Supporting Information

Rechargeable Molecular Solar Thermal System Below 0 °C

Zhichun Shangguan,^a Wenjin Sun,^a Zhao-Yang Zhang,^a Dong Fang,^a Zhihang Wang,^b Si Wu,^c Chao Deng,^d Xianhui Huang,^a Yixin He,^a Ruzhu Wang,^c Tingxian Li,^c Kasper Moth-Poulsen*^b, Tao Li*^a

^aSchool of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. *E-mail: litao1983@sjtu.edu.cn

^bDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden. *E-mail: kasper.moth-poulsen@chalmers.se

^cResearch Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

^dCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, China.

Table of contents

Synthesis	1
Photochemical characterization	8
Computational details	13
DSC results for An-S5 and Bn-S5	21
Thermal isomerization kinetics and half-life	26
Quantum yield and solar energy conversion efficiency	29
Preparation of rechargeable glass	30
Infrared image	31
Single crystal X-ray diffraction	32
NMR spectra	34
Cartesian coordinates for optimized geometries	62
References	78
	Synthesis Photochemical characterization Computational details DSC results for An-S5 and Bn-S5 Thermal isomerization kinetics and half-life Quantum yield and solar energy conversion efficiency Preparation of rechargeable glass Infrared image Single crystal X-ray diffraction NMR spectra Cartesian coordinates for optimized geometries References

1. Synthesis

1.1 General methods

All chemicals were purchased from Adamas-beta, Bide Pharmatech Ltd., Sigma-Aldrich and Sinopharm Chemical Reagent Co., Ltd. and used without further purification, unless otherwise mentioned. Malonaldehyde sodium salt (MDA-Na) was synthesized according to a previous literature.¹

¹H and ¹³C spectra were recorded on Bruker AVANCE III HD (400 MHz) spectrometer. Chemical shifts for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to residual proton in the NMR solvent (CHCl₃: δ 7.26, CH₃CN 1.94, DMSO 2.50). Chemical shifts for carbon are reported in ppm downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0, DMSO 39.5). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constants in Hertz, and integration. **HRMS** data were obtained on Bruker Impact II quadrupole time of flight mass spectrometry instrument.

1.2 Synthetic procedures

3-nitroso-1H-pyrazole (1-2)

A mixture of compound **1-1** (4.15 g, 50 mmol, 1.0 equiv.) and NaHCO₃ (8.4 g, 100 mmol, 2.0 equiv.) in EtOAc (200 mL) and H₂O (400 mL) was stirred at room temperature, and then Oxone (30.74 g, 50 mmol, 1.0 equiv.) was added to the mixture in portions. The reaction was stirred at room temperature for 1 h and separated in an organic layer. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated by evaporation to give a gray green solid (2.50 g, 51.5% yield). The crude product **1-2** was directly used in the next step without future purification.

(E)-3-((4-(methylthio)phenyl)diazenyl)-1H-pyrazole (1-3)

A mixture of compound **1-2** (500 mg, 5.15 mmol, 1.0 equiv.) and 4-(methylthio)aniline (716 mg, 5.15 mmol, 1.0 equiv.) in AcOH (20 mL) was stirred overnight at room temperature. The resulting mixture was concentrated by evaporation, and then recrystallized with EtOAc and hexane to afford the product **1-3** as yellow solids (651 mg, 58.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 2.4 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 2.5 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.71, 149.85, 143.63, 132.78, 125.85, 123.47, 97.36, 15.20. HRMS (ESI) m/z calculated for [C₁₀H₁₀N₄S+H]⁺ 219.0699, found 219.0697.

(E)-1-methyl-3-((4-(methylthio)phenyl)diazenyl)-1H-pyrazole (S3)

(E)-1-methyl-5-((4-(methylthio)phenyl)diazenyl)-1H-pyrazole (S5)

A mixture of compound 1-3 (500 mg, 2.29 mmol, 1.0 equiv.), CH_3I (650 mg, 4.58 mmol, 2.0 equiv.) and Cs_2CO_3 (1.49 g, 4.58 mmol, 2.0 equiv.) in DMF (5 mL) was stirred at room temperature for 4 h then quenched with H₂O. The reaction mixture was extracted with EtOAc, dried over Na₂SO₄, filtered, and concentrated by evaporation. The crude residue was purified by silica gel chromatography (PE/EtOAc 8:1) to give pure product S3 (228 mg, 42.9% yield) and S5 (247 mg, 46.5% yield) as orange yellow solids.

S3: ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.7 Hz, 2H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 2H), 6.63 (d, *J* = 2.4 Hz, 1H), 4.01 (s, 3H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.71, 150.04, 142.99, 131.79, 125.85, 123.41, 96.15, 39.65, 15.24. HRMS (ESI) *m/z* calculated for [C₁₁H₁₂N₄S+H]⁺ 233.0855, found 233.0856.

S5: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 2.2 Hz, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 2.2 Hz, 1H), 4.22 (s, 3H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.21, 150.18, 143.89, 139.17, 125.84, 123.35, 93.62, 36.08, 15.18. HRMS (ESI) *m/z* calculated for [C₁₁H₁₂N₄S+H]⁺ 233.0855, found 233.0858.

2-(2-(4-(methylthio)phenyl)hydrazineyl)malonaldehyde (2-2)

Compound **2-1** (1.39 g, 10 mmol, 1.0 equiv.) was dissolved in concentrated HCl (2.3 mL) and AcOH (15 mL) then the solution was cooled to 5-10 °C. NaNO₂ (1.04 g, 15 mmol, 1.5 equiv.) solution was added dropwise and kept the temperature of the reaction mixture below 10 °C. After stirred for 30 min at 5 °C, a cold solution of KOAc (2.94 g, 30 mmol, 3.0 equiv.) and MDA-Na (1.43 g, 15 mmol, 1.5 equiv.) was added in sequence then the mixture was stirred at 5 °C for another 2 h. The resulting precipitate was filtered, washed with water. The filter cake was dried under vacuum, affording the product **2-2** as an orange red solid (1.20 g, 54.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 14.70 (s, 1H), 9.96 (s, 1H), 9.61 (s, 1H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.60, 186.54, 138.25, 137.91, 133.21, 127.55, 117.38, 15.88. HRMS (ESI) *m/z* calculated for [C₁₀H₁₀N₂O₂S+Na]⁺ 245.0355, found 245.0355.

(E)-1-methyl-4-((4-(methylthio)phenyl)diazenyl)-1H-pyrazole (S4)

A mixture of compound **2-2** (1.00 g, 4.5 mmol, 1.0 equiv.), methylhydrazine sulfate (778 mg, 5.4 mmol, 1.2 equiv.) and KOAc (1.06 g, 10.8 mmol, 2.4 equiv.) in EtOH (50 mL) was stirred for 4 h

at reflux, then quenched with water and then extracted with EtOAc. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated by evaporation. The crude residue was purified by silica gel chromatography (PE/EtOAc 5:1) to give pure product **S4** as a yellow solid (769 mg, 73.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.94 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 3.97 (s, 3H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.27, 141.91, 141.74, 133.38, 126.56, 126.12, 122.71, 39.61, 15.41. HRMS (ESI) *m/z* calculated for [C₁₁H₁₂N₄S+H]⁺ 233.0855, found 233.0854.

Synthesis routes of An-S5 and Bn-S5

Scheme S1. Synthesis routes of An-S5 and Bn-S5.

(E)-3-((4-iodophenyl)diazenyl)-1H-pyrazole (3-2)

A mixture of compound **3-1** (4.15 g, 50 mmol, 1.0 equiv.) and 4-iodoaniline (8.4 g, 100 mmol, 2.0 equiv.) in AcOH (100 mL) was stirred overnight at room temperature. The resulting precipitate was filtered, washed with water. The filter cake was dried under vacuum, affording the product **3-2** as a yellow solid (7.39 g, 49.6%). ¹H NMR (400 MHz, DMSO) δ 13.54 (s, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.90 (s, 1H), 7.64 (d, *J* = 8.6 Hz, 2H), 6.58 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 163.78, 151.49, 138.39, 130.77, 124.11, 98.44, 93.61. HRMS (ESI) *m/z* calculated for [C₉H₇IN₄+H]⁺ 298.9788, found 298.9784.

(E)-5-((4-iodophenyl)diazenyl)-1-methyl-1H-pyrazole (3-3)

A mixture of compound **3-2** (5.0 g, 23.6 mmol, 1.0 equiv.), CH_3I (6.70 g, 47.2 mmol, 2.0 equiv.) and Cs_2CO_3 (6.5 g, 47.2 mmol, 2.0 equiv.) in DMF (50 mL) was stirred at room temperature for 4 h then quenched with H₂O. The reaction mixture was extracted with EtOAc, dried over Na₂SO₄,

filtered, and concentrated by evaporation. The crude residue was purified by silica gel chromatography (PE/EtOAc 10:1) to give pure product **3-3** as an orange yellow solid (3.48 g, 47.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 2.2 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 4.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.87, 152.00, 139.15, 138.34, 124.25, 98.27, 94.01, 36.10. HRMS (ESI) *m/z* calculated for [C₁₀H₉IN₄+H]⁺ 312.9945, found 312.9942.

(E)-S-(4-((1-methyl-1H-pyrazol-5-yl)diazenyl)phenyl) ethanethioate (3-4)

A mixture of compound **3-3** (3.12 g, 10 mmol, 1.0 equiv.), KSAc (1.37 g, 12 mmol, 1.2 equiv.), 1,10-phenanthroline (360 mg, 2 mmol, 0.2 equiv.) and CuI (190 mg, 1 mmol, 0.1 equiv.) in toluene (50 mL) and N,N-Diisopropylethylamine (5 mL) was stirred overnight at reflux under a nitrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (PE/EtOAc 5:1) to give pure product **3-4** as an orange yellow solid (1.73 g, 66.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.7 Hz, 2H), 7.59 – 7.52 (m, 3H), 6.57 (d, *J* = 2.3 Hz, 1H), 4.23 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.08, 153.09, 152.94, 139.25, 134.95, 131.62, 123.34, 94.08, 36.17, 30.40. HRMS (ESI) *m/z* calculated for [C₁₀H₉IN₄+H]⁺ 261.0805, found 261.0802.

