Supporting Information

for

Modular Synthesis of α-Arylated Carboxylic Acids, Esters and Amides via Photocatalyzed Triple C-F Bond Cleavage of Methyltrifluorides

Sifan Li,^{†,‡} Paul W. Davies, ^{‡,*} and Wei Shu^{†,*}

†Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China ‡School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.

E-mail: shuw@sustech.edu.cn, p.w.davies@bham.ac.uk

Contents

1. General Information	S2
2. General Procedures	S3
2.1 General procedure A for the synthesis of α -trifluoromethyl alkenes	S3
2.2 General procedure B for the synthesis of alkyltrifluoroborate compounds	S5
2.3 General procedure C for the multicomponent formation of α -arylated carboxylic acids	S5
2.4 General procedure D for the multicomponent formation of α -arylated amides	S5
3. Reaction Optimization	S6
3.1 Reaction optimization of the multicomponent formation of α -arylated carboxylic acids	S6
3.2 Reaction optimization of the multicomponent formation of α -arylated amides	S
4. Product Characterization	S9
5. Synthetic Applications	S27
6. Mechanistic Studies	S30
6.1 Radical trapping experiments	S30
6.2 Control experiments	S31
6.3 Stern-Volmer quenching studies	S36
7. References	S39
8. Spectral Data	S40

1. General Information

NMR spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). High-resolution electrospray ionization and electronic impact mass spectrometry was performed on a Thermo Scientific Q Exactive mass spectrometer (mass analyzer type: Orbitrap). A mass accuracy ≤ 2 ppm was obtained in the peak matching acquisition mode by using a solution containing 2 <1 PEG200, 2 <1 PPG450, and 1.5 mg NaOAc (all obtained from Sigma-Aldrich, CH-Buchs) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau, E-Barcelona) as internal standard.

Materials and Methods: Unless otherwise stated, starting materials were used as purchased. Solvents were purchased in HPLC quality, degassed by purging with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an ethanolic vanillin/sulfuric acid solution or an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (230-400 mesh).

2. General Procedures

2.1 General procedure A for the synthesis of α -trifluoromethyl alkenes

 α -Trifluoromethyl alkenes used in this research were prepared according to literature reports.¹ To a Schlenk flask equipped with stir bar was added ArB(OH)₂ or ArBpin (1.0 equiv., 5.0 mmol) and Pd(PPh₃)₂Cl₂ (105 mg, 3 mol%, 0.15 mmol). The flask was evacuated and filled with N₂ (three times), then degassed aqueous solution of K₂CO₃ (2764 mg, 4.0 equiv. in 10 mL H₂O) and THF (15 mL) were added. After addition of 2-bromo-3,3,3-trifluoro-1-propene (1312 mg, 1.5 equiv., 7.5 mmol,), the solution was stirred at 60 °C in an oil-bath for 12 h (TLC tracking detection). Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the corresponding α -trifluoromethyl alkene (hexane/EtOAc).

The experimental data are in accordance with the literature reports: S-3a, S-3b, S-3c, S-3d, S-3d, S-3e, S-3f, S-3h, S-3h, S-3j, S-3k, S-3l, S-3m, S-3n, S-5ac.

1-(Allyloxy)-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S-3i): Following the general procedure, purification by flash column chromatography (Hexane), the product as pale-yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 1H), 7.09 – 7.02 (m, 2H), 6.98 – 6.93 (m, 1H), 6.08 (ddt, J = 17.3, 10.6, 5.3 Hz, 1H), 5.97 (q, J = 1.4 Hz, 1H), 5.78 (q, J = 1.7 Hz, 1H), 5.48 – 5.41 (m, 1H), 5.35 – 5.29 (m, 1H), 4.59 – 4.55 (m, 2H); 13 C NMR (101 MHz, CDCl₃) 158.7, 138.9 (q, $^{2}J_{C-F} = 30.2$ Hz), 135.1, 133.2, 129.7, 123.4 (q, $^{1}J_{C-F} = 275.0$ Hz), 120.7 (q, $^{3}J_{C-F} = 5.8$ Hz), 120.1, 118.0, 115.2, 114.3, 69.0; 19 F NMR (376 MHz, CDCl₃) δ -64.73 (s, 3F). HRMS ESI [M+H]⁺ calculated for (C₁₂H₁₂OF₃) 229.0835, found 229.0832.

Trimethyl((4-(3,3,3-trifluoroprop-1-en-2-yl)phenyl)ethynyl)silane (S-3g): Following the general procedure, purification by flash column chromatography (Hexane), the product as colourless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.43 – 7.37 (m, 2H), 5.97 (q, J = 1.4 Hz, 1H), 5.79 (q, J = 1.7 Hz, 1H), 0.27 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 138.5 (q, $^{2}J_{\text{C-F}}$ = 30.4 Hz), 133.6, 132.2 (2C), 127.3 (2C), 124.1, 123.3 (q, $^{1}J_{\text{C-F}}$ = 275.1 Hz), 120.9 (q, $^{3}J_{\text{C-F}}$ = 5.8 Hz), 104.4, 96.0, 0.1 (3C); 19 F NMR (376 MHz, CDCl₃) δ -64.63 (s, 3F). HRMS ESI [M+H]⁺ calculated for (C₁₄H₁₆F₃Si) 269.0968, found 269.0965.

2.1.1 Preparation of 7-phenyl-4-(trifluoromethyl)-1,2-dihydronaphthalene (S-30)8:

To a 250 mL Schlenk flask equipped with a stir bar was added ketone (1333 mg, 6.0 mmol, 1 equiv.), THF (60 mL), and TMSCF₃ (1109 mg, 7.8 mmol, 1.3 equiv.) under N₂. The reaction mixture was cooled to 0 °C in an ice-water bath. After stirring for approximately 10 min, TBAF (0.6 mL, 1 M in THF, 0.6 mmol, 0.1 equiv.) was added dropwise via a syringe. After stirring for 10 min, the ice-bath was removed, and the solution was allowed to stir overnight.

To cleave the silyl ether formed by the reaction, H₂O (~ 5.5 equiv.) was added followed by TBAF (0.6 mL, 1 M in THF, 0.1 equiv.). When the cleavage was judged to be completed by TLC, the contents of the flask were transferred to a separatory funnel. H₂O and Et₂O were added, and the layers were partitioned. The aqueous layer was extracted with Et₂O. The organic layers were combined, then washed with H₂O and brine. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the alcohol. To a 250 mL Schlenk flask equipped with a stir bar and fitted with a reflux condenser was added alcohol, *p*-TsOH•H₂O (0.5 equiv.), and toluene. The flask was heated in an oil-bath to reflux for 24 h. When the reaction was judged to be complete, the reaction mixture was cooled to room temperature and quenched with sat. aq. NaHCO₃. The reaction mixture was diluted with EtOAc and the layers were separated. The combined organic layers were washed with brine (150 mL). The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent: hexane) to afford the trifluoromethylalkene S-3o.

S-30. ¹H NMR (600 MHz, CDCl₃) δ 7.66 – 7.61 (m, 2H), 7.55 – 7.50 (m, 2H), 7.50 – 7.45 (m, 3H), 7.42 – 7.37 (m, 1H), 6.78 – 6.74 (m, 1H), 2.91 (t, J = 8.1 Hz, 2H), 2.51 – 2.45 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 140.6, 136.5, 132.3 (q, ${}^{3}J_{\text{C-F}}$ = 6.3 Hz), 129.0 (2C), 128.6 (q, ${}^{2}J_{\text{C-F}}$ = 29.6 Hz), 127.7, 127.6, 127.1 (2C), 126.9, 125.6, 125.3 (q, ${}^{1}J_{\text{C-F}}$ = 273.0 Hz), 124.7, 27.6, 22.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -63.87 (s, 3F). HRMS ESI [M-H] calculated for (C₁₇H₁₂F₃) 273.0897, found 273.0891.

2.2 General procedure B for the synthesis of alkyltrifluoroborate compounds

$$R-B(OH)_2$$
 or $R-BF_3K$ $R-BF_3K$

Following the literature procedure,⁹ to the solution of alkyl boronic acid or pinacol ester (5 mmol, 1.0 equiv.) in 20 mL methanol was added saturated aqueous KHF₂ (8 mL, 30 mmol, 6.0 equiv.). The resulting suspension was stirred for 5 h and then concentrated to dryness. The residue was extracted with hot acetone, and the combined filtered extracts were concentrated to approximately 5 mL. Ether (or CH₂Cl₂) was added and the resultant precipitate was collected and dried to afford the potassium alkyltrifluoroborate as a white solid.

2.3 General procedure C for the multicomponent formation of α -arylated carboxylic acids

A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α -trifluoromethyl alkene (0.1 mmol, 1.0 equiv., if solid), alkyltrifluoroborate (0.15 mmol, 1.5 equiv.), Mes-3,6-tBu₂ Acr-Ph⁺BF₄⁻¹ (1.2~3.0 mg, 0.002~0.005 mmol, 2~5 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) or a solution of α -trifluoromethyl alkene (0.1 mmol) in MeCN (1.0 mL) was then added via syringe followed by the addition of H₂O (30~100 μ L) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16-48 h. After the reaction was completed, 1.0 mL of aq. NaOH (0.2 M) was added to the reaction mixture at room temperature, the resulting solution was stirred for 2 min at room temperature before acidified by HCl solution (2 N). The reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford the desired product.

2.4 General procedure D for the multicomponent formation of α -arylated amides and esters

A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α -trifluoromethyl alkene (0.1 mmol, 1.0 equiv., if solid), alkyltrifluoroborate (0.15 mmol, 1.5 equiv.), N-nucleophile (0.15 mmol, 1.5 equiv.), if solid, 0.2 mmol for NH₄OAc, 0.5 mmol for alcohol), Mes-3,6-tBu₂ Acr-Ph⁺BF₄⁻ (1.2~3.0 mg, 0.002~0.005 mmol, 2~5 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) or a solution of α -trifluoromethylalkene (0.1 mmol) in MeCN (1.0 mL) was then added via syringe followed by the addition of N-nucleophile (if liquid) and H₂O (100 μ L, 10 μ L for the synthesis of esters) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 48 h. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford the desired product.

3. Reaction Optimization

3.1 Reaction optimization of the multicomponent formation of α -arylated carboxylic acids

entry	H₂O (µL)	yield*
1	10	56%
2	30	88% (80%)
3	50	86%
4	70	84%
5	100	76%
6	150	60%

^{*} Yields were determined by ¹H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

Figure S1 Evaluation of H₂O loading

Figure S2 Evaluation of solvents

DMF

Figure S3 Evaluation of solvent concentration and equivalents of 2a

^{*} Yields were determined by ¹H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

^{*} Yields were determined by ¹H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

 * Yields were determined by 1 H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

Figure S4 Evaluation of photocatalyst

			Me
entry	variations	yield*	
1	none	88% (80%)	Me
2	without H ₂ O	n.d.	tBu Ph BF₄
3	without photocatalyst	n.d.	Mes-3,6-tBu ₂ Acr-Ph ⁺ BF ₄
4	without step (2)	53%	

^{*} Yields were determined by ¹H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

Figure S5 Control experiments

3.2 Reaction optimization of the multicomponent formation of α -arylated amides

entry	variations	yield [*]	
1	none	80% (72%)	Me _.
2	PC-2 instead of PC-1	16%	Me
3	PC-3 instead of PC-1	trace	Me B R
4	DCM instead of MeCN	26%	R Ph BF ₄
5	DCE instead of MeCN	35%	PC-1 : R = <i>t</i> -Bu PC-2 : R = H
6	THF instead of MeCN	0%	F₃C、▲
7	Toluene instead of MeCN	0%	CF₃ (F
8	50 μL of H ₂ O	59%	N _N , I
9	150 μL of H ₂ O	79%	N N F
10	200 μL of H_2O	73%	F ₃ C F
11	without H ₂ O	0%	PC-3
12	1.2 equiv. of 2a	71%	

^{*} Yields were determined by ¹H NMR spectroscopy of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

Figure S6 Optimization summary

entry	"ammonium surrogate"	yield [*]
1	NH₄OAc	78% (70%)
2	(NH ₄) ₂ CO ₃	65%
3	(NH ₄)PF ₆	54%
4	(NH ₄)HCO ₃	75%
5	(NH ₄)CO ₂ H	35%
6	NH₄CI	n.d.

^{*} Yields were determined by ¹H NMR of the crude reaction mixture with mesitylene as internal standard; isolated yield was shown in parentheses.

Figure S7 Screening of different ammonium surrogates

3.3 Unsuccessful substrates

$$\text{MeO}_2\text{C}$$
 CO_2H CO_2H

* Yields in parentheses are corresponding gem-difluoroalkenes.

