$	$-0.0184(10)$	$0.0222(6)$	$0.0222(6)$
D 1	$0.0363(10)$	$0.0363(10)$	$0.0565(20)$	0.00000	0.00000	0.00000

Table S4. Selected interatomic distances and tetrahedron angles in $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Distance $(\mathbf{\AA})$	
Mo1	O1	$1.7665(15)$	
Rb1	D1	$2.8573(10)$	
Rb2		$3.0749(12)$	
Tetrahedron angle			
Atom 1		Atom 2	Atom 3
Mo1	O1	O1	Angle
	O1	O1	$108.865(49)$
		\varnothing tetrahedron angle	$109.775(58)$

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}(\mathrm{RT})$

Figure S 2 Rietveld refinement plot of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}(14 / \mathrm{mcm}, 140)$ at room temperature based on neutron diffraction data. Bragg markers from top to bottom: $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ (90.3 (10) wt.\%), $\mathrm{Cs}_{2} \mathrm{MoO}_{4}$ (Pnma) (9.7(1) wt. \%)

Table S5. Rietveld refinement parameters of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature with the program Fullprof ${ }^{[1]}$

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathbf{D}$	
Space group	
Calculated density $\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	$4 / m c m(140)$
Step scan increment	4.319
2θ range $\left({ }^{\circ}\right)$	0.05
Wavelength (\AA)	$10-158$
Number of profile points	1.594
Temperature (K)	2960
Program	298
Shape parameter η	Fullprof
Caglioti parameters (U, V, W)	$0.541(12)$
	$U=0.352(10)$
	$V=-0.497(13)$
Number of reflections	$W=0.393(5)$
Number of refined parameters	258
$R_{\text {Bragg }}$	98
R_{p}	1.60%
$R_{w p}$	1.18%
$R_{\text {exp }}$	1.57%
Goodness of fit $\left(X^{2}\right)$	0.83%

Table S6. Crystallographic data on $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & a=8.2113(2) \AA, c=12.7893(4) \AA ; a / b=1.00, b / c=0.6420 \\ & V=833.70(4) \AA^{3} \end{aligned}$					
Atom	Wyckoff position	Site	x/a		z/c
Mo	4b	-42m	0	1/2	$1 / 4$
Cs1	8h	$m 2 m$	0.18705(16)	x+1/2	0
Cs2	4a	422	0	0	1/4
O1	161	m	0.12348(11)	X ${ }^{1} / 2$	0.66890(11)
D1	4 c	4/m	0	0	0

Table S7. Anisotropic displacement parameters of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data

Anisotropic displacement parameters $\left[\AA^{2}\right]$						
Atom \mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}		\mathbf{U}_{12}	\mathbf{U}_{13}	\mathbf{U}_{23}
Mo 1	$0.0209(8)$	$0.0209(8)$	$0.0154(12)$	0.00000	0.00000	0.00000
Cs 1	$0.0275(7)$	$0.0275(7)$	$0.0272(13)$	$-0.0032(9)$	0.00000	0.00000
Cs 2	$0.0308(10)$	$0.0308(10)$	$0.0304(18)$	0.00000	0.00000	0.00000
O 1	$0.0421(7)$	$0.0421(7)$	$0.0376(9)$	$-0.0162(9)$	$0.0100(5)$	$0.0100(5)$
D 1	$0.0487(11)$	$0.0487(11)$	$0.063(2)$	0.00000	0.00000	0.00000

Table S8. Selected interatomic distances and tetrahedron angles in $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Distance (\boldsymbol{A})	
Mo1	O1	$1.7697(11)$	
Cs1	D1	$2.9938(13)$	
Cs2		$3.1973(1)$	
Tetrahedron angle			
Atom 1		Atom 2	Atom 3
Mo1	O1	O1	Angle
	O1	O1	$110.090(48)$
		\varnothing tetrahedron angle	$109.240(43)$

$\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}(\mathrm{RT})$

Figure S3 Rietveld refinement plot of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}(14 / \mathrm{mcm}, 140)$ at room temperature based on neutron diffraction data. Bragg markers $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$.

Table S9. Rietveld refinement parameters of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature with the program Fullprof ${ }^{[1]}$

$\mathbf{C s}_{3} \mathbf{W O}_{4} \mathbf{D}$	
Space group	$14 / \mathrm{mcm}(140)$
Calculated density $\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	4.954
Step scan increment	0.05
2θ range $\left({ }^{\circ}\right)$	$10-158$
Wavelength (\AA)	1.594
Number of profile points	2960
Temperature (K)	298
Program	Fullprof
Shape parameter η	$0.478(10)$
Caglioti parameters (U, V, W)	$U=0.263(6)$
	$V=-0.474(10)$
Number of reflections	$W=0.386(4)$
Number of refined parameters	260
$R_{B r a g g}$	73
R_{p}	2.03%
$R_{w p}$	1.53%
$R_{\text {exp }}$	2.04%
Goodness of fit $\left(X^{2}\right)$	0.87%

Table S10. Crystallographic data on $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & a=8.2331(2) \AA, c=12.8289(3) \AA ; a / b=1.00, b / c=0.6418 \\ & V=869.58(4) \AA^{3} \end{aligned}$					
Atom	Wyckoff position	Site	x/a		z/c
W	4b	-42m	0	1/2	1/4
Cs1	8h	m2m	0.18917(12)	$x+1 / 2$	0
Cs2	4a	422	0	0	1/4
O1	161	m	0.12355(9)	x+1/2	0.66889(9)
D1	4 c	4/m	0	0	0

Table S11. Anisotropic displacement parameters of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Anisotropic displacement parameters $\left[\hat{\Lambda}^{2}\right]$						
Atom	U_{11}	U_{22}	\mathbf{U}_{33}	\mathbf{U}_{12}	\mathbf{U}_{13}	\mathbf{U}_{23}
W 1	$0.0249(8)$	$0.0249(8)$	$0.0143(12)$	0.00000	0.00000	0.00000
Cs 1	$0.0279(6)$	$0.0279(6)$	$0.0299(10)$	$0.0023(7)$	0.00000	0.00000
Cs 2	$0.0320(9)$	$0.0320(9)$	$0.0322(14)$	0.00000	0.00000	0.00000
O 1	$0.0484(6)$	$0.0484(6)$	$0.0417(7)$	$-0.0184(7)$	$0.0132(4)$	$0.0132(4)$
D 1	$0.0405(8)$	$0.0405(8)$	$0.0562(15)$	0.00000	0.00000	0.00000

Table S12. Selected interatomic distances and tetrahedron angles in $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Distance (\mathbf{A})	
W1	O1	$1.7754(9)$	
Cs1	D1	$2.9958(10)$	
Cs2		$3.2072(1)$	
Tetrahedron			
Atom 1	Atom 2	Atom 3	Angle
W1	O1	O1	$110.09(4)$
	O1	O1	$108.240(35)$
		\varnothing tetrahedron angle	109.17

Figure S4 Rietveld refinement plot of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}(P b c a, 61)$ at room temperature based on neutron diffraction data. Bragg markers $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$.