(E)-5-((4-(alkylthio)phenyl)diazenyl)-1-methyl-1H-pyrazole (An-S5)

A mixture of compound **3-4** (260 mg, 1 mmol, 1.0 equiv.) and NaOH (400 mg, 10 mmol, 10.0 equiv.) in MeOH (60 mL) and H₂O (5 mL) was stirred at room temperature for 30 min, and then R-Br (2 mmol, 2.0 equiv.) was stirred to the mixture. After stirred overnight, water was added to quench the reaction, and then extracted with DCM. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated by evaporation. The crude residue was purified by silica gel chromatography (PE/EtOAc 8:1) to give pure product as orange yellow solids (88 – 92% yield).

A2-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 2.3 Hz, 1H), 7.37 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.22 (d, J = 1.1 Hz, 3H), 3.04 (q, J = 7.4 Hz, 2H), 1.39 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.41, 142.53, 139.16, 127.36, 123.35, 93.64, 36.07, 26.56, 14.03. HRMS (ESI) m/z calculated for [C₁₂H₁₄N₄S+H]⁺ 247.1012, found 247.1013.

A3-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 2.99 (t, J = 7.4 Hz, 2H), 1.82 – 1.68 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.18, 150.35, 142.84, 139.13, 127.32, 123.32, 93.63, 36.05, 34.43, 22.26, 13.50. HRMS (ESI) *m*/*z* calculated for [C₁₃H₁₆N₄S+H]⁺ 261.1168, found 261.1169.

A4-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 2.2 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 2.2 Hz, 1H), 4.21 (s, 3H), 3.01 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.65 (m, 2H), 1.54 – 1.42

(m, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.34, 142.95, 139.14, 127.26, 123.34, 93.63, 36.05, 32.14, 30.89, 22.04, 13.64. HRMS (ESI) *m*/*z* calculated for [C₁₄H₁₈N₄S+H]⁺ 275.1325, found 275.1324.

A5-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 1.76 – 1.68 (m, 2H), 1.51 – 1.31 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.33, 142.94, 139.14, 127.25, 123.33, 93.62, 36.06, 32.42, 31.06, 28.53, 22.24, 13.95. HRMS (ESI) *m/z* calculated for [C₁₅H₂₀N₄S+H]⁺ 289.1481, found 289.1479.

A6-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 1.78 – 1.66 (m, 2H), 1.51 – 1.42 (m, 2H), 1.29 – 1.35 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.34, 142.95, 139.15, 127.26, 123.33, 93.63, 36.07, 32.47, 31.34, 28.80, 28.59, 22.52, 14.01. HRMS (ESI) m/z calculated for [C₁₆H₂₂N₄S+H]⁺ 303.1638, found 303.1637.

A7-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.51 – 1.41 (m, 2H), 1.37 – 1.22 (m, 6H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.34, 142.95, 139.14, 127.25, 123.33, 93.62, 36.06, 32.46, 31.68, 28.87, 28.84, 28.83, 22.58, 14.07. HRMS (ESI) *m/z* calculated for [C₁₇H₂₄N₄S+H]⁺ 317.1794, found 317.1794.

A8-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.22 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 1.76 – 1.68 (m, 2H), 1.54 – 1.41 (m, 2H), 1.34 – 1.24 (m, 8H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.21, 150.36, 142.96, 139.16, 127.28, 123.34, 93.63, 36.07, 32.49, 31.79, 29.15, 29.13, 28.92, 28.85, 22.64, 14.10. HRMS (ESI) *m/z* calculated for [C₁₈H₂₆N₄S+H]⁺ 331.1951, found 331.1952.

A9-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.51 – 1.41 (m, 2H), 1.34 – 1.20 (m, 10H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.35, 142.96, 139.16, 127.27, 123.34, 93.63, 36.07, 32.48, 31.85, 29.45, 29.24, 29.17, 28.91, 28.84, 22.66, 14.11. HRMS (ESI) *m/z* calculated for [C₁₉H₂₈N₄S+H]⁺ 345.2107, found 345.2106.

A10-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.21 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.51 – 1.40 (m, 2H), 1.34 – 1.20 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.35, 142.96, 139.16, 127.27, 123.34, 93.63, 36.07, 32.48, 31.88, 29.53, 29.49, 29.30, 29.16, 28.91, 28.84, 22.68, 14.12. HRMS (ESI) *m/z* calculated for [C₂₀H₃₀N₄S+H]⁺ 359.2264, found 359.2260.

A11-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.22 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.51 – 1.40 (m, 2H), 1.34 – 1.20 (m, 14H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.21, 150.36, 142.96, 139.16, 127.28, 123.34, 93.63, 36.07, 32.48, 31.90, 29.60, 29.58, 29.49, 29.33, 29.16, 28.91, 28.85, 22.69, 14.12. HRMS (ESI) m/z calculated for $[C_{21}H_{32}N_4S+H]^+$ 373.2420, found 373.2412.

A12-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 4.22 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.51 – 1.40 (m, 2H), 1.34 – 1.20 (m, 16H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.21, 150.36, 142.96, 139.16, 127.28, 123.34, 93.63, 36.07, 32.48, 31.91, 29.65, 29.63, 29.58, 29.49, 29.35, 29.16, 28.91, 28.85, 22.69, 14.12. HRMS (ESI) *m/z* calculated for [C₂₂H₃₄N₄S+H]⁺ 387.2577, found

387.2575. (*E*)-5-((4-(alkenylthio)phenyl)diazenyl)-1-methyl-1H-pyrazole (Bn-S5)

B3-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 5.92 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.20 – 5.04 (m, 2H), 4.21 (s, 3H), 3.66 (dt, J = 6.7, 1.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.16, 150.65, 141.58, 139.16, 132.79, 128.22, 123.26, 118.41, 93.69, 35.93. HRMS (ESI) *m/z* calculated for [C₁₃H₁₄N₄S+H]⁺ 259.1012, found 259.1013.

B4-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 2.2 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 2H), 6.54 (d, *J* = 2.2 Hz, 1H), 5.88 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.20 – 5.04 (m, 2H), 4.22 (s, 3H), 3.08 (t, *J* = 7.4 Hz, 2H), 2.53 – 2.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.52, 142.26, 139.18, 135.95, 127.62, 123.38, 116.68, 93.68, 36.09, 33.02, 31.88. HRMS (ESI) *m/z* calculated for [C₁₄H₁₆N₄S+H]⁺ 273.1168, found 273.1167.

B5-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 2.3 Hz, 1H), 7.37 (d, J = 8.7 Hz, 2H), 6.54 (d, J = 2.2 Hz, 1H), 5.81 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.13 – 4.99 (m, 2H), 4.22 (s, 3H), 3.02 (t, J = 7.3 Hz, 2H), 2.24 (dtd, J = 7.7, 6.7, 1.4 Hz, 2H), 1.90 – 1.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.43, 142.55, 139.16, 137.26, 127.46, 123.35, 115.74, 93.65, 36.07, 32.72, 31.78, 27.97. HRMS (ESI) *m/z* calculated for [C₁₅H₁₈N₄S+H]⁺ 287.1325, found 287.1327.

B6-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.08 – 4.91 (m, 2H), 4.21 (s, 3H), 3.01 (t, J = 7.3 Hz, 2H), 2.15 – 2.04 (m, 2H), 1.78 – 1.70 (m, 2H), 1.63 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.38, 142.75, 139.15, 138.21, 127.33, 123.34, 114.93, 93.64, 36.06, 33.19, 32.31, 28.26, 28.04. HRMS (ESI) *m/z* calculated for [C₁₆H₂₀N₄S+H]⁺ 301.1481, found 301.1475.

B7-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.06 – 4.90 (m, 2H), 4.21 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 2.11 – 2.01 (m, 2H), 1.78 – 1.67 (m, 2H), 1.55 – 1.38 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.38, 142.81, 139.16, 138.64, 127.32, 123.34, 114.59, 93.64, 36.07, 33.57, 32.42, 28.68, 28.38, 28.33. HRMS (ESI) *m*/*z* calculated for [C₁₇H₂₂N₄S+H]⁺ 315.1638, found 315.1638.

B8-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.1, 6.6 Hz, 1H), 5.04 – 4.90 (m, 2H), 4.22 (s, 3H), 3.01 (t, J = 7.4 Hz, 2H), 2.11 – 2.00 (m, 2H), 1.78 – 1.67 (m, 2H), 1.53 – 1.32 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.37, 142.87, 139.16, 138.90, 127.32, 123.34, 114.39, 93.63, 36.07, 33.66, 32.46, 28.78, 28.72, 28.61. HRMS (ESI) *m*/*z* calculated for [C₁₈H₂₄N₄S+H]⁺ 329.1794, found 329.1793.

B9-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 2.3 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 2.2 Hz, 1H), 5.80 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.05 – 4.89 (m, 2H), 4.21 (s, 3H), 3.01 (t, *J* = 7.3 Hz, 2H), 2.11 – 1.97 (m, 2H), 1.80 – 1.66 (m, 2H), 1.53 – 1.28 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.36, 142.90, 139.16, 139.05, 127.30, 123.34, 114.27, 93.63, 36.07, 33.73, 32.47, 28.99, 28.93, 28.83, 28.81. HRMS (ESI) *m/z* calculated for [C₁₉H₂₆N₄S+H]⁺ 343.1951, found

343.1949.

B10-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 2.1 Hz, 1H), 7.35 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.1 Hz, 1H), 5.80 (ddt, J = 16.9, 10.1, 6.6 Hz, 1H), 5.04 – 4.87 (m, 2H), 4.21 (d, J = 1.7 Hz, 3H), 3.00 (t, J = 7.4 Hz, 2H), 2.09 – 1.98 (m, 2H), 1.78 – 1.65 (m, 2H), 1.52 – 1.28 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 150.34, 142.92, 139.14, 139.11, 127.26, 123.33, 114.19, 93.62, 36.05, 33.76, 32.45, 29.30, 29.09, 29.01, 28.87, 28.81. HRMS (ESI) *m/z* calculated for [C₂₀H₂₈N₄S+H]⁺ 357.2107, found 357.2107.

