Supporting Information

Air and Water Stable Germacarbonyl Compounds

Pritam Mahawar,^a Pratima Shukla,^a Prakash Chandra Joshi,^a Dharmendra Singh,^a

Hemant Kumar,^a Goutam Mukherjee,^{a,b} and Selvarajan Nagendran*

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi

110016, India

^bPresent address: PharmCADD, 12F, 331, Jungang-daero, Dong-gu, Busan, Republic of

Korea

Contents

	Title	Page
		No.
	Experimental procedures	7
Scheme S1	Synthesis of phenylgermylene DPMGePh (2)	7
Scheme S2	Synthesis of aminogermylene DPMGeN(TMS) ₂ (11)	11
Scheme S3	Synthesis of thiogermaamide 12 stabilized copper(I) halide complexes	13
Scheme S4	Synthesis of selenogermaamide 13 stabilized copper(I) halide complexes	16
Table S1	The temperature at which compounds 3-4, 6-7, and 9-19 started to become black solids	18
Figure S1	¹ H NMR spectrum of compound 2	19
Figure S2	¹³ C NMR spectrum of compound 2	19
Figure S3	Air stability of compound 2	20
Figure S4	Stability of compound 2 in water	21
Figure S5	¹ H NMR spectrum of compound 3	22
Figure S6	¹³ C NMR spectrum of compound 3	
Figure S7	Air stability of compound 3	23
Figure S8	Stability of compound 3 in water	24
Figure S9	¹ H NMR spectrum of compound 4	25
Figure S10	¹³ C NMR spectrum of compound 4	25
Figure S11	Air stability of compound 4	26
Figure S12	Stability of compound 4 in water	27
Figure S13	⁷⁷ Se NMR spectrum of compound 4	28
Figure S14	¹ H NMR spectrum of compound 6	29

Figure S15	¹³ C NMR spectrum of compound 6	29
Figure S16	Air stability of compound 6	30
Figure S17	¹ H NMR spectrum of compound 7	31
Figure S18	¹³ C NMR spectrum of compound 7	31
Figure S19	Air stability of compound 7	32
Figure S20	Stability of compound 7 in water	33
Figure S21	⁷⁷ Se NMR spectrum of compound 7	34
Figure S22	¹ H NMR spectrum of compound 9	35
Figure S23	¹³ C NMR spectrum of compound 9	35
Figure S24	Air stability of compound 9	36
Figure S25	Stability of compound 9 in water	37
Figure S26	¹ H NMR spectrum of compound 10	38
Figure S27	¹³ C NMR spectrum of compound 10	38
Figure S28	Air stability of compound 10	39
Figure S29	Stability of compound 10 in water	40
Figure S30	⁷⁷ Se NMR spectrum of compound 10	41
Figure S31	¹ H NMR spectrum of compound 11	42
Figure S32	¹³ C NMR spectrum of compound 11	42
Figure S33	Air stability of compound 11	43
Figure S34	Stability of compound 11 in water	44
Figure S35	²⁹ Si NMR spectrum of compound 11	45
Figure S36	¹ H NMR spectrum of compound 12	46
Figure S37	¹³ C NMR spectrum of compound 12	46
Figure S38	Air stability of compound 12	47

Figure S39	Stability of compound 12 in water	48
Figure S40	²⁹ Si NMR spectrum of compound 12	49
Figure S41	¹ H NMR spectrum of compound 13	50
Figure S42	¹³ C NMR spectrum of compound 13	50
Figure S43	Air stability of compound 13	51
Figure S44	Stability of compound 13 in water	52
Figure S45	⁷⁷ Se NMR spectrum of compound 13	53
Figure S46	²⁹ Si NMR spectrum of compound 13	53
Figure S47	¹ H NMR spectrum of compound 14	54
Figure S48	¹³ C NMR spectrum of compound 14	54
Figure S49	Air stability of compound 14	55
Figure S50	Stability of compound 14 in water	56
Figure S51	²⁹ Si NMR spectrum of compound 14	57
Figure S52	¹ H NMR spectrum of compound 15	58
Figure S53	¹³ C NMR spectrum of compound 15	58
Figure S54	Air stability of compound 15	59
Figure S55	Stability of compound 15 in water	60
Figure S56	²⁹ Si NMR spectrum of compound 15	61
Figure S57	⁷⁷ Se NMR spectrum of compound 15	61
Figure S58	¹ H NMR spectrum of compound 16	62
Figure S59	¹³ C NMR spectrum of compound 16	62
Figure S60	Air stability of compound 16	63
Figure S61	Stability of compound 16 in water	64
Figure S62	²⁹ Si NMR spectrum of compound 16	65

Figure S63	¹ H NMR spectrum of compound 17	66
Figure S64	¹³ C NMR spectrum of compound 17	66
Figure S65	Air stability of compound 17	67
Figure S66	Stability of compound 17 in water	68
Figure S67	²⁹ Si NMR spectrum of compound 17	69
Figure S68	¹ H NMR spectrum of compound 18	70
Figure S69	¹³ C NMR spectrum of compound 18	70
Figure S70	Air stability of compound 18	71
Figure S71	Stability of compound 18 in water	72
Figure S72	²⁹ Si NMR spectrum of compound 18	73
Figure S73	⁷⁷ Se NMR spectrum of compound 18	73
Figure S74	¹ H NMR spectrum of compound 19	74
Figure S75	¹³ C NMR spectrum of compound 19	74
Figure S76	Air stability of compound 19	75
Figure S77	Stability of compound 19 in water	76
Figure S78	²⁹ Si NMR spectrum of compound 19	77
Figure S79	⁷⁷ Se NMR spectrum of compound 19	77
Figure S80	IR spectrum of compound 6	78
Figure S81	IR spectrum of compound 7	78
Table S2	⁷⁷ Se NMR spectroscopic data of germaselenocarbonyl compounds containing Ge=Se bonds	79
Table S3	UV-vis spectroscopic data of germacarbonyl compounds 3-4 , 6-7 , 9-10 , 12-13 , and copper(I) complexes 14 , 18 , and 19	80
Figure S82	UV-vis spectra of thiogermacarbonyl compounds 3, 6, 9, and 12	81
Figure S83	UV-vis spectra of selenogermacarbonyl compounds 4, 7, 10, and 13	81
Figure S84	UV-vis spectra of copper(I) complexes 14, 18, and 19	82

	X-ray crystal structure determination of compounds 2-4, 9, 11-14, 16-17, and 19	82
Figure S85	Molecular structure of compound 2	83
Figure S86	Molecular structure of compound 3	84
Figure S87	Molecular structure of compound 4	85
Figure S88	Molecular structure of compound 9	86
Figure S89	Molecular structure of compound 11	87
Figure S90	Molecular structure of compound 12	88
Figure S91	Molecular structure of compound 13	89
Figure S92	Molecular structure of compound 14	90
Figure S93	Molecular structure of compound 16	91
Figure S94	Molecular structure of compound 17	92
Figure S95	Molecular structure of compound 19	93
Table S4	Crystal data and structure refinement for DPMGePh (2), DPMGe(S)Ph (3), DPMGe(Se)Ph (4), and DPMGe(S)OEt (9)	94
Table S5	Crystal data and structure refinement for DPMGeN(TMS) ₂ (11), DPMGe(S)N(TMS) ₂ (12), and DPMGe(Se)N(TMS) ₂ (13)	95
Table S6	Crystaldataandstructurerefinementfor $[(DPMGe(S)N(TMS)_2)\rightarrow CuCl]$ (14) $[(DPMGe(S)N(TMS)_2)\rightarrow CuBr]_2$ (16) , $[(DPMGe(S)N(TMS)_2)\rightarrow CuI]_2$ (17) ,and $[(DPMGe(Se)N(TMS)_2)\rightarrow CuI]_2$ (19)	97
	Computational details (that includes Tables S7-S10)	100
	Coordinates of the optimized geometries of compounds 3 , 4 , 12 , 13 , 18 , xvii , xviii , xx , xxi , CuCl, CuBr, and CuI	104
	Supporting references	125

Experimental procedures

All the reactions and manipulations were performed under atmospheric conditions except for the synthesis of compounds 2 and 11. As the synthesis of compounds 2 and 11 requires PhLi and LiN(TMS)₂, Schlenk/glovebox techniques were used; dry toluene and hexane used in synthesizing these compounds were dried according to the conventional procedure. ¹H, ¹³C, ²⁹Si, and ⁷⁷Se NMR spectra were recorded on a 300/400/500 MHz Bruker Topspin NMR spectrometer using non-dried CDCl₃. The chemical shifts δ are reported in ppm and referenced internally to the residual solvent and solvent resonances during the ¹H and ¹³C NMR spectroscopic studies. The IR spectra of compounds **6** and **7** were recorded using an Agilent Resolutions Pro IR spectrophotometer. Mass Spectra were recorded on a Bruker Micro-TOF QII quadrupole time-of-flight (Q-TOF) mass spectrometer. Melting points were measured using the Unitech sales digital melting point apparatus; instead of melting, they became black solids at a particular temperature above 170 °C (Table S1).

Synthesis of DPMGePh (2):

Scheme S1. Synthesis of phenylgermylene DPMGePh (2)

To a solution of compound 1 (0.500 g, 0.88 mmol) in toluene (20 mL), PhLi (1.9 M solution in hexane) (0.513 mL) was added at -20 °C. The reaction mixture was slowly brought to room temperature and stirred overnight. Then, the reaction mixture was filtered through a G4 frit with celite. The filtrate was dried under reduced pressure to yield compound **2** as a red solid. It

was washed with hexane and dried to obtain an analytically pure sample of compound **2**. Single crystals of compound **2** suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 510 mg (95%); ¹H NMR (500 MHz, CDCl₃): δ 1.19 (s, 6H, CH₃), 2.24 (s, 6H, CH₃), 2.26 (s, 6H, CH₃), 6.27 (d, J = 5 Hz, 2H, Ph), 6.63 (s, 2H, Py), 6.87 (s, 2H, Py), 6.93 (s, 4H, Mes), 7.02-7.06 (m, 3H, Ph), 7.56 (bs, 3H, Ph), 7.72-7.75 ppm (m, 2H, Ph); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 19.4, 20.6, 21.3, 118.9, 127.3, 127.4, 127.7, 128.1, 128.3, 129.2, 130.0, 130.7, 131.1, 132.0, 133.4, 134.9, 136.2, 137.4, 138.6, 138.7, 146.0, 158.3, 159.1 ppm. HRMS (ESI-QTOF, [M - Ph]⁺) m/z calcd for [C₃₃H₃₁GeN₂] 529.1693, found 529.1682 (Δ 3.4 ppm).

Synthesis of DPMGe(S)Ph (3): To a solution of compound **2** (0.200 g, 0.33 mmol) in toluene (10 mL) elemental sulfur (0.012 g, 0.36 mmol) was added at room temperature. The reaction mixture was stirred for 1 h, and the solvent was removed under reduced pressure to get an orange-red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to afford compound **3** as an orange-red solid. Single crystals of compound **3** suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 0.200 g (95%); ¹H NMR (400 MHz, CDCl₃): δ 1.14 (s, 6H, CH₃), 2.15 (s, 6H, CH₃), 2.33 (s, 6H, CH₃), 6.32 (s, 2H, Ph), 6.36 (d, *J* = 4 Hz, 2H, Py), 6.78 (s, 2H, Ph), 6.98 (d, *J* = 4 Hz, 2H, Py), 7.15 (bs, 4H, Mes), 7.57-7.59 (m, 3H, Ph), 7.69-7.71 (m, 2H, Ph); ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 19.6, 21.2, 22.6, 121.0, 127.0, 127.6, 127.9, 128.0, 128.1, 129.9, 130.0, 130.7, 131.0, 133.4, 134.7, 135.9, 136.6, 138.3, 139.2, 139.6, 145.5, 162.5 ppm. HRMS (ESI-QTOF, [M + H]⁺) *m/z* calcd for [C₃₉H₃₇GeN₂S] 639.1883, found 639.1899 (Δ 1.1 ppm).

Synthesis of DPMGe(Se)Ph (4): To a solution of compound **2** (0.200 g, 0.33 mmol) in toluene (10 mL) elemental selenium (0.028 g, 0.36 mmol) was added at room temperature. The reaction mixture was stirred for 1 h, and the solvent was removed under reduced pressure to get a dark

orange-red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to obtain compound **4** as a dark orange-red solid. Single crystals of compound **4** suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 0.210 g (93%); ¹H NMR (500 MHz, CDCl₃): δ 1.11 (s, 6H, CH₃), 2.15 (s, 6H, CH₃), 2.31 (s, 6H, CH₃), 6.34 (s, 4H, Mes), 6.76 (s, 2H, Py), 6.98 (d, J = 5 Hz, 2H, Py), 7.14 (d, J = 8 Hz, 2H, Ph), 7.16-7.19 (m, 2H, Ph), 7.28 (bs, 1H, Ph), 7.57-7.61 ppm (m, 3H, Ph), 7.69 (bs, 2H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 18.5, 20.2, 21.9, 120.3, 126.1, 126.6, 126.8, 127.0, 127.1, 128.9, 129.0, 129.7, 129.9, 132.5, 133.7, 134.9, 135.3, 135.6, 138.2, 144.4, 161.6 ppm. ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -386 ppm. HRMS (ESI-QTOF, [M + H]⁺) *m/z* calcd for [C₃₉H₃₇GeN₂Se] 687.1334, found 687.1338 (Δ 0.6 ppm).

Synthesis of DPMGe(S)OH (6): To a solution of compound **5** (0.200 g, 0.36 mmol) in toluene (10 mL), elemental sulphur (0.012 g, 0.39 mmol) was added at room temperature. The reaction mixture was stirred for 20 min, and the solvent was removed under reduced pressure to get an orange-red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to obtain compound **6** as an orange-red solid.

Yield: 0.202 g (95%); ¹H NMR (300 MHz, CDCl₃): δ 1.77 (s, 1H, OH), 2.15 (s, 6H, CH₃), 2.25 (s, 6H, CH₃), 2.30 (s, 6H, CH₃), 6.42 (d, *J* = 3 Hz, 2H, Py), 6.81 (s, 2H, Mes), 6.87 (s, 2H, Mes), 6.97 (d, *J* = 6 Hz, 2H, Py), 7.55 (bs, 2H, Ph), 7.58-7.63 (m, 3H, Ph); ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 20.7, 21.4, 21.8, 120.8, 127.5, 128.1, 128.3, 130.2, 130.7, 130.9, 135.2, 136.4, 136.8, 138.2, 139.3, 139.7, 145.4, 162.4 ppm; ATR: v = 3612 cm⁻¹ (OH). HRMS (ESI-QTOF, [M + H]⁺) *m/z* calcd for [C₃₃H₃₃GeN₂OS] 579.1516, found 579.1519 (Δ 1.7 ppm).