Table S13. Rietveld refinement paramaters of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature with the program Fullprof ${ }^{[1]}$

$\mathbf{R b}_{3} \mathbf{W O}_{4} \mathbf{D}$	
Space group	Pbca (61)
Calculated density $\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	4.322
Step scan increment	0.05
2θ range $\left({ }^{\circ}\right)$	$10-158$
Wavelength (\AA)	1.594
Number of profile points	2960
Temperature (K)	298 K
Program	Fullprof
Shape parameter η	$0.540(10)$
Caglioti parameters (U, V, W)	$U=0.348(11)$
	$V=-0.527(14)$
Number of reflections	$W=0.405(5)$
Number of refined parameters	1610
$R_{\text {Bragg }}$	140
R_{p}	1.60%
$R_{w p}$	1.08%
$R_{\text {exp }}$	1.44%
Goodness of fit $\left(X^{2}\right)$	0.86%

Table S14. Crystallographic data on $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature

Cell parameters

$a=11.9262(3) \AA, b=11.3972(5) \AA, c=11.4492(5) \AA ; a / b=1.0464 \mathrm{~b} / \mathrm{c}=0.9955 \mathrm{c} / \mathrm{a}=0.9600$
$\mathrm{V}=1556.24(10) \AA^{3}$

Atom	Wyckoff position	Site	x/a	y/b	z/c
W1	8c	1	$0.7464(7)$	$0.0054(4)$	$-0.0149(4)$
Rb1	8c	1	$0.7464(4)$	$0.2334(4)$	$0.7289(3)$
Rb2	8c	1	$-0.0009(4)$	$0.7822(4)$	$-0.0062(5)$
Rb3	8c	1	$0.0003(4)$	$-0.0078(4)$	$0.7188(3)$
O1	8c	1	$0.8660(5)$	$-0.0224(5)$	$0.0730(5)$
O2	8c	1	$0.7823(5)$	$-0.0226(5)$	$0.8365(4)$
O3	8c	1	$0.7173(5)$	$0.1588(4)$	$-0.0086(5)$
O4	8c	1	$0.6318(6)$	$-0.0766(5)$	$0.0303(4)$
D1	8c	1	$0.5068(6)$	$0.7562(5)$	$0.2585(9)$

Table S15. Anisotropic displacement parameters on $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data at room temperature

Anisotropic displacement parameters $\left[\AA^{2}\right]$						
Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{12}	\mathbf{U}_{13}	\mathbf{U}_{23}
W1	$0.0181(20)$	$0.016(2)$	$0.030(3)$	$-0.008(3)$	$-0.011(3)$	$-0.004(3)$
Rb1	$0.0243(18)$	$0.035(3)$	$0.037(3)$	$0.003(2)$	$-0.018(3)$	$0.0047(19)$
Rb2	$0.029(4)$	$0.027(2)$	$0.028(2)$	$0.003(2)$	$-0.0096(20)$	$-0.002(2)$
Rb3	$0.032(4)$	$0.017(2)$	$0.041(3)$	$0.004(3)$	$0.007(2)$	$0.008(2)$
O1	$0.016(4)$	$0.064(4)$	$0.055(4)$	$0.008(3)$	$-0.021(3)$	$0.006(3)$
O2	$0.065(5)$	$0.053(4)$	$0.015(3)$	$-0.022(3)$	$0.013(3)$	$-0.013(2)$
O3	$0.071(5)$	$0.032(3)$	$0.044(3)$	$0.026(3)$	$-0.024(3)$	$0.004(3)$
O4	$0.047(4)$	$0.051(4)$	$0.038(4)$	$-0.021(4)$	$0.022(3)$	$-0.012(3)$
D1	$0.0542(19)$	$0.042(3)$	$0.077(4)$	$0.023(3)$	$0.007(3)$	$-0.008(4)$

Table S16. Selected interatomic distances in $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Distance (\AA)
W1	O4	$1.7347(97)$
	O1	$1.7742(93)$
	O2	$1.7832(68)$
	O3	$1.7839(66)$
	Ø bond length	$1.769 \AA$
Rb1	D1	$2.9652(86)$
		$3.0025(86)$
Rb2	D1	$2.8529(117)$
		$2.9230(117)$
Rb3	D1	$2.8440(73)$
		$2.9046(74)$

Table S17. Tetrahedron angles of the tungstate ions in $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Atom 3	Angle 2-1-3 $\left(^{\circ}\right)$
W1	O4	O1	$111.59(50)$
	O4	O2	$112.17(37)$
	O4	O3	$111.26(35)$
	O1	O2	$108.43(35)$
	O1	O3	$107.96(37)$
	O2	O3	$105.11(35)$
		\varnothing tetrahedron angle	109.42°

Figure S5 Bond lengths and depiction of the distorted $\mathrm{Rb}_{6} \mathrm{D}$-octahedron

2.1.2 Supplementary X-ray diffraction data (Hydridic samples)

$\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S6. Rietveld refinement plot of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ obtained from X-ray diffraction data at room temperature with the program Fullproffil. Bragg markers: $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (top) (97.9(10) wt. \%); RbH (bottom) 2.02(2) wt. \%). $R_{p}=5.90 \%, R_{w p}=8.49 \%, R_{\text {exp }}=3.63 \%$, $R_{\text {bragg }}=4.01 \%, X^{2}=5.90$

Table S18. Crystallographic data on $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from X -ray diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & \mathrm{a}=7.8741(4) \AA, \mathrm{c}=12.3172(7) \AA ; \\ & \mathrm{a} / \mathrm{b}=1.00, \mathrm{~b} / \mathrm{c}=0.6393, \mathrm{~V}=760.68(7) \AA^{3} \\ & \hline \end{aligned}$						
Atom	Wyckoff position	Site	x/a		z/c	$\mathrm{B}_{\text {iso }}\left(\AA^{2}\right)$
Mo	4b	-42m	0	$1 / 2$	$1 / 4$	0.0013(13)
Rb1	8h	$m 2 m$	$0.18962(15)$	$x+1 / 2$	0	0.0036(12)
Rb2	4a	422	0	0	1/4	0.0129(15)
O1	161	m	0.1232(6)	x+1/2	0.6698(6)	0.005(3)
H1	4 c	4/m	0	0	0	0.0507*

*The isotropic displacement factor of hydrogen has been set to a realistic value, as no refinement thereof with X-ray diffraction data was possible.