B11-S5: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 2.2 Hz, 1H), 5.81 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.05 – 4.88 (m, 2H), 4.21 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 2.10 – 1.99 (m, 2H), 1.80 – 1.66 (m, 2H), 1.47 – 1.26 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 150.35, 142.94, 139.17, 139.15, 127.27, 123.33, 114.16, 93.63, 36.06, 33.79, 32.47, 29.42, 29.39, 29.13, 29.08, 28.90, 28.89, 28.83. HRMS (ESI) *m/z* calculated for [C₂₁H₃₀N₄S+H]⁺ 371.2264, found 371.2261.

2. Photochemical characterization

UV-Vis absorption spectra were recorded on a Shimadzu UV-2700 spectrophotometer with slit width of 2.0 nm. The light sources used for photoisomerization are: 365 nm LED lamp (Nichia NVSU233B chip, 6 W), LED lamps (Cree Q5 chip) with different wavelengths (400 nm, 412 nm, 420 nm, 450 nm, 470 nm, 500 nm), 532 nm laser (YZ532D200-CGS125-JYWK).

Figure S1. UV-Vis absorption spectra of **S3**, **S4**, an **S5** at different irradiation wavelengths in CH₃CN. The extracted spectra of *cis* isomers are shown as dotted lines.

	P− N N− N	S- N-N_ N-N_	S-K-N, N-K-N	s-C-N. N-V.
	04	S3	S4	S 5
trans π - π * λ_{max} (nm)	342.0	360.0	357.0	384.5
$cis n-\pi^* \lambda_{max}$ (nm)	415.0	436.0	412.5	446.0
$\varepsilon_{trans}/\varepsilon_{cis}$ at 400 nm	2.0	7.3	4.6	14.8

Table S1. Spectroscopic data of O4, S3, S4, and S5 in CH₃CN.

Quantification of PSS composition

First, the photostationary state (PSS) composition at 400 nm and 532 nm was quantified by integrating spectra peak areas of ¹H NMR spectra in CD₃CN of the *trans* and *cis* isomers. Then, the UV-Vis absorption spectra of the pure cis-isomers were calculated from the spectra of *trans*-isomers and 400 nm PSS. Finally, the isomer fractions of the other PSSs were obtained by spectral fitting using the *trans* and extracted *cis* isomers spectra, according to our previous work.²⁻³

	Fraction of <i>trans</i> -isomer at PSSs (%)				
_	S3	S4	S5		
365 nm	1.3	2.2	5.3		
400 nm	13.6	17.2	4.8		
412 nm	31.0	23.7	8.3		
420 nm	44.0	29.8	15.1		
450 nm	62.4	36.0	44.3		
470 nm	68.2	40.9	60.4		
500 nm	78.8	54.6	81.7		
532 nm	90.9	85.5	95.2		

Table S2. Calculated fraction of trans-isomers of S3, S4, and S5 at different PSSs in CH₃CN.

Figure S2. ¹H NMR spectra of *trans*-S3 and its PSSs at 400 nm and 532 nm in CD₃CN.

Figure S3. ¹H NMR spectra of *trans*-S4 and its PSSs at 400 nm and 532 nm in CD₃CN.

Figure S4. ¹H NMR spectra of *trans*-S5 and its PSSs at 400 nm and 532 nm in CD₃CN.

3. Computational details

Since the aromatic ring rotates along C-N bonds linked to the azo group, two conformers were considered for all the molecules. The theoretical calculations were performed on ORCA 5.0 program.⁴⁻⁵ The conformers for all azo molecules in the gas phase were optimized on the PBE0-D3(BJ)/def2-TZVP level of theory⁶⁻⁸ with the RIJCOSX approximation⁹, and then vibrational frequency analysis at the same theory level to ensure the reliability of the ground-state minimum geometry. The electronic energies of each conformer were computed at the PWPB95-D3(BJ)/def2-QZVPP level of theory⁶⁻⁸ with the RIJCOSX approximation⁹. The solvation free energies (using SMD solvation model¹⁰) of each conformer in acetonitrile were computed at M06-2X/6-31G* level of theory¹¹⁻¹³. Then, according to the relative Gibbs free energies, the Boltzmann distributions of each conformer in the gas phase and acetonitrile were obtained. The isomerization enthalpy energies between trans and cis isomers were calculated considering the conformation average. The vertical electronic excitation energies were calculated by time-dependent density functional theory (TDDFT)¹⁴, and 20 lowest-lying singlet excited states were considered at PBE0-D3(BJ)/def2-TZVP level of theory⁶⁻⁸ with the RIJCOSX approximation⁹ (using SMD solvation model¹⁰) in acetonitrile. The frontier molecular orbitals (FMOs) and natural transition orbitals (NTOs) figures were rendered by Multiwfn¹⁵ and VMD¹⁶ program.

Conformation		Rel. Ggas	Population	Rel. Gsoln	Population
		(kcal/mol)	(gas)	(kcal/mol)	(acetonitrile)
<i>turnu</i> 01	1	0	58.77%	0	68.12%
trans-04	2	0.21	41.23%	0.45	31.88%
aig Q4	1	0	52.11%	0	60.40%
<i>ClS</i> -04	2	0.05	47.89%	0.25	39.60%
trans-S3	1	0.00	99.34%	0.00	97.15%
	2	2.97	0.66%	2.09	2.85%
. 63	1	0.00	67.02%	0.00	85.68%
<i>cis</i> -55	2	0.42	32.98%	1.06	14.32%
tuana SA	1	0.00	59.99%	0.00	68.85%
trans-54	2	0.24	40.01%	0.47	31.15%
aia S1	1	0.00	53.79%	0.00	67.39%
<i>CIS</i> -54	2	0.09	46.21%	0.43	32.61%
tuana S5	1	0.00	97.24%	0.00	98.77%
trans-55	2	2.11	2.76%	2.60	1.23%
aia S5	1	0.00	99.16%	0.00	98.40%
cis-S5	2	2.83	0.84%	2.44	1.60%

Table S3. Relative Gibbs free energies and Boltzmann distributions of O4, S3, S4, and S5 in gas and CH₃CN.

Figure S5. Optimized molecular geometries of O4, S3, S4, and S5.

Figure S6. Calculated UV-Vis absorption spectra of O4, S3, S4, and S5 in CH₃CN.

Canforma		$S_0 \rightarrow S_1 E$	xcitation (n-	π*)	$S_0 \rightarrow S_2$ Excitation		
Conformation		Energy (ev)	λ (nm)	f	Energy (ev)	λ (nm)	f
trans-04	1	2.9150	425.33	0.0000	3.4500	359.37	0.9536
	2	2.9090	426.21	0.0001	3.4020	364.45	0.9345
cis-O4	1	2.9900	414.66	0.0170	3.8890	318.81	0.0277
	2	2.9900	414.66	0.0021	3.8560	321.54	0.0021
trans-S3	1	2.8360	437.18	0.0000	3.1560	392.85	0.9669
	2	2.7400	452.50	0.0000	3.1360	395.36	0.9543
cis-S3	1	2.6610	465.93	0.1068	3.5370	350.53	0.1297
	2	2.6130	474.49	0.1090	3.5160	352.63	0.1384
trans-S4	1	2.8690	432.15	0.0000	3.2000	387.45	0.9776
	2	2.8640	432.91	0.0000	3.1590	392.48	0.9630
cis-S4	1	2.9920	414.39	0.0048	3.7030	334.82	0.0057
	2	2.9580	419.15	0.0017	3.6700	337.83	0.0018
trans-S5	1	2.7720	447.27	0.0000	3.0200	410.54	0.9708
	2	2.7320	453.82	0.0000	3.0710	403.73	0.9611
cis-S5	1	2.5890	478.89	0.1096	3.3800	366.82	0.0921
	2	2.5660	483.18	0.1152	3.4260	361.89	0.2605

Table S4. Calculated spectroscopic data of O4, S3, S4, and S5 in CH₃CN.

Figure S7. The frontier molecular orbitals (FMOs) and natural transition orbitals (NTOs) of **O4** (isosurface value of 0.05).

Figure S8. The frontier molecular orbitals (FMOs) and natural transition orbitals (NTOs) of **S3** (isosurface value of 0.05).

Figure S9. The frontier molecular orbitals (FMOs) and natural transition orbitals (NTOs) of **S4** (isosurface value of 0.05).

Figure S10. The frontier molecular orbitals (FMOs) and natural transition orbitals (NTOs) of **S5** (isosurface value of 0.05).

4. DSC results for An-S5 and Bn-S5

DSC curves were scanned on Q2000 calorimeter (TA) or DSC 2500 (TA) at a heating rate of 10 °C /min under N₂ atmosphere. The onset temperatures of melting (T_m) and crystallization (T_{cry}) were recorded from the DSC curves.

An-S5	trans				cis
	$T_{ m m}$	$T_{\rm cry}$	$\Delta T = T_{\rm m} - T_{\rm cry}$	Tm	$T_{ m cry}$
11	(°C)	(°C)	(°C)	(°C)	(°C)
2	68.5	-13.0 ^[a]	-	-	-
3	23.7	-0.2 ^[a]	-	-	-
4	27.3	2.2 ^[a]	-	-	-
5	32.7 ^[b]	13.6 ^{[a][b]}	-	-	-
6	45.7	33.6	12.1	4.6 ^[c]	-23.8 ^{[a][c]}
7	38.4	26.6	11.8	$7.9^{[b]}$	-8.9 ^{[a][b]}
8	49.2	42.6	6.6	11.4 ^[b]	-6.4 ^{[a][b]}
9	41.8	32.1	9.7	36.6	Not measured
10	48.4	22.4	26.0	28.7	Not measured
11	55.9	36.1	19.8	49.3	Not measured
12	56.6	27.1	29.5	47.0	Not measured

Table S5. $T_{\rm m}$ and $T_{\rm cry}$ of **An-S5**.