Several α -trifluoromethyl- α -(hetero)aryl alkenes with electron-deficient arenes have been tried, but only lead to the formation of corresponding *gem*-difluoroalkenes, probably due to the inefficient single-electron oxidation of *gem*-difluoroalkenes by the excited photocatalyst in the second catalytic cycle.

4. Product Characterization

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexylpropanoic acid (3a): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (24.7 mg) was obtained in 80% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.46 – 7.37 (m, 4H), 7.37 – 7.31 (m, 1H), 3.76 (t, J = 7.8 Hz, 1H), 2.02 (dt, J = 13.7, 7.8 Hz, 1H), 1.83 – 1.71 (m, 3H), 1.71 – 1.57 (m, 3H), 1.30 – 1.10 (m, 4H), 0.99 – 0.85 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 140.9, 140.5, 138.0, 128.9 (2C), 128.6 (2C), 127.5 (2C), 127.4, 127.2 (2C), 48.4, 40.8, 35.3, 33.4, 33.1, 26.6, 26.21, 26.18. HRMS ESI [M-H]⁻ calculated for (C₂₁H₂₃O₃) 307.1698, found 307.1695.

3-Cyclohexyl-2-(4-methoxyphenyl)propanoic acid (3b): Following the general procedure **C** using 50 μ L of H₂O, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (21.8 mg) was obtained in 84% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 3.64 (t, J = 7.8 Hz, 1H), 1.93 (dt, J = 13.7, 7.8 Hz, 1H), 1.76 – 1.68 (m, 2H), 1.68 – 1.57 (m, 4H), 1.21 – 1.09 (m, 4H), 0.95 – 0.85 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 180.8, 159.0, 130.9, 129.2 (2C), 114.2 (2C), 55.4, 47.9, 40.7, 35.2, 33.5, 33.0, 26.6, 26.22, 26.17. HRMS ESI [M-H]⁻ calculated for (C₁₆H₂₁O₃) 261.1496, found 261.1488.

2-(4-(*Tert***-butyl)phenyl)-3-cyclohexylpropanoic acid (3c)**: Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 10:100:2), the product (24.1 mg) was obtained in 84% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.70 (dd, J = 8.5, 6.9 Hz, 1H), 2.01 (ddd, J = 13.8, 8.5, 6.7 Hz, 1H), 1.81 – 1.73 (m, 2H), 1.73 – 1.63 (m, 4H), 1.34 (s, 9H), 1.27 – 1.15 (m, 4H), 0.99 – 0.87 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 180.8, 150.3, 135.9, 127.8 (2C), 125.7 (2C), 48.4, 40.81, 35.3, 34.6, 33.3, 33.2, 31.5 (3C), 26.6, 26.19, 26.17. HRMS ESI [M-H]⁻ calculated for (C_{19} H₂₇O₂) 287.2017, found 287.2008.

- **3-Cyclohexyl-2-(4-fluorophenyl)propanoic acid (3d)**: Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 10:100:2), the product (15.1 mg) was obtained in 60% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.30 7.23 (m, 2H), 7.03 6.95 (m, 2H), 3.66 (t, J = 7.8 Hz, 1H), 1.92 (dt, J = 13.8, 7.8 Hz, 1H), 1.74 1.56 (m, 6H), 1.17 1.05 (m, 4H), 0.97 0.79 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 180.4, 162.3 (d, $^{1}J_{\text{C-F}}$ = 246.4 Hz), 134.5 (d, $^{4}J_{\text{C-F}}$ = 3.2 Hz), 129.8 (d, $^{3}J_{\text{C-F}}$ = 8.0 Hz, 2C), 115.6 (d, $^{2}J_{\text{C-F}}$ = 22.2 Hz, 2C), 48.0, 40.8, 35.2, 33.4, 33.0, 26.6, 26.20, 26.15; 19 F NMR (376 MHz, CDCl₃) δ 115.16 -115.25 (m, 1F). HRMS ESI [M-H] calculated for (C₁₅H₁₈O₂F) 249.1296, found 249.1286.
- **3-Cyclohexyl-2-(4-(trimethylsilyl)phenyl)propanoic acid (3e)**: Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the product (15.6 mg) was obtained in 51% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0, 2H), 3.68 (dd, J = 8.3, 7.2 Hz, 1H), 1.98 (ddd, J = 13.8, 8.3, 6.9 Hz, 1H), 1.79 1.70 (m, 2H), 1.70 1.58 (m, 4H), 1.25 1.12 (m, 4H), 0.99 0.82 (m, 2H), 0.26 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 139.6, 139.5, 133.8 (2C), 127.6 (2C), 48.8, 40.7, 35.3, 33.3, 33.2, 26.6, 26.19, 26.16, -1.0 (3C). HRMS ESI [M+Na]⁺ calculated for (C₁₈H₂₇O₂SiNa) 327.1751, found 327.1745.
- **2-(4-Acetamidophenyl)-3-cyclohexylpropanoic acid (3f)**: Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 30:100:2), the product (14.2 mg) was obtained in 49% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.77 (br s, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 3.65 (t, J = 7.8 Hz, 1H), 2.12 (s, 3H), 1.92 (dt, J = 14.4, 7.8 Hz, 1H), 1.75 1.60 (m, 6H), 1.17 1.10 (m, 4H), 0.93 0.85 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 179.4, 169.2, 137.0, 135.1, 128.7 (2C), 120.5 (2C), 48.3, 40.6, 35.2, 33.4, 33.0, 26.6, 26.20, 26.16, 24.5. HRMS ESI [M+H] $^{+}$ calculated for (C₁₇H₂₄O₃N) 290.1751, found 290.1747.
- 3-Cyclohexyl-2-(4-ethynylphenyl)propanoic acid (3g): Following the general procedure C using 5 mol% of photocatalyst and 50 μL of H₂O, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the desilylation product (17.3 mg) was obtained in 68% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.44 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 3.69 (t, J = 7.8 Hz, 1H), 3.06 (s, 1H), 1.95 (dt, J = 13.7, 7.8 Hz, 1H), 1.74 1.58 (m, 6H), 1.20 1.09 (m, 4H), 0.94 0.85 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 179.6, 139.6, 132.6 (2C), 128.3 (2C), 121.4, 83.5, 77.5, 48.7, 40.6, 35.2, 33.4, 33.0, 26.6, 26.2, 26.1. HRMS ESI [M+Na]⁺ calculated for (C₁₇H₂₀O₂Na) 279.1356, found 279.1351.
- 3-Cyclohexyl-2-(3-methoxyphenyl)propanoic acid (3h): Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (18.5 mg) was obtained in 71% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.25 7.21 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.89 6.87 (m, 1H), 6.81 (dd, J = 8.2, 2.6 Hz, 1H), 3.80 (s, 3H), 3.67 (t, J = 7.7 Hz, 1H), 1.95 (dt, J = 13.3, 7.7 Hz, 1H), 1.77 1.71

(m, 2H), 1.68 - 1.63 (m, 3H), 1.64 - 1.58 (m, 1H), 1.22 - 1.13 (m, 4H), 0.94 - 0.87 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 180.4, 159.9, 140.4, 129.7, 120.6, 114.0, 112.8, 55.4, 48.8, 40.7, 35.2, 33.4, 33.1, 26.6, 26.20, 26.16. HRMS ESI [M-H]⁻ calculated for (C₁₆H₂₁O₃) 261.1496, found 261.1487.

- **2-(3-(Allyloxy)phenyl)-3-cyclohexylpropanoic acid (3i)**: Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the product (14.7 mg) was obtained in 54% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.25 7.19 (m, 1H), 6.93 6.87 (m, 2H), 6.84 6.79 (m, 1H), 6.05 (ddt, J = 17.3, 10.5, 5.3 Hz, 1H), 5.45 5.37 (m, 1H), 5.31 5.25 (m, 1H), 4.55 4.51 (m, 2H), 3.66 (t, J = 7.8 Hz, 1H), 1.94 (dt, J = 13.7, 7.8 Hz, 1H), 1.77 1.57 (m, 6H), 1.23 1.07 (m, 4H), 0.96 0.83 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 179.8, 158.9, 140.4, 133.4, 129.7, 120.8, 117.9, 114.8, 113.6, 68.9, 48.7, 40.7, 35.2, 33.4, 33.1, 26.6, 26.20, 26.17. HRMS ESI [M+H] $^{+}$ calculated for (C₁₈H₂₅O₃) 289.1798, found 289.1792.
- **3-Cyclohexyl-2-(3,5-dimethylphenyl)propanoic acid (3j)**: Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the product (16.2 mg) was obtained in 62% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 6.93 (s, 2H), 6.91 (s, 1H), 3.62 (t, J = 7.7 Hz, 1H), 2.30 (s, 6H), 1.97 (dt, J = 13.1, 7.7 Hz, 1H), 1.78 1.70 (m, 2H), 1.69 1.65 (m, 2H), 1.63 1.58 (m, 2H), 1.24 1.09 (m, 4H), 0.95 0.86 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 180.6, 138.9, 138.3 (2C), 129.2, 125.9 (2C), 48.7, 40.7, 35.3, 33.3, 33.2, 26.6, 26.20, 26.19, 21.4 (2C). HRMS ESI [M-H] calculated for (C₁₇H₂₃O₂) 259.1704, found 259.1695.
- **3-Cyclohexyl-2-(naphthalen-2-yl)propanoic** acid (3k): Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the product (23.5 mg) was obtained in 83% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 9.02 (br s, 1H), 7.83 7.71 (m, 4H), 7.47 7.43 (m, 3H), 3.83 (t, J = 7.7 Hz, 1H), 2.01 (dt, J = 14.5, 7.7 Hz, 1H), 1.83 1.73 (m, 2H), 1.72 1.57 (m, 4H), 1.24 1.03 (m, 4H), 0.97 0.85 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 180.5, 136.6, 133.5, 132.8, 128.4, 128.0, 127.7, 127.2, 126.21, 126.17, 125.9, 49.2, 40.7, 35.2, 33.6, 32.9, 26.6, 26.2, 26.1. HRMS ESI [M-H]⁻ calculated for (C₁₉H₂₁O₂) 281.1547, found 281.1538.
- **2-(Benzo**[*b*]**thiophen-2-yl)-3-cyclohexylpropanoic acid (3l)**: Following the general procedure \mathbb{C} , purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (17.6 mg) was obtained in 61% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 7.7, 1.5 Hz, 1H), 7.71 (dd, J = 7.7, 1.5Hz, 1H), 7.36 7.27 (m, 2H), 7.21 (s, 1H), 4.08 (t, J = 7.8 Hz, 1H), 2.02 (dt, J = 14.5, 7.8 Hz, 1H), 1.87 1.83 (m, 1H), 1.80 1.72 (m, 2H), 1.71 1.65 (m, 2H), 1.65 1.56 (m, 1H), 1.35 1.25 (m, 1H), 1.20 1.10 (m, 3H), 1.01 0.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 179.2, 142.0, 139.63, 139.55, 124.4, 124.3, 123.5, 122.6, 122.4, 44.9, 41.4, 35.2, 33.4, 32.9, 26.5, 26.2, 26.1. HRMS ESI [M-H] calculated for (C₁₇H₁₀O₂S) 287.1111, found 287.1102.

- 3-Cyclohexyl-2-(dibenzo[*b,d*] furan-4-yl)propanoic acid (3m): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 12:100:2), the product (28.9 mg) was obtained in 90% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.86 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.48 7.43 (m, 2H), 7.38 7.29 (m, 2H), 4.48 (t, *J* = 7.7 Hz, 1H), 2.17 2.06 (m, 1H), 1.97 1.83 (m, 2H), 1.82 1.71 (m, 1H), 1.71 1.63 (m, 2H), 1.63 1.55 (m, 1H), 1.31 1.18 (m, 2H), 1.16 1.12 (m, 2H), 1.02 0.92 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 156.2, 154.4, 127.3, 126.1, 124.5, 124.4, 123.2, 123.0, 122.9, 120.8, 119.7, 112.0, 42.2, 39.9, 35.4, 33.9, 33.0, 26.6, 26.2, 26.1. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₂O₃Na) 345.1461, found 345.1458.
- **3-Cyclohexyl-2-(6-methoxypyridin-3-yl)propanoic acid (3n)**: Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 25:100:2), the product (10.5 mg) was obtained in 40% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 2.5 Hz, 1H), 7.60 (dd, J = 8.6, 2.5 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 3.92 (s, 3H), 3.65 (t, J = 7.8 Hz, 1H), 1.93 (dt, J = 13.8, 7.8 Hz, 1H), 1.72 1.58 (m, 6H), 1.17 1.09 (m, 4H), 0.96 0.85 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 179.0, 163.6, 146.3, 138.5, 127.5, 111.1, 53.8, 45.4, 40.6, 35.1, 33.5, 32.8, 26.6, 26.2, 26.1. HRMS ESI [M+H]⁺ calculated for (C₁₅H₂₂O₃N) 264.1594, found 264.1591.