Synthesis of DPMGe(Se)OH (7): To a solution of compound 5 (0.200 g, 0.36 mmol) in toluene (10 mL), elemental selenium (0.030 g, 0.40 mmol) was added at room temperature. The reaction mixture was stirred for 20 min, and the solvent was removed under reduced

pressure to get an orange-red solid. It was washed with hexane (5 mL) and dried *in vacuo* to obtain compound **7** as an orange-red solid.

Yield: 0.220 g (96%); ¹H NMR (400 MHz, CDCl₃): δ 1.79 (s, 1H, OH), 2.15 (s, 6H, CH₃), 2.26 (s, 6H, CH₃), 2.31 (s, 6H, CH₃), 6.41 (d, J = 4 Hz, 2H, Py), 6.82 (s, 2H, Mes), 6.88 (s, 2H, Mes), 6.96 (d, J = 4 Hz, 2H, Py), 7.52-7.64 (m, 5H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 20.7, 21.3, 22.1, 120.8, 127.5, 128.1, 128.3, 130.1, 135.1, 135.3, 136.4, 138.3, 138.9, 139.6, 145.3, 162.3 ppm; ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -340 ppm; ATR: v = 3612 cm⁻¹ (OH). HRMS (ESI-QTOF, [M + H]⁺) *m/z* calcd for [C₃₃H₃₃GeN₂OSe] 649.0791, found 649.0783 (Δ 1.2 ppm).

Synthesis of DPMGe(S)OEt (9): To a solution of compound 8 (0.200 g, 0.34 mmol) in toluene (10 mL), elemental sulphur (0.012 g, 0.37 mmol) was added at room temperature. The reaction mixture was stirred for 20 min, and the solvent was removed under reduced pressure to get an orange-red solid. It was washed with hexane ($3 \times 5 \text{ mL}$) and dried *in vacuo* to provide compound 9 as an orange-red solid. Single crystals of compound 9 suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 0.205 g (97%); ¹H NMR (400 MHz, CDCl₃): δ 0.76 (t, J = 8 Hz, 3H, CH₃), 2.15 (s, 6H, CH₃), 2.26 (s, 6H, CH₃), 2.32 (s, 6H, CH₃), 2.56-2.62 (q, J = 8 Hz, 2H, CH₂), 6.39 (d, J = 4 Hz, 2H, Py), 6.84 (s, 2H, Mes), 6.88 (s, 2H, Mes), 6.94 (d, J = 4 Hz, 2H, Py), 7.54-7.57 (m, 3H, Ph), 7.59 (bs, 1H, Ph), 7.64 (bs, 1H, Ph); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 17.0 (OEt), 20.8, 21.3, 21.9 (CH₃), 60.1 (OEt), 120.6, 127.4, 127.9, 128.1, 128.2, 128.6, 130.0, 130.7, 131.0, 135.2, 135.4, 136.9, 138.1, 139.1, 139.4, 145.3, 162.2 ppm. HRMS (ESI-QTOF, [M + Na]⁺) *m/z* calcd for [C₃₅H₃₆GeN₂NaOS] 629.1652, found 629.1645 (Δ 2.1 ppm).

Synthesis of DPMGe(Se)OEt (10): To a solution of compound 8 (0.200 g, 0.34 mmol) in toluene (10 mL), elemental selenium (0.029 g, 0.37 mmol) was added at room temperature.

The reaction mixture was stirred for 20 min, and the solvent was removed under reduced pressure to get an orange-red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to provide compound **10** as an orange-red solid.

Yield: 0.218 g (96%); ¹H NMR (400 MHz, CDCl₃): δ 0.74 (t, J = 8 Hz, 3H, CH₃), 2.15 (s, 6H, CH₃), 2.26 (s, 6H, CH₃), 2.33 (s, 6H, CH₃), 2.55-2.57 (q, J = 8 Hz, 2H, CH₂), 6.38 (d, J = 4 Hz, 2H, Py), 6.85 (s, 2H, Mes), 6.88 (s, 2H, Mes), 6.94 (d, J = 4 Hz, 2H, Py), 7.54-7.58 (m, 4H, Ph), 7.66 (bs, 1H, Ph); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 16.7 (OEt), 20.9, 21.3, 22.3 (CH₃), 60.6 (OEt), 120.7, 127.6, 127.9, 128.1, 128.2, 128.6, 130.0, 130.7, 131.0, 135.2, 136.6, 138.2, 138.7, 139.4, 144.8, 162.2 ppm; ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -379 ppm. HRMS (ESI-QTOF, [M + Na]⁺) *m/z* calcd for [C₃₅H₃₆GeN₂NaOSe] 677.1145, found 677.1095 (Δ 5.5 ppm). Synthesis of DPMGeN(TMS)₂ (11):

Scheme S2. Synthesis of aminogermylene DPMGeN(TMS)₂ (11)

To a solution of compound 1 (0.500 g, 0.88 mmol) in toluene (15 mL), LiN(TMS)₂ (163.2 mg, 0.97 mmol) was added at -20 °C. The reaction mixture was slowly brought to room temperature and stirred overnight, and the solvent was removed under reduced pressure to yield a brown-red solid. The solid was extracted using toluene (30 mL) and filtered through a G4 frit with celite. The filtrate was dried under reduced pressure to yield compound 11 as a brown-red solid. It was washed with hexane and dried to obtain an analytically pure sample of compound 11. Single crystals of compound 11 suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 590 mg (97%); ¹H NMR (500 MHz, CDCl₃): δ -0.46 (s, 9H, N(TMS)₂), -0.25 (s, 9H, N(TMS)₂), 2.12 (s, 6H, CH₃), 2.27 (s, 12H, CH₃), 6.32 (bs, 2H, Py), 6.86 (s, 4H, Mes), 6.89 (d, J = 10 Hz, 2H, Py), 7.49-7.51 (m, 3H, Ph), 7.60 (s, 2H, Ph); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 5.26 (N(TMS)₂), 21.1, 21.2, 21.8 (CH₃), 119.4, 128.4, 128.5, 129.1, 129.2, 130.6, 132.7, 136.5, 137.2, 137.7, 138.6, 160.3 ppm; ²⁹Si {¹H} NMR (99.3 MHz, CDCl₃): δ -3, 2 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [M - N(TMS)₂]⁺) *m/z* calcd for [C₃₃H₃₁GeN₂] 529.1693, found 529.1719 (Δ 3.7 ppm).

Synthesis of DPMGe(S)N(TMS)₂ (12): To a solution of compound 11 (0.200 g, 0.29 mmol) in toluene (10 mL), elemental sulphur (0.010 g, 0.31 mmol) was added, and the reaction was stirred for 12 h at 60 °C. The solvent was removed under reduced pressure to get a red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to afford compound 12 as an orange-red solid. Single crystals of compound 12 suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature.

Yield: 198 mg (94%); ¹H NMR (300 MHz, CDCl₃): δ -0.05 (bs, 18H, N(TMS)₂), 2.23 (s, 6H, CH₃), 2.26 (s, 6H, CH₃), 2.33 (s, 6H, CH₃), 6.33 (d, *J* = 3 Hz, 2H, Py), 6.83 (d, *J* = 6 Hz, 4H, Mes), 6.88 (d, *J* = 3 Hz, 2H, Py), 7.52-7.56 (m, 5H, Ph); ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 6.4 (N(*TMS*)₂), 21.3, 22.8, 23.0 (CH₃), 122.1, 127.7, 127.8, 127.9, 128.4, 129.7, 130.2, 130.4, 131.3, 134.5, 136.2, 136.4, 137.7, 139.3, 140.5, 145.2, 163.5 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.88 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [M + Na]⁺) *m/z* calcd for [C₃₉H₄₉GeN₃NaSSi₂] 744.2295, found 744.2321 (Δ 3.5 ppm).

Synthesis of DPMGe(Se)N(TMS)₂ (13): To a solution of compound 11 (0.200 g, 0.29 mmol) in toluene (10 mL), elemental selenium (0.024 g, 0.31 mmol) was added, and the reaction was stirred for 12 h at 60 °C. The solvent was removed under reduced pressure to get a brown-red solid. It was washed with hexane (3 x 5 mL) and dried *in vacuo* to afford compound 13 as an

orange-red solid. Single crystals of compound **13** suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature. Yield: 0.210 g (94%); ¹H NMR (400 MHz, CDCl₃): δ 0.02 (bs, 18H, N(TMS)₂), 2.25 (s, 6H, CH₃), 2.28 (s, 6H, CH₃), 2.29 (s, 6H, CH₃), 6.31 (d, J = 4 Hz, 2H, Py), 6.83 (s, 4H, Mes), 6.87 (d, J = 4 Hz, 2H, Py), 7.50-7.59 (m, 5H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 6.9 (N(TMS)₂), 21.3, 23.0, 23.3 (CH₃), 122.2, 127.8, 127.9, 128.0, 128.4, 129.8, 129.9, 130.4, 131.4, 134.4, 136.2, 137.4, 139.3, 140.1, 145.8, 163.5 ppm; ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -178.0 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.90 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [M + Na]⁺) *m/z* calcd for [C₃₉H₄₉GeN₃NaSeSi₂] 792.1734, found 792.1732 (Δ 1.9 ppm).

General procedure for the synthesis of thiogermaamide stabilized copper(I) halide complexes

Scheme S3. Synthesis of thiogermaamide 12 stabilized copper(I) halide complexes To a solution of DPMGe(S)N(TMS)₂(12) in toluene (10 mL), corresponding CuX (X = Cl, Br, and I for complexes 14, 16, and 17, respectively) was added under ambient conditions. The

reaction mixture was stirred for 30 min, and the solvent was removed under reduced pressure to get a brown-red solid. It was washed with hexane (10 mL) and dried in vacuo to obtain the desired thiogermaamide stabilized copper(I) halide complex as a brown-red solid.

Synthesis of [(DPMGe(S)N(TMS)₂)→CuCl] (14): Compound 12 (0.200 g, 0.27 mmol), Cu(I)Cl (.030 g, 0.30 mmol), toluene (10 mL), color and state: orange-red and solid. Single crystals of compound 14 suitable for X-ray diffraction studies were grown from its tetrahydrofuran solution containing a few drops of toluene at room temperature. Yield: 0.196 g (89%); ¹H NMR (500 MHz, CDCl₃): δ -0.05 (bs, 18H, N(TMS)₂), 2.17 (s, 6H, CH₃), 2.29 (s, 6H, CH₃), 2.45 (s, 6H, CH₃), 6.42 (d, J = 4.3 Hz, 2H, Py), 6.85 (s, 2H, Mes), 6.91 (s, 2H, Mes), 6.99 (d, J = 4.8 Hz, 2H, Py), 7.49 (bs, 2H, Ph), 7.55 (bs, 2H, Ph), 7.93 ppm (d, J = 7.0 Hz, 1H, Ph); ¹³C {¹H} NMR (100 MHz): δ 5.7 (N(TMS)₂), 21.2, 23.4, 24.5 (CH₃), 123.3, 127.5, 128.0, 128.4, 128.9, 129.1, 129.6, 129.9, 132.0, 135.7, 136.6, 136.7, 137.6, 139.5, 140.3, 146.4, 163.3 ppm; ²⁹Si {¹H} NMR (99.3 MHz, CDCl₃): δ -21.80 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [M -Cl]⁺) *m/z* calcd for [C₃₉H₄₉CuGeN₃SSi₂] 784.1694, found 784.1672 (Δ 2.8 ppm).

Synthesis of [(DPMGe(S)N(TMS)₂)→**CuBr**]₂ (16): Compound 12 (0.200 g, 0.27 mmol), Cu(I)Br (0.043 g, 0.30 mmol), toluene (10 mL), color and state: orange-red and solid. Single crystals of compound 16 suitable for X-ray diffraction studies were grown by slowly cooling its hot toluene solution to room temperature. Yield: 0.224 g (94%); ¹H NMR (500 MHz, CDCl₃): δ -0.06 (bs, 36H, N(TMS)₂), 2.17 (s, 12H, CH₃), 2.28 (s, 12H, CH₃), 2.49 (s, 12H, CH₃), 6.41 (d, J = 5 Hz, 4H, Py), 6.84 (s, 4H, Mes), 6.90 (s, 4H, Mes), 6.97 (d, J = 5 Hz, 4H, Py), 7.47 (bs, 4H, Ph), 7.55 (bs, 4H, Ph), 8.02 ppm (bs, 2H, Ph); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 5.7 (N(TMS)₂), 21.2, 23.5, 24.7 (CH₃), 123.2, 127.4, 128.0, 128.3, 128.9, 129.0, 129.6, 129.9, 132.0, 135.7, 136.5, 136.7, 137.6, 139.5, 140.2, 146.4, 163.2 ppm; ²⁹Si {¹H} NMR (99.3 MHz, CDCl₃): δ -21.80 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [0.5 M - Br]⁺) *m/z* calcd for [C₃₉H₄₉CuGeN₃SSi₂] 784.1694, found 784.1678 (Δ 2.0 ppm). Synthesis of [(DPMGe(S)N(TMS)₂) \rightarrow CuI]₂ (17): Compound 12 (0.200 g, 0.27 mmol), Cu(I)I (0.057 g, 0.30 mmol), toluene (10 mL), color and state: orange-red and solid. Single crystals of compound 17 suitable for X-ray diffraction studies were grown by slowly cooling its hot toluene solution to room temperature. Yield: 0.226 g (90%); ¹H NMR (500 MHz, CDCl₃): δ -0.06 (bs, 36H, N(TMS)₂), 2.17 (s, 12H, CH₃), 2.28 (s, 12H, CH₃), 2.50 (s, 12H, CH₃), 6.41 (d, J = 5 Hz, 4H, Py), 6.84 (s, 4H, Mes), 6.90 (s, 4H, Mes), 6.98 (d, J = 5 Hz, 4H, Py), 7.47 (bs, 4H, Ph), 7.54 (bs, 4H, Ph), 8.02 ppm (bs, 2H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 5.8 (N(TMS)₂), 21.2, 23.5, 25.3 (CH₃), 123.1, 127.4, 127.9, 128.2, 128.9, 129.0, 129.9, 132.0, 135.9, 136.3, 136.6, 138.0, 139.6, 140.0, 146.4, 163.1 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.90 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [0.5 M - 1]⁺) *m*/*z* calcd for [C₃₉H₄₉CuGeN₃SSi₂] 784.1694, found 784.1661 (Δ 4.2 ppm). General procedure for the synthesis of selenogermaamide stabilized copper(I) halide complexes

Scheme S4. Synthesis of selenogermaamide 13 stabilized copper(I) halide complexes

To a solution of DPMGe(Se)N(TMS)₂ (13) in toluene (10 mL), CuX (X = Cl, Br, and I for complexes 15, 18, and 19, respectively) were added under ambient conditions. The reaction mixture was allowed to stir for 30 min, and the solvent was removed under reduced pressure to get a brown-red solid. It was washed with hexane (10 mL) and dried *in vacuo* to afford selenogermaamide stabilized copper(I) halide complex as a brown-red solid.