[a] Cold-crystallization temperature. [b] Crystal transformation occurred during the heating cycle, and the $T_{\rm m}$ and $T_{\rm cry}$ of the high-temperature crystal form were recorded. [c] The $T_{\rm m}$ of 75% *cis*-isomer content.

Bn-S5	trans		Bn-S5 trans				cis
	$T_{\rm m}$	$T_{\rm cry}$	$\Delta T = T_{\rm m} - T_{\rm cry}$	T _m	$T_{\rm cry}$		
n	(°C)	(°C)	(°C)	(°C)	(°C)		
3	-	-	-	-	-		
4	-	-	-	-	-		
5	-	-	-	-	-		
6	11.7	-7.3	-	-	-		
7	40.0	33.7	6.3	-1.0 ^[c]	-20.0 ^{[a][c]}		
8	22.4	-12.0, -49.8 ^[a]	-	-	-		
9	47.6	39.0	8.6	16.7 ^[b]	-10.7 ^{[a][b]}		
10	37.9	1.1	36.8	14.2 ^[b]	4.2 ^{[a][b]}		
11	39.8	11.3	28.5	30.0	Not measured		

Table S6. $T_{\rm m}$ and $T_{\rm cry}$ of **Bn-S5**.

[a] Cold-crystallization temperature. [b] Crystal transformation occurred during the heating cycle, and the $T_{\rm m}$ and $T_{\rm cry}$ of the high-temperature crystal form were recorded. [c] The $T_{\rm m}$ of 75% *cis*-isomer content.

Figure S11. DSC curves of *trans*-An-S5 measured at 10 °C/min.

Figure S12. DSC curves of *trans*-Bn-S5 measured at 10 °C/min.

Figure S13. DSC curves of *cis*-An-S5 measured at 10 °C/min.

Figure S14. DSC curves of *cis*-Bn-S5 measured at 10 °C/min.

С	conformation	Enthalpy (Hartree)	Population (gas)	Avg. Enthalpy (Hartree)	Cal. Δ <i>H</i> _{iso} (kJ/mol)	Exp. ΔH _{iso} (kJ/mol)
	trans-S5 (1)	-1043.120575	97.24%	1042 120516		
t.	trans-S5 (2)	-1043.118454	2.76%	-1045.120510	- 49	4.6
33	cis-S5 (1) -104	-1043.101814	99.16%	1042 101792		40
	<i>cis</i> -S5 (2)	-1043.098182	0.84%	-1045.101785		

5. Thermal isomerization kinetics and half-life

Thermal *cis–trans* kinetics was studied using Shimadzu UV-2700 spectrophotometer equipped with a programmable temperature controller (DCY-1006, Shanghai Sunny Hengping Scientific Instrument Ltd). The absorbance at $\lambda_{max} = 385$ nm of a *cis*-rich acetonitrile solution was recorded every minute.

Figure S15. Thermal *cis–trans* recovery of *cis*-**B7-S5** in acetonitrile with time at different temperatures followed by the absorbance increase at $\lambda_{max} = 385$ nm, and the linear fit between lnk and 1/T according to the Arrhenius equation.

Thermal *cis–trans* kinetics in condensed states was studied as follows. The temperature of *cis*-rich liquid was controlled by a semiconductor cooling and heating platform (RTL100, Huozi Instrument Technology Ltd). A small sample was taken from the *cis*-rich liquid every 5 or 10 minutes, dissolved in acetonitrile, and recorded the UV-Vis absorption spectrum.

Figure S16. Thermal *cis–trans* recovery of *cis*-**B7-S5** in condensed states with time at different temperatures followed by the absorbance increase at $\lambda_{max} = 385$ nm, and the linear fit between lnk and 1/T according to the Arrhenius equation.

Table S8. Thermal isomerization kinetics results of *cis*-B7-S5 in acetonitrile.

Experimental						Calculated
	40 °C	35°C	30 °C	25 °C		0 °C
$k (\min^{-1})$	3.74×10 ⁻³	2.12×10 ⁻³	1.17×10 ⁻³	6.63×10 ⁻⁴	$k (\min^{-1})$	2.14×10 ⁻⁵
$t_{1/2}$ (min)	185	327	592	1045	$t_{1/2}$ (d)	22.4

Table S9. Thermal isomerization kinetics results of *cis*-B7-S5 in condensed states.

Experimental						Calculated
	50 °C	40°C	30 °C	20 °C		0 °C
$k (\min^{-1})$	1.35×10 ⁻²	5.10×10 ⁻³	1.93×10 ⁻³	7.69×10 ⁻⁴	$k (\min^{-1})$	7.64×10 ⁻⁵
$t_{1/2}$ (min)	51	136	359	901	$t_{1/2}$ (d)	6.3

6. Quantum yield and solar energy conversion efficiency

The photon flux of 395 nm LED light was 1.11×10^{-4} mol s⁻¹, which was determined by chemical actinometry using potassium ferrioxalate as a standard actinometer^{3, 17}. Photoisomerization quantum yield ($\Phi_{trans \rightarrow cis}$) was measured by using an established method from literature³.

Figure S17. Exponential fitting of the fractions of *cis*-**B7-S5** against the integrated photokinetic factors x(t).

Under AM 1.5 solar irradiation spectrum, the solar energy conversion efficiency (η) can be estimated with the following equation¹⁸:

$$\eta = \frac{\int_{0}^{\lambda_{onset}} \frac{E_{AM \ 1.5}(\lambda) \Phi_{trans \to cis} \Delta H_{iso}}{h \upsilon N_A} d\lambda}{\int E_{AM \ 1.5}(\lambda) d\lambda} 100\%$$

Table S10. Solar energy conversion efficiency of B7-S5.

Molecule	Exp. Δ <i>H</i> _{iso} (kJ/mol)	$\Phi_{trans ightarrow cis}$	λ_{onset} (nm) (> 100)	η
B7-S5	46	0.39 ± 0.01	515	1.3%

7. Preparation of rechargeable glass

The diethoxydimethylsilane modified chain-like silica solution was prepared according to the reported method.¹⁹ 42 mg of chain-like silica was added to 6 ml of a mixed solution of ethanol and isopropanol (1:1, v/v) at room temperature, and sonicated for 15 min. Then, 147 mg diethoxydimethylsilane and 25 mg HCl were slowly added to the mixture, and the mixture was stirred for 24 hours to obtain diethoxydimethylsilane modified chain-like silica. Finally, 180 mg **B7-S5** was added to the solution, stirred for 15 min to give orange-yellow **silica-B7-S5** mixture for drop-casting.

Rechargeable glass was made by drop-cast method. The glass (22 mm \times 22 mm) was clean in deionized water, acetone and isopropanol sequentially by ultrasonication and then treated with oxygen plasma for 10 min, after which the glass was placed on a 60 °C hot plate. Then 1 mL of **silica-B7-S5** solution was dropped on a pre-heated glass surface to form a **silica-B7-S5** coating with a thickness of ~ 400 µm on glass.

The neat **B7-S5** coated glass was prepared by drop-coating a 30 mg mL⁻¹ **B7-S5** mixed solution of ethanol and isopropanol on the glass.

Figure S18. Leakage tests of neat B7-S5 and silica-B7-S5.

8. Infrared image

A high-resolution infrared thermal imaging camera was used to track the temperature changes of the window when exposed to 400 nm (40 mW cm⁻²) and 532 nm light (110 mW cm⁻²).

Figure S19. Time-evolved infrared images of the windows under 400 nm (40 mW cm⁻²) and 532 nm light (110 mW cm⁻²) irradiation at -1 $^{\circ}$ C.

9. Single crystal X-ray diffraction

Crystallography data were collected on a Bruker D8 VENTURE single crystal x-ray diffractometer. The crystal structures were solved and refined using SHELX programs²⁰⁻²² called from ShelXle²³ and Olex2²⁴ graphical user interfaces.

Figure S20. Crystal structure of S5. Gray: Carbon, blue: Nitrogen, yellow: Sulfur, white: Hydrogen.

Empirical formula	$C_{11}H_{12}N_4S$		
Formula weight	232.31		
Temperature	298(2) K		
Wavelength	1.54178 Å		
Crystal system, space group	Monoclinic, $P 2_1/c$		
Unit cell dimensions	$a = 10.1876(19)$ Å $\alpha = 90^{\circ}$.		
	$b = 9.2946(14) \text{ Å} \qquad \beta = 104.262(19)^{\circ}.$		
	$c = 12.4426(18)$ Å $\gamma = 90^{\circ}$.		
Volume	1141.9(3) Å ³		
Z, Calculated density	4, 1.351 g/cm ³		
Absorption coefficient	2.333 mm ⁻¹		
<i>F</i> (000)	488		
Crystal size	0.160 x 0.140 x 0.120 mm		
Theta range for data collection	4.478 to 68.297°		
Limiting indices	$-11 \le h \le 12, -11 \le k \le 11, -14 \le l \le 14$		
Reflections collected / unique	$13012 / 2087 (R_{int} = 0.0400)$		
Completeness to theta $= 67.679$	99.8 %		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	2087 / 0 / 147		
Goodness-of-fit on F^2	1.044		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0327, wR_2 = 0.0908$		
R indices (all data)	$R_1 = 0.0389, wR_2 = 0.0955$		
Largest diff. peak and hole	0.218 and -0.206 e.Å ⁻³		

Fable S11. Crysta	l data and	l structure refinement of	E S 5 ((CCDC 2112835).
-------------------	------------	---------------------------	----------------	---------------	----

Figure S21. Crystal structure of B7-S5. Gray: Carbon, blue: Nitrogen, yellow: Sulfur, white: Hydrogen.