2-(Methoxymethyl)-6-phenyl-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (30):

Following the general procedure \mathbb{C} , purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:1), the product was obtained in 57% yield as white solid, dr = 1:1. 1 H NMR (400 MHz, CDCl₃) δ 9.98 (br s, 2H), 7.61 – 7.55 (m, 4H), 7.47 – 7.41 (m, 4H), 7.39 (s, 2H), 7.38 – 7.32 (m, 6H), 4.02 (d, J = 5.4 Hz, 1H), 3.78 (d, J = 7.5 Hz, 1H), 3.62 – 3.56 (m, 1H), 3.55 – 3.46 (m, 2H), 3.45 – 3.43 (m, 1H), 3.40 (s, 3H), 3.38 (s, 3H), 3.08 – 2.98 (m, 1H), 2.97 – 2.82 (m, 3H), 2.66 – 2.57 (m, 1H), 2.36 – 2.27 (m, 1H), 2.19 – 2.06 (m, 2H), 1.89 – 1.81 (m, 1H), 1.64 – 1.53 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 180.8, 179.1, 141.0, 140.9, 140.4, 140.1, 137.6, 137.5, 132.1, 131.4, 130.1, 129.5, 128.8, 128.3, 128.0, 127.3, 127.19, 127.17, 125.2, 124.9, 75.8, 75.0, 59.07, 59.05, 48.1, 45.9, 37.4, 37.2, 28.8, 28.1, 24.1, 21.6. HRMS ESI [M+Na]⁺ calculated for (C₁₉H₂₀O₃Na) 319.1305, found 319.1300.

2-([1,1'-Biphenyl]-4-yl)-3-cyclopentylpropanoic acid (3p): Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (21.5 mg) was obtained in 73% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.54 (m, 4H), 7.46 – 7.40 (m, 4H), 7.37 – 7.32 (m, 1H), 3.67 (t, J = 7.7 Hz, 1H), 2.13 (dt, J = 13.4, 7.7 Hz, 1H), 1.88 (ddd, J = 13.4, 7.8, 6.8 Hz, 1H), 1.84 – 1.76 (m, 2H), 1.73 (ddd, J = 13.4, 7.8, 6.8 Hz, 1H), 1.65 – 1.57 (m, 2H), 1.54 – 1.45 (m, 2H), 1.17 – 1.08 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 180.5, 140.9, 140.5, 137.8, 128.9 (2C), 128.7 (2C), 127.5 (2C), 127.4,

127.2 (2C), 50.6, 39.6, 37.9, 32.8, 32.5, 25.22, 25.20. HRMS ESI $[M-H]^-$ calculated for $(C_{20}H_{21}O_2)$ 293.1547, found 293.1539.

2-([1,1'-Biphenyl]-4-yl)-3-cycloheptylpropanoic acid (3q): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (18.3 mg) was obtained in 57% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.37 – 7.32 (m, 1H), 3.73 (t, J = 7.7 Hz, 1H), 2.05 (dt, J = 14.5, 7.7 Hz, 1H), 1.79 – 1.70 (m, 3H), 1.65 – 1.57 (m, 2H), 1.58 – 1.51 (m, J = 5.6 Hz, 2H), 1.48 – 1.43 (m, 3H), 1.43 – 1.35 (m, 2H), 1.30 – 1.19 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 180.5, 140.8, 140.5, 137.9, 128.9 (2C), 128.7 (2C), 127.5 (2C), 127.4, 127.2 (2C), 49.1, 41.2, 36.7, 34.6, 34.2, 28.7 (2C), 26.2, 26.1. HRMS ESI [M-H]⁻ calculated for (C₂₂H₂₅O₂) 321.1860, found 321.1850.

2-([1,1'-Biphenyl]-4-yl)-3-(4,4-difluorocyclohexyl)propanoic acid (3r): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (27.5 mg) was obtained in 80% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.46 – 7.42 (m, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.37 – 7.33 (m, 1H), 3.72 (t, J = 7.8 Hz, 1H), 2.11 – 2.00 (m, 3H), 1.85 – 1.75 (m, 3H), 1.69 – 1.57 (m, 2H), 1.35 – 1.25 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 179.6, 140.8, 140.6, 137.2, 129.0 (2C), 128.5 (2C), 127.7 (2C), 127.6, 127.2 (2C), 123.6 (t, ${}^{1}J_{\text{C-F}} = 239.9$ Hz), 48.7, 39.0 (d, ${}^{4}J_{\text{C-F}} = 1.2$ Hz), 33.43, 33.40 (t, ${}^{2}J_{\text{C-F}} = 22.8$ Hz), 33.39 (t, ${}^{2}J_{\text{C-F}} = 22.8$ Hz), 29.1 (d, ${}^{3}J_{\text{C-F}} = 9.4$ Hz), 28.8 (d, ${}^{3}J_{\text{C-F}} = 9.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.81 (d, J = 233.6 Hz), -101.98 (d, J = 267.8 Hz). HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₂F₂O₂Na) 367.1480, found 367.1477.

2-([1,1'-Biphenyl]-4-yl)-3-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)propanoic acid (3s): Following the general procedure C using 100 μL of H₂O, purification by flash column chromatography (EtOAc:Hexane:AcOH = 20:100:2), the product (17.4 mg) was obtained in 43% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.59 – 7.54 (m, 4H), 7.45 – 7.41 (m, 2H), 7.41 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 4.09 – 4.02 (m, 2H), 3.74 (t, *J* = 7.7 Hz, 1H), 2.68 – 2.58 (m, 2H), 2.06 (dd, *J* = 14.4, 7.3 Hz, 1H), 1.77 (dt, *J* = 14.4, 7.3 Hz, 1H), 1.69 (t, *J* = 14.4 Hz, 2H), 1.45 (s, 9H), 1.42 – 1.38 (m, 1H), 1.18 – 1.09 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 179.4, 155.0, 140.7, 140.6, 137.5, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.5, 127.2 (2C), 79.6, 48.3, 43.9, 39.8, 33.7, 32.2, 31.9, 28.6 (3C), 20.9. HRMS ESI [M-H]⁻ calculated for (C₂₅H₃₀O₄N) 408.2180, found 408.2166.

2-([1,1'-Biphenyl]-4-yl)-3-(tetrahydro-2H-pyran-4-yl)propanoic acid (3t): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (25.7 mg) was obtained in 83% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 4H), 7.47 – 7.41 (m, 2H), 7.41 – 7.38 (m, 2H), 7.38 – 7.32 (m, 1H), 3.99 – 3.91 (m, 2H), 3.75 (t, J = 7.8 Hz, 1H), 3.38 – 3.27 (m, 2H), 2.12 – 2.02 (m, 1H), 1.84 – 1.74 (m, 1H), 1.70 – 1.58 (m, 2H), 1.57 – 1.43 (m, 1H), 1.39 – 1.28 (m, 2H); ¹³C NMR (101

MHz, CDCl₃) δ 179.5, 140.7, 137.5, 128.9 (2C), 128.6 (2C), 127.6 (2C), 127.5, 127.2 (2C), 67.89, 67.85, 48.0, 40.1, 33.0, 32.8, 32.6. HRMS ESI [M-H]⁻ calculated for (C₂₀H₂₁O₃) 309.1496, found 309.1487.

2-([1,1'-Biphenyl]-4-yl)-4-ethylhexanoic acid (3u): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (22.5 mg) was obtained in 78% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 4H), 7.48 – 7.40 (m, 4H), 7.39 – 7.32 (m, 1H), 3.73 (t, J = 7.8 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.84 – 1.74 (m, 1H), 1.42 – 1.29 (m, 4H), 1.24 – 1.16 (m, 1H), 0.87 (t, J = 7.4, 3H), 0.84 (t, J = 7.4, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 140.8, 140.5, 137.9, 128.9 (2C), 128.7 (2C), 127.5 (2C), 127.4, 127.2 (2C), 49.1, 37.8, 36.6, 25.2, 25.0, 10.6, 10.4. HRMS ESI [M+Na]⁺ calculated for (C₂₀H₂₄O₂Na) 319.1669, found 319.1663.

2-([1,1'-Biphenyl]-4-yl)-4,4-dimethylpentanoic acid (3v): Following the general procedure **C** using Me Me S0 μ L of H₂O and 5 mol% of photocatalyst, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (21.1 mg) was obtained in 75% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.56 – 7.53 (m, 2H), 7.45 – 7.40 (m, 4H), 7.37 – 7.32 (m, 1H), 3.72 (dd, J = 8.7, 4.2 Hz, 1H), 2.32 (dd, J = 14.0, 8.7 Hz, 1H), 1.68 (dd, J = 14.0, 4.3 Hz, 1H), 0.94 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 181.0, 140.8, 140.4, 139.4, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.2 (2C), 47.9, 47.0, 31.3, 29.6 (3C). HRMS ESI [M-H] calculated for (C₁₉H₂₁O₂) 281.1547, found 281.1546.

2-([1,1'-Biphenyl]-4-yl)-4,4,5-trimethylhexanoic acid (3w): Following the general procedure **C** using Me Me So μ L of H₂O and 5 mol% of photocatalyst, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (25.3 mg) was obtained in 82% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.46 – 7.40 (m, 4H), 7.38 – 7.31 (m, 1H), 3.73 (dd, J = 8.6, 4.0 Hz, 1H), 2.34 (dd, J = 14.2, 8.6 Hz, 1H), 1.70 (dd, J = 14.2, 4.0 Hz, 1H), 1.56 (p, J = 6.8 Hz, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.86 – 0.80 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 140.8, 140.4, 139.7, 128.9 (2C), 128.5 (2C), 127.5 (2C), 127.4, 127.2 (2C), 47.3, 43.3, 36.2, 36.0, 24.4, 23.9, 17.60, 17.55. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₆O₂Na) 333.1825, found 333.1819.

2-([1,1'-Biphenyl]-4-yl)-3-(adamantan-1-yl)propanoic acid (3x): Following the general procedure C using 50 μ L of H₂O and 5 mol% of photocatalyst, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (21.1 mg) was obtained in 68% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.36 – 7.32 (m, 2H), 3.78 (dd, J = 8.8, 4.0 Hz, 1H), 2.19 (dd, J = 14.1, 8.8 Hz, 1H), 1.94 (s, 3H), 1.69 (d, J = 12.4 Hz, 3H), 1.57 – 1.50 (m, 4H), 1.47 (d, J = 12.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 180.9, 140.8, 140.3, 139.7, 128.9 (2C), 128.5 (2C), 127.5 (2C), 127.4, 127.2 (2C), 47.8, 45.9, 42.4 (2C), 37.1 (2C), 33.1, 28.7 (3C). HRMS ESI [M-H]⁻ calculated for (C₂₅H₂₇O₂) 359.2017, found 359.2004.

2-([1,1'-Biphenyl]-4-yl)-4,4-dimethyl-6-oxoheptanoic acid (3y): Following the general procedure C

using 50 μ L of H₂O and 5 mol% of photocatalyst, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (20.4 mg) was obtained in 63% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 4H), 7.45 – 7.37 (m, 4H), 7.37 – 7.30 (m, 1H), 3.71 (dd, J = 8.0, 5.0 Hz, 1H), 2.39 – 2.35 (m, 1H), 2.33 (q, J = 2.6 Hz, 2H), 2.02 (s, 3H), 1.94 (dd, J = 14.2, 5.0 Hz, 1H), 1.04 (s, 3H), 1.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 179.9, 140.9, 140.6, 138.9, 128.9 (2C), 128.6 (2C), 127.6 (2C), 127.5, 127.2 (2C), 53.8, 47.5, 44.6, 34.0, 32.3, 27.6, 27.5. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₄O₃Na) 347.1618, found 347.1611.

2-([1,1'-Biphenyl]-4-yl)-4-methoxybutanoic acid (3z): Following the general procedure C, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (14.2 mg) was obtained in 57% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.59 – 7.54 (m, 4H), 7.45 – 7.41 (m, 2H), 7.41 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 3.85 (t, J = 7.6 Hz, 1H), 3.44 – 3.39 (m, 1H), 3.34 – 3.29 (m, 1H), 3.31 (s, 3H), 2.46 – 2.37 (m, 1H), 2.07 – 2.00 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 179.4, 140.8, 140.6, 137.3, 128.9 (2C), 128.7 (2C), 127.6 (2C), 127.5, 127.2 (2C), 70.0, 58.8, 47.7, 33.0. HRMS ESI [M-H]⁻ calculated for (C₁₇H₁₇O₃) 269.1183, found 269.1174.