Synthesis of [(DPMGe(Se)N(TMS)₂)→**CuCl] (15)**: Compound **13** (0.200 g, 0.26 mmol), Cu(I)Cl (0.028 g, 0.28 mmol), toluene (10 mL), color and state: red-orange and solid. Yield: 0.213 g (95%); ¹H NMR (500 MHz, CDCl₃): δ 0.01 (bs, 18H, N(TMS)₂), 2.21 (s, 6H, CH₃), 2.30 (s, 6H, CH₃), 2.44 (s, 6H, CH₃), 6.40 (d, *J* = 4.1 Hz, 2H, Py), 6.84 (s, 2H, Mes), 6.90 (s, 2H, Mes), 6.96 (d, *J* = 4.5 Hz, 2H, Py), 7.49 (bs, 2H, Ph), 7.54 (bs, 2H, Ph), 7.91 ppm (s, 1H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 6.2 (N(TMS)₂), 21.2, 21.5, 23.5, (CH₃), 123.2, 125.4, 127.4, 128.0, 128.3, 128.8, 128.8, 129.1, 129.4, 129.8, 132.1, 135.7, 136.3, 136.5, 137.3, 137.9, 139.4, 140.1, 145.1, 146.5, 163.5 ppm; ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -237 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.9 ppm (Si(CH₃)₃). HRMS (ESI-QTOF, [M - Cl]⁺) *m/z* calcd for [C₃₉H₄₉CuGeN₃SeSi₂] 832.1138, found 832.1101 (Δ 4.4 ppm).

Synthesis of [(DPMGe(Se)N(TMS)₂) \rightarrow CuBr]₂ (18): Compound 13 (0.200 g, 0.26 mmol), Cu(I)Br (0.040 g, 0.28 mmol), toluene (10 mL), color and state: red-orange and solid. Yield: 0.217 g (92%); ¹H NMR (500 MHz, CDCl₃): δ 0.01 (bs, 36H, N(TMS)₂), 2.21 (s, 12H, CH₃), 2.30 (s, 12H, CH₃), 2.44 (s, 12H, CH₃), 6.39 (d, *J* = 5 Hz, 4H, Py), 6.84 (s, 4H, Mes), 6.89 (s, 4H, Mes), 6.97 (d, *J* = 5 Hz, 4H, Py), 7.49 (s, 4H, Ph), 7.55 (s, 4H, Ph), 7.96 ppm (d, *J* = 5 Hz, 2H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 6.32 (N(TMS)₂), 21.2, 23.5, 25.1 (CH₃), 123.2, 127.4, 128.0, 128.3, 128.9, 129.0, 129.5, 129.9, 132.2, 136.3, 136.6, 137.5, 139.4, 140.1, 163.3 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.9 ppm (Si(CH₃)₃); ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -228 ppm. HRMS (ESI-QTOF, [0.5 M - Br]⁺) *m/z* calcd for [C₃₉H₄₉CuGeN₃SeSi₂] 832.1138, found 832.1107 (Δ 3.7 ppm).

Synthesis of $[(DPMGe(Se)N(TMS)_2) \rightarrow CuI]_2$ (19): Compound 13 (0.200 g, 0.26 mmol), Cu(I)I (0.053 g, 0.28 mmol), toluene (10 mL), color and state: red-orange and solid. Single crystals of compound 19 suitable for X-ray diffraction studies were grown by slowly cooling its hot toluene solution to room temperature. Yield: 0.234 g (94%); ¹H NMR (500 MHz, CDCl₃): δ 0.01 (bs, 36H, N(TMS)₂), 2.22 (s, 12H, CH₃), 2.28 (s, 12H, CH₃), 2.45 (s, 12H, CH₃), 6.37 (s, 4H, Py), 6.82 (s, 4H, Mes), 6.87 (s, 4H, Mes), 6.94 (d, *J* = 4.8 Hz, 4H, Py), 7.51 (bs, 8H, Ph), 7.93 ppm (bs, 2H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 6.6 (N(TMS)₂), 21.3, 23.5, 25.2 (CH₃), 122.8, 127.5, 127.9, 128.2, 128.7, 129.3, 129.8, 129.9, 132.1, 135.8, 136.0, 136.4, 137.8, 139.6, 139.7, 163.3 ppm; ²⁹Si{¹H} NMR (99.3 MHz, CDCl₃): δ -21.9 ppm (Si(CH₃)₃); ⁷⁷Se{¹H} (95.60 MHz, CDCl₃): δ -235 ppm. HRMS (ESI-QTOF, [0.5 M - I]⁺) *m/z* calcd for [C₃₉H₄₉CuGeN₃SeSi₂] 832.1138, found 832.1110 (Δ 3.4 ppm). Table S1. The temperature at which compounds 3-4, 6-7, and 9-19 started to become black solids

Compound	Temperature (°C)
DPMGePh (2)	175
DPMGe(S)Ph (3)	214
DPMGe(Se)Ph (4)	252
DPMGe(S)OH (6)	208
DPMGe(Se)OH (7)	241
DPMGe(S)OEt (9)	191
DPMGe(Se)OEt (10)	225
$DPMGeN(TMS)_2 (11)$	188
$DPMGe(S)N(TMS)_2 (12)$	212
$DPMGe(Se)N(TMS)_2 (13)$	240
$[(DPMGe(S)(N(TMS)_2) \rightarrow CuCl] (14)$	178
$[(DPMGe(S)(N(TMS)_2) \rightarrow CuBr] (16)$	179
$[(DPMGe(S)(N(TMS)_2) \rightarrow CuI] (17)$	172
$[(DPMGe(Se)(N(TMS)_2)\rightarrow CuCl] (15)$	186
$[(DPMGe(Se)(N(TMS)_2) \rightarrow CuBr] (18)$	192
$[(DPMGe(Se)(N(TMS)_2) \rightarrow CuI] (19)$	185

NMR spectra

Figure S1. ¹H NMR spectrum of compound 2

Figure S2. ¹³C NMR spectrum of compound 2

Figure S3. Air stability of compound 2

In an open vial, ~250 mg of a freshly prepared sample of compound **2** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S3 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S3 (**b**)] exactly matches that of the freshly prepared sample [Figure S3 (**a**)].

Figure S4. Stability of compound 2 in water

Around 10 mg of a freshly prepared sample of compound **2** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S4 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 2 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 2nd day [Figure S4 (**b**)] exactly matches that of the freshly prepared sample [Figure S4 (**a**)].

Figure S5. ¹H NMR spectrum of compound 3

Figure S6. ¹³C NMR spectrum of compound 3

Figure S7. Air stability of compound 3

In an open vial, ~250 mg of a freshly prepared sample of compound **3** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S7 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S7 (**b**)] exactly matches that of the freshly prepared sample [Figure S7 (**a**)].

Figure S8. Stability of compound 3 in water

Around 10 mg of a freshly prepared sample of compound **3** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S8 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 2 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 2nd day [Figure S8 (**b**)] exactly matches that of the freshly prepared sample [Figure S8 (**a**)].

Figure S9. ¹H NMR spectrum of compound 4

Figure S10. ¹³C NMR spectrum of compound 4

Figure S11. Air stability of compound 4

In an open vial, ~250 mg of a freshly prepared sample of compound 4 was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S11 (a)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S11 (b)] exactly matches that of the freshly prepared sample [Figure S11 (a)].

Figure S12. Stability of compound 4 in water

Around 10 mg of a freshly prepared sample of compound **4** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S12 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 4 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 4th day [Figure S12 (**b**)] exactly matches that of the freshly prepared sample [Figure S12 (**a**)].

Figure S14. ¹H NMR spectrum of compound 6

Figure S15. ¹³C NMR spectrum of compound 6

Figure S16. Air stability of compound 6

In an open vial, ~250 mg of a freshly prepared sample of compound **6** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S16 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S16 (**b**)] exactly matches that of the freshly prepared sample [Figure S16 (**a**)].

Figure S18. ¹³C NMR spectrum of compound 7

Figure S19. Air stability of compound 7

In an open vial, ~250 mg of a freshly prepared sample of compound 7 was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S19 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S19 (**b**)] exactly matches that of the freshly prepared sample [Figure S19 (**a**)].

Figure S20. Stability of compound 7 in water

Around 10 mg of a freshly prepared sample of compound 7 was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S20 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded every hour. Up to 6 h, we did not see any decomposition; the ¹H NMR spectrum recorded after 6 h [Figure S20 (**b**)] from the addition of water exactly matches that of the freshly prepared sample [Figure S20 (**a**)].

Figure S21. ⁷⁷Se NMR spectrum of compound 7

Figure S23. ¹³C NMR spectrum of compound 9

Figure S24. Air stability of compound 9

In an open vial, ~250 mg of a freshly prepared sample of compound **9** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S24 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S24 (**b**)] exactly matches that of the freshly prepared sample [Figure S24 (**a**)].

Figure S25. Stability of compound 9 in water

Around 10 mg of a freshly prepared sample of compound **9** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S25 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 3 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 3rd day [Figure S25 (**b**)] exactly matches that of the freshly prepared sample [Figure S25 (**a**)].

Figure S27. ¹³C NMR spectrum of compound 10

Figure S28. Air stability of compound 10

In an open vial, ~250 mg of a freshly prepared sample of compound **10** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S28 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S28 (**b**)] exactly matches that of the freshly prepared sample [Figure S28 (**a**)].

Figure S29. Stability of compound 10 in water

Around 10 mg of a freshly prepared sample of compound **10** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S29 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 5 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 5th day [Figure S29 (**b**)] exactly matches that of the freshly prepared sample [Figure S29 (**a**)].

Figure S32. ¹³C NMR spectrum of compound 11

Figure S33. Air stability of compound 11

In an open vial, ~250 mg of a freshly prepared sample of compound **11** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S33 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S33 (**b**)] exactly matches that of the freshly prepared sample [Figure S33 (**a**)].

Figure S34. Stability of compound 11 in water

Around 10 mg of a freshly prepared sample of compound **11** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S34 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 4 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 4th day [Figure S34 (**b**)] exactly matches that of the freshly prepared sample [Figure S34 (**a**)].

f1 (ppm) -1

Figure S35. ²⁹Si NMR spectrum of compound 11

Figure S36. ¹H NMR spectrum of compound 12

Figure S37. ¹³C NMR spectrum of compound 12

Figure S38. Air stability of compound 12

In an open vial, ~250 mg of a freshly prepared sample of compound **12** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S38 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S38 (**b**)] exactly matches that of the freshly prepared sample [Figure S38 (**a**)].

Figure S39. Stability of compound 12 in water

Around 10 mg of a freshly prepared sample of compound **12** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S39 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 2 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 2nd day [Figure S39 (**b**)] exactly matches that of the freshly prepared sample [Figure S39 (**a**)].

Figure S41. ¹H NMR spectrum of compound 13

Figure S42. ¹³C NMR spectrum of compound 13

Figure S43. Air stability of compound 13

In an open vial, ~250 mg of a freshly prepared sample of compound **13** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S43 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S43 (**b**)] exactly matches that of the freshly prepared sample [Figure S43 (**a**)].

Figure S44. Stability of compound 13 in water

Around 10 mg of a freshly prepared sample of compound **13** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S44 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 5 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 5th day [Figure S44 (**b**)] exactly matches that of the freshly prepared sample [Figure S44 (**a**)].

Figure S46. ²⁹Si NMR spectrum of compound 13

Figure S47. ¹H NMR spectrum of compound 14

Figure S48. ¹³C NMR spectrum of compound 14

Figure S49. Air stability of compound 14

In an open vial, ~250 mg of a freshly prepared sample of compound **14** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S49 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S49 (**b**)] exactly matches that of the freshly prepared sample [Figure S49 (**a**)].

Figure S50. Stability of compound 14 in water

Around 10 mg of a freshly prepared sample of compound **14** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S50 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded every hour. Up to 3 h, we did not see any decomposition; the ¹H NMR spectrum recorded after 3 h [Figure S50 (**b**)] from the addition of water exactly matches that of the freshly prepared sample [Figure S50 (**a**)].

Figure S53. ¹³C NMR spectrum of compound 15

Figure S54. Air stability of compound 15

In an open vial, ~250 mg of a freshly prepared sample of compound **15** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S54 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S54 (**b**)] exactly matches that of the freshly prepared sample [Figure S54 (**a**)].

Figure S55. Stability of compound 15 in water

Around 10 mg of a freshly prepared sample of compound **15** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S55 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded every hour. Up to 3 h, we did not see any decomposition; the ¹H NMR spectrum recorded after 3 h [Figure S55 (**b**)] from the addition of water exactly matches that of the freshly prepared sample [Figure S55 (**a**)].

Figure S57. ⁷⁷Se NMR spectrum of compound 15

Figure S59. ¹³C NMR spectrum of compound 16

Figure S60. Air stability of compound 16

In an open vial, ~250 mg of a freshly prepared sample of compound **16** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S60 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S60 (**b**)] exactly matches that of the freshly prepared sample [Figure S60 (**a**)].

Figure S61. Stability of compound 16 in water

Around 10 mg of a freshly prepared sample of compound **16** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S61 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded every 6 h. Up to 24 h, we did not see any decomposition; the ¹H NMR spectrum recorded after 24 h [Figure S61 (**b**)] from the addition of water exactly matches that of the freshly prepared sample [Figure S61 (**a**)].

Figure S64. ¹³C NMR spectrum of compound 17

Figure S65. Air stability of compound 17

In an open vial, ~250 mg of a freshly prepared sample of compound **17** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S65 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S65 (**b**)] exactly matches that of the freshly prepared sample [Figure S65 (**a**)].

Figure S66. Stability of compound 17 in water

Around 10 mg of a freshly prepared sample of compound **17** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S66 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 3 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 3rd day [Figure S66 (**b**)] exactly matches that of the freshly prepared sample [Figure S66 (**a**)].

Figure S67. ²⁹Si NMR spectrum of compound 17

Figure S69. ¹³C NMR spectrum of compound 18

Figure S70. Air stability of compound 18

In an open vial, ~250 mg of a freshly prepared sample of compound **18** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S70 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S70 (**b**)] exactly matches that of the freshly prepared sample [Figure S70 (**a**)].

Figure S71. Stability of compound 18 in water

Around 10 mg of a freshly prepared sample of compound **18** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S71 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded every 4 h. Up to 12 h, we did not see any decomposition; the ¹H NMR spectrum recorded after 12 h [Figure S71 (**b**)] from the addition of exactly matches that of the freshly prepared sample [Figure S71 (**a**)].

Figure S72. ²⁹Si NMR spectrum of compound 18

Figure S73. ⁷⁷Se NMR spectrum of compound 18

Figure S75. ¹³C NMR spectrum of compound 19

Figure S76. Air stability of compound 19

In an open vial, ~250 mg of a freshly prepared sample of compound **19** was kept at room temperature. Then, ~10 mg of the compound was taken in an NMR tube, dissolved in normal (non-dried) CDCl₃ (0.5 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S76 (**a**)]; this operation was carried out daily/after every 24 h. Up to 10 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 10th day [Figure S76 (**b**)] exactly matches that of the freshly prepared sample [Figure S76 (**a**)].