Empirical formula	C ₁₇ H ₂₂ N ₄ S	
Formula weight	314.44	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	$a = 5.6168(2)$ Å $\alpha = 87.1020(10)^{\circ}$.	
	$b = 8.1750(2)$ Å $\beta = 88.922(2)^{\circ}$.	
	$c = 39.0525(10)$ Å $\gamma = 73.340(2)^{\circ}$.	
Volume	1715.70(9) Å ³	
Z, Calculated density	4, 1.217 g/cm ³	
Absorption coefficient	1.680 mm ⁻¹	
<i>F</i> (000)	672	
Crystal size	0.140 x 0.120 x 0.100 mm	
Theta range for data collection	3.399 to 68.250°	
Limiting indices	$-6 \leqslant h \leqslant 6, -9 \leqslant k \leqslant 9, -46 \leqslant l \leqslant 46$	
Reflections collected / unique	$34076 / 6270 (R_{int} = 0.0660)$	
Completeness to theta $= 67.679$	99.8 %	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	6270 / 0 / 399	
Goodness-of-fit on F^2	1.038	
Final R indices [I>2sigma(I)]	$R_1 = 0.0428, wR_2 = 0.1043$	
R indices (all data)	$R_1 = 0.0649, wR_2 = 0.1155$	
Largest diff. peak and hole	0.578 and -0.295 e.Å ⁻³	

 Table S12. Crystal data and structure refinement of B7-S5 (CCDC 2112834).

11. Cartesian coordinates for optimized geometries

trans-O4 (1) in gas

С	3.44011629787398	-0.99959428218837	-0.00821424371304
С	2.45922163464509	-0.02313898299098	-0.00332721167472
С	3.17798568684919	1.19609744173695	-0.00169650903151
Ν	4.61789464298579	-0.35881977246607	-0.01197730085833
Н	3.36006155907759	-2.07468013341801	-0.01152751179568
Н	2.78708054547797	2.20072846651648	-0.00232450830838
Ν	4.47758089312214	0.97616751851064	-0.00545082075302
Ν	1.10496940462260	-0.30203545550912	-0.00508185739446
Ν	0.37033173245994	0.70715822604197	-0.00081891341531
С	-1.00849258854430	0.44360868704267	-0.00118568366740
С	-1.84615912757914	1.55899504179578	0.00327534334113
С	-1.57593367942934	-0.82845372634526	-0.00476995843147
С	-3.21594152641564	1.41281945988271	0.00439704948711
Н	-1.39051822535634	2.54219362640679	0.00605642615051
С	-2.94900302512474	-0.98615539912713	-0.00360218341004
Н	-0.92251880577568	-1.69150454345642	-0.00820852891640
С	-3.77862440345742	0.13721448294081	0.00113949386727
Н	-3.87652142211588	2.27104708643448	0.00802061199020
Н	-3.36867398443891	-1.98322780450762	-0.00623768339950
0	-5.12676565400034	0.08398466380732	0.00306380057962
С	5.93594949951682	-0.93164781694299	0.02272471040362
Н	6.55458085974723	-0.46221077675512	-0.74158244225658
Н	6.39721098951179	-0.77326971210241	0.99945817418189
Н	5.86345857650154	-2.00008715132459	-0.17375531104169
С	-5.74068820824540	-1.18222785906195	0.00100621371278
Н	-5.47168352589108	-1.75983994294883	0.89169556292953
Н	-6.81349162669785	-0.99885841902506	0.00368694049179
Н	-5.47537151931961	-1.75523392294667	-0.89375065906793

E[PWPB95-D3(BJ)/def2-QZVPP] = -720.393288 (Hartree) Zero-point correction = 0.223042 Thermal correction to Energy = 0.237379 Thermal correction to Enthalpy= 0.238323 Thermal correction to Gibbs Free Energy= 0.182488

trans-O4 (2) in gas

С	3.25085565189605	0.65647037648615	0.00125417869516
С	2.45375101327658	-0.48106889583051	-0.00716397638993
С	3.37096513635924	-1.55022415719245	-0.01680765817559
Ν	4.51800948660490	0.22313550760456	-0.00476009954786
Н	2.98958169123488	1.70122902764177	0.00986821216152
Н	3.15637460311499	-2.60805683961091	-0.02768944848494
Ν	4.61708101006331	-1.11399615799258	-0.01464609080587
Ν	1.07839535312791	-0.62366351953876	-0.00830250124509
Ν	0.44511210283378	0.45209938316008	-0.00816708694498
С	-0.95227155109235	0.32473529068307	-0.00648217096202
С	-1.67753804373317	1.51605033273416	-0.01628690442843
С	-1.64007495174336	-0.88641297867698	0.00578452537611
С	-3.05500349903042	1.50390823870139	-0.01456275712576
Н	-1.12882465000363	2.45054142932723	-0.02563039568501
С	-3.02185249205401	-0.90961271980837	0.00822221351188
Н	-1.07331587922803	-1.80871216643266	0.01393623021358
С	-3.73864374896740	0.28896791386784	-0.00196044041546
Н	-3.62902075085847	2.42224364393644	-0.02252364516797
Н	-3.53628914304786	-1.86124233503301	0.01853622050057
0	-5.08524006992455	0.36674912627032	-0.00005476506018
С	5.71692572073690	1.01739188829176	0.02334255590682
Н	6.36539220348708	0.73044675858160	-0.80446008857360
Н	5.44725929821471	2.06767918146454	-0.07115188301486
Н	6.25038048044574	0.86130245541481	0.96231333839204
С	-5.81933970748740	-0.83399800275067	0.01124225225539
Н	-5.60771582931963	-1.42447369423759	0.90887473401682
Н	-6.86920879404744	-0.54730544080956	0.01009988266888
Н	-5.60986164085835	-1.43978464625167	-0.87662643167120

E[PWPB95-D3(BJ)/def2-QZVPP] = -720.392954 (Hartree)

Zero-point correction = 0.223091

Thermal correction to Energy = 0.237410

Thermal correction to Enthalpy= 0.238354

cis-O4 (1) in gas

С	-1.40213206264687	-0.63417502867343	-0.15941766228164	
С	-1.99820508116426	0.65663658760500	-0.07334101200802	
С	-3.35808525436521	0.38858709555973	-0.01338748862852	
Ν	-2.32319817561753	-1.57635998336699	-0.14859792088106	
Н	-0.36384444133485	-0.90992125558315	-0.23529468563791	
Н	-4.19020513213825	1.07124408856323	0.05104914700315	
Ν	-3.50067481330529	-0.93729771687003	-0.05419096763061	
Ν	-1.59009113995501	1.99380575342873	-0.10505590258754	
Ν	-0.40626329733333	2.36415310235786	-0.09676499046950	
С	0.65569431984454	1.42607462459512	0.02912047608615	
С	1.43250228240787	1.10827003583259	-1.07088065773482	
С	0.98819798963361	0.90320034609733	1.27680529456390	
С	2.50660524963893	0.23530774664732	-0.94932676437140	
Н	1.18813883745090	1.53658141294744	-2.03592682588586	
С	2.06217886298278	0.04836205297299	1.40759949349211	
Н	0.39300552110823	1.16826050897022	2.14280210850893	
С	2.82628608207219	-0.29960628680077	0.29378259243151	
Н	3.08941085331399	-0.00837394681984	-1.82716830500139	
Н	2.33261215048829	-0.36589742071132	2.37133167190134	
0	3.85812577523344	-1.14494294511735	0.52057280156408	
С	-4.71771558685981	-1.70175419873892	0.00192403270156	
Н	-4.77644099160817	-2.36173288122076	-0.86357509059925	
Н	-4.74169364496711	-2.30462965847727	0.91068395179075	
Н	-5.56442541898446	-1.01771699760605	-0.00301756495189	
С	4.65693157504177	-1.51080118037844	-0.57676247485643	
Н	5.14769211065993	-0.63952884179711	-1.02427727237755	
Н	5.41491860202961	-2.18918145455421	-0.18950976052888	
Н	4.07127382837407	-2.02684155886191	-1.34552522361121	

E[PWPB95-D3(BJ)/def2-QZVPP] = -720.374068 (Hartree) Zero-point correction = 0.222940 Thermal correction to Energy = 0.237191 Thermal correction to Enthalpy= 0.238135 Thermal correction to Gibbs Free Energy= 0.182001 cis-O4 (2) in gas

С	1.52470178780345	0.53785844726272	0.01379027350850
С	2.20438590993470	-0.67812022359248	-0.10027191777499
С	3.56515809379529	-0.30117017178979	-0.13773679328061
Ν	2.46623504149797	1.48784086885569	0.03557843011211
Н	0.47998810598931	0.78776167470688	0.07885570871000
Н	4.41766498551786	-0.95800837218399	-0.22214044644542
Ν	3.71529176139271	1.00331355615361	-0.05472371042472
Ν	1.86327181790370	-2.02919843378268	-0.18255979036019
Ν	0.70057626734374	-2.46278533245492	-0.15020483569329
С	-0.40129149805818	-1.57397826300255	-0.01171988511917
С	-1.06362012785268	-1.10323564154483	-1.13252535847095
С	-0.87315719759375	-1.23696243658156	1.25416384266572
С	-2.16531006010348	-0.26633155684440	-1.00329200338280
Н	-0.70918451344215	-1.38382550576616	-2.11753352205945
С	-1.96700364907734	-0.40651215481287	1.38994095021276
Н	-0.36809329564676	-1.62439595801886	2.13128020287276
С	-2.61937888430739	0.09124804128047	0.26209282581566
Н	-2.66268692053078	0.09056849090332	-1.89496977583333
Н	-2.34339211344622	-0.13432814970139	2.36871533454534
0	-3.68350289700005	0.89483218375502	0.49522672984924
С	2.26865987199603	2.90931847952728	0.13985898758851
Н	1.20197409348969	3.11237148532021	0.21491031711815
Н	2.77651222931863	3.28875188928908	1.02693301055992
Н	2.67528274904292	3.40600484255825	-0.74165983246836
С	-4.39213947834274	1.37973564609050	-0.61818823331584
Н	-4.81113364981653	0.56160972388318	-1.21402958952487
Н	-5.20389036346597	1.98709363898623	-0.22227124885673
Н	-3.75743106634198	2.00138823150405	-1.25952467054794