Table S19. Selected interatomic distances and tetrahedron angles in $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from X-ray diffraction data

Atom 1	Atom 2	Distance $(\boldsymbol{\AA})$	
Mo1	O1	$1.6906(58)$	
Rb1	H1	$2.8639(12)$	
Rb2		$3.0793(2)$	
Tetrahedron angle			
Atom 1		Atom 2	Atom 3
Mo1	O1	O1	Angle 2-1-3 $\left({ }^{\circ}\right)$
	O1	O1	$108.489(235)$
		\varnothing tetrahedron angle	$109.965(265)$

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S7. Rietveld refinement plot of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ obtained from X-ray diffraction data at room temperature with the program Fullprof ${ }^{[1]}$. Bragg markers: $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (top) (94.3(10) wt. \%); CsH (bottom) 5.7 (2) wt. $\%$). $R_{p}=3.88 \%, R_{w p}=5.40 \%, R_{\text {exp }}=3.32 \%$, $R_{\text {bragg }}=2.93 \%, X^{2}=2.65$

Table S20. Crystallographic data on $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from X-ray diffraction data at room temperature

Cell parameters

$\mathrm{a}=8.2232(2) \AA, \mathrm{c}=12.8149(3) \AA$;
$a / b=1.00, b / c=0.6417, V=866.55(3) \AA^{3}$

Atom	Wyckoff position	Site	$\mathbf{x / a}$	\mathbf{y} / \mathbf{b}		z/c	$\mathbf{B}_{\text {iso }}\left(\mathbf{A}^{2}\right)$
Mo	4 b	$-42 m$	0	$1 / 2$	$1 / 4$	$0.0156(11)$	
Cs 1	8 h	$m 2 m$	$0.18685(13)$	$\mathrm{x}+1 / 2$	0	$0.0203(8)$	
Cs 2	4 a	422	0	0	$1 / 4$	$0.0284(10)$	
O1	16 l	m	$0.1246(9)$	$\mathrm{x}+1 / 2$	$0.6736(8)$	$0.034(4)$	
H 1	4 c	$4 / m$	0	0	0	0.0507^{*}	

*The isotropic displacement factor of hydrogen has been set to a realistic value, as no refinement thereof with X-ray diffraction data was possible.

Table S21. Selected interatomic distances and tetrahedron angles in $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from X-ray diffraction data

Atom 1	Atom 2	Distance $(\AA \mathbf{A})$	
Mo1	O1	$1.7488(84)$	
Cs1	H 1	$2.9986(11)$	
Cs2		$3.1236(90)$	Angle 2-1-3 (${ }^{\circ}$)
Tetrahedron angle			$111.908(350)$
Atom 1	Atom 2	Atom 3	$108.267(383)$
Mo1	O1	O1	O1
	O1	\varnothing tetrahedron angle	110.088

$\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$

Figure S8. Rietveld refinement plot of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ obtained from X-ray diffraction data at room temperature with the program Fullprof ${ }^{[1]}$. Bragg markers: $\mathrm{Cs}_{3} \mathrm{WO}_{4}$ H. $R_{p}=4.83 \%, R_{\text {wp }}=6.65 \%, R_{\text {exp }}=5.38 \%, R_{\text {bragg }}=3.83 \%, X^{2}=1.53$

Table S22. Crystallographic data on $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ determined from X-ray diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & a=8.2391(2) \AA, c=12.8405(3) \AA ; \\ & a / b=1.00, b / c=0.6417, V=871.66(3) \AA^{3} \end{aligned}$						
Atom	Wyckoff position	Site	x/a	y/b	z/c	$\mathrm{B}_{\text {iso }}\left(\AA^{2}\right)$
W	4b	-42m	0	$1 / 2$	1/4	0.0049(8)
Cs1	8h	$m 2 m$	0.18890(14)	$x+1 / 2$	0	0.0115(8)
Cs2	4a	422	0	0	1/4	$0.0177(10)$
O1	161	m	$0.1251(10)$	$x+1 / 2$	0.6668(9)	0.029(5)
H1	4 c	4/m	0	0	0	0.0507*

*The isotropic displacement factor of hydrogen has been set to a realistic value, as no refinement thereof with X-ray diffraction data was possible.

Table S23. Selected interatomic distances and tetrahedron angles in $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ determined from X-ray diffraction data

Atom 1	Atom 2	Distance (\AA)	
W1	O1	$1.8072(95)$	
Cs1	H 1	$2.9987(12)$	
Cs2		$3.2101(1)$	
Tetrahedron		angle	
Atom 1	Atom 2	Atom 3	Angle 2-1-3 $\left(^{\circ}\right)$
W1	O1	O1	$110.454(421)$
	O1	O1	$107.524(382)$
		\varnothing tetrahedron angle	108.989

Figure S9 Rietveld refinement plot of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$ at room temperature based on X-ray diffraction data. Bragg markers $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$. $R_{p}=2.91 \%, R_{w p}=4.38 \%, R_{\exp }=1.03 \%, R_{b r a g g}=2.78 \%, X^{2}=17.9$. Due to very high scattering intensity, necessary to properly resolve the splitting of the reflections, the data quality is very high. $R_{\text {exp }}$ is therefore estimated to be very low, resulting in a rather high goodness of fit as $X^{2}=R_{w p}{ }^{2} / R_{\text {exp }}{ }^{2}$.