Figure S77. Stability of compound 19 in water

Around 10 mg of a freshly prepared sample of compound **19** was dissolved in normal CDCl₃ (0.4 mL), and its ¹H NMR spectrum was recorded (in a 500 MHz instrument) [Figure S77 (**a**)]. Then, water (0.1 mL) was added and mixed well by shaking, kept at room temperature, and its ¹H NMR spectrum was recorded daily. Up to 2 days, we did not see any decomposition; the ¹H NMR spectrum recorded on the 2nd day [Figure S77 (**b**)] exactly matches that of the freshly prepared sample [Figure S77 (**a**)].

Figure S78. ²⁹Si NMR spectrum of compound 19

Figure S79. ⁷⁷Se NMR spectrum of compound 19

Figure S80. IR spectrum of compound 6

Figure S81. IR spectrum of compound 7

Agilent Resolutions Pro

Table S2.	⁷⁷ Se NMR spectroscopi	ic data of germaseleno	carbonyl compounds	containing
Ge=Se bo	nds			

Compound	⁷⁷ Se Resonance, δ in ppm	Reference
[Tbt(Tip)Ge(Se)] (vii)	940.6	S1
[('Bu) ₂ ATIGe(Se)Ph] (xiii)	-216.97	S2
$[{HC(CMe)(N(2,6-Pr_2C_6H_3))_2}Ge(Se)OH] (xiv)$	-439.8	S3
$[(\mathbf{R})_{2} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{G} \mathbf{e} (\mathbf{S} \mathbf{e}) \mathbf{O}^{t} \mathbf{B} \mathbf{u}] (\mathbf{R} = {}^{t} \mathbf{B} \mathbf{u} (\mathbf{x} \mathbf{v}), {}^{t} \mathbf{B} \mathbf{u} (\mathbf{x} \mathbf{v} \mathbf{i})$	-77.76 (xv), -285.10 (xvi)	S4
$[(R)_2 ATIGe(Se)N(TMS)_2] (R = {}^{t}Bu (xvii), {}^{t}Bu (xviii))$	-36.76 (xvii), -183.31	S5
	(xviii)	
[DPMGe(Se)Ph] (4)	-386	This work
[DPMGe(Se)OH] (7)	-340	This work
[DPMGe(Se)OEt] (10)	-379	This work
$[DPMGe(Se)N(TMS)_2] (13)$	-178	This work
$[(DPMGe(Se)(N(TMS)_2)\rightarrow CuCl] (15)$	-237	This work
$[(DPMGe(Se)(N(TMS)_2) \rightarrow CuBr]_2(18)$	-228	This work
$[(DPMGe(Se)(N(TMS)_2) \rightarrow CuI]_2 (19)$	-235	This work

Table S3. UV-vis spectroscopic data of germacarbonyl compounds 3-4, 6-7, 9-10, 12-13,and copper(I) complexes 14, 18, and 19

Compounds	λ_{\max} (nm)	€(m ⁻¹ cm ⁻¹ , br)
DPMGe(S)Ph (3)	507	54520
DPMGe(Se)Ph (4)	506	51460
DPMGe(S)OH (6)	511	56920
DPMGe(Se)OH (7)	508	72020
DPMGe(S)OEt (9)	512	58240
DPMGe(Se)OEt (10)	510	59000
$DPMGe(S)N(TMS)_2 (12)$	514	36680
DPMGe(Se)N(TMS) ₂ (13)	523	45980
$[(DPMGe(S)N(TMS)_2 \rightarrow CuCl] (14)$	511	74000
$[(DPMGe(Se)N(TMS)_2 \rightarrow CuBr]_2 (18)$	513	89800
$[(DPMGe(Se)N(TMS)_2 \rightarrow CuI]_2 (19)$	514	109000

Figure S82. UV-vis spectra of thiogermacarbonyl compounds 3, 6, 9, and 12

Figure S83. UV-vis spectra of selenogermacarbonyl compounds 4, 7, 10, and 13

Figure S84. UV-visible spectra of copper(I) complexes 14, 18, and 19

X-ray crystal structure determination of compounds 2-4, 9, 11-14, 16-17, and 19

Single crystal X-ray diffraction data of compounds 2-4, 9, 11-14, 16-17, and 19 were collected using a Bruker SMART APEX diffractometer equipped with a 3-axis goniometer (Tables S1, S2, and S3).^[S4] The crystals were covered with Paratone-N and mounted on a glass capillary. The data were collected using Mo K α radiation ($\lambda = 0.71073$ Å). The integration of data was performed using SAINT. Empirical absorption correction was applied using SADABS.^[S5]Structural solutions were accomplished by direct methods and refined by fullmatrix least-squares on F² using either SHELXTL^[S6] or SHELXL-2013 incorporated in OLEX2. All the non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were fixed according to a riding model and were refined isotropically. Important crystallographic data are provided in Tables S1, S2, and S3.^[S7]

Figure S85. Molecular structure of compound 2

Molecular structure of DPMGePh (2). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (°): Ge(1)-N(1) = 2.001(2), Ge(1)-N(2) = 2.016(2), Ge(1)-C(34) = 2.001(2); C(34)-Ge(1)-N(1) = 97.13(8), C(34)-Ge(1)-N(2) = 93.96(8), N(1)-Ge(1)-N(2) = 86.55(6). Data collection temperature: 302 K.

Figure S86. Molecular structure of compound 3

Molecular structure of DPMGe(S)Ph (**3**). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–S(1) 2.052(2), Ge(1)–N(1) 1.946(5), Ge(1)–N(2) 1.943(4), Ge(1)–C(39) 1.928(6); C(39)–Ge(1)–N(1) 102.6(2), C(39)–Ge(1)–N(2) 102.8(2), N(1)–Ge(1)–N(2) 92.17(2), C(39)–Ge(1)–S(1) 122.31(2). Data collection temperature: 273 K.

Figure S87. Molecular structure of compound 4

Molecular structure of DPMGe(Se)Ph (4). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–Se(1) 2.195(3), Ge(1)–N(1) 1.942(1), Ge(1)–N(2) 1.946(1), Ge(1)–C(34) 1.933(2); C(34)–Ge(1)–N(1) 102.89(6), C(34)–Ge(1)–N(2) 102.89(6), N(1)–Ge(1)–N(2) 92.31(5), C(34)-Ge(1)-Se(1) 121.13(5). Data collection temperature: 302 K.

Figure S88. Molecular structure of compound 9

Molecular structure of DPMGe(S)OEt (9). All hydrogen atoms were omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–S(1) 2.058(5) Ge(1)–O(1) 1.751(2), Ge(1)–N(1) 1.914(2), Ge(1)–N(2) 1.915(2); O(1)–Ge(1)–N(1) 102.74(6), O1(1)–Ge(1)–N(2) 100.60(7) N(1)–Ge(1)–N(2) 93.05(6). Data collection temperature: 273 K.

Figure S89. Molecular structure of compound 11

Molecular structure of DPMGeN(TMS)₂ (11). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–N(1) 2.042(2), Ge(1)–N(2) 2.025(2), Ge(1)–N(3) 1.924(2); N(3)–Ge(1)–N(1) 100.98(8), N(3)–Ge(1)–N(2) 100.03(8) N(1)–Ge(1)–N(2) 86.02(8). Data collection temperature: 100 K.

Figure S90. Molecular structure of compound 12

Molecular structure of DPMGe(S)N(TMS)₂ (**12**). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–S(1) 2.062(1), Ge(1)–N(1) 1.951(4), Ge(1)–N(2) 1.953(3), Ge(1)–N(3) 1.843(3); N(3)–Ge(1)–N(1) 105.91(2), N(3)–Ge(1)–N(2) 107.46(2), N(1)–Ge(1)–N(2) 92.75(2). Data collection temperature: 100 K.

Figure S91. Molecular structure of compound 13

Molecular structure of DPMGe(Se)N(TMS)₂ (**13**). All hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ge(1)–Se(1) 2.194(1), Ge(1)–N(1) 1.951(7), Ge(1)–N(2) 1.953(7), Ge(1)–N(3) 1.837(7); N(3)–Ge(1)–N(1) 108.1(3), N(3)–Ge(1)–N(2) 104.5(3), N(1)–Ge(1)–N(2) 92.9(3). Data collection temperature: 100 K.

Figure S92. Molecular structure of compound 14

Molecular structure of $[(DPMGe(S)N(TMS)_2) \rightarrow CuCl]$ (14). All hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (deg): Ge(1)–S(1) 2.132(7), Ge(1)–N(1) 1.934(1), Ge(1)–N(2) 1.938(1), Ge(1)–N(3) 1.831(1), S(1)–Cu(1) 2.143(8), Cu(1)–Cl(1) 2.087(2); N(3)–Ge(1)–N(1) 112.2(5), N(3)–Ge(1)–N(2) 112.0(5), N(1)–Ge(1)–N(2) 96.6(4), N(3)-Ge(1)-S(1) 116.30(4), S(1)-Cu(1)-Cl(1) 178.04(2). Data collection temperature: 100 K.

Figure S93. Molecular structure of compound 16

Molecular structure of $[(DPMGe(S)N(TMS)_2) \rightarrow CuBr]_2$ (**16**). All hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (deg): Ge(1)–S(1) 2.101(7), Ge(1)–N(1) 1.936(2), Ge(1)–N(2) 1.931(2), Ge(1)–N(3) 1.838(2), S(1)–Cu(1) 2.212(8), Cu(1)–Br(1) 2.458(5), Cu1-Cu1 2.725(5); N(3)–Ge(1)–N(1) 103.47(9), N(3)–Ge(1)–N(2) 110.32(9), N(1)–Ge(1)–N(2) 95.13(9), Ge(1)-S(1)-Cu(1) 103.31(3), Br(1)-Cu(1)-Br(1) 111.85(2), S(1)-Cu(1)-Br(1) 132.92(2). Data collection temperature: 100 K. Symmetry transformation used to generate equivalent atoms: -x, 1-y, 2-z.

Figure S94. Molecular structure of compound 17

Molecular structure of $[(DPMGe(S)N(TMS)_2)\rightarrow CuI]_2$ (17). All hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (deg): Ge(1)–S(1) 2.103(8), Ge(1)–N(1) 1.932(2), Ge(1)–N(2) 1.934(2), Ge(1)–N(3) 1.848(2), S(1)–Cu(1) 2.241(9), Cu(1)–I(1) 2.568(6), Cu1-Cu1 2.699(8); N(3)–Ge(1)–N(1) 110.77(1), N(3)–Ge(1)–N(2) 105.93(1), N(1)–Ge(1)–N(2) 94.84(9), Ge(1)– S(1)-Cu(1) 106.51(3), S(1)-Cu(1)-I(1) 133.54(3). Data collection temperature: 278 K. Symmetry transformation used to generate equivalent atoms: 1-x, 1-y, 1-z.

Figure S95. Molecular structure of compound 19

Molecular structure of $[(DPMGe(Se)N(TMS)_2) \rightarrow CuI]_2$ (19). All hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (deg): Ge(1)–Se(1) 2.234(6), Ge(1)–N(1) 1.928(2), Ge(1)–N(2) 1.931(3), Ge(1)–N(3) 1.853(3), Se(1)–Cu(1) 2.349(5), Cu(1)–I(1) 2.566(5), Cu1-Cu1 2.581(8); N(3)–Ge(1)–N(1) 110.98(2), N(3)–Ge(1)–N(2) 105.98(2), N(1)–Ge(1)–N(2) 94.50 (1), Ge(1)-Se(1)-Cu(1) 102.18(2), I(1)-Cu(1)-I(1) 120.47(2), Se(1)-Cu(1)-I(1) 133.05(2). Data collection temperature: 100 K. Symmetry transformation used to generate equivalent atoms: 1x, 1-y, 1-z.

Table S4. Crystal data and structure refinement for DPMGePh (2), DPMGe(S)Ph (3), DPMGe(Se)Ph (4), and DPMGe(S)OEt (9)

	DPMGePh (2)	DPMGe(S)Ph (3)	DPMGe(Se)Ph (4)	DPMGe(S)OEt (9)
Empirical formula	C ₃₉ H ₃₆ GeN ₂	$C_{39}H_{36}GeN_2S$	C ₃₉ H ₃₆ GeN ₂ Se	C ₃₅ H ₃₆ GeN ₂ OS
Formula weight	605.31	637.37	684.27	605.33
Temperature, K	302(2)	273.15	302(2)	273(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/n$	$P2_1/n$
<i>a</i> , Å	15.0811(6)	7.995(5)	8.0415(3)	14.9611(5)
b, Å	11.4764(4)	21.180(1)	21.2170(8)	14.0451(5)
<i>c</i> , Å	18.5521(7)	19.615(1)	19.7259(7)	15.5244(6)
α , deg	90	90	90	90
β , deg	90.19	99.409(3)	99.617(1)	107.287(1)
γ, deg	90	90	90	90
Volume, Å ³	3210.9(2)	3276.8(4)	3318.3(2)	3114.79(2)
Ζ	4	4	4	4
Density (calcd), mg/m ³	1.252	1.292	1.370	1.290
Absorption coefficient, mm ⁻	0.983	1.028	2.049	1.080
F(000)	1264	1328	1400	1264
Crystal size, mm ³	0.28 x 0.15 x 0.11	0.18 x 0.16 x 0.11	0.24 x 0.18 x 0.12	0.20 x 0.18 x 0.16
θ range for data	2.087 to 28.293	4.628 to 56.682	2.187 to 28.294	1.997 to 28.297

collection, deg				
Limiting indices	$-20 \le h \le 20$,	$-10 \le h \le 10$,	$-10 \le h \le 10$,	$-19 \le h \le 19$,
	$-15 \le k \le 15$,	$-28 \le k \le 28,$	$-28 \le k \le 28,$	$-18 \le k \le 18$,
	$-24 \le l \le 24$	$-26 \le l \le 26$	$-26 \le l \le 26$	$-20 \le l \le 20$
No. of reflection collected	157823	102855	171359	89570
No. of	7970	8110	8248	7753
independent reflection	$[R_{(int)} = 0.0854]$	$[R_{(int)} = 0.0576]$	$[R_{(int)} = 0.0562]$	$[R_{(int)} = 0.0612]$
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
No. of data /restraints/ parameters	7970 / 0 / 385	8110 / 0 / 392	8235 / 0 / 394	7735 / 0 / 368
Goodness-of-fit on F^2	0.938	1.141	1.045	0.787
Final R indices	$R_1 = 0.0383,$	$R_1 = 0.0887,$	$R_1 = 0.0311,$	$R_1 = 0.0321,$
$[I > 2\sigma(I)]$	$wR_2 = 0.1272$	$wR_2 = 0.2482$	$wR_2 = 0.0.0689$	$wR_2 = 0.1036$
R indices (all	$R_1 = 0.0523,$	$R_1 = 0.0953,$	$R_1 = 0.0406,$	$R_1 = 0.0457,$
data)	$wR_2 = 0.1336$	$wR_2 = 0.2521$	$wR_2 = 0.0708$	$wR_2 = 0.1130$
Largest diff peak and hole, e Å ⁻³	0.399 and - 0.433	2.50 and -0.98	0.439 and - 0.462	0.309 and - 0.299