E[PWPB95-D3(BJ)/def2-QZVPP] = -720.374386 (Hartree) Zero-point correction = 0.222987 Thermal correction to Energy = 0.237194 Thermal correction to Enthalpy= 0.238139

trans-S3 (1) in gas

С	3.35515504810443	0.21142852274907	-0.00186743504966	
С	2.51708696147249	-0.90729340564040	0.01123173187917	
С	1.14549659406319	-0.75490655271075	0.01433016087667	
С	0.57889162590537	0.51913872720635	0.00471560022449	
С	1.41389805838119	1.63480016638693	-0.00732601098192	
С	2.78466473387192	1.48727634250268	-0.01089817726015	
Н	2.93475890109897	-1.90532836972756	0.01902184886468	
Н	0.49158234033681	-1.61769595551909	0.02398941650777	
Н	0.95900901808838	2.61836140146371	-0.01448696167929	
Ν	-0.80075806383345	0.77793827639879	0.00537280657506	
Ν	-1.52605093253862	-0.23659873429138	0.00968661243937	
С	5.44859338602680	-1.62033270186834	-0.00342049524657	
Н	5.05880790094421	-2.10930534121336	-0.89702027032048	
Н	6.53558475495029	-1.70219314014688	-0.00395056899666	
Н	5.05993038655578	-2.10469839173492	0.89317501258534	
S	5.10040006966213	0.13616312002670	-0.00788344003172	
Н	3.42607707714071	2.36147496398439	-0.02095387221925	
С	-2.88364137126148	0.04532866230905	0.00820676564624	
С	-3.57440853365266	1.27783262762494	0.00957013119476	
Ν	-4.93208222463383	-0.44188596313930	0.01132366918312	
С	-4.89371551452675	0.91391341963212	0.01002734083696	
Н	-3.15056554012298	2.26653065895466	0.01498336924391	
Н	-5.79915176874194	1.50036108892750	0.01223190389917	
Ν	-3.72587953508857	-0.98608122028449	0.00755294223380	
С	-6.09675528515497	-1.28488510906632	-0.02887553941491	
Н	-6.02171604287657	-2.04743893348014	0.74589267000181	
Н	-6.98058608179064	-0.67381647278571	0.14693152227421	
Н	-6.18206405238017	-1.77366064655826	-1.00126183326591	

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.354911 (Hartree)

Zero-point correction = 0.219031

Thermal correction to Energy = 0.234046

Thermal correction to Enthalpy= 0.234990

trans-S3 (2) in gas

С	3.31361122986157	0.32351706050331	0.00000319618352
С	2.59961934148255	-0.87821049389342	0.00000910191340
С	1.21971345573036	-0.87180918244488	0.00001064642973
С	0.52089154372210	0.33457440123966	0.00000461155336
С	1.23303967166404	1.53254307926313	0.00000053081238
С	2.61173477562259	1.53150600165798	-0.00000087865046
Н	3.12053923538976	-1.82644655272866	0.00001337127874
Н	0.66137691295361	-1.79931364826744	0.00001428669311
Н	0.67345603162747	2.46044989263321	-0.00000445908085
Ν	-0.87772300679234	0.45297662062455	-0.00000015483273
Ν	-1.49408465861052	-0.62976976428869	0.00000528830075
С	5.58291794124143	-1.27994995922241	-0.00000657717057
Η	5.24385619159668	-1.80285955248746	-0.89503820345709
Η	6.67260978280709	-1.25268395653339	-0.00000796941415
Η	5.24385853571661	-1.80286856890202	0.89502066856300
S	5.05795371913554	0.43186447939125	0.00000244985022
Η	3.15692953237246	2.46875494503817	-0.00000577896325
С	-2.88097868338079	-0.52736744666182	0.00000358925383
С	-3.72893383867546	-1.65193960321676	-0.00000082462138
Ν	-4.84552412066436	0.22432241923323	-0.00000136821043
С	-4.99334234790359	-1.12081628966439	-0.00000463777466
Н	-3.43753273186363	-2.68854937572557	-0.00000329482188
Н	-5.96850434992861	-1.58073248130533	-0.00001001935819
Ν	-3.57918954744128	0.60886270905261	0.00000462966828
С	-5.88767547135098	1.21621970756456	0.00000331843450
Н	-5.80375853076655	1.84404786088594	-0.88766949678698
Н	-6.85279089064946	0.71240395468870	-0.00001662734170
Н	-5.80378018289629	1.84401828356594	0.88769932154952

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.350310 (Hartree)

Zero-point correction = 0.218841

Thermal correction to Energy = 0.233942

Thermal correction to Enthalpy= 0.234887

cis-S3 (1) in gas

С	-2.51100610804975	0.14434083406636	0.30414287804416
С	-2.38353202402056	-0.81966465285556	-0.69228451124210
С	-1.26277064610851	-1.63429630696455	-0.73858974221936
С	-0.22949563412441	-1.46261013589322	0.16954024921305
С	-0.36211914468132	-0.51532454544889	1.18438137323822
С	-1.49128129113122	0.27067727345377	1.25349551831490
Η	-3.16082078024806	-0.95828920650527	-1.43177845050363
Н	-1.17509181237835	-2.40220050091159	-1.49844787122653
Η	0.42552091882502	-0.40399214559612	1.91982864323018
Ν	0.86864818213002	-2.35824938802218	0.12734023056557
Ν	2.04418462988195	-1.97114679008308	0.07684227609000
С	-4.94824798475817	0.74727644795412	-0.87819221366767
Η	-5.27513115392623	-0.29002676038160	-0.79358229852853
Н	-5.82096656262463	1.39652591434376	-0.80781622633169
Η	-4.46495883144279	0.91193546248439	-1.84236272294871
S	-3.88400903239500	1.21665577216922	0.48208632492718
Н	-1.59138645595274	0.99882614951612	2.05103824188099
С	2.39809438023266	-0.62631673077793	-0.13809779008647
С	1.78004563186769	0.43099859034644	-0.84828871034573
Ν	3.78458427875761	0.96513586151772	-0.14743608327633
С	2.71387582744499	1.43310344622643	-0.82970124746981
Η	0.80818121108409	0.45688429928601	-1.30818143155361
Η	2.69881221474936	2.42792234190572	-1.24633555979371
Ν	3.62143388175443	-0.28297271088078	0.26036568664951
С	4.99049307289220	1.67550975992422	0.18641848954930
Η	5.84674617345005	1.02420250913566	0.01807268512253
Н	5.07038532962239	2.55586730342561	-0.44942063750403
Н	4.97845372914926	1.98473990856521	1.23355389987232

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.333479 (Hartree)

Zero-point correction = 0.218797

Thermal correction to Energy = 0.233732

Thermal correction to Enthalpy= 0.234676

cis-S3 (2) in gas

С	-2.31629970482893	-0.01997938639750	0.32922020931659
С	-2.16820487342250	-0.80733116366364	-0.80870436514823
С	-1.02668016861876	-1.57197108720164	-0.98436561837427
С	0.00756064842920	-1.51571507660749	-0.06387591064714
С	-0.14538147685694	-0.74715514273505	1.08972991385080
С	-1.29679600382807	-0.01881178130919	1.28753979682218
Н	-2.94592161594399	-0.84556259310986	-1.55942391392945
Н	-0.91969174194385	-2.20749232950351	-1.85543002118241
Н	0.64006700811950	-0.73163715257170	1.83573223099033
Ν	1.11400324077199	-2.38077483386223	-0.25728065811564
Ν	2.28865668461156	-2.01342000534853	-0.12445730515046
С	-4.78642828305625	0.67719193125266	-0.73004661193448
Н	-5.08573463198639	-0.36990592398491	-0.79270291135505
Н	-5.67375781387504	1.28628482563375	-0.55700615346067
Н	-4.31997102584773	0.99268239004472	-1.66432818105226
S	-3.71678108974329	0.97264708516260	0.67408673369228
Н	-1.41589553666398	0.56481605174675	2.19404046867086
С	2.64879194993354	-0.65923016056609	0.02120964373725
С	3.72487946509048	-0.20150297251895	0.80287263325026
Ν	2.79717981181321	1.40797306768941	-0.35377321455328
С	3.77265147396635	1.14640166762996	0.54381070563512
Η	4.35328326952220	-0.77875241989903	1.45965327638307
Н	4.42058337230137	1.92444240107055	0.91473801130117
Ν	2.10426572707985	0.32486947212884	-0.68663351294706
С	2.51272573810494	2.65890694844424	-1.00519838124867
Н	1.43886164200276	2.84065398393712	-0.98327738946426
Η	3.02902559257616	3.45802968399531	-0.47573287088440
Н	2.84939256229260	2.63477283054341	-2.04344713420218

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.332727 (Hartree)

Zero-point correction = 0.218627

Thermal correction to Energy = 0.233609

Thermal correction to Enthalpy= 0.234553

trans-S4 (1) in gas

С	3.38295695677506	0.21931013209550	-0.00107619377174
С	2.55843434061106	-0.90878814546315	0.00598537960104
С	1.18483750972143	-0.77254403439258	0.00788778709659
С	0.60123083282460	0.49360278345834	0.00284846732773
С	1.42420273078630	1.61851289382721	-0.00359121543496
С	2.79673331406685	1.48750065372036	-0.00568059764902
Н	2.98776163751447	-1.90189594585647	0.00996235793831
Н	0.54331953773194	-1.64438780462851	0.01312936961163
Н	0.95785348988411	2.59668575098393	-0.00735070542183
Ν	-0.78084155122183	0.73920565665985	0.00312086084225
Ν	-1.49932683516373	-0.28254752661406	0.00580831423781
С	5.49750072133310	-1.58775396774221	-0.00111622304997
Н	5.11064494271161	-2.08071905868924	-0.89380019515540
Н	6.58524801506277	-1.65841688600621	-0.00414028998460
Н	5.11592402753383	-2.07603159336121	0.89639466167220
S	5.13023898099312	0.16506836667399	-0.00475022565257
Н	3.42701803583463	2.36980963681318	-0.01113421081525
С	-2.85691515333385	-0.02702505219587	0.00419333779082
С	-3.82087473586520	-1.02092334210682	0.00517462079247
С	-3.59708597983808	1.17959008886899	0.00462336236582
Ν	-5.00900047644920	-0.40109814272292	0.00774471066353
Н	-3.72159044268697	-2.09438866707603	0.00571624973568
Н	-3.22422932156513	2.19105700124056	0.00731036373839
Ν	-4.89222205568232	0.93667498306869	0.00571049157035
С	-6.31735438782349	-0.99640002613038	-0.01938913087112
Н	-6.21911328215226	-2.07220949106913	0.11544133607174
Н	-6.92365929174263	-0.58247611801704	0.78614788086150
Н	-6.80786290986017	-0.79364739533876	-0.97299579411141