Table S24. Crystallographic data on $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$ determined from neutron diffraction data at room temperature

$\begin{aligned} & \text { Cell parameters } \\ & a=11.9295(3) \AA, b=11.4019(3) \AA, c=11.4516(3) \AA ; a / b=1.0463 \mathrm{~b} / \mathrm{c}=0.9957 \mathrm{c} / \mathrm{a}=0.9599 \\ & \mathrm{~V}=1557.63(7) \AA^{3} \end{aligned}$						
Atom	Wyckoff position	Site	x/a	y/b	z/c	$\mathrm{B}_{\text {iso }}\left(\hat{A}^{2}\right)$
W1	8c	1	0.7502(4)	0.0065(4)	-0.0164(2)	0.0042(8)
Rb1	8 c	1	0.7452(13)	0.2331(6)	0.7296(4)	0.0178(17)
Rb2	8 c	1	-0.0008(10)	0.7819(3)	0.0057(11)	0.0172(20)
Rb3	8 c	1	0.0007(8)	-0.0078(6)	0.7199(3)	0.0110(19)
01	8 c	1	0.858(2)	-0.022(3)	0.0919(20)	0.036(10)
O2	8 c	1	0.787(3)	-0.013(3)	0.840(2)	0.007(10)
O3	8 c	1	0.710(3)	0.152(2)	-0.011(3)	0.043(14)
04	8 c	1	0.631(3)	-0.068(2)	0.047(2)	0.026(10)
H1	8c	1	0.50680*	0.75620^{*}	0.25850*	0.0507*

*The atomic position of hydrogen was not determinable via X-ray diffraction and assumed to be the position determined by neutron diffraction. The isotropic displacement factor of hydrogen has been set to a realistic value, as no refinement thereof with X-ray diffraction data was possible.

Table S25. Selected interatomic distances in $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Distance (\AA)
W1	O4	$1.8085(318)$
	O1	$1.8159(241)$
	O2	$1.7165(243)$
	O3	$1.7280(245)$
Rb1	Ø bond length	$1.7672 \AA$
	H1	$2.9795(154)$
Rb2		$3.00118(155)$
	H1	$2.7177(125)$
Rb3		$3.0579(125)$
	H1	$2.8439(68)$
		$2.9040(68)$

Table S26. Tetrahedron angles of the tungstate ions in $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ determined from neutron diffraction data

Atom 1	Atom 2	Atom 3	Angle 2-1-3 $\left(^{\circ}\right.$)
W1	O4	O1	$101.44(124)$
	O4	O2	$121.66(123)$
	O4	O3	$102.61(120)$
	O1	O2	$116.74(110)$
	O1	O3	$110.12(143)$
	O2	O3	$103.28(155)$
		\varnothing tetrahedron angle	109.31°

2.2 Ionic radii for determination of the Goldschmidt tolerance factors

The ionic radii of the complex oxoanions are taken from the determined bond lengths of the $M-O$ bond (as depicted above) plus the ionic radius of oxygen in sixfold coordination sphere. Ionic radii are taken from Shannon in respect of the coordination spheres of the ions. ${ }^{[12]}$
The hydride ion is known to have high polarizability and therefore shows different ionic radii, depending on the chemical environment. We have set the ionic radius of the hydride anion to be $1.399 \AA$ as suggested from Shannon and also from Lang and Smith ${ }^{[12,13]}$. This approach is expected to return consistent set of tolerance factors that enable a discussion of chemical packing as a factor for differences in their crystal chemistries.

Table S27. Ionic radii for determination of the Goldschmidt tolerance factors

Ionic species	Ionic radius	Coordination
Na^{+}	1.02	Sixfold
K^{+}	1.38	Eightfold/tenfold
Rb^{+}	1.52	Sixfold $\left(\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}\right)$
Rb^{+}	1.63	Eightfold/tenfold
Cs^{+}	1.67	Eightfold/tenfold
$\mathrm{MoO}_{4}{ }^{2-}$	3.170	-
$\mathrm{WO}_{4}{ }^{2-}$	3.180	-
$\mathrm{SO}_{4}{ }^{2-}$	2.87	-
H^{-}	1.399	Sixfold
F^{-}	1.33	Sixfold
O^{2-}	1.40	Sixfold

Figure S10. Crystal structure of the tetragonal phases along the c-axis (top) and along the a/b plane (bottom). The $R b_{6} D / C s_{6} D$ octahedrons are depicted lilac, the tungstate ions are depicted as orange tetrahedrons.

2.4 Difference Fourier maps

$\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$

Figure S11. Difference Fourier map of the refinement $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \square$ (top) with an unoccupied deuterium position (symbol \square, in FullProf the occupation and $\mathrm{B}_{\text {iso }}$ were set to 0). Rubidium is shown in pink, tungsten in grey and oxygen in red. The positive, residual density (yellow isosurface, projected at an isosurface level of 0.090) agrees with the experimentally determined deuterium position in $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$. For comparison: difference Fourier map of the refinement $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$ (bot). Here, no residual density is found at a ca. twenty times lower isosurface level of 0.0058 . The lower the isosurface leve is set, the more sensitively residual neutron density is shown.
In addition, no residual neutron density is found next to the now occupied deuteride position. This excludes a likely hydroxide/deuteroxide species as no neutron density of a closely bound atom is observable. Graphic representation is shown in VESTA ${ }^{[14]}$.

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$

Figure S12. Difference Fourier map of the refinement $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \square$ (top) with an unoccupied deuterium position (symbol \square, in FullProf the occupation and $\mathrm{B}_{\text {iso }}$ were set to 0). Rubidium is shown in pink, tungsten in grey and oxygen in red. The positive, residual density (yellow isosurface, projected at an isosurface level of 0.074) agrees with the experimentally determined deuterium position in $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$. For comparison: difference Fourier map of the refinement $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$ (bot). Here, no residual density is found at a ten times lower isosurface level of 0.0075 . The lower the isosurface leve is set, the more sensitively residual neutron density is shown. Again, no residual neutron density is found next to the here occupied deuteride position. This excludes a likely hydroxide/deuteroxide species as no neutron density of a closely bound atom is observable. Graphic representation is shown in VESTA ${ }^{[14]}$.
$\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$

Figure S13. Difference Fourier map of the refinement $\mathrm{Cs}_{3} \mathrm{WO}_{4} \square$ (top) with an unoccupied deuterium position (symbol \square, in FullProf the occupation and $\mathrm{B}_{\text {iso }}$ were set to 0). Rubidium is shown in pink, tungsten in grey and oxygen in red. The positive, residual density (yellow isosurface, projected at an isosurface level of 0.043) agrees with the experimentally determined deuterium position in $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$. For comparison: difference Fourier map of the refinement $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$ (bot). Here, no residual density is found at a five times lower isosurface level of 0.009 . The lower the isosurface leve is set, the more sensitively residual neutron density is shown. No residual neutron density is found next to the now occupied deuteride position. This excludes a likely hydroxide/deuteroxide or any other different species as no neutron density of a closely bound atom is observable. Graphic representation is shown in VESTA ${ }^{[14]}$.
$\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$