Table S5. Crystal data and structure refinement for DPMGeN(TMS)2 (11),DPMGe(S)N(TMS)2 (12), and DPMGe(Se)N(TMS)2 (13)

	DPMGeN(TMS) ₂ (11)	DPMGe(S)N(T MS) ₂ (12)	DPMGe(Se)N(TM S) ₂ (13)
Empirical formula	$C_{39}H_{49}GeN_3Si_2$	C ₃₉ H ₄₉ GeN ₃ SSi ₂	$C_{39}H_{49}GeN_3SeSi_2$
Formula weight	688.60	742.74	767.56

Temperature, K	100(2)	100(2)	100(2)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1
<i>a</i> , Å	13.302(2)	8.769(1)	8.966(6)
b, Å	9.776(16)	11.382(2)	11.294(8)
<i>c</i> , Å	28.456(4)	21.887(4)	19.906(2)
α , deg	90	76.889(8)	86.969(4)
β , deg	93.91	86.438(8)	77.252(4)
γ, deg	90	72.957(8)	73.433(4)
Volume, Å ³	3691.8(1)	2034.3(6)	1884.5(2)
Ζ	4	2	2
Density (calcd), mg/m ³	1.239	1.245	1.353
Absorption coefficient, mm ⁻¹	0.925	0.895	1.873
F(000)	1456	808	796
Crystal size, mm ³	0.15 x 0.12 x 0.10	0.16 x 0.11 x 0.08	0.20 x 0.15 x 0.10
θ range for data collection, deg	2.203 to 28.283	1.947 to 28.276	1.88 to 26.47
Limiting indices	$-17 \le h \le 17$, $-13 \le k \le 13$, $-37 \le 1 \le 37$	$-11 \le h \le 11,$ $-15 \le k \le 15,$ $-29 \le 1 \le 29$	$-11 \le h \le 11,$ $-14 \le k \le 14,$ $-24 \le 1 \le 24$
No. of reflection collected	55515	59248	45430
No. of independent reflection	9127 [$R_{(int)} = 0.088$]	10058 [R _(int) = 0.0896]	7711 [R _(int) = 0.0889]
Refinement method	Full-matrix least- squares on <i>F</i> ²	Full-matrix least- squares on F ²	Full-matrix least- squares on <i>F</i> ²
No. of data	9127 / 0 / 418	10058 / 0 / 455	7711 / 0 / 415

/restraints/ parameters			
Goodness-of-fit on F^2	1.123	1.045	1.069
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0507,$ $wR_2 = 0.1478$	$R_1 = 0.0751,$ $wR_2 = 0.1963$	$R_1 = 0.0903,$ $wR_2 = 0.2538$
<i>R</i> indices (all data)	$R_1 = 0.0650,$ $wR_2 = 0.1643$	$R_1 = 0.1019,$ $wR_2 = 0.2224$	$R_1 = 0.1096,$ $wR_2 = 0.2706$
Largest diff peak and hole, e Å ⁻³	0.864 and -0.652	1.991 and -1.255	4.64 and -2.36

Table S6. Crystal data and structure refinement for $[(DPMGe(S)N(TMS)_2)\rightarrow CuCl]$ (14) $[(DPMGe(S)N(TMS)_2)\rightarrow CuBr]_2$ (16), $[(DPMGe(S)N(TMS)_2)\rightarrow CuI]_2$ (17), and

 $[(DPMGe(Se)N(TMS)_2)\rightarrow CuI]_2$ (19)

	[(DPMGe(S)N(T MS) ₂)→CuCl] (14)	[(DPMGe(S)N(T MS) ₂)→CuBr] ₂ (16)	[(DPMGe(S)N(T MS) ₂)→CuI] ₂ (17)	[(DPMGe(Se)N(TMS) ₂)→CuI] ₂ (19)
Empirica 1 formula	C ₃₉ H ₄₉ ClCuGeN ₃ SSi ₂	$\begin{array}{c} C_{84}H_{112}Br_{2}Cu_{2}Ge\\ {}_{2}N_{6}S_{2}Si_{4} \end{array}$	$\begin{array}{c} C_{78}H_{98}I_{2}Cu_{2}Ge_{2}N_{6}\\ S_{2}Si_{4} \end{array}$	$C_{78}H_{98}Cu_2Ge_2I_2N_6Se_2Si_4$
Formula weight	819.66	1814.40	1822.22	1916.02
Temperat ure, K	100	100	278	100
Wavelen gth, Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> 2 ₁ / <i>c</i>	$P2_{1}/c$
<i>a</i> , Å	10.915(3)	12.3707(4)	13.947(2)	13.7954(7)
b, Å	12.011(3)	12.4183(4)	12.306(2)	12.2314(6)

<i>c</i> , Å	17.769(4)	16.7015(5)	23.936(4)	23.9124(1)
α , deg	83.360(1)	89.009(1)	90	90
β , deg	76.387(1)	74.715(1)	90.327(6)	90.032(2)
γ, deg	69.278(1)	61.241(1)	90	90
Volume, Å ³	2116.37(9)	2151.41(1)	4107.9(1)	4034.9(3)
Z	2	1	2	2
Density (calcd), mg/m ³	1.286	1.400	1.473	1.577
Absorpti on coefficie nt, mm ⁻¹	1.411	2.258	2.140	3.029
F(000)	852	938	1848	1920
Crystal size, mm ³	0.28 x 0.14 x 0.11	0.20 x 0.15 x 0.10	0.18 x 0.16 x 0.11	0.19 x 0.16 x 0.14
θ range for data collectio n, deg	1.31 to 28.21	1.39 to 28.32	1.7 to 28.50	1.476 to 26.454
Limiting	$-14 \le h \le 14$,	$-16 \le h \le 16$,	$-18 \le h \le 18$,	$-17 \le h \le 17$,
indices	$-15 \le k \le 15,$	$-16 \le k \le 16,$	$-16 \le k \le 16$,	$-15 \le k \le 15$,
	$-23 \le 1 \le 23$	$-22 \le 1 \le 22$	$-31 \le 1 \le 22$	$-29 \le 1 \le 29$
No. of reflection collected	66778	73718	159619	106855
No. of independ ent reflection	10373 [R _(int) = 0.0407]	10700 [R _(int) = 0.0532]	$10306 \\ [R_{(int)} = 0.0512]$	7753 $[R_{(int)} = 0.0612]$
Refinem ent method	Full-matrix least- squares on <i>F</i> ²			

No. of data /restraint s/ paramete rs	10373 / 0 / 479	10700 / 0 / 473	10306 / 0 / 445	8305 / 0 / 445
Goodnes s-of-fit on F ²	1.041	1.044	1.078	1.039
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0270,$ $wR_2 = 0.0643$	$R_1 = 0.0342,$ $wR_2 = 0.0821$	$R_1 = 0.0363,$ $wR_2 = 0.0831$	$R_1 = 0.0316,$ $wR_2 = 0.1179$
<i>R</i> indices (all data)	$R_1 = 0.0345,$ $wR_2 = 0.0684$	$R_1 = 0.0444,$ $wR_2 = 0.0888$	$R_1 = 0.0564,$ $wR_2 = 0.0934$	$R_1 = 0.0369,$ $wR_2 = 0.1244$
Largest diff peak and hole, $e Å^{-3}$	0.46 and -0.34	1.41 and -0.84	0.78 and -0.79	0.309 and -0.299

Computational details

GAUSSIAN-09 was used for carrying out theoretical calculations.^{\$10} The geometries of compounds **3**, **4**, **12**, **13**, **18**, **xvii**, **xviii**, LGe(S)N(TMS)₂ (**xx**), LGe(Se)N(TMS)₂ (**xxi**), CuCl, CuBr, and CuI were optimized at the B3LYP level of theory using LANL2DZ basis set having Effective Core Potential (ECP) for the core electrons of germanium, selenium, copper, bromine, and iodine atoms; 6-31G** basis set for rest of the elements (L = amidinate). For the geometry optimizations of compounds **3**, **4**, **12**, **13**, **xvii**, **and xviii**, coordinates obtained from single crystal X-ray diffraction studies were used. For compounds **18**, **xx**, **xxi**, CuCl, CuBr, and CuI, coordinates were obtained by modeling their structures (using GaussView 5). The frequency calculations were carried out on the optimized geometries to characterize the stationary points as minima. The same level of theory and basis sets were used for performing the AOMix^{\$11-\$12} and Weinhold's Natural Bond Orbital (NBO)^{\$13-\$14} calculations on the optimized geometries. TD-DFT ^{\$15} calculations were carried out on the optimized geometries of compounds **12**, **13**, and **18** using toluene as a solvent with the aforementioned level of theory and basis sets. Chemcraft (http://www.chemcraftprog.com) software was used for the visualization of Gaussian outputs.

S. No.	Compound	WBI of Ge=E	NPA Charge		ge
			Ge	S	Se
1.	DPMGe=S(N(TMS) ₂) 12	1.419	1.852	-0.826	
2.	ATIGe=S(N(TMS) ₂) (xviii)	1.408	1.852	-0.836	
3.	$LGe=S(N(TMS)_2)(\mathbf{x}\mathbf{x})$	1.429	1.803	-0.827	
4.	DPMGe=Se(N(TMS) ₂) 13	1.439	1.702		-0.685
5.	ATIGe=Se(N(TMS) ₂) (xvii)	1.424	1.710		-0.701
6.	$LGe=Se(N(TMS)_2) (xxi)$	1.443	1.659		-0.693

Table S7. NPA charges of germanium and chalcogen atoms in dipyrrinate,aminotroponiminate, and amidinate ligand stabilized thio- and selenogermaamides.

DPM = dipyirrinate, ATI = aminotroponiminate, L = amidinate

Table S8. The HOMO of dipyrrinate, aminotroponiminate, and amidinate ligand stabilized thio- and selenogermaamides along with the percentage contributions of germanium and E atoms (E = S, Se)

 Table S9. WBI of the Ge=E bond and NPA charges of chalcogen (E) atoms in compounds 12

 and 13

Compounds	WBI of Ge=E	E	NPA charges
12	1.419	S	-0.826
13	1.439	Se	-0.685

Table S10. NPA charges of copper and halogen atoms in copper halides

Compounds	NPA Charges		
	Cu	X (X = Cl, Br, I)	
CuCl	0.624	-0.624	
CuBr	0.553	-0.553	
CuI	0.506	-0.506	

Coordinates of the optimized geometries of compounds 3, 4, 12, 13, 18, xvii, xviii, xx, xxi, CuCl, CuBr, and CuI

Compound 3

Ge	0.02719600	-0.52710300	-0.27954600
S	0.09092600	-1.84405700	-1.90401300
Ν	1.38794600	0.92259500	-0.25008600
Ν	-1.47671100	0.77306100	-0.25905100
С	3.45853500	-0.54006100	-0.37388100
С	0.06313300	-1.16334500	1.57691300
С	3.96430800	-1.19971000	0.76808200
С	1.12816800	2.29606700	-0.12193500
С	0.11927500	-2.54122300	1.82810900
Н	0.14451500	-3.23384300	0.99082800
С	-0.15053000	2.87739100	-0.11493700
С	2.73844600	0.75224300	-0.22624800
С	-2.79967800	0.47134400	-0.36431200
С	3.75059000	-1.02696200	-1.66741600
С	-0.23052400	4.36694600	-0.01809500
Ċ	0.03053600	-0.27619600	2.66525500
H	-0.01243800	0.79695000	2.49512300
C	-1.36077600	2.17097400	-0.20275300
C	4.95611500	-2.90698500	-0.67274500
C	-2 66768300	2 72371500	-0.28350000
Н	-2 89510600	3 77923600	-0 28479300
C	3 75862800	-0.64816300	2 16061300
Н	4 18482700	0.35648100	2 26137300
Н	4 23869100	-1 29046100	2 90360400
Н	2 69864300	-0 57339100	2 41876600
C	4 69368500	-2 37941500	0 59433100
н	5 07399900	-2 89313200	1 47450400
C	-3 55459300	1 66932400	-0.37690500
н	-4 63164200	1 71170300	-0.45826600
C	-3 79705800	-1 55879400	0.71842900
C C	0 14182700	-3 02305700	3 13924200
н	0.18508200	-4 09341900	3 32103000
C II	-4 62044300	-3 41718600	-0.63878600
C C	-4.22693200	-2 71490300	-1 78763800
н	-4 43460300	-2.71490500	-2 76476600
II C	-3 25365000	-0.74594100	-2.70470000
н	-3.70453800	-0.7+37+100 -1.23/58700	-2.99809900
и П	-3.70+33800	-1.23438700	-3.80000300
н Н	-2.10510800	0.30066200	-2 99060500
II C	3 63513100	1.46050500	1 72/000000
C	-3.03313100	-1.40030300	-1./2490000
С u	-4.39903400	-2.81317200	0.00233200
п	-4./1423000	-3.32937400	1.30/83000
	0.03294900	-0.73023000	3.9/030000
п	0.02/49100	-0.00019100	4.0103/200
U U	0.10833300	-2.15225500	4.21301000
п С	0.12383300	-2.30/08300	3.23337700
	-0.83343900	4.9//89300	1.09100300
п	-1.23/90100	4.33830800	1.00/24/00

С	2.37399700	2.96870100	0.00206300
Н	2.49437500	4.03441700	0.12741700
С	-3.38014400	-0.89455700	-0.45589200
С	3.36682400	2.01116700	-0.06785000
Η	4.43661000	2.15936100	-0.02331600
С	4.49092500	-2.20573400	-1.78780600
Η	4.70852000	-2.58423100	-2.78389600
С	0.29386500	5.17695800	-1.03772200
Η	0.75240800	4.71164300	-1.90454100
С	-3.63648800	-0.93220500	2.08490200
Η	-4.05816600	0.07857300	2.11410300
Η	-2.58511300	-0.85047300	2.37551600
Η	-4.14598600	-1.53086700	2.84461700
С	-0.38735800	7.16566300	0.16088900
Η	-0.44804500	8.24778100	0.22994800
С	0.21046300	6.56660800	-0.94956600
Η	0.61088100	7.18044600	-1.75102200
С	-5.23779700	-4.79184000	-0.73806000
Η	-5.86260500	-5.01594200	0.13187300
Η	-4.46288200	-5.56670200	-0.79244200
Η	-5.85570500	-4.88984300	-1.63612000
С	3.28526400	-0.30366000	-2.90747800
Η	3.79769500	-0.68815900	-3.79353000
Η	3.47506000	0.77322600	-2.84497500
Η	2.20824300	-0.45015400	-3.04742600
С	-0.90767200	6.36802600	1.18183200
Η	-1.36970800	6.82681200	2.05107700
С	5.71201700	-4.20440500	-0.83303400
Н	6.38346300	-4.38577000	0.01179100
Η	6.30879900	-4.21025900	-1.75042700
Η	5.02162800	-5.05526400	-0.89044900