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.353267 (Hartree)

Zero-point correction = 0.219119

Thermal correction to Energy = 0.234178

Thermal correction to Enthalpy= 0.235122

trans-S4 (2) in gas

С	-3.34436858083972	-0.32018849019304	0.00001142471103
С	-2.62292111790980	0.87668239789002	0.00001654085137
С	-1.24293019521271	0.86306827653454	0.00001344045286
С	-0.54995810224606	-0.34658106111088	0.00000375486149
С	-1.26978366124804	-1.53994001808541	-0.00000225121967
С	-2.64852353180856	-1.53144474360116	0.00000174897650
Η	-3.13760385149011	1.82827040614641	0.00002438286818
Н	-0.68069598898347	1.78809677694553	0.00001819143092
Η	-0.71864401601801	-2.47303020742435	-0.00000936127423
Ν	0.84787667813068	-0.46712594526999	0.00000117394506
Ν	1.47261346954684	0.61452095918453	0.00000700813821
С	-5.60256635007642	1.29715399160095	-0.00001164689960
Η	-5.25968871527716	1.81753924572391	-0.89506520197212
Η	-6.69239214405188	1.27773486772087	0.00000762294426
Η	-5.25965731128383	1.81757888351553	0.89500685359431
S	-5.08963268733837	-0.41829929664832	0.00001756188990
Η	-3.19820986316730	-2.46606890414870	-0.00000198520079
С	2.84779261030248	0.48466953559629	0.00000472525494
С	3.65556741330211	-0.64585240720749	-0.00000105234254
С	3.75516364733101	1.56256864039686	0.00000698987429
Ν	4.91789839208564	-0.20074891650567	-0.00000357988176
Н	3.40369934414628	-1.69292940100241	-0.00000455340783
Η	3.53054609653366	2.61836987447176	0.00001003432692
Ν	5.00479189870643	1.13780500098025	0.00000186157213
С	6.12466168637332	-0.98368111333984	0.00000372705922
Н	5.86013430210894	-2.03943371395594	-0.00005889699686
Н	6.71544027935628	-0.75513805277120	-0.88767476702314
Н	6.71537813902779	-0.75522878544304	0.88774776346693

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.352910 (Hartree)

Zero-point correction = 0.219186

Thermal correction to Energy = 0.234220

Thermal correction to Enthalpy= 0.235165
cis-S4 (1) in gas

C	0 51 60 1000 4500 56	0.000000000000000	0.0000000000000000	
С	-2.51631902479956	0.03099672389725	-0.23999038932263	
С	-2.06308582050010	0.29191171458918	1.04974001657361	
С	-0.93385130082617	1.07150668271361	1.25386354418657	
С	-0.23181506802243	1.58302880256639	0.17431965113266	
С	-0.69515607217626	1.35153524453581	-1.11721017769546	
С	-1.82113987754952	0.57979201385968	-1.32077115295839	
Н	-2.58439483607112	-0.10634646390813	1.91001503047892	
Н	-0.58535026326814	1.27197374488250	2.26034503822132	
Н	-0.15859112355985	1.77003093694620	-1.96064970461642	
Ν	0.90005422990591	2.41543373213244	0.38617630579907	
Ν	2.04981681426905	1.95080236255758	0.35326191268524	
С	-4.50317370346256	-1.47917486204642	0.98139402721231	
Н	-4.80373048132822	-0.63851318303735	1.60837157666493	
Н	-5.37767605294759	-2.09970485799931	0.78542143010734	
Н	-3.75229423000969	-2.08249197617732	1.49365375587419	
S	-3.92870367982327	-0.93533047417088	-0.62419476569672	
Н	-2.16981664199480	0.39445901311726	-2.33094233475349	
С	2.34660272972818	0.60096578823450	0.14488295722398	
С	3.68195500270232	0.22569760570006	0.09859764470392	
С	1.64368478869927	-0.62670831415820	-0.02548787790965	
Ν	3.71387972657795	-1.09465943877448	-0.08534667107273	
Н	4.56877804923801	0.83258067451728	0.18703928623681	
Н	0.58437866657041	-0.81837151833952	-0.05249944921444	
Ν	2.48474268361186	-1.63167784072571	-0.15991307967796	
С	4.86609924863781	-1.94828734078586	-0.19873886782877	
Н	5.76499001641663	-1.33858115594185	-0.12811874367745	
Н	4.86201781368209	-2.68655946271418	0.60377055661787	
Н	4.85050645629980	-2.46628578147055	-1.15796700929462	

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.334492 (Hartree)

Zero-point correction = 0.219073

Thermal correction to Energy = 0.234039

Thermal correction to Enthalpy= 0.234983

cis-S4 (2) in gas

С	-2.31596649342530	-0.19206613308797	0.25743918664816
С	-1.82191689710610	-0.51026347190429	-1.00460807339571
С	-0.66182532836834	-1.25904935998986	-1.13686270055224
С	0.02971580521628	-1.68524880654093	-0.01340285784474
С	-0.47443929836976	-1.39817335950192	1.25150228313771
С	-1.63021246101642	-0.65450043531783	1.38409256906362
Η	-2.33611339968271	-0.18216487960939	-1.89820056931339
Η	-0.28061650845934	-1.50364360640294	-2.12152468878129
Η	0.05280261372755	-1.75317178978482	2.12926885331708
Ν	1.19862184053614	-2.47885315154697	-0.15181240474998
Ν	2.32250287651048	-1.95269526728048	-0.19270241717197
С	-4.40692366804911	1.03888890281128	-1.09640867116178
Н	-4.63653160637787	0.10223586731368	-1.60620287848498
Η	-5.33168650490327	1.59886673846240	-0.95677329184520
Η	-3.72274662465231	1.63862053444953	-1.69826578893339
S	-3.76687309299912	0.74891437378305	0.55021281390100
Н	-2.01499705916783	-0.43172769700292	2.37345522237683
С	2.55186121292627	-0.57854557777690	-0.11364535525491
С	1.77502273478955	0.57629755124842	0.02051178952783
С	3.87564955429082	-0.08893275392319	-0.17223466919160
Ν	2.63416671049422	1.60078476286435	0.03246728992694
Н	0.71480429954846	0.73891750077343	0.10678048077591
Н	4.77841738685923	-0.67160596465234	-0.27609786056502
Ν	3.91760606854308	1.22303232613902	-0.08354015899745
С	2.31950989421048	2.99999590010212	0.15416086013070
Н	1.24092988804758	3.11143600779676	0.24863081602724
Н	2.80878890662169	3.41305486230329	1.03660222918106
Н	2.66802220025562	3.53632838627542	-0.72894906777040

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.334866 (Hartree)

Zero-point correction = 0.219127

Thermal correction to Energy = 0.234041

Thermal correction to Enthalpy= 0.234985

trans-S5 (1) in gas

С	-3.17099957338921	-0.27925656075925	0.00001790105966
С	-2.32249224229359	0.83196968709446	0.00002998178544
С	-0.95303124208706	0.66653547009878	0.00002453499996
С	-0.39600832581344	-0.61275971775015	0.00000596993428
С	-1.24354083097113	-1.72079156298018	-0.00000608314280
С	-2.61195580226961	-1.56046309011171	-0.00000009808576
Н	-2.73111323260536	1.83369636733617	0.00004415847532
Н	-0.29591500033676	1.52653517475050	0.00003382198452
Η	-0.79715786347901	-2.70811149753960	-0.00001989835759
Ν	0.97460108658772	-0.89205456730812	-0.00000174015272
Ν	1.72472246892096	0.10874311742845	0.00000429866023
С	3.06708836415253	-0.18542213916454	-0.0000006320927
С	3.80723201545134	-1.36070829138684	-0.00000302319902
Н	3.41330538010878	-2.36211685828643	-0.00000270524734
С	-5.24859206829932	1.57079787417926	-0.00001954816413
Н	-4.85600669735896	2.05367542411132	-0.89561474166629
Н	-6.33487217381229	1.66075054475022	0.00002232019523
Н	-4.85593221709474	2.05372957598442	0.89551393670786
S	-4.91442056563206	-0.18858041919005	0.00002001014470
Н	-3.26108072393462	-2.42887665721549	-0.00000894373190
Ν	3.96481839038288	0.83737624051025	-0.00000204681179
Ν	5.21432459471711	0.40475322405759	-0.00000442197439
С	5.12932749747969	-0.92722401018808	-0.00000455887814
Н	6.03442177859578	-1.51539508566634	-0.00000613659033
С	3.68751666726979	2.24974970607403	-0.00000391113080
Н	4.12106407229254	2.71000437962436	-0.88841400629443
Н	2.60904634464733	2.38494753586329	0.00000563156278
Н	4.12108089877072	2.71000913568370	0.88839536112672

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.355661 (Hartree)