2-([1,1'-Biphenyl]-4-yl)-4-((3-methylbut-3-en-1-yl)oxy)butanoic acid (3aa): Following the general procedure **C**, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (17.1 mg) was obtained in 53% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.46 – 7.42 (m, 2H), 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 4.78 (s, 1H), 4.72 (s, 1H), 3.86 (t, J = 7.6 Hz, 1H), 3.54 – 3.43 (m, 3H), 3.37 – 3.32 (m, 1H), 2.51 – 2.34 (m, 1H), 2.28 (t, J = 6.9 Hz, 2H), 2.07 – 1.96 (m, 1H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.5, 142.9, 140.8, 140.6, 137.3, 128.9 (2C), 128.7 (2C), 127.6 (2C), 127.5, 127.2 (2C), 111.7, 69.5, 68.0, 47.8, 37.8, 33.0, 22.9. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₄O₃Na) 347.1618, found 347.1611.

2-([1,1]-Biphenyl]-4-yl)-4-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)butanoic acid (3ab):

Following the general procedure C using 50 μ L of H₂O and 5 mol% of photocatalyst, purification by flash column chromatography (EtOAc:Hexane:AcOH = 15:100:2), the product (24.2 mg) was obtained in 61% yield as colourless oil (d.r. = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 8H), 7.47 – 7.37 (m, 8H), 7.36 – 7.32 (m, 2H), 3.90 (t, J = 7.5 Hz, 2H), 3.64 (dt, J = 10.2, 5.9 Hz, 1H), 3.62 – 3.55 (m, 1H), 3.32 (ddd, J = 9.5, 6.7, 5.0 Hz, 1H), 3.18 (td, J = 8.7, 4.8 Hz, 1H), 3.04 – 2.91 (m, 2H), 2.46 – 2.33 (m, 2H), 2.30 – 2.18 (m, 2H), 2.14 – 1.97 (m, 4H), 1.67 – 1.56 (m, 4H), 1.38 – 1.14 (m, 4H), 1.02 – 0.86 (m, 15H), 0.86 – 0.80 (m, 3H), 0.76 (t, J = 6.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 179.6, 140.8, 140.5, 137.5, 128.9 (2C), 128.8, 128.7, 127.5 (2C), 127.4, 127.2 (2C), 79.5,

65.6, 48.4, 47.8, 40.5, 34.7, 33.6, 31.6, 25.8, 23.5, 22.5, 21.2, 16.4. HRMS ESI [M+Na]⁺ calculated for ($C_{26}H_{34}O_3Na$) 417.2400, found 417.2393.

2-([1,1'-Biphenyl]-4-yl)-*N*,**3-dicyclohexylpropanamide** (**5a**): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (28.0 mg) was obtained in 72% yield as white foam. ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 5.33 (d, J = 8.2 Hz, 1H), 3.75 (m, 1H), 3.46 (t, J = 7.7 Hz, 1H), 2.06 (dt, J = 14.4, 7.7 Hz, 1H), 1.89 (m, 1H), 1.78 (m, 3H), 1.74 – 1.64 (m, 4H), 1.60 (m, 3H), 1.40 – 1.24 (m, 2H), 1.24 – 1.13 (m, 4H), 1.13 – 1.05 (m, 2H), 0.97 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.8, 140.8, 139.9, 139.9, 128.9 (2C), 128.4 (2C), 127.5 (2C), 127.4, 127.1 (2C), 50.4, 48.3, 41.1, 35.4, 33.7, 33.2, 33.1, 33.0, 26.7, 26.3, 26.2, 25.6, 24.91, 24.86. HRMS ESI [M+H]⁺ calculated for (C₂₇H₃₆ON) 390.2791, found 390.2786.

2-([1,1'-Biphenyl]-4-yl)-N-butyl-3-cyclohexylpropanamide (5b): Following the general procedure D,

purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (26.9 mg) was obtained in 74% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.57 – 7.53 (m, 2H), 7.46 – 7.40 (m, 2H), 7.40 – 7.31 (m, 3H), 5.52 (t, J = 5.8 Hz, 1H), 3.51 (t, J = 7.7 Hz, 1H), 3.30 – 3.20 (m, 1H), 3.20 – 3.11 (m, 1H), 2.08 (dt, J = 14.4, 7.7 Hz, 1H), 1.85 – 1.58 (m, 7H), 1.46 – 1.35 (m, 2H), 1.31 – 1.21 (m, 2H), 1.19 – 1.09 (m, 3H), 1.01 – 0.90 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 173.8, 140.8, 140.0, 139.7, 128.9 (2C), 128.5 (2C), 127.5 (2C), 127.4, 127.1 (2C), 50.3, 40.91, 39.5, 35.2, 33.7, 33.0, 31.7, 26.7, 26.3, 26.2, 20.1, 13.8. HRMS ESI [M+H]⁺ calculated for (C₂₅H₃₄ON) 364.2635, found 364.2630.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-N-isobutylpropanamide (5c): Following the general D, purification procedure by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (23.8 mg) was obtained in 65% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.8 Hz, 2H), 7.46 - 7.42 (m, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 5.53 (t, J = 7.8 Hz, 2H), 7.36 - 7.32 (m, 1H), 7.36 - 7.32 (m, 1H = 6.1 Hz, 1H), 3.53 (t, J = 7.7 Hz, 1H), 3.09 - 2.98 (m, 2H), 2.12 - 2.06 (m, 1H), 1.81 - 1.59 (m, 7H), 1.24 - 1.10 (m, 4H), 1.00 - 0.89 (m, 2H), 0.82 (s, 3H), 0.81 (s, 3H); 13 C NMR (151 MHz, CDCl₃) δ 173.8, 140.8, 140.1, 139.7, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.1 (2C), 50.4, 47.0, 40.9, 35.3, 33.7, 33.0, 28.6, 26.7, 26.3, 26.2, 20.1 (2C). HRMS ESI [M+H]⁺ calculated for (C₂₅H₃₄ON) 364.2635, found 364.2630.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-neopentylpropanamide (5d)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (28.6 mg) was obtained in 75% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 4H), 7.46 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.51 (t, J = 6.4 Hz, 1H), 3.56 (t, J = 7.8 Hz, 1H), 3.01 (dd, J = 6.4, 1.8

Hz, 2H), 2.10 (dt, J = 13.7, 7.8 Hz, 1H), 1.78 – 1.64 (m, 5H), 1.64 – 1.57 (m, 1H), 1.25 – 1.09 (m, 4H), 1.03 – 0.89 (m, 2H), 0.80 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 140.7, 140.1, 139.7, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.1 (2C), 50.6, 50.5, 40.7, 35.3, 33.7, 33.0, 32.1, 27.2 (3C), 26.7, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₂₆H₃₆ON) 378.2791, found 378.2786.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-phenethylpropanamide (5e)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (23.1 mg) was obtained in 56% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.47 – 7.43 (m, 2H), 7.38 – 7.34 (m, 1H), 7.31 (d, J = 7.8 Hz, 2H), 7.23 – 7.15 (m, 3H), 7.01 (d, J = 7.4 Hz, 2H), 5.46 (t, J = 6.0 Hz, 1H), 3.54 – 2.40 (m, 3H), 2.73 (t, J = 6.8 Hz, 2H), 2.07 (dt, J = 14.2, 7.3 Hz, 1H), 1.78 – 1.59 (m, 6H), 1.22 – 1.09 (m, 4H), 1.00 – 0.86 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 173.8, 140.8, 140.1, 139.5, 139.0, 128.9 (2C), 128.9 (2C), 128.7 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.1 (2C), 126.5, 50.3, 40.8, 40.6, 35.7, 35.2, 33.7, 32.9, 26.7, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₂₉H₃₃ON) 412.2635, found 412.2630.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-(2-methylallyl)propenamide (5f)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:2), the product (20.1 mg) was obtained in 56% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 4H), 7.47 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.61 (t, J = 6.1 Hz, 1H), 4.77 – 4.72 (m, 1H), 4.68 – 4.64 (m, 1H), 3.84 – 3.69 (m, 2H), 3.57 (t, J = 7.7 Hz, 1H), 2.11 (dt, J = 13.7, 7.7 Hz, 1H), 1.84 – 1.54 (m, 9H), 1.27 – 1.05 (m, 4H), 1.01 – 0.86 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 173.7, 142.2, 140.7, 140.1, 139.5, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.1 (2C), 110.7, 50.3, 45.1, 40.8, 35.2, 33.7, 33.0, 26.7, 26.3, 26.2, 20.4. HRMS ESI [M+H] $^{+}$ calculated for (C₂₅H₃₁ON) 362.2478, found 362.2473.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-(prop-2-yn-1-yl)propenamide (5g)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:2), the product (18.2 mg) was obtained in 53% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.47 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 5.68 (t, J = 5.3 Hz, 1H), 4.13 – 3.88 (m, 2H), 3.54 (dd, J = 8.3, 7.1 Hz, 1H), 2.18 (t, J = 2.5 Hz, 1H), 2.13 – 2.00 (m, 1H), 1.82 – 1.57 (m, 7H), 1.23 – 1.08 (m, 4H), 1.01 – 0.86 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 173.5, 140.7, 140.3, 139.0, 128.9 (2C), 128.5 (2C), 127.7 (2C), 127.5, 127.1 (2C), 79.6, 71.7, 50.0, 40.8, 35.1, 33.8, 32.9, 29.5, 26.6, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₂₄H₂₇ON) 346.2165, found 346.2159.

2-([1,1'-biphenyl]-4-yl)-3-cyclohexyl-*N***-(2,2,2-trifluoroethyl)propenamide (5h)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 8:100:2), the product (28.1 mg) was obtained in 72% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 4H), 7.47 – 7.41 (m, 2H), 7.40 – 7.30 (m, 3H), 5.81 (t, J = 6.6 Hz, 1H), 4.05 – 3.90 (m, 1H), 3.83 – 3.68 (m, 1H), 3.61 (t, J = 6.6 Hz, 1H), 4.05 – 3.90 (m, 1H), 3.83 – 3.68 (m, 1H), 3.61 (t, J = 6.6 Hz, 1H), 4.05 – 3.90 (m, 1H), 3.83 – 3.68 (m, 1H), 3.61 (t, J

= 7.7 Hz, 1H), 2.08 (dt, J = 13.8, 7.7 Hz, 1H), 1.81 – 1.57 (m, 6H), 1.24 – 1.09 (m, 4H), 1.03 – 0.85 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 140.6, 138.6, 129.0 (2C), 128.5 (2C), 127.8 (2C), 127.5, 127.1 (2C), 124.2 (q, ${}^{1}J_{\text{C-F}}$ = 279.7 Hz), 50.0, 40.8, 40.8 (q, ${}^{2}J_{\text{C-F}}$ = 34.8 Hz), 35.1, 33.7, 32.9, 26.6, 26.24, 26.17; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.53 (t, J = 9.1 Hz, 3F). HRMS ESI [M+H]⁺ calculated for (C₂₃H₂₇ONF₃) 390.2039, found 390.2032.

2-([1,1'-biphenyl]-4-yl)-*N***-(2-cyanoethyl)-3-cyclohexylpropanamide (5i)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 25:100:2), the product (24.0 mg) was obtained in 67% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 1 H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 4H), 7.47 – 7.40 (m, 2H), 7.40 – 7.29 (m, 3H), 6.07 (t, J = 6.2 Hz, 1H), 3.57 (t, J = 7.7 Hz, 1H), 3.53 – 3.43 (m, 1H), 3.43 – 3.34 (m, 1H), 2.68 – 2.49 (m, 2H), 2.05 (dt, J = 14.3, 7.7 Hz, 1H), 1.86 – 1.64 (m, 5H), 1.64 – 1.55 (m, 1H), 1.24 – 1.04 (m, 4H), 1.01 – 0.87 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 174.7, 140.6, 140.4, 138.8, 128.9 (2C), 128.5 (2C), 127.7 (2C), 127.5, 127.1 (2C), 118.2, 50.0, 40.7, 35.9, 35.2, 33.72, 32.9, 26.6, 26.23, 26.15, 18.4. HRMS ESI [M+H]⁺ calculated for (C₂₄H₂₉ON₂) 361.2274, found 361.2267.

2-([1,1'-biphenyl]-4-yl)-3-cyclohexyl-*N***-(2-hydroxyethyl)propenamide (5j)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 25:100:2), the product (25.2 mg) was obtained in 72% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 4H), 7.46 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 6.14 (t, J = 5.7 Hz, 1H), 3.64 (t, J = 5.0 Hz, 2H), 3.56 (t, J = 7.7 Hz, 1H), 3.44 – 3.27 (m, 2H), 2.51 (br s, 1H), 2.04 (dt, J = 14.4, 7.7 Hz, 1H), 1.82 – 1.63 (m, 5H), 1.63 – 1.54 (m, 1H), 1.21 – 1.08 (m, 4H), 1.00 – 0.85 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 175.4, 140.7, 140.2, 139.3, 128.9 (2C), 128.5 (2C), 127.6 (2C), 127.4, 127.1 (2C), 62.5, 50.1, 42.8, 40.9, 35.2, 33.8, 32.9, 26.6, 26.3, 26.2. HRMS ESI [M+H] $^{+}$ calculated for (C₂₃H₃₀O₂N) 352.2271, found 352.2266.