Compound 4

Ge

 $-0.43553200 \quad -0.00431300 \quad -0.15697300$

Se	-1.95996100	-0.02555000	-1.84654400
N	0.92137100	1 44933300	-0 18983300
N	0.95309100	-1 42723800	-0 17732500
C	-0.98482500	-0.01263900	1 72846500
C	-2 34895300	-0.01665400	2 05080600
Н	-3 08542000	-0.01638000	1 25108600
C	-1 26706500	3 86203400	0.88036300
C	2 34000300	-1 22063500	-0 10498300
C	0.67596000	2 78565800	-0 28612300
C	2 31473100	1 27154500	-0 18874700
C	2.914/9100	0.03274400	-0 12655300
C	-0.04171600	-0.01379000	2 76946700
н	1 02209700	-0.01377000	2.70940700
C II	-0 58683800	-3 44982400	-0 24061700
C C	-0.30003000 -1.24462400	3 75863800	-0.24001700
C	0 73283100	-2 77097400	-0 14667800
C	-2 76255100	-0.02029300	3 38535400
с н	-3 82202800	-0.020271800	3 62231000
C II	-3.82272800 2 $A0214700$	4 53268700	0.81524800
н	-2.47214700 -2.96133300	4.33208700	1 7/228/00
C II	-2.90155500 -1.23168200	-3,0031/800	0.9316/100
C	2 92173100	2 55202300	-0.29424000
н	3 98555900	2.33202300	-0.23424000 -0.33623500
п С	<i>A A 6</i> 67 <i>A</i> 100	0.04962500	-0.03023500
C	-1 11388700	-3 76756100	-0.08987500 -1.51231400
C C	-0.66069700	3 43640000	-0.32213200
C	-2 46683100	<i>1 1 3</i> 5 3 <i>7 0 0 0 0 0 0 0 0 0 0</i>	-0.52215200
с н	-2.92160400	4.67214700	-1.57505000
C II	1 90560400	3 / 8507100	-0.34772900
ч	1.90300400	1 55033200	0/2021100
C II	-3 11714700	4.33933200	-0.43031100 -0.40192100
C	-1.81670300	-0.020/18800	-0.40172100 A A120A700
с н	-2 13864000	-0.02040000	5 //985800
C II	-2.13804000	-0.02550200 1 50616000	0.80047400
с и	-2.43914300	-4.39040900	1 713/1500
C II	-2.94100300	3 379/5000	-2 87229900
н	0.7896300	3.57745000	-2.87225500
и Ц	1 06360500	3.02700700	2.00000000
и П	-1.00309300	2 30060600	-3.70917400
C II	-0.08374800	2.30009000	2 22276000
н	-1.15218300	1 17389200	3 00933600
и П	-1.15218500	4.1/389200	2 22277200
и П	0.42328300	2 58707000	2.22377300
П	-0.30977700	2.38797900	2.49384000
С и	2.90910400	-2.49102400	-0.00/24900
11 C	4.033/3300	-2.03102200	0.0/49/000
C	-3.00/00100	-4.0///9300	1 50002000
с ц	-2.31909400 27207000	-4.4/144000	-1.30003000
	-2.72070000	-4./0/40000	-2.30022700
с u	-0.4330/900	-0.01/38100	4.10330300
п	0.20320000	-0.01049300	4.70034800

С	5.14694400	0.61993600	0.99744100
Η	4.57799600	1.04337600	1.81940200
С	-0.63237600	-3.68670300	2.30252200
Η	0.36052800	-4.14418300	2.38136900
Η	-1.26653900	-4.13047200	3.07445400
Η	-0.51533800	-2.62528700	2.53619000
С	-0.40850900	-3.36652300	-2.78493300
Η	-0.81859900	-3.91023200	-3.64040200
Η	0.66657400	-3.56899500	-2.73638200
Η	-0.54305800	-2.29443700	-2.97027000
С	1.97241700	-3.44627200	-0.03739300
Η	2.08020900	-4.52100300	0.00380000
С	5.21129300	-0.50273200	-1.14385400
Η	4.69216200	-0.93587500	-1.99306000
С	-4.45991300	5.50368200	-0.44535800
Η	-5.27508100	4.77101100	-0.49549800
Η	-4.55134900	6.14884700	-1.32476800
Η	-4.62612100	6.11628300	0.44594400
С	6.54145300	0.63118300	1.03194500
Η	7.05433900	1.06720700	1.88422000
С	7.27412700	0.08355500	-0.02287400
Η	8.35975500	0.09677400	0.00286400
С	6.60568200	-0.48047100	-1.11123500
Η	7.16892100	-0.90219900	-1.93849700
С	-4.33410100	-5.59217500	-0.54031100
Н	-4.51652400	-6.23114600	0.32909200
Η	-4.38406300	-6.21555300	-1.43847900
Η	-5.16195900	-4.87442300	-0.59804400

Compound 12

Ge	-0.31151400	0.24328100	-0.24499400
S	-1.38950600	1.04105700	-1.85662600
Si	0.11579800	0.06507700	3.00237900
Si	-2.44259300	1.26050500	1.85304900
Ν	-0.83406200	0.47811900	1.54215400
Ν	1.61634400	0.70525600	-0.43340700
Ν	0.06634200	-1.71160000	-0.39577500
С	2.55113600	-1.60427600	-0.29154600
Ċ	-2.28417400	-2.61594800	-0.82057900
С	-2.62082400	-2.47396500	-2.18718400
Ċ	-3.29570500	-2.84811300	0.13606900
Ċ	2.67830800	-0.21536100	-0.44789400
Č	3.81039800	-2.40805100	-0.24793300
C	1.33129800	-2.29739400	-0.21769600
Č	-0.84958000	-2.72212300	-0.44363700
C	1.40246400	3.21467200	-0.91579300
C	1.15601300	4.06685100	0.17898900
Č	-4 63100300	-2 86057400	-0 27747800
Н	-5 40754600	-3 02444600	0.46627800
C	2 13735400	1 93396100	-0 72526700
Č	1 15493500	-3 70038100	-0.08385400
н	1 94918700	-4 41510200	0.07086600
C	6 18351000	-3 91086200	-0 17444100
Н	7 10043300	-4 49214400	-0.14550100
C	-3 96949000	-2 49919800	-2 55144700
н	-4 22549300	-2 38389500	-3 60210700
C	-4 99099200	-2 67453600	-1 61491300
C	4 07379700	-3 37612200	-1 23106200
Н	3 35673000	-3 53116100	-2 03084100
C	-0 19429400	-3 95837300	-0.22651100
Н	-0.68772000	-4 92008700	-0 22845500
C	0.55553200	5 30957600	-0.04723400
Н	0.36461300	5 96110200	0.80257400
C	-2 96348400	-3 08438700	1 58995900
н	-2 38818300	-4 00643200	1 73144400
Н	-3 87448300	-3 16754500	2 18898800
H	-2 36156300	-2 26913700	1 99698900
C	4 75657500	-2 19902600	0.76878100
н	4 55981900	-1 45528600	1 53395000
C II	1 10717400	3 64534900	-2 22977100
C	0 51052700	4 89577700	-2 40613700
Н	0.27165600	5 21954700	-3 41662200
C II	-1 56444600	-2 32165600	-3 25392800
н	-0 75826300	-3 05335200	-3 13232900
H	-1 12452700	-1.31939500	-3.13252900
H	-1 99956700	-2 45816100	-4 24766000
C	5 25458600	-4 11730300	-1 19625100
H	5 44938300	-4 85393100	-1 97014300
C	5 93029300	-2 95178100	0 80801400
Н	6.64661100	-2.78763500	1.60768400
**			1,00,00,00
С	1.55226300	3.66990300	1.57989300
---	-------------	-------------	-------------
Н	1.35239300	4.47915200	2.28722100
Н	2.61789400	3.42156500	1.64292700
Η	0.99229000	2.79182600	1.90912000
С	3.53810300	1.82064500	-0.89083600
Η	4.19079100	2.64822700	-1.13070400
С	3.87660500	0.49257900	-0.72484800
Η	4.85425300	0.04416000	-0.81847600
С	0.21165000	5.73761600	-1.33125500
С	-6.44102200	-2.65234700	-2.03488900
Н	-7.06867400	-3.22258400	-1.34340200
Н	-6.57396300	-3.06792700	-3.03861300
Н	-6.82656000	-1.62540300	-2.05586300
С	1.40216500	2.78196400	-3.43194700
Η	1.22571800	3.33582900	-4.35793000
Η	0.74791200	1.90287900	-3.42795000
Η	2.43910500	2.43002800	-3.43901300
С	-0.47092800	7.06613800	-1.55374000
Н	-0.15988600	7.52291000	-2.49852700
Η	-0.25184100	7.77091000	-0.74594100
Η	-1.56057500	6.94515100	-1.59576600
С	1.97868600	-0.14297200	2.73904900
Η	2.22848400	-1.08086000	2.24031800
Η	2.41959200	-0.18426900	3.74294700
Η	2.45487900	0.68056700	2.20334400
С	-3.78594500	0.96808100	0.56379100
Η	-3.61424500	1.51994100	-0.35956100
Η	-4.72725000	1.30886600	1.01637300
Η	-3.90796600	-0.08591300	0.30146300
С	-3.23955600	0.54986100	3.43142500
Η	-3.56685300	-0.48110700	3.25982200
Η	-4.14378900	1.14149700	3.62162800
Η	-2.64678800	0.56533100	4.34683200
С	0.02552300	1.42304500	4.33238200
Η	0.60676500	2.30298500	4.04139100
Н	0.48473500	1.02120200	5.24430100
Н	-0.97642400	1.76251100	4.59642100
С	-2.21682800	3.12910100	2.03586700
Н	-1.55946300	3.40346200	2.86610400
Н	-3.18727300	3.61124900	2.20432300
Н	-1.79296900	3.54889800	1.11757800
С	-0.41996000	-1.57142800	3.79674800
H	-1.46116300	-1.57927700	4.12852300
Н	0.20817100	-1.75884400	4.67643300
Н	-0.27706000	-2.41202500	3.10977500

Compound 13

Ge	0 26523500	0 10850100	0 13023100
GC Gi	0.20525500	0.19839100	3 08280800
Si	-0.29903800	1 06021300	2 08/73500
N N	2.33201400	1.00021300	2.08473300
IN N	-0.10/3/400	-1./43/1800	-0.30048700
IN NI	-1.04559700	0.72830200	-0.38202900
N C	0.72002400	0.30139300	1.0/493000
C	-2./2959/00	-0.16216000	-0.45882500
C	-1.35924800	3.2494/600	-0./8/59000
C	-2.12369300	1.9/800/00	-0.659/4200
C	-0.45369200	5.2/618/00	0.1/896200
H	-0.23986200	5.8//83300	1.05948600
C	-3.93444100	-2.32151900	-0.33853800
C	3.75211000	0.71416900	0.86964600
H	3.82298000	-0.33649500	0.57688900
H	3.68023700	1.30510100	-0.04278700
Н	4.68270100	0.97648700	1.39137500
С	-0.44443900	4.98703900	-2.19823600
Н	-0.20866300	5.35796400	-3.19307200
С	-1.45619600	-2.28948100	-0.22708300
С	-1.07102600	3.74457200	-2.08090900
С	-3.89814000	0.58427300	-0.75933800
Н	-4.88308100	0.16454100	-0.89822800
С	2.53595400	-2.62116500	-2.09277300
С	-6.35107600	-3.75553700	-0.36049900
Н	-7.28461000	-4.31044300	-0.36833500
С	-0.11120700	5.76253300	-1.08423000
С	-2.15485800	-0.20765700	2.74423900
Η	-2.58703100	0.64315900	2.21424600
Н	-2.41259700	-1.12535600	2.21365300
Н	-2.63184100	-0.26049200	3.73103200
С	4.48214200	-3.07456000	-0.13212300
Н	5.23295700	-3.26551300	0.63130100
С	-3.51964400	1.90597200	-0.87787800
Н	-4.14193700	2.75724900	-1.11552900
С	-1.08306200	4.03853700	0.34669900
С	2.16143800	-2.73640100	-0.73362200
С	3.89090300	-2.70313800	-2.42367800
H	4.17681900	-2.60696700	-3.46853700
C	-1.40538300	2.95845800	-3.32541300
H	-0.80399200	2 04364900	-3 36463800
Н	-2 46097600	2.66908400	-3 35667300
Н	-1 18848500	3 54575600	-4 22164200
C II	3 13885000	-3 00410400	0.24845200
C C	4 88154400	-3.00+10+00 -2.01232500	-1 46137500
C C	0.71/37/00	-2.78597200	-0.39/15/00
C	-2 65020600	-2.76597200	-0.37413400
C	-6 10038100	-1.33071000	0.52821000
С Ц	6 825 47000	-2.01931300	1 42516200
Γ	-0.0334/900	2 60800000	0.105000
	-1.33184000	-3.07080900	-0.10380000
п	-2.1340/000	-4.38/83800	0.0133/400

С	-1.48435300	3.58535600	1.72860100
Н	-0.93427800	2.68860800	2.02079900
Н	-1.27664900	4.36144800	2.47000100
Н	-2.55289000	3.34694900	1.77973000
С	-4.90495400	-2.10077300	0.65255200
Н	-4.71057800	-1.37552800	1.43578100
С	-4.19565300	-3.26622100	-1.34473100
Η	-3.45906400	-3.43052500	-2.12469000
С	1.51234200	-2.43982200	-3.18678100
Η	0.67100600	-3.13170800	-3.07178300
Η	1.11664000	-1.41813100	-3.17266400
Η	1.96364900	-2.61407300	-4.16729400
С	0.60387400	7.08279200	-1.24425500
Н	0.41193700	7.74901700	-0.39777000
Н	1.68937900	6.93564600	-1.30532000
Н	0.29551300	7.59714300	-2.15991000
С	0.15405500	-1.74227300	3.83963900
Н	0.01175600	-2.55294800	3.11739100
Н	1.18028000	-1.79709200	4.21009000
Η	-0.51363100	-1.93988600	4.68740600
С	2.20860300	2.93459000	2.28501300
Н	1.84819100	3.38710000	1.35535400
Н	1.52699600	3.22759400	3.08909800
Н	3.19220600	3.36633400	2.50573800
С	0.01142000	-4.00087600	-0.21098500
Η	0.47240000	-4.97857800	-0.21004300
С	3.02619600	0.29353600	3.69347500
Н	2.38652100	0.32665800	4.57594300
Н	3.31656900	-0.74913200	3.52722000
Н	3.94427000	0.84168300	3.93986800
С	-5.39788900	-3.97292200	-1.35738700
Н	-5.59007400	-4.69156800	-2.14862900
С	2.75977400	-3.22215100	1.69355300
Н	2.16889800	-4.13606000	1.82480500
Н	3.65079600	-3.31201800	2.32103400
Н	2.15574800	-2.39633300	2.07509200
С	-0.22880800	1.25251900	4.45622900
Н	0.76476500	1.60563600	4.73299400
Н	-0.82780800	2.12828300	4.18970300
Н	-0.68180800	0.81557900	5.35504000
С	6.34093800	-2.95161400	-1.84624300
Н	6.48006400	-3.37141900	-2.84733700
H	6.77022900	-1.94201600	-1.85572700
Н	6.92708000	-3.54877000	-1.14113300
Se	1.51433700	1.08423300	-1.83592200