Figure S14. Difference Fourier map of the refinement $\mathrm{Rb}_{3} \mathrm{WO}_{4} \square$ (top) with an unoccupied deuterium position (symbol \square, in FullProf the occupation and $\mathrm{B}_{\text {iso }}$ were set to 0). Rubidium is shown in pink, tungsten in grey and oxygen in red. The positive, residual density (yellow isosurface, projected at an isosurface level of 0.055) agrees with the experimentally determined deuterium position in $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$. For comparison: difference Fourier map of the refinement $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$ (bot). Here, no residual density is found at a ten times lower isosurface level of 0.0055 . Once again, no residual neutron density is found next to the now occupied deuteride position. This excludes a likely hydroxide/deuteroxide species as no neutron density of a closely bound atom is observable. Graphic representation is shown in VESTA ${ }^{[14]}$.

Figure S15. Full ${ }^{2} \mathrm{H}$ MAS spectrum of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{D}$. Rotational sidebands of the target compound signal are masked with asterisks. Red line full fit, blue line experimental spectrum. Lines below depict the fits of the individual signals.

Figure S16. Full ${ }^{2} \mathrm{H}$ MAS spectrum of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{D}$. Rotational sidebands of the target compound signal are masked with asterisks. Red line full fit, blue line experimental spectrum. Lines below depict the fits of the individual signals.

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$

Figure S17. Full ${ }^{2} \mathrm{H}$ MAS spectrum of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{D}$. Rotational sidebands of the target compound signal are masked with asterisks. Red line full fit, blue line experimental spectrum. Lines below depict the fits of the individual signals.

Figure S18. Full ${ }^{2} \mathrm{H}$ MAS spectrum of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{D}$. Rotational sidebands of the target compound signal are masked with asterisks. Red line full fit, blue line experimental spectrum. Lines below depict the fits of the individual signals.

2.6 Calculated electronic band structures and UV/Vis Tauc plots

$\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S19. Calculated electronic band structure of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ and projected density of states (DFT-PBE0). The blue dots indicate the direct band gap character. The DOS of Rubidium and Hydrogen are enhanced for better visibility. The band paths in the reciprocal space have been determined by the Seek-path webservice ${ }^{[15-17]}$.

Figure S20. Tauc-plots of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from UV/VIS absorption spectroscopy. For the determination of a direct transition character, the coefficient r (see experimental details) has been set to $r=1 / 2$, direct transition (left side). The blue vertical dashed lines indicate the area for the linear fit. The resulting determined direct band gap of 3.66 eV is matching the predicted band gap of 3.56 eV .

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S21. Calculated electronic band structure of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ and projected density of states (DFT-PBE0). The blue dots indicate the direct band gap character. The DOS of Cesium and Hydrogen are enhanced for better visibility. The band paths in the reciprocal space have been determined by the Seek-path webservice ${ }^{[15-17] .}$

Figure S22. Tauc-plots of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ determined from UV/VIS absorption spectroscopy. For the determination of a direct or indirect transition character, the coefficient r (see experimental details) has been set to $r=1 / 2$. The blue vertical dashed lines indicate the area for the linear fit. The resulting determined direct band gap of 3.33 eV is matching the predicted band gap of 3.23 eV.

Figure S23. Calculated electronic band structure of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ and projected density of states (DFT-PBE0). The blue dots indicate the direct band gap character. The DOS of Rubidium and Hydrogen are enhanced for better visibility. The band paths in the reciprocal space have been determined by the Seek-path webservice ${ }^{[15-17]}$.

Figure S24. Tauc-plots of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ determined from UV/VIS absorption spectroscopy. For the determination of a direct or indirect transition character, the coefficient r (see experimental details) has been set to $r=1 / 2$. The blue vertical dashed lines indicate the area for the linear fit. The resulting determined direct band gap of 3.95 eV is matching the predicted band gap of 3.85 eV .

2.7 Vibrational Spectroscopy (experimental and DFT-PBEO)

$\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S25. Experimental Raman spectrum of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (top) and simulated Raman spectrum of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (bottom).
Table S28.Vibrational Raman data of $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$ obtained by quantum chemical calculations.

Simulated Raman data on $\mathrm{Rb}_{3} \mathrm{MoO}_{4} \mathrm{H}$			
Frequency (cm ${ }^{-1}$)	$\Gamma_{\text {irrep }}$	Intensity (arbitrary units)	Assignment
46	E_{g}	33	Lattice vibrations
56	E_{g}	31	Lattice vibrations
69	$\mathrm{A}_{1 \mathrm{~g}}$	56	Lattice vibrations
72	B_{19}	34	Lattice vibrations
76	$\mathrm{B}_{2 \mathrm{~g}}$	2	Lattice vibrations
95	E_{g}	188	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending coupled with lattice vibrations
97	E_{g}	1	Lattice vibrations
114	$\mathrm{B}_{2 \mathrm{~g}}$	49	Lattice vibrations
310	B_{19}	726	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric bending (v_{2})
325	E_{g}	225	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending (v_{4})
348	$\mathrm{A}_{1 \mathrm{~g}}$	705	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric bending (v_{2})
363	$\mathrm{B}_{2 \mathrm{~g}}$	154	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending (V_{4})
861	$\mathrm{B}_{2 \mathrm{~g}}$	69	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric stretching (V_{3})
864	E_{g}	212	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric stretching (V_{3})
919	A_{19}	1000	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric stretching (v_{1})

$\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$

Figure S26. Experimental Raman spectrum of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (top) and simulated Raman spectrum of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ (bottom).
Table S29.Vibrational Raman data of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ obtained by quantum chemical calculations.