N,N'-(Ethane-1,2-diyl)bis(2-([1,1'-biphenyl]-4-yl)-3-cyclohexylpropanamide) (5k): Following the general procedure **D**, purification by flash column chromatography (DCM:MeOH:Et₃N = 50:1:1), the product (24.5 mg) was obtained in 75% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.46 (m, 8H), 7.46 – 7.36 (m, 4H), 7.36 – 7.24 (m, 6H), 6.32 – 6.19 (m, 2H), 3.47 (q, *J* = 7.4 Hz, 2H), 3.33 – 3.15 (m, 4H), 1.97 (dq, *J* = 14.8, 7.6 Hz, 2H), 1.80 – 1.54 (m, 14H), 1.19 – 1.02 (m, 8H), 0.99 – 0.81 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 175.3 (2C), 140.7, 140.7, 140.11, 140.08, 139.3, 139.3, 128.91 (2C), 128.90 (2C), 128.49 (2C), 128.47 (2C), 127.58 (2C), 127.57 (2C), 127.43, 127.41, 127.09 (2C), 127.08 (2C), 50.1 (2C), 40.8, 40.6, 40.4, 40.3, 35.2, 35.1, 33.82, 33.81, 32.9, 32.8, 26.63, 26.61, 26.3 (2C), 26.18, 26.15. HRMS ESI [M+H]⁺ calculated for (C₄₄H₅₃O₂N₂) 641.4102, found 641.4096.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N*,*N*-dimethylpropanamide (5l): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 12:100:1), the product (16.7 mg) was obtained in 50% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.55 – 7.50 (m, 2H), 7.45 – 7.39 (m, 2H), 7.38 – 7.30 (m, 3H), 3.92 (dd, J = 8.1, 6.6 Hz, 1H), 3.00 (s, 3H), 2.96 (s, 3H), 2.06 (ddd, J = 13.7, 8.2, 6.6 Hz, 1H), 1.86 – 1.75 (m, 1H), 1.73 – 1.54 (m, 5H), 1.28 – 1.09 (m, 4H), 1.00 – 0.85 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 173.4, 140.9, 139.8, 139.7, 128.9 (2C), 128.4 (2C), 127.5 (2C), 127.3, 127.1 (2C), 45.3 (2C), 42.9, 37.4, 36.1, 35.3, 33.5, 26.7, 26.31, 26.26. HRMS ESI [M+H]⁺ calculated for (C₂₃H₃₀ON) 336.2322, found 336.2315.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-1-(piperidin-1-yl)propan-1-one (5m): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (29.2 mg) was obtained in 78% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.56 – 7.50 (m, 2H), 7.45 – 7.39 (m, 2H), 7.38 – 7.29 (m, 3H), 3.94 (dd, J= 8.1, 6.6 Hz, 1H), 3.72 – 3.60 (m, 1H), 3.54 – 3.35 (m, 3H), 2.08 (ddd, J= 14.2, 8.1, 6.6 Hz, 1H), 1.92 – 1.76 (m, 1H), 1.74 – 1.34 (m, 10H), 1.32 – 1.03 (m, 2H), 0.99 – 0.86 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 171.4, 140.8, 140.3, 139.5, 128.8 (2C), 128.3 (2C), 127.4 (2C), 127.3, 127.1 (2C), 46.8, 44.9 (2C), 43.3, 42.8, 35.3, 33.5 (2C), 26.7, 26.30, 26.25, 25.7, 24.7. HRMS ESI [M+H] $^{+}$ calculated for (C₂₆H₃₄ON) 376.2635, found 376.2628.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-1-morpholinopropan-1-one (5n): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (31.3 mg) was obtained in 83% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 2H), 7.55 (d, J = 7.7 Hz, 2H), 7.45 – 7.40 (m, 2H), 7.35 – 7.29 (m, 3H), 3.88 (t, J = 7.3 Hz, 1H), 3.79 – 3.72 (m, 1H), 3.69 – 3.62 (m, 1H), 3.57 – 3.48 (m, 4H), 3.47 – 3.40 (m, 1H), 3.23 – 3.17 (m, 1H), 2.08 (dt, J = 14.2, 7.3 Hz, 1H), 1.85 – 1.78 (m, 1H), 1.72 – 1.65 (m, 3H), 1.65 – 1.58 (m, 2H), 1.30 – 1.10 (m, 4H), 0.99 – 0.88 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.9, 140.6, 139.8, 139.6, 128.8 (2C), 128.2 (2C), 127.6 (2C), 127.4, 127.0 (2C), 66.9, 66.5, 46.2, 45.0, 42.6, 42.5, 35.2, 33.49, 33.47, 26.6, 26.24, 26.20. HRMS ESI [M+H]⁺ calculated for (C₂₅H₃₂O₂N) 378.2428, found 378.2420.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-1-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)propan-1-one (50):

Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:1), the product (38.7 mg) was obtained in 90% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.55 – 7.50 (m, 2H), 7.44 – 7.38 (m, 2H), 7.35 – 7.28 (m, 3H), 3.97 – 3.38 (m, 6H), 3.62 – 3.48 (m, 3H), 2.12 – 2.02 (m, 1H), 1.90 – 1.74 (m, 1H), 1.72 – 1.44 (m, 8H), 1.29 – 1.07 (m, 5H), 0.98 – 0.84 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 171.5, 140.7, 140.0, 139.7, 128.8 (2C), 128.2 (2C), 127.5 (2C), 127.3, 127.1 (2C), 107.1, 64.5 (2C), 45.1, 43.6, 42.7, 40.3, 35.3, 35.2, 34.8, 33.53, 33.51, 26.7, 26.3, 26.2. HRMS ESI [M+H] $^{+}$ calculated for (C₂₈H₃₆ON) 434.2690, found 434.2681.

Ethyl 1-(2-([1,1'-biphenyl]-4-yl)-3-cyclohexylpropanoyl)piperidine-4-carboxylate (5p): Following

the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (35.7 mg) was obtained in 80% yield as white solid, d.r. = 1:1. 1 H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.55 – 7.48 (m, 2H), 7.45 – 7.37 (m, 2H), 7.36 – 7.27 (m, 3H), 4.43 (dd, J = 58.5, 13.5 Hz, 1H), 4.14 (q, J = 7.1 Hz, 1H), 4.04 (q, J = 7.1 Hz, 1H), 3.98 – 3.85 (m, 2H), 3.16 – 2.92 (m, 1H), 2.92 – 2.74 (m, 1H), 2.50 – 2.37 (m, 1H), 2.13 – 2.00 (m, 1H), 1.94 – 1.73 (m, 3H), 1.73 – 1.43 (m, 7H), 1.32 – 1.07 (m, 7H), 1.04 – 0.82 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 174.4, 171.7, 140.8, 140.0, 139.7, 128.8 (2C), 128.3 (2C), 127.6 (2C), 127.3, 127.1 (2C), 60.7, 45.2, 45.0, 42.7, 41.6, 41.2, 35.3, 33.5, 28.5, 28.1, 27.7, 26.7, 26.3, 26.2, 14.3; the other isomer: 13 C NMR (101 MHz, CDCl₃) δ 174.1, 171.6, 140.8, 139.9, 139.7, 128.8 (2C), 128.2 (2C), 127.5 (2C), 127.3, 127.1 (2C), 60.6, 45.0, 44.9, 42.7, 41.5, 40.9, 35.2, 33.5, 28.5, 28.1, 27.7, 26.7, 26.3, 26.2, 14.2. HRMS ESI [M+H]⁺ calculated for (C₂₉H₃₈O₃N) 448.2846, found 448.2838.

1-(2-([1,1'-Biphenyl]-4-yl)-3-cyclohexylpropanoyl)piperidine-4-carboxylic acid (5q): Following

the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane = 25:100), the product (26.8 mg) was obtained in 64% yield as white solid, d.r. = 1:1. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.36 – 7.28 (m, 3H), 4.54 – 4.26 (m, 1H), 3.98 – 3.85 (m, 2H), 3.18 – 2.96 (m, 1H), 2.96 – 2.76 (m, 1H), 2.54 – 2.40 (m, 1H), 2.10 – 1.99 (m, 1H), 1.95 – 1.85 (m, 1H), 1.84 – 1.75 (m, 1H), 1.74 – 1.40 (m, 8H), 1.29 – 1.08 (m, 4H), 1.03 – 0.83 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 179.5, 171.9, 140.8, 139.9, 139.7, 128.9 (2C), 128.3 (2C), 127.6 (2C), 127.4, 127.1 (2C), 45.2, 45.0, 42.7, 41.6, 40.8, 35.3, 33.6, 33.5, 28.2, 27.9, 26.7, 26.3, 26.2; the other isomer: ¹³C NMR (151 MHz, CDCl₃) δ 179.4, 171.8, 140.8, 139.9, 139.7, 128.9 (2C), 128.2 (2C), 127.6 (2C), 127.4, 127.1 (2C), 45.0, 44.8, 42.7, 41.5, 40.6, 35.2, 33.54, 33.47, 27.8, 27.5, 26.7, 26.3, 26.2. HRMS ESI [M+H]* calculated for (C₂₇H₃₄O₃N) 420.2533, found 420.2525.

2-([1,1'-Biphenyl]-4-yl)-1-(azepan-1-yl)-3-cyclohexylpropan-1-one (5r): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (29.0 mg) was obtained in 75% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.56 – 7.50 (m, 2H), 7.46 – 7.35 (m, 4H), 7.35 – 7.29 (m, 1H), 3.91 (dd, *J* = 8.1, 6.6 Hz, 1H), 3.73 – 3.64 (m, 1H), 3.63 – 3.55 (m, 1H), 3.41 – 3.27 (m, 2H), 2.06 (ddd, *J* = 14.2, 8.1, 6.6 Hz, 1H), 1.89 – 1.78 (m, 1H), 1.76 – 1.45 (m, 12H), 1.42 – 1.31 (m, 1H), 1.27 – 1.10 (m, 4H), 1.00 – 0.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 140.9, 140.3, 139.6, 128.8 (2C), 128.5 (2C), 127.4 (2C), 127.3, 127.1 (2C), 47.9, 46.6, 45.4, 43.2, 35.5, 33.63, 33.58, 29.4, 27.7, 27.1, 26.7, 26.6, 26.33, 26.28. HRMS ESI [M+H]⁺ calculated for (C₂₇H₃₆ON) 390.2791, found 390.2784.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-1-(4-(pyrimidin-2-yl)piperazin-1-yl)propan-1-one (5s):

Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (24.9 mg) was obtained in 55% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 4.8 Hz, 2H), 7.61 – 7.51 (m, 4H), 7.46 – 7.38 (m, 2H), 7.38 – 7.29 (m, 3H), 6.49 (t, J = 4.8 Hz, 1H), 3.99 – 3.79 (m, 4H), 3.63 – 3.50 (m, 4H), 3.28 – 3.17 (m, 1H), 2.10 (ddd, J = 14.3, 7.9, 6.7 Hz, 1H), 1.88 – 1.78 (m, 1H), 1.74 – 1.57 (m, 5H), 1.32 – 1.07 (m, 4H), 1.00 – 0.87 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 172.0, 161.5, 157.8 (2C), 140.7, 139.8, 128.9 (2C), 128.3 (2C), 127.6 (2C), 127.4, 127.1 (2C), 110.4, 45.5, 45.3, 43.7 (2C), 42.7, 42.0, 35.3, 33.6, 33.5, 26.7, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₂₉H₃₅ON₄) 455.2805, found 455.2803.