Compound 18

Br	-0.79248500	-1.84170300	-0.08794100
Ge	-5.15092000	0.13325600	-0.00439200
Cu	-1.52659700	0.55626000	0.39527800
Si	-8.26099100	-0.78979600	-0.32350700
Si	-7.60630500	2.17467500	0.00526000
Ν	-4.66475100	-0.79400200	-1.67436100
N	-4.83443900	-1.43961000	1.13418900
N	-6.99062100	0.47148400	-0.11714000
С	-4.44159200	-3.08207700	-0.70470900
С	-4.16436800	-4.51747800	-1.01722000
Ċ	-2.93582500	-4.89022300	-1.58599700
H	-2.18205600	-4.13032100	-1.76677000
C	-2.67457500	-6.23128400	-1.86761100
H	-1.71503100	-6.51095100	-2.29237500
C	-3.63406300	-7.20916700	-1.59666000
H	-3.42804700	-8.25177600	-1.82111700
C	-4.85633800	-6.84403500	-1.02922300
H	-5.60690500	-7.59946200	-0.81530800
C	-5 11870600	-5 50633900	-0 73225500
н	-6.06810300	-5.22234600	-0.28889700
C	-4 54471900	-2 72731000	0.64728500
C	-4 28394100	-3 57098600	1 75411100
н	-4 00642900	-4 61175900	1 68412800
C	-4 39442100	-2 79953900	2 89481800
н	-4 23661200	-3 10411300	3 91964400
C	-4.71366700	-1.48276700	2.50019300
C	-4.81676300	-0.34950700	3.46176200
C C	-3 63170400	0.22379100	3 97340300
C	-2 25731100	-0 25141100	3 56709400
н	-1 88534600	-1 00353600	4 27564000
H	-2.23851700	-0.70839400	2.57652200
Н	-1.54541500	0.57812500	3.56480500
C	-3 73428500	1 23934100	4 93004900
Н	-2 81890000	1 69370200	5 30282000
C	-4 96426800	1 68177300	5 41851400
C	-6.12042600	1.05181500	4.94816400
Н	-7.08907500	1.34609900	5.34596500
C	-6.06790700	0.03740600	3.98904100
C	-7.33758100	-0.66107200	3.57170700
H	-7 51937200	-0 53947000	2 50312500
H	-7.28759000	-1.73713900	3.77484300
Н	-8 20032500	-0 25701400	4 10790000
C	-5.04579600	2 81003900	6 41868500
Н	-5 91887200	2 70691400	7 07059200
Н	-4 15230100	2.76091100	7.04893500
Н	-5 13117300	3 77872000	5 91063100
C	-4 53390500	-2 19024700	-1 78636400
č	-4 39135900	-2 50992100	-3 15897100
Н	-4 27067900	-3 50811800	-3 55193000
C	-4.39146100	-1.31913200	-3.86182400
-		1.01/10400	2.00102100

TT	1 2 (070000	1 17027200	4 00 5 5 0 0 0
H	-4.26079900	-1.1/83/300	-4.92552000
C	-4.538/9900	-0.26628300	-2.93333500
C	-4.43/90400	1.17359700	-3.306/8400
C	-3.18019400	1.81435500	-3.23/2/000
С	-3.07557600	3.14321700	-3.66146700
Н	-2.10929200	3.63636000	-3.58413900
С	-4.16086000	3.84342000	-4.19011000
С	-5.37616000	3.16478300	-4.32202500
Η	-6.22753500	3.67533900	-4.76660200
С	-5.53191200	1.84172500	-3.90046800
С	-6.85596500	1.14857700	-4.10087300
Η	-7.57635100	1.81361100	-4.58513700
Η	-6.75490600	0.25352500	-4.72466000
Η	-7.27842400	0.82557300	-3.14860500
С	-4.02923400	5.29043800	-4.60030100
Η	-3.01683500	5.51767700	-4.94782300
Η	-4.73095000	5.54720400	-5.39988100
Η	-4.23918000	5.95698900	-3.75454600
С	-1.92910200	1.08549600	-2.81475500
Н	-1.45685400	0.60934900	-3.68474300
Н	-1.20104100	1.77373400	-2.37881600
Н	-2.11992300	0.29598200	-2.08635700
С	-6.40175300	3.52712500	-0.51717000
Н	-5.63709600	3.74353400	0.22904500
Н	-5.89542800	3.31866700	-1.46263900
Н	-7.00969600	4.43091000	-0.65922500
C	-8 14882900	2 55427100	1 77644600
н	-8 97683700	1 92761900	2 11877300
н	-7 31539500	2 42302000	2.110/7500
н	-8 /7326300	2.42302000	1 8/292300
C	-9.07505300	2 11618500	-1.17383000
с и	8 73071100	2.44010500	2 21202200
11 Ц	-8.73071100	2.46375100	-2.21202200
11 Ц	-9.69391200	2 42280200	-1.1192/200
П	-9.4913/300	2 52506600	-0.94002300
	-7.73039400	-2.33300000	0.20082800
П	-7.07342800	-2.99023400	-0.31039800
П	-7.51900500	-2.01144000	1.19//9300
Н	-8.6/944000	-3.12804100	0.19583800
C	-8.83521500	-1.01382100	-2.11591300
H	-9.27852900	-0.11854700	-2.55815000
H	-8.018/1600	-1.34548400	-2.76481500
Н	-9.600/6300	-1.79977800	-2.12930800
С	-9.81049700	-0.42591000	0.71743200
Н	-9.61710800	-0.52063400	1.78910900
Н	-10.27283300	0.54742000	0.54735700
Н	-10.55539200	-1.18769500	0.45538600
Br	0.72796700	1.77452900	0.65222500
Ge	5.11118700	-0.11868800	-0.02424000
Cu	1.45187900	-0.60443700	0.11997100
Si	8.25748700	0.66205100	-0.27625800

Si	7.33091300	-2.28094000	-0.53491500
N	4 87367500	0.85547400	1 67481700
N	4 65724200	1 43142700	-1 15857600
N	6 92148600	-0 53477600	-0 22704800
C	4 43716600	3 10478400	0.68499900
C C	4 16570600	<i>J</i> .10470400 <i>J</i> .5/326200	0.004777700
C C	2 06060500	4.01500200	1 62832700
С U	2.90900300	4.91300200	1.02032700
II C	2.23332900	4.13237300	1.0040000
С u	2.71827800	6.528535200	2 28656200
П	1./0391000	0.33634300	2.38030200
	2 45720600	29166700	1.3/233900
H	3.45/20600	8.28166700	1./9610/00
C	4.8462/800	6.8/133300	0.94158900
H	5.5/956400	/.62//6300	0.6//10800
C	5.09896900	5.53112300	0.646//600
H	6.02417800	5.24427900	0.15602600
C	4.38837200	2.72057000	-0.66136000
C	4.01620800	3.54802700	-1.74714500
Н	3.72820500	4.58472400	-1.66063500
С	4.05413300	2.77059300	-2.88864700
Н	3.81036100	3.06343000	-3.89999300
С	4.43690100	1.46648700	-2.51284600
С	4.54735000	0.34438900	-3.48552400
С	3.42122700	-0.45510300	-3.77447300
С	2.06505900	-0.20419700	-3.15977000
Н	1.41263500	0.28591800	-3.89463600
Н	2.10594000	0.44074200	-2.28091100
Н	1.58459000	-1.13995300	-2.86422500
С	3.54061400	-1.45815000	-4.74482900
Н	2.67697200	-2.08804400	-4.94668000
С	4.71616500	-1.65775700	-5.46818900
С	5.78716000	-0.78822300	-5.23271900
Н	6.69491400	-0.88734100	-5.82414900
С	5.71949900	0.21765600	-4.26731700
С	6.85730700	1.20348600	-4.14317900
Н	7.11623100	1.41060400	-3.10434100
Н	6.59104700	2.16421100	-4.60114600
Н	7.75330000	0.83495300	-4.64932900
C	4.83242100	-2.77604300	-6.47588000
H	5 48573600	-2 49992300	-7 30958800
Н	3 85542300	-3 05101900	-6 88427800
Н	5 25755400	-3 67552800	-6.01339600
C	4 68878300	2 24862300	1 76578100
C C	4.67505600	2.24802300	3 136/2100
с ц	4.55001500	2.00557100	3 51118300
C II	T.JJU71JUU 170826600	1 /201029200	3 8657/000
с и	4./2020000 1 70775700	1.73712200	1 02076000
Γ	4.10113200	1.32337200	7.05/76000
C	4.09303300	1 05749600	2.754/0000
C	4.702/0700	-1.03/48000	3.40432100 2.50744100
U	3.0/0/3200	-1./2440400	3.38/44100

С	3.67823400	-3.01587900	4.12638600
Н	2.72808900	-3.53200400	4.24492800
С	4.85486800	-3.64674000	4.53194700
С	6.05435300	-2.93985300	4.40462500
Н	6.98192100	-3.39726700	4.74201800
С	6.09967200	-1.65817700	3.85221900
С	7.42116600	-0.94185700	3.73656900
Н	8.22323900	-1.51741700	4.20664100
Н	7.39293400	0.04637800	4.20867300
Н	7.68566700	-0.78806000	2.68826800
С	4.83636100	-5.05342400	5.08030400
Н	3.88573700	-5.27940300	5.57263700
Н	5.64224600	-5.21344400	5.80341600
Н	4.96912600	-5.78827500	4.27650500
С	2.34151500	-1.06520700	3.30998800
Н	1.95165600	-0.59749000	4.22398300
Н	1.60471800	-1.80052600	2.97639200
Н	2.39788200	-0.28519400	2.54992000
С	6.69406500	-3.43821800	0.81032400
Н	5.61950500	-3.37218000	0.98560100
Н	7.20762600	-3.26578100	1.76031800
Н	6.91860600	-4.46566700	0.49614200
С	6.69782600	-2.83200700	-2.22296200
Н	7.12617400	-2.23037500	-3.03029100
Н	5.60944600	-2.76474000	-2.29653400
Н	6.98417800	-3.87718100	-2.39378000
С	9.20595300	-2.59046800	-0.53923800
Н	9.72841700	-2.22462800	0.34870800
Н	9.72296000	-2.21485900	-1.42353100
Н	9.31582100	-3.68219900	-0.54157800
С	7.68337500	2.46273600	-0.34261400
Н	7.12440000	2.76177400	0.54715100
Н	7.09728400	2.72283900	-1.22639000
Н	8.59924400	3.06671400	-0.36455000
С	9.38230000	0.62517000	1.25053900
Н	9.74251600	-0.36939700	1.52446000
Н	8.88815600	1.05797000	2.12548600
Н	10.26328800	1.24345500	1.03568500
С	9.38010600	0.40918700	-1.79473900
Н	8.91970600	-0.18924800	-2.58397600
Н	10.32253100	-0.07025800	-1.51575300
Н	9.62831000	1.38546000	-2.22681200
Se	-3.61913900	1.79785200	0.58302000
Se	3.53050800	-1.82866300	-0.23827400

Compound xviii

Ga	0 27171100	0 21873200	0 8321/000
S	0.27171100	-0.218/3200	2 85653400
S Si	1 /3880/00	0.24432000	2 15135300
SI Si	2 28855200	0.24432000	2.13133300
NI	0.02003400	-0.39//1/00	-0.19213000
IN NI	-0.92903400	1.31438900	-0.71239900
IN NI	-1.21930000	-1.12413200	0.0110/400
N C	1.64037700	-0.20525300	0.43912100
C	-2.16416200	1.03119000	-0.26/22600
C II	-3.19668200	1.99/59300	-0.2602/100
H	-2.89814000	2.96442500	-0.64422500
C	-4.51893500	1.94832200	0.16582800
H	-5.06/56/00	2.8//3/800	0.02358100
C	-5.23318000	0.91328500	0.76600900
Н	-6.26470600	1.11532400	1.03879900
С	-4.73458600	-0.35320300	1.05428400
Η	-5.42910000	-1.03373600	1.54297800
С	-3.48133600	-0.90262600	0.79917200
Η	-3.38660100	-1.93398700	1.11372500
С	-2.32104700	-0.37444000	0.18971500
С	-0.55517400	2.53039200	-1.45072200
Η	-1.44134100	3.00956500	-1.87945300
Η	0.04298400	2.18210300	-2.30086100
С	-1.11487400	-2.51784400	0.45833800
Η	-1.46163000	-2.58239400	1.49893600
Η	-0.04694900	-2.76073600	0.47824300
С	0.26929600	3.55409800	-0.64420100
Η	1.10903800	3.00582200	-0.19737700
С	-1.85046100	-3.57487000	-0.40221200
Н	-2.88106200	-3.23140600	-0.55974500
С	-0.53072700	4.21981400	0.48309100
Н	-1.35348400	4.82191700	0.07696400
Н	0.10696100	4.89254500	1.06653700
Η	-0.95823900	3.48705400	1.17384900
С	0.84551200	4.60486500	-1.60528300
Н	0.04469600	5.16091900	-2.10837800
Н	1.46861200	4.14232100	-2.37730100
Н	1.46179600	5.33069200	-1.06532100
C	-1.90196100	-4.89910100	0.37566300
н	-2 41466600	-5 67059000	-0 20712200
Н	-2 42903400	-4 79580600	1 33149500
Н	-0.89128100	-5 26730900	0 59003100
C II	_1 19972000	-3 76602600	-1 77695400
н	-0.18267600	-1 16333600	-1.67449000
и Ц	-0.18207000	2 820/1200	2 33/85100
11 Ц	-1.12490000	-2.82941300	-2.33483100
C	-1.77092700	0 57257000	2.3/449100
с u	-0.33038100	0.37237000 1 24257100	2.00013300
п U	-0.83300/00	1.3433/100	2.09331400
п u	-0.30088000	0.93292900	3./1341000
П	-0.9/319100	-0.52455200	2.0/93/200
U	2.36039400	1.83343200	2.34033300