Simulated Raman data on $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$			
Frequency (cm^{-1})	$\Gamma_{\text {irrep }}$	Intensity (arbitrary units)	Assignment
32	E_{g}	1	Lattice vibrations
39	E_{g}	83	Lattice vibrations
50	$\mathrm{A}_{1 \mathrm{~g}}$	137	Lattice vibrations
56	$\mathrm{B}_{2 \mathrm{~g}}$	10	Lattice vibrations
56	$\mathrm{B}_{1 \mathrm{~g}}$	168	Lattice vibrations
80	E_{g}	39	Lattice vibrations
101	$\mathrm{B}_{2 \mathrm{~g}}$	46	Lattice vibrations
141	E_{g}	102	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending coupled with lattice vibrations
318	$\mathrm{B}_{1 \mathrm{~g}}$	670	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric bending (v_{2})
334	E_{g}	289	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending (v_{4})
351	A_{19}	685	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric bending (v_{2})
367	$\mathrm{B}_{2 \mathrm{~g}}$	142	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric bending (V_{4})
783	$\mathrm{B}_{2 \mathrm{~g}}$	58	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric stretching (V_{3})
786	E_{g}	306	$\mathrm{MoO}_{4}{ }^{2-}$ antisymmetric stretching (V_{3})
850	A_{19}	1000	$\mathrm{MoO}_{4}{ }^{2-}$ symmetric stretching (v_{1})

$\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$

Figure S27. Experimental Raman spectrum of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ (top) and simulated Raman spectrum of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ (bottom).
Table S30.Vibrational Raman data of $\mathrm{Cs}_{3} \mathrm{MoO}_{4} \mathrm{H}$ obtained by quantum chemical calculations.

Simulated Raman data on $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$			
```Frequency (cm-1)```	$\Gamma_{\text {irrep }}$	Intensity (arbitrary units)	Assignment
25	$\mathrm{E}_{\mathrm{g}}$	0	Lattice vibrations
36	$\mathrm{E}_{\mathrm{g}}$	55	Lattice vibrations
47	$\mathrm{A}_{19}$	214	Lattice vibrations
50	$\mathrm{B}_{2 \mathrm{~g}}$	5	Lattice vibrations
55	$\mathrm{B}_{19}$	288	Lattice vibrations
70	$\mathrm{E}_{\mathrm{g}}$	60	Lattice vibrations
84	$\mathrm{B}_{2 \mathrm{~g}}$	76	Lattice vibrations
86	$\mathrm{E}_{\mathrm{g}}$	277	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending coupled with lattice vibrations
300	$\mathrm{E}_{\mathrm{g}}$	210	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
308	$\mathrm{B}_{19}$	766	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending $\left(\mathrm{v}_{2}\right)$
335	$\mathrm{B}_{29}$	147	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{v}_{4}$ )
343	$\mathrm{A}_{19}$	833	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{V}_{2}$ )
826	$\mathrm{B}_{2 \mathrm{~g}}$	47	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
828	$\mathrm{E}_{\mathrm{g}}$	266	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
926	$\mathrm{A}_{19}$	1000	$\mathrm{WO}_{4}{ }^{2-}$ symmetric stretching ( $\mathrm{v}_{1}$ )

The Raman spectrum of $\mathrm{Cs}_{3} \mathrm{WO}_{4} \mathrm{H}$ shows a broad background within the spectrum due to self-fluorescence of the sample.
$\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$
Table S31.Vibrational Raman data of $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$ obtained by quantum chemical calculations.

Simulated Raman data on $\mathrm{Rb}_{3} \mathrm{WO}_{4} \mathrm{H}$			
$\begin{aligned} & \text { Frequency } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\Gamma_{\text {irrep }}$	Intensity (arbitrary units)	Assignment
26-146	-	> 20	Lattice vibrations
307	$\mathrm{B}_{3 \mathrm{~g}}$	14	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
309	$\mathrm{B}_{19}$	31	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending $\left(\mathrm{V}_{4}\right)$
311	$\mathrm{A}_{\mathrm{g}}$	15	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending $\left(\mathrm{V}_{4}\right)$
313	$\mathrm{B}_{2 \mathrm{~g}}$	30	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
314	$\mathrm{B}_{3 \mathrm{~g}}$	25	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
315	$\mathrm{B}_{1 \mathrm{~g}}$	101	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
316	$\mathrm{A}_{\mathrm{g}}$	11	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
317	$\mathrm{B}_{2 \mathrm{~g}}$	7	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
320	$\mathrm{B}_{2 \mathrm{~g}}$	28	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending $\left(\mathrm{V}_{4}\right)$
323	$\mathrm{B}_{2 \mathrm{~g}}$	485	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
323	$\mathrm{B}_{3 \mathrm{~g}}$	5	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
324	$\mathrm{A}_{\mathrm{g}}$	67	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
324	$\mathrm{B}_{3 \mathrm{~g}}$	22	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
325	$\mathrm{B}_{1 \mathrm{~g}}$	9	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric bending ( $\mathrm{V}_{4}$ )
330	$\mathrm{B}_{39}$	212	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
333	$\mathrm{B}_{19}$	188	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
334	$\mathrm{A}_{\mathrm{g}}$	198	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
338	$\mathrm{B}_{2 \mathrm{~g}}$	23	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
340	$\mathrm{A}_{\mathrm{g}}$	210	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
347	$\mathrm{B}_{1 \mathrm{~g}}$	25	$\mathrm{WO}_{4}{ }^{2-}$ symmetric bending ( $\mathrm{v}_{2}$ )
585	$\mathrm{A}_{\mathrm{g}}$	4	Parallel vertical hydride vibrations
588	$\mathrm{B}_{1 \mathrm{~g}}$	24	Parallel vertical hydride vibrations
660	$\mathrm{B}_{3 \mathrm{~g}}$	0	Diagonal hydride vibrations
675	$\mathrm{B}_{2 \mathrm{~g}}$	2	Parallel vertical hydride vibrations
715	$\mathrm{A}_{\mathrm{g}}$	2	Parallel horizontal hydride vibrations
724	$\mathrm{B}_{39}$	0	Diagonal horizontal hydride vibrations
725	$\mathrm{A}_{\mathrm{g}}$	9	Parallel horizontal hydride vibrations
727	$\mathrm{B}_{3 \mathrm{~g}}$	1	Diagonal horizontal hydride vibrations
770	$\mathrm{B}_{19}$	1	Antiparallel vertical hydride vibrations
779	$\mathrm{B}_{2 \mathrm{~g}}$	0	Antiparallel horizontal hydride vibrations
804	$\mathrm{B}_{2 \mathrm{~g}}$	1	Hydride symmetric vibrations
810	$\mathrm{B}_{19}$	15	Hydride symmetric vibrations
821	$\mathrm{A}_{\mathrm{g}}$	121	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
822	$\mathrm{B}_{2 \mathrm{~g}}$	9	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with symmetric hydride vibrations ( $\mathrm{v}_{3 \mathrm{H}}$ )
825	$\mathrm{B}_{1 \mathrm{~g}}$	7	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with symmetric hydride vibrations ( $\mathrm{V}_{3 \mathrm{H}}$ )
827	$\mathrm{A}_{\mathrm{g}}$	84	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{v}_{3}$ )
837	$\mathrm{B}_{3 \mathrm{~g}}$	34	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
844	$\mathrm{A}_{\mathrm{g}}$	10	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
853	$\mathrm{B}_{3 \mathrm{~g}}$	0	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with parallel vertical hydride vibrations ( $\mathrm{v}_{3 \mathrm{H}}$ )
861	$\mathrm{B}_{1 \mathrm{~g}}$	29	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with parallel vertical hydride vibrations ( $\mathrm{V}_{3 \mathrm{H}}$ )
869	$\mathrm{B}_{2 \mathrm{~g}}$	9	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with diagonal vertical hydride vibrations $\left(\mathrm{V}_{3 \mathrm{H}}\right)$
877	$\mathrm{B}_{1 \mathrm{~g}}$	24	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with diagonal vertical hydride vibrations $\left(\mathrm{V}_{3 \mathrm{H}}\right)$
879	$B_{3 g}$	61	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching ( $\mathrm{V}_{3}$ )
882	$\mathrm{B}_{2 \mathrm{~g}}$	10	$\mathrm{WO}_{4}{ }^{2-}$ antisymmetric stretching coupled with diagonal vertical hydride vibrations $\left(\mathrm{V}_{3 \mathrm{H}}\right)$
930	$\mathrm{A}_{\mathrm{g}}$	1000	WO ${ }_{4}{ }^{2-}$ symmetric stretching ( $\mathrm{v}_{1}$ )
931	$\mathrm{B}_{2 \mathrm{~g}}$	0	$\mathrm{WO}_{4}{ }^{2-}$ symmetric stretching ( $\mathrm{v}_{1}$ )
931	$\mathrm{B}_{1 \mathrm{~g}}$	1	$\mathrm{WO}_{4}{ }^{2-}$ symmetric stretching ( $\mathrm{v}_{1}$ )
932	$\mathrm{B}_{3 \mathrm{~g}}$	0	$\mathrm{WO}_{4}{ }^{2-}$ symmetric stretching ( $\mathrm{v}_{1}$ )

Hydride vibrations along the crystallographic a/b-plane are defined as vertical hydride vibrations whereas vibrations along the a/c-axis are defined as horizontal vibrations.

### 2.8 Elemental Analysis



Figure S28. Elemental analysis reports of the four hydridic compounds.

### 2.9 Optimized crystal structures as CIF (DFT-PBEO)