Zero-point correction = 0.219164

Thermal correction to Energy = 0.234142

Thermal correction to Enthalpy= 0.235086

trans-S5 (2) in gas

С	3.13103369157739	0.25286891274655	0.00000302874644
С	2.40385819485202	-0.94114158628448	0.00000139648862
С	1.02447244080554	-0.92141487685127	-0.00000265643755
С	0.33728845701089	0.29217457097796	-0.00000608098129
С	1.06267818920875	1.48310742480640	-0.00000647415965
С	2.44062936678307	1.46801025322380	-0.00000171612144
Н	2.91451572549266	-1.89482242602963	0.00000408046909
Н	0.45865107296694	-1.84420760477054	-0.00000335182407
Н	0.51778353736572	2.41982259488386	-0.00000994109428
Ν	-1.05791657655225	0.41870362420469	-0.00000903300291
Ν	-1.68533319331063	-0.66470850100528	-0.00000619505929
С	-3.05631146942154	-0.58523146025695	-0.00000112727789
С	-3.90583338459020	-1.68179274088725	0.00000736929224
Н	-3.59939831798328	-2.71442443709078	0.00001038390584
С	5.38338224869663	-1.37298461042104	-0.00000566411863
Н	5.03976904487825	-1.89227877992719	-0.89531690329090
Н	6.47323089893963	-1.35541888491640	0.00000372545901
Н	5.03975379957490	-1.89230008858452	0.89528739712079
S	4.87477181868499	0.34380774258666	0.00001022677240
Н	2.99486790075941	2.39983857595649	-0.00000144516764
Ν	-3.85625779260626	0.52321062491796	0.00000326568080
Ν	-5.14232873077141	0.19346809908665	0.00000575857607
С	-5.18601298582995	-1.13618388794933	0.00000371367775
Н	-6.14175001072061	-1.63696457208220	0.00000503531885
С	-3.50101498783928	1.92146078181397	0.00000380174614
Н	-4.43801038052118	2.47388137281962	0.00000973269964
Н	-2.91166980965888	2.16861841103445	0.88216554312973
Н	-2.91167974779130	2.16862146799780	-0.88216387054788

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.353471 (Hartree)

Zero-point correction = 0.219319

Thermal correction to Energy = 0.234073

Thermal correction to Enthalpy= 0.235017

cis-S5 (1) in gas

С	2.61149913603972	-0.26212483086171	-0.09511082550345
С	1.74954012105765	0.13460313408519	0.92596403919966
С	0.48151703068344	-0.40949113331194	1.02396547777338
С	0.05594204035689	-1.36950613834897	0.11439410807744
С	0.93122266830486	-1.81048756542682	-0.87299230109993
С	2.18377517850842	-1.24356837371793	-0.99317332908263
Н	2.05803328106755	0.87302400683293	1.65377733409355
Н	-0.18441152674813	-0.08687536216411	1.81551210463413
Н	0.61123595327542	-2.58837848200916	-1.55611342810022
Ν	-1.19484682990358	-2.01680890349421	0.25695846352473
Ν	-2.26772700059029	-1.39220202133502	0.22085987342031
С	-2.38364425852308	-0.05426797280473	-0.13791895091719
С	-1.64859424181422	0.88372699859324	-0.86020686453232
Н	-0.64824177437740	0.78278424727680	-1.24123238774627
С	4.39061955700872	1.57981738802109	0.97925308588218
Н	4.33381737349736	1.11615560240709	1.96500782898637
Η	5.38200173038722	2.01504198539496	0.85318393727941
Н	3.64555612569338	2.37162729700198	0.89066724464891
S	4.22573224538057	0.37146583885358	-0.33113832882298
Н	2.84934329505830	-1.57293420631966	-1.78345006084642
Ν	-3.59724958401137	0.52193077145742	0.09953235200830
Ν	-3.67836130593943	1.74640559941625	-0.38457268673988
С	-2.50854125934840	1.97046746249919	-0.98446847055278
Н	-2.33546563344350	2.91258977418365	-1.48187032717046
С	-4.69751030736370	-0.04091623462216	0.84028186498504
Н	-5.62492315918814	0.25120848887563	0.35167346768482
Н	-4.58901173969789	-1.12299747061315	0.84802746758306
Н	-4.69875411537035	0.33166810013056	1.86662631133325

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.336704 (Hartree)

Zero-point correction = 0.219134

Thermal correction to Energy = 0.233946

Thermal correction to Enthalpy= 0.234890

<i>cis</i> -85 (2	2) in gas	5
-------------------	-----------	---

С	2.35498548027006	-0.25872814409152	0.03671349573909	
С	1.37790147099590	0.45579511145625	0.73061799039330	
С	0.11485788062239	-0.07477232052049	0.91677379702965	
С	-0.19262868617770	-1.34442547026986	0.43095410071147	
С	0.80470192749179	-2.08532426877591	-0.20406621438690	
С	2.05127558981376	-1.54362199116030	-0.42519361879221	
Н	1.59232118338364	1.43792968111452	1.12951398433186	
Н	-0.62629345893918	0.50052177939116	1.45629856674235	
Н	0.57067500804992	-3.09205228408939	-0.52974988991466	
Ν	-1.41325638177788	-2.02289044945051	0.64499337707819	
Ν	-2.52266241111105	-1.46320711660196	0.67868820118848	
С	-2.71843539350893	-0.11990554889034	0.32673717607656	
С	-3.44303029709137	0.82737311744076	1.02354471256085	
Н	-3.90758682007910	0.69724578910091	1.98646800920264	
С	3.97314658042709	1.96055435130788	0.45397931814528	
Н	3.81295615561958	1.91023490185995	1.53155990862197	
Н	4.96883591736958	2.36187023559964	0.26555624446087	
Н	3.23560945801113	2.61604203913973	-0.01025253615552	
S	3.96558976446122	0.33157789614796	-0.28943426009454	
Н	2.80864753349814	-2.12068361178643	-0.94369605369247	
Ν	-2.34052211180760	0.45575433627318	-0.84395246157568	
Ν	-2.75959891155059	1.72068500533440	-0.93102496499362	
С	-3.40392914696516	1.95957608789493	0.20205963044813	
Н	-3.83562684185761	2.93374518743333	0.37554356506807	
С	-1.65851091164178	-0.14133736403589	-1.96146637048529	
Н	-2.05131260787936	0.30928923273751	-2.87047259751769	
Н	-0.58197904043229	0.03169267059307	-1.90130896845199	
Н	-1.84546692919462	-1.21408185315258	-1.97447414173819	

E[PWPB95-D3(BJ)/def2-QZVPP] = -1043.332986 (Hartree)

Zero-point correction = 0.219256

Thermal correction to Energy = 0.233860

Thermal correction to Enthalpy= 0.234804

12. References

1. Trivella, A.; Coussan, S.; Chiavassa, T., Malonaldehyde Synthesis. *Synthetic Communications* **2008**, *38* (19), 3285-3290.

2. Zhang, Z.-Y.; He, Y.; Zhou, Y.; Yu, C.; Han, L.; Li, T., Pyrazolylazophenyl Ether-Based Photoswitches: Facile Synthesis, (Near-)Quantitative Photoconversion, Long Thermal Half-Life, Easy Functionalization, and Versatile Applications in Light-Responsive Systems. *Chemistry – A European Journal* **2019**, *25* (58), 13402-13410.

3. He, Y.; Shangguan, Z.; Zhang, Z.-Y.; Xie, M.; Yu, C.; Li, T., Azobispyrazole Family as Photoswitches Combining (Near-) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half-Lives from Hours to Years**. *Angewandte Chemie International Edition* **2021**, *60* (30), 16539-16546.

4. Neese, F., The ORCA program system. *WIREs Computational Molecular Science* **2012**, *2* (1), 73-78.

 Lehtola, S.; Steigemann, C.; Oliveira, M. J. T.; Marques, M. A. L., Recent developments in libxc — A comprehensive library of functionals for density functional theory. *SoftwareX* 2018, 7, 1-5.

6. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *Journal of Computational Chemistry* **2011**, *32* (7), 1456-1465.

7. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132* (15), 154104.

8. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical Chemistry Chemical Physics* **2005**, *7* (18), 3297-3305.

9. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. *Physical Chemistry Chemical Physics* **2006**, *8* (9), 1057-1065.

10. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *The Journal of Physical Chemistry B* **2009**, *113* (18), 6378-6396.

11. Hehre, W. J.; Lathan, W. A., Self-Consistent Molecular Orbital Methods. XIV. An Extended Gaussian-Type Basis for Molecular Orbital Studies of Organic Molecules. Inclusion of Second Row Elements. *The Journal of Chemical Physics* **1972**, *56* (11), 5255-5257.

12. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A., Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. *The Journal of Chemical Physics* **1982**, *77* (7), 3654-3665.

13. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. *Journal of Chemical Theory and Computation* **2006**, *2* (2), 364-382.

14. Furche, F.; Ahlrichs, R., Adiabatic time-dependent density functional methods for excited state properties. *The Journal of Chemical Physics* **2002**, *117* (16), 7433-7447.

15. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. *Journal of Computational Chemistry* **2012**, *33* (5), 580-592.

16. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. *Journal of Molecular Graphics* **1996**, *14* (1), 33-38.

17. Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R., Chemical actinometry (IUPAC Technical Report). Pure

and Applied Chemistry 2004, 76 (12), 2105-2146.

18. Zhang, Z.-Y.; He, Y.; Wang, Z.; Xu, J.; Xie, M.; Tao, P.; Ji, D.; Moth-Poulsen, K.; Li, T., Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy. *Journal of the American Chemical Society* **2020**, *142* (28), 12256-12264.

19. Li, Y.; Zhang, Z.; Wang, M.; Men, X.; Xue, Q., Environmentally safe, substrate-independent and repairable nanoporous coatings: large-scale preparation, high transparency and antifouling properties. *Journal of Materials Chemistry A* **2017**, *5* (38), 20277-20288.

20. Sheldrick, G., A short history of SHELX. Acta Crystallographica Section A 2008, 64 (1), 112-122.

21. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71* (1), 3-8.

22. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallographica Section C* 2015, 71 (1), 3-8.

23. Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. *Journal of Applied Crystallography* **2011**, *44* (6), 1281-1284.

24. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* **2009**, *42* (2), 339-341.