Н	3.40273700	1.85961000	2.21873500
Н	2.35234600	2.03940700	3.62778900
Н	1.86288800	2.70632900	2.06820800
С	2.01113800	-1.13736300	3.31874600
Н	1.58903400	-2.10290700	3.01808300
Н	1.64778900	-0.92259200	4.33103000
Η	3.09495500	-1.25030500	3.37723400
С	3.86757400	0.73694500	-1.39727600
Н	3.21229300	0.79571900	-2.26976000
Н	4.88251000	0.51493900	-1.74831900
Η	3.89320400	1.71972900	-0.91180700
С	4.60193800	-0.68376800	1.17947300
Н	4.66293500	0.18159400	1.84337100
Η	5.56655800	-0.75692000	0.66155400
Η	4.50382000	-1.58280300	1.79413500
С	3.33394300	-2.31539200	-0.97671700
Н	3.02476300	-3.07929900	-0.25315500
Н	4.36135100	-2.55096000	-1.28085200
Н	2.69136400	-2.38490600	-1.85646800

Compound xvii

Ga	0.26110100	0 10264200	0.61812000
Se Se	0.20119100	-0.19204200	2 70054600
SC	1 27444200	-0.08579000	2 38001700
Si	3 26008600	-0.41823300	2.38001700
N	1 22022000	1 12015200	0.17772100
N	-1.01295100	1 28830300	-0.6278/900
N	1 57/08/00	0.06626300	-0.0278+700 0.70426400
C	2 36812400	0.42201000	0.70420400
C	-2.50812400	-0.42201000	0.29024300
н	-3 /09//200	-1.00078800	1 22655200
n C	-3.40744200	-0.48668500	1.22033200
н	-5 515/1/00	-1 18055900	1.01387700
II C	5 36032400	-1.18033900	0.63821200
ч	-5.30932400	0.73810500	0.03821200
II C	-4 67127000	1 781/2100	0.03313600
н	-5 25/22700	2 67490600	-0.18167000
n C	-3 33064400	1.87855500	-0.32061300
с и	-3.33004400	2 84257200	-0.32001300
Γ	-3.03742300	0.06446100	-0.72929700
C C	-2.23+88500	2 46743400	-0.23012000
с и	-1.00707000	2 46700200	1 70820600
и Ц	-1.47753900	-2.40799200	0.88441500
n C	0.66167300	2 /0316/00	1 30528100
с и	-0.00107500	2.49310400	-1.39328100
н Ц	-1.34070300	2.90930700	2 20100700
n C	-0.00518900	2.14557800	-2.20190700
С Ц	-1.08000800	3 3 5 0 8 6 0 0 0	-0.02844900
Γ	-2.71387300	-3.33980900	-0.29920500
С ц	0.00943700	3.38824200	-0.39272400
II C	0.91202000	3.10233400	-0.08320000 1 22262700
С Ц	-0.91894400	-3.92838900	-1.32203700
и П	-0.84303300	-3.03147000	1 88351100
и П	-1.41258000	4 25871100	-1.88551100
Γ	1 74702000	-4.23871100	-1.10270000
С Ц	-1.74702000	-4.88038200	0.87130400
н ц	-2.17093900	-3.73035300	1 76406800
н Н	-0.7/351100	-5 17130200	1 20508500
n C	-0.74331100 -0.81584800	-3.17137200 A 25716500	0.46697400
ч	-0.81384800	4.23710300	0.40097400
и П	-1.044/9800	4.80354800	1 05244600
н Н	-0.23944700 -1.24213800	3 53177200	1.05244000
II C	0.64061900	1 6285/1300	-1 56826000
ч	1 310//700	4.02834300	-1.30820000
П П	1.51944700	4.10771900 5.40202700	1 02046600
11 Ц	0.16100500	5.12610200	-1.03040000
п	-0.10100300	0.75760600	-2.12805500
с н	-0.34/80300	1 /7/00000	2.00030000
н Н	-1.05055700	1.7775/00	2.1342/200
н Н	-0.30+70000	_0 16003100	2 83108/00
C II	-1.13702300 2 122700	-0.10093100 2 128//700	2.03100400
\mathbf{U}	2.122/0/00	2.12077/000	2.12313000

Н	3.17544700	2.15745900	2.43427100	
Н	2.06878800	2.36420300	3.79555600	
Н	1.61202900	2.93511500	2.18862100	
С	1.83467900	-0.83063300	3.64550200	
Η	1.48038100	-1.82924700	3.36611200	
Н	1.39667500	-0.58926700	4.62161000	
Н	2.91653800	-0.88478600	3.77642800	
С	3.86750900	0.89987200	-1.03397700	
Н	3.26116800	0.91103200	-1.94319700	
Н	4.90712800	0.70408400	-1.32293000	
Н	3.83257000	1.89656600	-0.57857300	
С	3.42394200	-2.15565800	-0.54384300	
Н	3.06870600	-2.90656600	0.17211200	
Н	4.48076100	-2.37072800	-0.74523500	
Н	2.86710100	-2.27020100	-1.47570300	
С	4.50339300	-0.41426000	1.62589100	
Н	4.49123700	0.47120000	2.26474300	
Н	5.49853200	-0.46429200	1.16634900	
Н	4.40200100	-1.29882800	2.26071500	

LGe=S(N(TMS)₂) (**xx**) (L = Amidinate)

С	1.67257900	0.00596700	-0.05650000
С	3.14079800	0.00203200	0.22052700
С	3.60620700	-0.10158100	1.53900600
Η	2.89513100	-0.18170100	2.35490700
С	4.97642400	-0.09431500	1.79993700
Η	5.32814100	-0.17303900	2.82429500
С	5.89135500	0.01444100	0.75031300
Η	6.95762300	0.01939700	0.95583900
С	5.43151700	0.11634100	-0.56357000
Η	6.13742100	0.19947000	-1.38444100
С	4.06136700	0.11138500	-0.83081700
Η	3.70515700	0.18722000	-1.85305400
С	1.22928300	2.54549000	-0.22237700
С	2.13563100	2.99111500	0.94021200
Η	1.70385600	2.71392700	1.90696500
Η	2.23558700	4.08104900	0.91683000
Η	3.13752200	2.56479600	0.87296000
С	1.88069000	2.89176400	-1.57749300
Η	2.86957900	2.43485900	-1.66807400
Η	2.00452900	3.97642700	-1.66769400
Η	1.25557300	2.53990100	-2.40276800
С	-0.11818300	3.28371600	-0.11112000
Η	-0.78419100	3.01448500	-0.93665500
Η	0.04599800	4.36441700	-0.15317100
Η	-0.62050900	3.04959200	0.83213200
С	1.25839900	-2.50794200	-0.45850000
С	2.05151100	-2.66774800	-1.77209300
Η	1.51316700	-2.19510600	-2.59852200
Η	2.18266200	-3.73069300	-2.00197600
Η	3.04541100	-2.21976300	-1.69607800
С	2.04351800	-3.10010500	0.72688100
Η	3.02399800	-2.63626500	0.84621200
Η	2.19961000	-4.17077400	0.55886400
Η	1.48703200	-2.98439100	1.66240800
С	-0.07934300	-3.25916700	-0.59162900
Η	-0.68807100	-3.14538600	0.31041400
Η	0.10916400	-4.32590000	-0.74359400
Η	-0.65172500	-2.89227000	-1.44873000
С	-0.17400800	-0.07138800	2.75157100
Н	0.45328300	-0.86907900	2.34957100
Η	-0.22505000	-0.19843800	3.83956700
Н	0.30879500	0.88775200	2.54980700
С	-2.83860900	1.27003000	3.00289200

Н	-2.60415000	2.23957500	2.54962100
Н	-2.49109800	1.30178400	4.04251400
Н	-3.92471900	1.16544000	3.02427600
С	-2.62753100	-1.81482800	2.67360900
Н	-3.64341500	-2.01913500	2.32561200
Н	-2.63770700	-1.86262700	3.76932600
Н	-1.98969300	-2.63163800	2.31719100
С	-3.98552800	-1.50038000	-1.47130800
Н	-3.24362400	-1.60284400	-2.26713600
Н	-4.97894600	-1.47540600	-1.93513900
Н	-3.93999900	-2.39115300	-0.83417000
С	-3.90146600	1.62179400	-1.51870400
Н	-3.73568300	2.52394000	-0.91835800
Н	-4.92553700	1.67011400	-1.90887300
Н	-3.21141000	1.63322600	-2.36484600
С	-5.12253300	0.16000800	0.79719100
Н	-5.10910900	-0.59790100	1.58414100
Н	-6.04327200	0.00478800	0.22073600
Н	-5.20411900	1.14361900	1.26773200
Ge	-0.63456400	0.02878300	-0.83815500
Ν	0.90546400	-1.08235000	-0.23019200
Ν	0.90545000	1.09831000	-0.16676500
Ν	-2.07533300	0.02391800	0.32825000
S	-0.86591600	0.06149100	-2.92961900
Si	-3.70292900	0.07027400	-0.46243200
Si	-1.94907400	-0.13999500	2.09879000

LGe=Se(N(TMS)₂) (**xxi**) (L = Amidinate)

С	1.72731000	0.09225100	-0.00949100
С	3.20517300	0.31276800	-0.02301700
С	3.72419800	1.61438400	0.02137100
Η	3.04716100	2.46129800	0.06774700
С	5.10397200	1.81878200	-0.00146500
Н	5.49728200	2.83040700	0.03166800
С	5.97472100	0.72884800	-0.06746600
Н	7.04843500	0.89013500	-0.08489200
С	5.46126100	-0.56847000	-0.11042100
Η	6.13290700	-1.42021000	-0.16009300
С	4.08159200	-0.77929900	-0.08915900
Н	3.68309200	-1.78830200	-0.11894600
С	1.26280800	-0.14133300	-2.54038600
С	2.16864800	1.00352100	-3.03118100
Н	1.73430800	1.98020300	-2.79614100
Η	2.27271000	0.93524800	-4.11885900
Η	3.16908400	0.95556600	-2.59879300
С	1.90919800	-1.50824100	-2.84666400
Н	2.90562500	-1.58218700	-2.40370500
Н	2.01513200	-1.63700500	-3.92927900
Н	1.29052400	-2.32067700	-2.45549800
С	-0.08951900	-0.05023700	-3.27233200
Н	-0.75470300	-0.86706300	-2.97568500
Н	0.06761400	-0.12334900	-4.35239600
Н	-0.58926400	0.89998800	-3.06200400
С	1.31490200	-0.18303100	2.52289200
С	2.10416500	-1.48865400	2.75166200
Η	1.56697900	-2.33899600	2.32243300
Η	2.23013600	-1.66160200	3.82595500
Η	3.10014500	-1.43766800	2.30528400
С	2.10731300	1.02596900	3.05512200
Η	3.08513700	1.11902100	2.57954900
Η	2.27050300	0.90583800	4.13111100
Η	1.55419400	1.95783500	2.90156800
С	-0.02288100	-0.27177000	3.28060800
Н	-0.63175600	0.62180400	3.11308300
Н	0.16554400	-0.35913500	4.35459600
Н	-0.59527900	-1.14952600	2.96641300
С	-0.01275600	2.95872400	-0.00221900
Н	0.59915700	2.55869700	0.80769100
Н	-0.03256300	4.05053000	0.09884800
Н	0.46841900	2.72168400	-0.95398700
С	-2.65162800	3.26208400	-1.37350500

Η	-2.43252200	2.76704600	-2.32606300
Н	-2.25702800	4.28329700	-1.43688600
Н	-3.73601600	3.33622400	-1.27710200
С	-2.47834500	3.01662000	1.72342300
Н	-3.50822000	2.71313800	1.92846500
Н	-2.44701900	4.11287400	1.73997100
Н	-1.86108800	2.65980700	2.55575500
С	-4.00967800	-1.05749900	1.53370700
Н	-3.31478300	-1.88921700	1.67448800
Н	-5.02650900	-1.46794800	1.51531400
Н	-3.93716400	-0.39182100	2.40144800
С	-3.89976900	-1.22708400	-1.58206700
Н	-3.68335700	-0.67496100	-2.50396800
Н	-4.94561100	-1.55423900	-1.63296000
Н	-3.26618000	-2.11606200	-1.55133800
С	-5.02747300	1.19308900	-0.22404900
Н	-4.99055500	2.00603700	0.50494800
Н	-5.97350400	0.66157800	-0.06111800
Н	-5.07581000	1.62943100	-1.22532800
Ge	-0.60421600	-0.61603600	0.00418100
Ν	0.96176500	-0.01921600	1.08758200
Ν	0.94928500	-0.03018700	-1.09335000
Ν	-2.00481700	0.59768200	-0.03684700
Si	-3.66607500	-0.12204900	-0.06966300
Si	-1.80903300	2.36876100	0.07177600
Se	-0.88004900	-2.89308800	0.06004300

Cu	0.00000000	0.00000000	0.78294800
Cl	0.00000000	0.00000000	-1.33561700

CuBr

Br	0.00000000	0.00000000	1.03518400
Cu	0.00000000	0.00000000	-1.24935900

CuI

Cu	0.00000000	0.00000000	-1.57568400
Ι	0.00000000	0.00000000	0.86216700

Supporting references

- T. Matsumoto, N. Tokitoh and R. Okazaki, *Angew. Chem. Int. Ed.*, 1994, **33**, 2316– 2317.
- D. Yadav, R. K. Siwatch, G. Mukherjee, G. Rajaraman and S. Nagendran, *Inorg. Chem.*, 2014, 53, 10054–10059.
- L. W. Pineda, V. Jancik, R. B. Oswald and H. W. Roesky, *Organometallics*, 2006, 25, 2384–2387.
- 4. R. K. Siwatch and S. Nagendran, Organometallics, 2012, 31, 3389–3394.
- R. K. Siwatch, S. Karwasara, M. K. Sharma, S. Mondal, G. Mukherjee, G. Rajaraman and S. Nagendran, *Organometallics*, 2016, 35, 429–438.
- SMART, Bruker Molecular Analysis Research Tool, Version 5.618, Bruker AXS, Madison, WI (2000).
- 7. SAINT-NT, Version 6.04; Bruker AXS, WI (2001).
- 8. SHELXTL-NT, Version 6.10, Bruker AXS, Madison, WI (2000).
- 9. CCDC 2116996 (2), 2116997 (3), 2116998 (4), 2117002 (9), 2116999 (11), 2117005 (12), 2117004 (13), 2117001 (14), 2117000 (16), 2117006 (17), and 2117003 (19) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,

J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman,
J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc.,
Wallingford, CT, 2013.

- S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis, <u>http://www.sg-</u> <u>chem.net/</u>, version X.X, 2019.
- 12. S. I. Gorelsky, A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187-196.
- 13. F. Wheinhold and C. Landis, Valency and Bonding; Cambridge: Cambridge, 2005.
- 14. (a) A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.* 1988, 88, 899. (b) E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO Version 3.1.
- 15. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.