```
data_Rb3MoO4H
_audi}t_creation_method FINDSYM
cell_length_a 7.8499197535
_cell_length_b 7.8499197535
_cell_length_c 12.4512660437
cell angle alpha 90.0000000000
_cell__angle_beta 90.0000000000
cell_angle_gamma 90.0000000000
_symmetry_space_group_name_H-M "I 4/m 2/c 2/m"
symmetry Int Tables number 140
_space_group.reference_setting '140:-I 4 2c'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop_
_space_group_symop_id
 space_group_symop_operation_xyz
1 x,y,z
2 x,-y,-z+1/2
-x,y,-z+1/2
-x,-y,z
-y,-x,-z+1/2
-y,x,z
y,-x,z
y,x,-z+1/2
9 -x,-y,-z
-x,y,z+1/2
11 x,-y,z+1/2
2 x,y,-z
3 y,x,z+1/2
4,-x,-z
5-y,x,-z
6-y,-x,z+1/2
x+1/2,y+1/2,z+1/2
8 x+1/2,-y+1/2,-z
19-x+1/2,y+1/2,-z
20-x+1/2,-y+1/2,z+1/2
21-y+1/2,-x+1/2,-z
22-y+1/2,x+1/2,z+1/2
y+1/2,-x+1/2,z+1/2
4 y+1/2,x+1/2,-z
5 -x+1/2,-y+1/2,-z+1/2
6 -x+1/2,y+1/2,z
7 x+1/2,-y+1/2,z
8}x+1/2,y+1/2,-z+1/
9y+1/2,x+1/2,z
30 y+1/2,-x+1/2,-z+1/2
31-y+1/2,x+1/2,-z+1/2
32-y+1/2,-x+1/2,z
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_label
atom site fract x
_atom_site_fract_y
_atom_site_fract_z
atom site occupancy
Mo1 Mo (4]`b 0.00000 0.50000 0.25000 1.00000
Rb1 Rb 8 h 0.18599 0.68599 0.00000 1.00000
Rb2 Rb 4 a 0.00000 0.00000 0.25000 1.00000
O1 O 16 1 0.62870 0.12870 0.16569 1.00000
H1 H 4 c 0.00000 0.00000 0.00000 1.00000
end of cif
```

data_Cs3MoO4H
_audit_creation_method FINDSYM

_cell_length_a	8.2190168880
_cell_length_b	8.2190168880

```
cell_length_c 12.9251378714
__cell__angle_\overline{l}pha 90.0000000000
_cell_angle_beta 90.0000000000
_cell_angle_gamma 90.0000000000
_symmetry_space_group_name_H-M "I 4/m 2/c 2/m"
_symmetry_Int_T\overline{ables_ñumbe\overline{r}}140
_space_group.reference_setting '140:-I 4 2c'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop_
space group symop id
 _space_group_symop_operation_xyz
1 x,y,z
 x,-y,-z+1/2
 3 -x,y,-z+1/2
 -x,-y,z
 -y,-x,-z+1/2
 -y,x,z
 y,-x,z
 y,x,-z+1/2
 -x,-y,-z
 10-x,y,z+1/2
 1 x,-y,z+1/2
 2 x,y,-z
 3y,x,z+1/2
 y,-x,-z
 5 -y,x,-z
 6-y,-x,z+1/2
 x+1/2,y+1/2,z+1/2
 8 x+1/2,-y+1/2,-z
 9-x+1/2,y+1/2,-z
 -x+1/2,-y+1/2,z+1/2
 1-y+1/2,-x+1/2,-z
 2-y+1/2,x+1/2,z+1/2
 y+1/2,-x+1/2,z+1/2
 4 y+1/2,x+1/2,-z
 5-x+1/2,-y+1/2,-z+1/2
 6-x+1/2,y+1/2,z
 7 x+1/2,-y+1/2,z
 8+1/2,y+1/2,-z+1/2
 29y+1/2,x+1/2,z
 y+1/2,-x+1/2,-z+1/2
 1 -y+1/2,x+1/2,-z+1/2
32-y+1/2,-x+1/2,z
loop
_atom_site_label
atom site type symbol
atom_site_symmētry_multiplicity
atom site Wyckoff label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupāncy
Mo1 Mo 4 b 0.00000 0.50000 0.25000 1.00000
Cs1 Cs 8 h 0.18530 0.68530 0.00000 1.00000
Cs2 Cs 4 a 0.00000 0.00000 0.25000 1.00000
O1 O 16 l 0.62336 0.12336 0.16911 1.00000
H1 H 4 C 0.00000 0.00000 0.00000 1.00000
end of cif
```

data_Cs3WO4H
_audit_creation_method FINDSYM