2-([1,1'-biphenyl]-4-yl)-*N***-(4-(***tert*-butyl)**phenyl)-3-cyclohexylpropanamide (5t)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 4:100:1), the product (32.9 mg) was obtained in 75% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.57 – 7.52 (m, 4H), 7.42 – 7.38 (m, 4H), 7.37 – 7.34 (m, 2H), 7.33 – 7.29 (m, 1H), 7.27 – 7.21 (m, 2H), 3.66 (t, *J* = 7.6 Hz, 1H), 2.14 (dt, *J* = 14.3, 7.6 Hz, 1H), 1.81 – 1.68 (m, 3H), 1.68 – 1.60 (m, 2H), 1.60 – 1.54 (m, 1H), 1.26 – 1.20 (m, 10H), 1.16 – 1.08 (m, 3H), 0.99 – 0.87 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.9, 147.3, 140.7, 140.3, 139.2, 135.5, 128.9 (2C), 128.5 (2C), 127.8 (2C), 127.5, 127.1 (2C), 125.8 (2C), 119.7 (2C), 51.4, 41.0, 35.3, 34.4, 33.7, 33.0, 31.5 (3C), 26.6, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₃₁H₃₈ON) 440.2948, found 440.2940.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-(4-(trifluoromethyl)phenyl)propenamide (5u)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 4:100:1), the product (23.1 mg) was obtained in 51% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.56 (m, 6H), 7.53 (d, J = 8.4 Hz, 2H), 7.47 – 7.39 (m, 4H), 7.36 (t, J = 7.4 Hz, 1H), 7.29 (br s, 1H), 3.70 (t, J = 7.6 Hz, 1H), 2.16 (dt, J = 14.4, 7.4 Hz, 1H), 1.84 – 1.76 (m, 2H), 1.76 – 1.65 (m, 3H), 1.64 – 1.60 (m, 1H), 1.30 – 1.09 (m, 4H), 1.05 – 0.86 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 141.1, 140.7, 140.5, 138.6, 129.0 (2C), 128.5 (2C), 128.0 (2C), 127.6, 127.2 (2C), 126.3 (q, $^3J_{\text{C-F}}$ = 3.8 Hz, 2C), 124.2 (q, $^1J_{\text{C-F}}$ = 271.6 Hz), 119.4, 51.3, 40.8, 35.2, 33.8, 32.9, 26.6, 26.3, 26.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.12 (s, 3F). HRMS ESI [M+H]⁺ calculated for (C₂₈H₂₉ONF₃) 452.2196, found 452.2188.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-*N***-(2,4-dimethylphenyl)propenamide (5v)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 5:100:1), the product (27.2 mg) was obtained in 66% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.66 – 7.57 (m, 5H), 7.48 – 7.41 (m, 4H), 7.39 – 7.34 (m, 1H), 7.00 – 6.88 (m, 3H), 3.75 (t, J = 7.8 Hz, 1H), 2.26 (s, 3H), 2.20 (dt, J = 14.5, 7.8 Hz, 1H), 1.95 (s, 3H), 1.87 – 1.79 (m, 2H), 1.78 – 1.74 (m, 1H), 1.73 – 1.67 (m, 2H), 1.66 – 1.60 (m, 1H), 1.35 – 1.25 (m, 1H), 1.23 – 1.13 (m, 3H), 1.05 – 0.93 (m, 2H); 13 C NMR (151)

MHz, CDCl₃) δ 172.1, 140.7, 140.4, 139.3, 134.8, 133.2, 131.1, 129.0, 129.0 (2C), 128.7 (2C), 127.8 (2C), 127.5, 127.3, 127.1 (2C), 123.0, 51.0, 40.4, 35.3, 33.9, 32.9, 26.7, 26.3, 26.2, 20.9, 17.4. HRMS ESI [M+H]⁺ calculated for (C₂₉H₃₄ON) 412.2635, found 412.2628.

2-([1,1'-Biphenyl]-4-yl)-*N***-butyl-4-(2-(trimethylsilyl)ethoxy)butanamide (5w)**: Following the general procedure **D**, purification by flash column chromatography yield as colourless oil. 1 H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 8.1 Hz, 2H), 7.57 – 7.53 (m, 2H), 7.45 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.36 – 7.32 (m, 1H), 5.57 (br s, 1H), 3.64 – 3.59 (m, 1H), 3.46 (t, J = 8.0 Hz, 2H), 3.43 – 3.39 (m, 1H), 3.34 – 3.29 (m, 1H), 3.28 – 3.23 (m, 1H), 3.20 – 3.14 (m, 1H), 2.46 – 2.39 (m, 1H), 2.06 – 1.99 (m, 1H), 1.46 – 1.39 (m, 2H), 1.31 – 1.23 (m, 2H), 0.93 (t, J = 8.0 Hz, 2H), 0.88 (t, J = 7.4Hz, 3H), 0.02 (s, 9H); 13 C NMR (151 MHz, CDCl₃) δ 173.3, 140.8, 140.2, 139.2, 128.9 (2C), 128.6 (2C), 127.5 (2C), 127.4, 127.1 (2C), 68.1, 67.7, 49.4, 39.5, 33.6, 31.8, 20.1, 18.4, 13.8, -1.2 (3C). HRMS ESI [M+H]⁺ calculated for (C_{25} H₃₇O₂NSi) 412.2666, found 412.2658.

N-butyl-2-(dibenzo[b,d]furan-4-yl)-4,4-dimethyl-6-oxoheptanamide (5x): Following the general

Me Me Me H Me

procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (25.2 mg) was obtained in 64% yield as colourless oil. 1 H NMR (600 MHz, CDCl₃) δ 7.95 (ddd, J = 7.7, 1.3, 0.6 Hz, 1H), 7.82 (dd, J = 7.7, 1.3 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.50 – 7.45

(m, 2H), 7.38 - 7.33 (m, 1H), 7.33 - 7.30 (m, 1H), 5.86 (t, J = 5.8 Hz, 1H), 4.18 (t, J = 6.7 Hz, 1H), 3.22 - 3.16 (m, 1H), 3.16 - 3.07 (m, 1H), 2.57 (dd, J = 14.2, 6.7 Hz, 1H), 2.44 - 2.29 (m, 2H), 2.03 - 1.98 (m, 4H), 1.40 - 1.29 (m, 2H), 1.20 - 1.14 (m, 2H), 1.03 (s, 3H), 1.01 (s, 3H), 0.78 (t, J = 7.4 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) 8208.9, 173.0, 156.0, 153.7, 127.4, 126.3, 125.7, 124.6, 124.2, 123.6, 123.1, 121.0, 119.3, 111.8, 53.8, 43.7, 42.5, 39.6, 34.1, 32.4, 31.5, 27.6, 27.5, 20.0, 13.7. HRMS ESI [M+H]⁺ calculated for ($C_{25}H_{31}O_{3}N$) 394.2377, found 394.2374.

2-([1,1'-Biphenyl]-4-yl)-3-cycloheptyl-1-morpholinopropan-1-one (5y): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (28.9 mg) was obtained in 74% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.51 (m, 4H), 7.46 – 7.39 (m, 2H), 7.36 – 7.28 (m, 3H), 3.84 (t, *J* = 7.3 Hz, 1H), 3.79 – 3.71 (m, 1H), 3.70 – 3.61 (m, 1H), 3.60 – 3.47 (m, 4H), 3.46 – 3.38 (m, 1H), 3.26 – 3.15 (m, 1H), 2.09 (dt, *J* = 14.1, 7.3 Hz, 1H), 1.83 – 1.75 (m, 1H), 1.72 – 1.59 (m, 3H), 1.59 – 1.46 (m, 4H), 1.46 – 1.31 (m, 4H), 1.29 – 1.16 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 140.7, 139.8, 139.6, 128.9 (2C), 128.3 (2C), 127.6 (2C), 127.4, 127.1 (2C), 67.0, 66.6, 46.2, 45.7, 43.0, 42.6, 36.6, 34.7, 34.6, 28.70, 28.69, 26.33, 26.27. HRMS ESI [M+H]⁺ calculated for (C₂₆H₃₄O₂N) 392.2584, found 392.2582.

2-([1,1'-Biphenyl]-4-yl)-4,4-dimethyl-1-morpholinopentan-1-one (5z): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (28.1 mg) was obtained in 80% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.55 – 7.50 (m, 2H), 7.46 – 7.39 (m, 2H), 7.36 – 7.30 (m, 3H), 3.86 (dd, J = 8.6, 3.2 Hz, 1H), 3.76 – 3.69 (m, 1H), 3.68 – 3.57 (m, 3H), 3.57 – 3.48 (m, 3H), 3.37 – 3.26 (m, 1H), 2.58 (dd, J = 14.0, 8.6 Hz, 1H), 1.52 (dd, J = 14.0, 3.2 Hz, 1H), 0.92 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 140.9, 140.7, 139.7, 128.9 (2C), 128.1 (2C), 127.7 (2C), 127.4, 127.1 (2C), 66.9, 66.6, 48.1, 46.3, 44.0, 42.7, 31.2, 29.8 (3C). HRMS ESI [M+H]⁺ calculated for (C₂₃H₃₀O₂N) 352.2271, found 352.2269.

2-([1,1'-Biphenyl]-4-yl)-4,4,5-trimethyl-1-morpholinohexan-1-one (5aa): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 10:100:1), the product (32.8 mg) was obtained in 87% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.4 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.37 – 7.30 (m, 3H), 3.87 (dd, J = 8.5, 3.0 Hz, 1H), 3.76 – 3.68 (m, 1H), 3.68 – 3.47 (m, 6H), 3.34 – 3.25 (m, 1H), 2.60 (dd, J = 14.1, 8.5 Hz, 1H), 1.58 – 1.44 (m, 2H), 0.90 – 0.82 (m, 9H), 0.78 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 172.4, 141.1, 140.7, 139.7, 128.9 (2C), 128.1 (2C), 127.6 (2C), 127.4, 127.1 (2C), 66.9, 66.6, 46.3, 43.9, 43.2, 42.8, 36.7, 35.9, 24.8, 23.9, 17.7, 17.6. HRMS ESI [M+H] $^{+}$ calculated for (C₂₅H₃₄O₂N) 380.2584, found 380.2582.

3-Cyclohexyl-2-(4-ethynylphenyl)-1-morpholinopropan-1-one (5ab): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 5:100:1), the desilylation product (13.9 mg) was obtained in 43% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 3.82 (t, *J* = 7.3 Hz, 1H), 3.78 – 3.70 (m, 1H), 3.69 – 3.59 (m, 1H), 3.57 – 3.30 (m, 5H), 3.20 – 3.11 (m, 1H), 3.06 (s, 1H), 2.01 (dt, *J* = 14.3, 7.3 Hz, 1H), 1.81 – 1.72 (m, 1H), 1.70 – 1.59 (m, 4H), 1.58 – 1.50 (m, 1H), 1.23 – 1.06 (m, 4H), 0.96 – 0.82 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 141.5, 132.8 (2C), 127.9 (2C), 12 °0.8, 83.4, 77.5, 66.9, 66.5, 46.2, 45.3, 42.6, 42.5, 35.2, 33.5, 33.4, 26.6, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₂₁H₂₈O₂N) 326.2115, found 326.2112.

N-butyl-3-cyclohexyl-2-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro

-6*H*-cyclopenta[*a*]phenanthren-3-yl)propenamide (5ac): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 15:100:1), the product (31.2 mg) was obtained in 67% yield as colourless oil, d.r. = 1:1. ¹H NMR (600 MHz, CDCl₃)
$$\delta$$
 7.22 (d, J = 8.0 Hz, 1H), 7.07 – 7.02 (m, 1H), 7.01 (d, J = 4.3 Hz, 1H), 5.43 (t, J = 5.9 Hz, 1H), 3.38 (t, J =

7.7 Hz, 1H), 3.22 (dq, J = 13.6, 6.9 Hz, 1H), 3.12 (dp, J = 15.1, 8.0, 7.4 Hz, 1H), 2.89 (dd, J = 9.5, 4.1 Hz, 2H), 2.50 (dd, J = 19.0, 8.8 Hz, 1H), 2.40 (dd, J = 12.9, 4.2 Hz, 1H), 2.28 (td, J = 11.1, 3.9 Hz, 1H), 2.14 (dt, J = 18.5, 8.9 Hz, 1H), 2.09 – 2.04 (m, 0H), 2.04 (s, 1H), 1.96 (d, J = 11.9 Hz, 1H), 1.84 (s, 1H), 1.74 (d, J = 12.9 Hz, 1H), 1.69 (d, J = 13.4 Hz, 0H), 1.67 – 1.63 (m, 1H), 1.59 (dt, J = 14.1, 7.8

Hz, 2H), 1.51 (qd, J = 13.3, 5.7 Hz, 3H), 1.47 – 1.43 (m, 1H), 1.40 (p, J = 7.1 Hz, 3H), 1.25 (h, J = 7.5Hz, 3H), 1.19 - 1.09 (m, 4H), 0.93 (t, J = 6.5 Hz, 1H), 0.91 (s, 4H), 0.87 (t, J = 7.4 Hz, 4H); 13 C NMR (151 MHz, CDCl₃) δ 221.0, 173.9, 138.6, 138.2, 137.0, 128.5, 125.8, 125.4, 50.7, 50.1, 48.1, 46.0, 44.5, 41.0, 39.4, 38.2, 36.0, 35.3, 33.6, 33.1, 31.7, 29.5, 26.7, 26.6, 26.3, 25.8, 21.7, 20.1, 14.0, 13.9, 8.8. HRMS ESI $[M+H]^+$ calculated for $(C_{31}H_{46}O_2N)$ 464.3523, found 464.3521.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-

1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)propanamide (5ad): Following the general

procedure **D**, using MeCN: DCE (3:1, 1.5 mL) as solvent, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 12:100:1), the product (36.5 mg) was obtained in 62% yield as colourless oil, d.r. = 1:1.

¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.43 – 7.37 (m, 3H), 7.32 (q, J = 7.5 Hz, 2H), 7.26 (q, J = 9.7, 8.9 Hz, 2H), 7.04 (dd, J = 30.6, 8.1 Hz, 1H), 6.90 (dd, J = 30.6) 21.5, 8.3 Hz, 1H), 6.83 (d, J = 7.3 Hz, 1H), 5.42 (dt, J = 13.8, 6.7 Hz, 1H), 3.49 (dt, J = 14.5, 7.9 Hz, 1H), 3.27 (td, J = 14.9, 6.7 Hz, 1H), 2.92 – 2.62 (m, 4H), 2.16 (dd, J = 30.6, 12.8 Hz, 1H), 2.10 – 2.02 (m, 1H), 1.86 - 1.77 (m, 1H), 1.76 - 1.59 (m, 7H), 1.59 - 1.46 (m, 3H), 1.26 - 1.15 (m, 10H), 1.13 (d, 1.15) $J = 11.8 \text{ Hz}, 3\text{H}, 1.11 - 0.95 \text{ (m, 6H)}, 0.92 - 0.86 \text{ (m, 2H)}, 0.83 \text{ (d, } J = 10.0 \text{ Hz}, 3\text{H)}; {}^{13}\text{C NMR (151)}$ MHz, CDCl₃) δ 173.7, 147.2, 145.6, 140.8, 140.2, 139.8, 134.9, 128.8 (2C), 128.3 (2C), 127.6 (2C), 127.4, 127.2 (2C), 127.0, 124.3, 123.8, 50.6, 49.7, 44.9, 40.6, 38.5, 37.5, 36.2, 35.3, 33.7, 33.5, 33.1, 30.4, 26.7, 26.2, 26.1, 25.4, 24.2, 24.1 (2C), 19.1, 19.0, 18.7. HRMS ESI [M+H]⁺ calculated for (C₄₁H₅₄ON) 576.4200, found 576.4192.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexylpropanamide (5ae): Following the general procedure D, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 30:70:1), the product (21.3 mg) was obtained in 70% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, J = 10.5, 7.8 Hz, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 (d, J = 7.9 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 5.71 (s, 1H), 5.49 (s, 1H), 3.59 (t, J = 7.7 Hz, 1H), 2.05 (dt, J = 14.4, 7.4 Hz, 1H), 1.82 - 1.59 (m, 6H), 1.25 - 1.10 (m, 4H), 1.00 - 0.87 (m, 2H); 13 C NMR (151 MHz, CDCl₃) 8 176.5, 140.7, 140.3, 139.3, 128.9 (2C), 128.5 (2C), 127.7 (2C), 127.5, 127.1 (2C), 49.6, 40.6, 35.1, 33.8, 32.9, 26.6, 26.3, 26.2. HRMS ESI $[M+H]^+$ calculated for $(C_{21}H_{26}ON)$ 308.2009, found 308.2005.

2-([1,1'-Biphenyl]-4-yl)-3-(adamantan-1-yl)propanamide (5af): Following the general procedure D,

purification by flash column chromatography (EtOAc:Hexane:Et₃N = 30:70:1), the product (21.3 mg) was obtained in 73% yield as white solid. ¹H NMR (400 MHz,

CDCl₃) δ 7.57 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.36 - 7.31 (m, 1H), 5.52 (br s, 2H), 3.59 (dd, J = 7.3, 5.1 Hz,1H), 2.26 (dd, J = 14.2, 7.3 Hz, 1H), 1.93 (q, J = 3.6 Hz, 4H), 1.68 (d, J = 12.4 Hz, 3H), 1.60 12.4 Hz, 3H), 1.56 – 1.43 (m, 7H); ¹³C NMR (151 MHz, CDCl₃) δ 176.6, 141.3, 140.7, 140.1, 128.9 (2C), 128.3 (2C), 127.7 (2C), 127.4, 127.1 (2C), 47.4, 47.2, 42.6 (2C), 37.1 (2C), 33.1, 28.7 (2C). HRMS ESI [M+H]⁺ calculated for (C₂₅H₃₀ON) 360.2322, found 360.2319.

2-([1,1'-Biphenyl]-4-yl)-4-((3-methylbut-3-en-1-yl)oxy)butanamide (5ag): Following the general procedure **D**, purification by flash column chromatography (EtOAc:Hexane:Et₃N = 30:70:1), the product (16.0 mg) was obtained in 53% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.46 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.66 (br s, 2H), 4.82 – 4.78 (m, 1H), 4.78 – 4.67 (m, 1H), 3.72 (t, J = 7.5 Hz, 1H), 3.55 – 3.44 (m, 3H), 3.39 – 3.30 (m, 1H), 2.48 – 2.38 (m, 1H), 2.29 (t, J = 6.8 Hz, 2H), 2.13 – 1.89 (m, 1H), 1.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 143.1, 140.7, 140.4, 138.7, 128.9 (2C), 128.6 (2C), 127.6 (2C), 127.5, 127.1 (2C), 111.6, 69.3, 68.1, 48.6, 37.9, 33.2, 22.9. HRMS ESI [M+H]⁺ calculated for ($C_{21}H_{26}O_2N$) 324.1958, found 324.1956.

2-([1,1'-Biphenyl]-4-yl)-4,4-dimethyl-6-oxoheptanamide (5ah): Following the general procedure **D**, purification by flash column chromatography (EtOAc : Hexane : Et₃N = 30:70:1), the product (24.2 mg) was obtained in 75% yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 4H), 7.45 – 7.40 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 5.79 (br s, 1H), 5.72 (br s, 1H), 3.59 (t, *J* = 6.4 Hz, 1H), 2.41 (dd, *J* = 14.3, 6.0 Hz, 1H), 2.40 – 2.27 (m, 2H), 2.03 (s, 3H), 1.90 (dd, *J* = 14.3, 6.0 Hz, 1H), 1.01 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 176.5, 140.7, 140.4, 140.3 128.9 (2C), 128.5 (2C), 127.7 (2C), 127.5, 127.1 (2C), 53.8, 48.7, 44.4, 34.1, 32.4, 27.9, 27.8. HRMS ESI [M+H]⁺ calculated for (C₂₁H₂₆O₂N) 324.1958, found 324.1956.

3-Cyclohexyl-2-(naphthalen-2-yl)propanamide (5ai): Following the general procedure **D**, purification by flash column chromatography (EtOAc: Hexane: Et₃N = 30:70:1), the product (19.4 mg) was obtained in 69% yield as white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.85 – 7.80 (m, 3H), 7.74 (s, 1H), 7.51 – 7.45 (m, 2H), 7.44 (d, *J* = 8.5 Hz, 1H), 5.64 (br s, 1H), 5.46 (br s, 1H), 3.71 (t, *J* = 7.7 Hz, 1H), 2.09 (dt, *J* = 14.4, 7.7 Hz, 1H), 1.85 – 1.77 (m, 2H), 1.70 – 1.62 (m, 3H), 1.61 – 1.56 (m, 1H), 1.21 – 1.05 (m, 4H), 1.00 – 0.87 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 137.7, 133.6, 132.8, 128.9, 127.9, 127.8, 127.0, 126.4, 126.1, 126.0, 50.0, 40.4, 35.1, 33.9, 32.8, 26.6, 26.3, 26.2. HRMS ESI [M+H]⁺ calculated for (C₁₉H₂₄ON) 282.1852, found 282.1849.

2-(4-(*Tert***-butyl)phenyl)-3-cyclopentylpropanamide (5aj)**: Following the general procedure **D**, purification by flash column chromatography (EtOAc : Hexane : Et₃N = 30:70:1), the product (17.1 mg) was obtained in 62% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.25 – 7.20 (m, 2H), 5.58 (br s, 1H), 5.39 (br s, 1H), 3.41 (t, J = 7.7 Hz, 1H), 2.11 (dt, J = 14.1, 7.7 Hz, 1H), 1.87 – 1.80 (m, 1H), 1.78 – 1.72 (m, 1H), 1.71 – 1.63 (m, 1H), 1.61 – 1.55 (m, 1H), 1.50 – 1.41 (m, 1H), 1.31 (s, 9H), 1.16 – 1.08 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 176.7, 150.3, 137.1, 127.7 (2C), 125.9 (2C), 51.6, 39.3, 37.7, 34.6, 33.0, 32.3, 31.5 (3C), 25.3, 25.2. HRMS ESI [M+H] $^{+}$ calculated for (C₁₈H₂₈ON) 274.2165, found 274.2161.

2-(Benzo[b]thiophen-2-yl)-3-cyclohexylpropanamide (5ak): Following the general procedure D,

purification by flash column chromatography (EtOAc:Hexane:Et₃N = 30:70:1), the product (14.9 mg) was obtained in 52% yield as white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.82 – 7.75 (m, 1H), 7.71 (dd, J = 7.4, 1.6 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.19 (s, 1H), 5.83 (br s, 1H), 5.73 (br s, 1H), 3.92 (dd, J = 9.2, 6.3 Hz, 1H), 2.10 – 2.01 (m, 1H), 1.88 – 1.77 (m, 2H), 1.75 – 1.56 (m, 4H), 1.33 – 1.22 (m, 1H), 1.22 – 1.06 (m, 3H), 1.03 – 0.86 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 175.1, 143.8, 139.7, 139.6, 124.6, 124.4, 123.4, 122.4 (2C), 46.0, 41.3, 35.1, 33.7, 32.6, 26.6, 26.2, 26.1. HRMS ESI [M+H] $^{+}$ calculated for (C₁₇H₂₂ONS) 288.1417, found 288.1414.

3-Cyclohexyl-2-(dibenzo[b,d]furan-4-yl)propanamide (5al): Following the general procedure D,

purification by flash column chromatography (EtOAc : Hexane : Et₃N = 30:70:1), the product (23.6 mg) was obtained in 73% yield as white solid. 1 H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.38 – 7.31 (m, 2H), 5.75 (d, J = 8.9 Hz, 2H), 4.28 (t, J = 7.7 Hz, 1H), 2.19 (dt, J = 14.4, 7.7 Hz, 1H), 1.91 (dt, J = 14.4, 7.2 Hz, 1H), 1.83 (d, J = 12.9 Hz, 1H), 1.75 (d, J = 12.9 Hz, 1H), 1.68 – 1.62 (m, 2H), 1.61 – 1.56 (m, 1H), 1.28 – 1.19 (m, 1H), 1.18 – 1.06 (m, 3H), 1.02 – 0.91 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 175.7, 156.0, 154.2, 127.4, 126.0, 124.6, 124.3, 124.2, 123.6, 123.1, 120.9, 119.6, 111.9, 43.3, 38.9, 35.4, 33.7, 33.0, 26.6, 26.3, 26.2 HRMS ESI [M+H] $^{+}$ calculated for (C₂₁H₂₄O₂N) 322.1802, found 322.1797.

Methyl 2-([1,1'-biphenyl]-4-yl)-4,4-dimethylpentanoate (5am): Following the general procedure D,

purification by flash column chromatography (EtOAc : Hexane = 5:95), the product Me OME (18.1 mg) was obtained in 61% yield as colourless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.3 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 7.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 3.72 (dd, J = 9.3, 3.8 Hz, 1H), 3.67 (s, 3H), 2.36 (dd, J = 14.0, 9.3 Hz, 1H), 1.63 (dd, J = 14.0, 3.8 Hz, 1H), 0.93 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 175.4, 140. 9, 140.14, 140.08, 128.9 (2C), 128.3 (2C), 127.5 (2C), 127.4, 127.2 (2C), 52.2, 47.9, 47.6, 31.2, 29.5 (3C). HRMS ESI [M+H] $^{+}$ calculated for (C₂₀H₂₅O₂) 297.1849, found 297.1843.

Cyclohexyl 2-([1,1'-biphenyl]-4-yl)-4,4-dimethylpentanoate (5an): Following the general procedure

D, purification by flash column chromatography (EtOAc : Hexane = 5:95), the product (21.2 mg) was obtained in 58% yield as colourless oil. 1 H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 7.3 Hz, 2H), 7.54 (d, J = 7.3 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.36 – 7.31 (m, 1H), 4.79 – 4.70 (m, 1H), 3.68 (d, J = 9.1 Hz, 1H), 2.37 (dd, J = 14.0, 9.1 Hz, 1H), 1.85 (dd, J = 14.0, 5.3 Hz, 1H), 1.75 – 1.69 (m, 2H), 1.68 – 1.57 (m, 2H), 1.55 – 1.48 (m, 1H), 1.48 – 1.40 (m, 1H), 1.39 – 1.24 (m, 4H), 0.95 (s, 9H); 13 C NMR (151 MHz, CDCl₃) δ 174.3, 141.0, 140.6, 139.9, 128.9 (2C), 128.3 (2C), 127.4 (2C), 127.3, 127.2 (2C), 73.0, 48.4, 47.4, 31.52, 31.45, 31.2, 29.6 (3C), 25.5, 23.82, 23.75. HRMS ESI [M+H] $^{+}$ calculated for (C₂₅H₃₃O₂) 365.2475, found 365.2475.