```
_cell_length_a 8.2391299711
_cell_length_b 8.2391299711
_cell_length_c 12.8404999808
cell angle alpha 90.0000000000
__cell__angle_beta 90.0000000000
_cell_angle_gamma 90.0000000000
_symmetry_space_group_name_H-M "I 4/m 2/c 2/m"
_symmetry_Int_Tables_number 140
```

```
space group.reference setting '140:-I 4 2c'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop
_spa\overline{ce_group_symop_id}
space group symop operation xyz
 x,y,z
 x,-y,-z+1/2
 -x,y,-z+1/2
-x,-y,z
-y,-x,-z+1/2
-y,x,z
y,-x,z
y,x,-z+1/2
-x,-y,-z
10-x,y,z+1/2
1 x,-y,z+1/2
2 x,y,-z
y,x,z+1/2
4,-x,-z
5-y,x,-z
6 -y,-x,z+1/2
7 x+1/2,y+1/2,z+1/2
8 x+1/2,-y+1/2,-z
9-x+1/2,y+1/2,-z
0-x+1/2,-y+1/2,z+1/2
1-y+1/2,-x+1/2,-z
2-y+1/2,x+1/2,z+1/2
y+1/2,-x+1/2,z+1/2
y+1/2,x+1/2,-z
5 -x+1/2,-y+1/2,-z+1/2
26-x+1/2,y+1/2,z
x+1/2,-y+1/2,z
8 x+1/2,y+1/2,-z+1/2
9 y+1/2,x+1/2,z
30 y+1/2,-x+1/2,-z+1/2
31-y+1/2,x+1/2,-z+1/2
- y+1/2,-x+1/2,z
loop
atom site label
_atom_site_type_symbol
atom site symmetry multiplicity
atom site Wyckoff label
_atom_site_fract_x
atom site fract y
atom_site_fract_z
_atom_site_occupancy
N1 W 4 b 0.00000 0.50000 0.25000 1.00000
Cs1 Cs 8 h 0.18892 0.68892 0.00000 1.00000
Cs2 Cs 4 a 0.00000 0.00000 0.25000 1.00000
O1 O 16 l 0.62510 0.12510 0.16680 1.00000
H1 H 4 C 0.00000 0.00000 0.00000 1.00000
end of cif
```

data Rb3WO4H
_audit_creation_method FINDSYM

_cell_length_a	11.9743502500
_cell_length_b	11.4712919800
_cell_length_c	11.5041418900
_cell_angle_alpha	90.0000000000
_cell_angle_beta	90.0000000000
_cell_angle_gamma	90.0000000000

symmetry space group name H-M "P 21/b 21/c 21/a"
_symmetry_Int_Tables_number 61
_space_group.reference_setting '061:-P 2ac 2ab'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop
space_group_symop_id
_space_group_symop_operation_xyz
$1 \mathrm{x}, \mathrm{y}, \mathrm{z}$

```
2 x+1/2,-y+1/2,-z
-x,y+1/2,-z+1/2
4 -x+1/2,-y,z+1/2
-x,-y,-z
6 -x+1/2,y+1/2,z
x,-y+1/2,z+1/2
x+1/2,y,-z+1/2
loop_
_atom_site_label
_atom_site_type_symbol
atom_site_symmetry multiplicity
_atom_site_Wyckoff_label
atom site fract x
_atom_site_fract_y
__atom_site_fract_z
atom site occupancy
\overline{W}1 W- 8- c 0.74991 0.00791 -0.01757 1.00000
Rb1 Rb 8 c 0.74671 0.22901 0.72928 1.00000
Rb2 Rb 8 c 0.00202 0.78349 -0.00761 1.00000
Rb3 Rb 8 c 0.00245-0.00693 0.71810 1.00000
O1 O 8 c 0.86839 -0.02153 0.07208 1.00000
02 0 8 c 0.78097 -0.02617 0.83424 1.00000
03 0 8 с 0.71730 0.15992 -0.00939 1.00000
04 0 8 c 0.63217 -0.07532 0.02845 1.00000
H1 H & c 0.50535 0.75489 0.25699 1.00000
end of cif
```


## 3

## Literature

[1] J. Rodríguez-Carvajal, Physica B 1993, 192, 55.
[2] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 1966, 15, 627.
[3] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro et al., Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2018, 8.
[4] Perdew, Burke, Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[5] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
[6] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
[7] a) R. E. Stene, B. Scheibe, A. J. Karttunen, W. Petry, F. Kraus, Eur. J. Inorg. Chem. 2019, 2019, 3672; b) R. E. Stene, B. Scheibe, A. J. Karttunen, W. Petry, F. Kraus, Eur. J. Inorg. Chem. 2020, 2020, 2260; c) A. J. Karttunen, T. Tynell, M. Karppinen, J. Phys. Chem. C 2015, 119, 13105.
[8] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
[9] a) F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 888; b) C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 1873; c) L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, J. Chem. Phys. 2013, 139, 164101.
[10] a) S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. - Cryst. Mater. 2005, 220, 567; b) C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63; c) J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B 2007, 76.
[11] Vanderbilt, Phys. Rev. B 1990, 41, 7892.
[12] R. D. Shannon, Acta Cryst. A 1976, 32, 751.
[13] P. F. Lang, B. C. Smith, Dalton Trans. 2010, 39, 7786.
[14] K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
[15] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Band structure diagram paths based on crystallography, 2016.
[16] A. Togo, I. Tanaka 2018, arXiv:1808.01590v1.
[17] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Comput. Mater. Sci. 2017, 128, 140.