5. Synthetic Applications

(1)

A 100 mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene 1a (496.5 mg, 2.0 mmol, 1.0 equiv.), alkyltrifluoroborate (570.2 mg, 3.0 mmol, 1.5 equiv.), Mes-3,6-tBu₂ Acr-Ph⁺BF₄⁻ (23 mg, 2 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (20 mL) and H₂O (0.6 mL) were then added via syringe under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 48 h. After the reaction was completed, 8.0 mL of aq. NaOH (0.5 M) was added to the reaction mixture at room temperature, the resulting solution was stirred for 5 min at room temperature before acidified by HCl solution (2 N). The reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford 3a as a white solid (506 mg, 82%).

(2)

To a solution of 3a (61.7 mg, 0.2 mmol, 1.0 equiv.) in of THF (2.0 mL) was slowly added BH₃·SMe₂ (0.2 mL, 10 M, 2.0 mmol) at 0 °C under N₂. The solution was stirred at 0 °C for 3 h and then at room temperature overnight. Then the reaction solution was cooled to 0 °C and of H₂O (4 mL) was slowly added. The organic layer was extracted with of EtOAc for three times and washed with brine. The organic layers were dried over Na₂SO₄, filtered and evaporated. The crude reaction mixture was purified by flash chromatography (EtOAc:Hexane = 1:10) to give the reduced product 6a as a white solid (60.0 mg, quant.). ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.7 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 – 7.33 (m, 1H), 7.30 (d, J = 7.7 Hz, 2H), 3.78 – 3.74 (m, 1H), 3.73 – 3.68 (m, 1H), 3.03 – 2.95 (m, 1H), 1.87 – 1.81 (m, 1H), 1.72 – 1.61 (m, 4H), 1.60 – 1.48 (m, 3H), 1.23 – 1.10 (m, 4H), 0.99 – 0.85 (m, 2H); 13C NMR (151 MHz, CDCl₃) δ 141.9, 141.0, 139.6, 128.9 (2C), 128.6 (2C), 127.4 (2C), 127.2, 127.1 (2C), 68.1, 45.3, 39.9 34.8, 34.3, 32.9, 26.7, 26.3, 26.2. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₆ONa) 317.1876, found 317.1870.

Following a literature procedure, 10 Ph₃PO (0.5 mg, 0.0018 mmol, 1.8 mol%) and amide **5ae** (30.7 mg, 0.1 mmol, 1.0 equiv.) were dissolved in 0.5 mL of anhydrous acetonitrile in a 5 mL vial equipped with a magnetic stirring bar, followed by addition of Et₃N (30.4 mg, 0.3 mmol, 3.0 equiv.). The resulting solution was treated dropwise with oxalyl chloride (25.4 mg, 0.2 n mmol, 2.0 equiv.), the reaction mixture was stirred for 10 min at room temperature. After the reaction was complete, the solution was concentrated and purified by flash chromatography (EtOAc:Hexane = 1:10), **6b** was obtained as a yellow solid (20.6 mg, 71%). 1 H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 4H), 7.48 – 7.42 (m, 2H), 7.42 – 7.33 (m, 3H), 3.89 (dd, J = 10.0, 6.2 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.89 – 1.81 (m, 1H), 1.80 – 1.62 (m, 5H), 1.63 – 1.50 (m, 1H), 1.35 – 1.25 (m, 2H), 1.25 – 1.12 (m, 1H), 1.05 – 0.89 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 141.1, 140.4, 135.6, 129.0 (2C), 127.9 (2C), 127.8 (2C), 127.7, 127.2 (2C), 121.2, 43.8, 35.5, 34.6, 33.4, 32.5, 26.5, 26.1, 26.0. HRMS ESI [M+Na]⁺ calculated for (C₂₁H₂₃NNa) 312.1723, found 312.1717.

(4)

Following a modified literature procedure, ¹¹ trifluoromethanesulfonic anhydride (31.0 mg, 0.11 mmol, 1.1 equiv.) was added via syringe over 1 min to a stirred mixture of amide **50** (44 mg, 0.1 mmol, 1.0 equiv.) and 2-chloropyridine (13.6 mg, 0.12 mmol, 1.2 equiv.) in dichloromethane (0.5 mL) at -78 °C. After 5 min, the reaction vessel was placed in an ice-water bath and allowed to warm to 0 °C, beforecyclohexanecarbonitrile (12.1 mg, 0.11 mmol, 1.1 equiv.) was added via syringe. The resulting solution was allowed to warm to room temperature for 5 minutes before the reaction vessel was heated to 80 °C. After 16 h, the reaction vessel was allowed to cool to room temperature. Dichloromethane (5 mL) was added to dilute the mixture and the layers were separated. The organic layer was washed with brine (2 mL), dried over Na₂SO₄, filtered and evaporated. The residue was purified by flash column chromatography (EtOAc: hexanes = 1:15) to give the product **6c** as colourless oil (29.2 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 2.1 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.92 (dd, J = 8.9, 2.1 Hz, 1H), 7.73 - 7.67 (m, 2H), 7.60 - 7.56 (m, 2H), 7.55 - 7.50 (m, 2H), 7.45 - 7.38 (m, 2H), 7.35 - 7.27 (m, 1H), 4.53 (dd, J = 9.0, 6.5 Hz, 1H), 3.55 (tt, J = 11.0, 3.5 Hz, 1H), 2.48 (ddd, J = 13.5, 9.0, 6.5 Hz, 1H), 2.08 (dd, J = 13.5, 6.5 Hz, 1H), 2.04 - 1.84 (m, 9H), 1.78 (d, J = 13.0 Hz, 1H), 1.72 - 1.51 (m,

4H), 1.45 (s, 9H), 1.22 - 0.96 (m, 6H); 13 C NMR (151 MHz, CDCl₃) δ 174.6, 167.2, 149.4, 149.0, 143.3, 141.3, 139.1, 131.9, 128.9 (2C), 128.8 (2C), 128.6, 127.1 (2C), 127.0, 127.0 (2C), 121.1, 118.7, 52.5, 43.6, 41.5, 35.8, 35.2, 33.8, 33.5, 32.3, 32.1, 31.3 (3C), 29.6, 26.8, 26.7, 26.6, 26.4, 26.3. HRMS ESI [M+H]⁺ calculated for ($C_{38}H_{47}N_2$) 531.3734, found 531.3726.

(5)

Following General procedure **D** using **1a** (24.8 mg, 0.1 mmol, 1.0 equiv.), **6d** (26.4 mg, 0.15 mmol, 1.5 equiv.), **6e** (15.0 mg, 0.15 mmol, 1.5 equiv.) afforded the glucokinase activator **6f** obtained as white solid (18.1 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.37 (m, 6H), 7.37 – 7.29 (m, 4H), 7.28 – 7.22 (m, 1H), 6.96 (d, J = 3.6 Hz, 1H), 3.71 (t, J = 7.6 Hz, 1H), 2.22 (dt, J = 13.9, 7.6 Hz, 1H), 1.92 – 1.83 (m, 1H), 1.76 – 1.60 (m, 3H), 1.56 – 1.50 (m, 2H), 1.44 – 1.38 (m, 2H), 1.12 – 1.00 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 159.9, 140.73, 140.65, 137.7, 135.9, 128.9 (2C), 128.4 (2C), 127.8 (2C), 127.5, 127.2 (2C), 114.0, 52.0, 39.8, 37.9, 32.9, 32.6, 25.3, 25.2. HRMS ESI [M+H]⁺ calculated for (C₂₃H₂₅N₂OS) 377.1682, found 377.1680.

6. Mechanistic Studies

6.1 Radical trapping experiments

(a) **Reaction procedure**: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene **1a** (24.8 mg, 0.1 mmol, 1.0 equiv.), cyclohexyltrifluoroborate **2a** (28.5 mg, 1.5 equiv.), Mes-3,6-*t*Bu₂ Acr-Ph⁺BF₄⁻ (1.2 mg, 2 mol%) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (23.4 mg, 1.5 equiv.). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe followed by the addition of H₂O (30 μL) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16 h. After the reaction was completed, 1.0 mL of aq. NaOH (0.2 M) was added to the reaction mixture at room temperature, the resulting solution was stirred for 2 min at room temperature before acidified by HCl solution (2 N). The reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, the crude reaction mixture was analyzed by ¹H NMR spectroscopy.

Results: The present reaction was completely inhibited by the addition of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO).

(b) **Reaction procedure**: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene **1a** (24.8 mg, 0.1 mmol, 1.0 equiv.), alkyltrifluoroborate **7a** (24.3 mg, 1.5 equiv.), Mes-3,6-*t*Bu₂ Acr-Ph⁺BF₄⁻ (1.2 mg, 2 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe followed by the addition of H₂O (30 μL) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16 h. After the reaction was completed, 1.0 mL of aq. NaOH (0.2 M) was added to the reaction mixture at room temperature, the resulting solution was stirred for 2 min at room temperature before acidified by HCl solution (2 N). The reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, The crude product was purified by flash chromatography on silica gel to afford the **7b**.

Results: The ring-opened product **7b** was obtained in 42% yield (11.8 mg) when the cyclopropylmethylenetrifluoroborate **7a** was used in the reaction. These observations suggest free radicals were generated in the reactions.

2-([1,1'-Biphenyl]-4-yl)hept-6-enoic acid (7b): purification by flash column chromatography (EtOAc: Hexane: AcOH = 20:80:2), 1 H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.46 – 7.40 (m, 2H), 7.40 – 7.37 (m, 2H), 7.37 – 7.30 (m, 1H), 5.77 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.03 – 4.98 (m, 1H), 4.97 – 4.93 (m, 1H), 3.61 (t, J = 7.7 Hz, 1H), 2.17 – 2.02 (m, 3H), 1.92 – 1.77 (m, 1H), 1.50 – 1.36 (m, 2H); 13 C NMR (151 MHz, CDCl₃) δ 179.8, 140.8, 140.6, 138.3, 137.6, 128.9 (2C), 128.6 (2C), 127.6 (2C), 127.5, 127.2 (2C), 115.1, 51.2, 33.6, 32.6, 26.9. HRMS ESI [M+H] $^{+}$ calculated for ($C_{19}H_{21}O_{2}$) 281.1542, found 281.1532.

6.2 Control experiments

(a) gem-Difluoroalkene as an intermediate in the catalytic system

(1) **Reaction procedure**: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene **1a** (24.8 mg, 0.1 mmol, 1.0 equiv.), cyclohexyltrifluoroborate **2a** (28.5 mg, 1.5 equiv.), Mes-3,6-*t*Bu₂ Acr-Ph⁺BF₄⁻ (1.2 mg, 2 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16 h. After the reaction was completed, the crude reaction mixture was analyzed by ¹H NMR spectroscopy.

Results: The *gem*-difluoroalkene 7c was obtained in 88%~90% yield. In addition, *in-situ* treated the crude reaction mixture with H₂O and nucleophiles (H₂O, cyclohexylamine) or ammonium surrogate NH₄OAc in the dark did not yield the desired *a*-arylated carboxylic acid or amide products, thus exclude the possibility of direct nucleophilic substitution of *gem*-difluoroalkene.¹²

4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl (7c): ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.55 (m, 4H), 7.49 – 7.43 (m, 2H), 7.43 – 7.39 (m, 2H), 7.39 – 7.34 (m, 1H), 2.37 – 2.30 (m, 2H),

1.76 - 1.60 (m, 5H), 1.40 - 1.26 (m, 1H), 1.22 - 1.09 (m, 3H), 1.03 - 0.85 (m, 2H). The spectral data are in accordance with the literature report.¹³

(2) **Reaction procedure**: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with *gem*-difluoroalkene **7c** (31.2 mg, 0.1 mmol, 1.0 equiv.), Mes-3,6-*t*Bu₂ Acr-Ph⁺BF₄⁻ (1.3 mg, 2 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe followed by the addition of H₂O (30 uL) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16 h. After the reaction was completed, 1.0 mL of aq. NaOH (0.2 M) was added to the reaction mixture at room temperature, the resulting solution was stirred for 2 min at room temperature before acidified by HCl solution (2 N). The reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, the crude reaction mixture was analyzed by ¹H NMR spectroscopy.

Results: The desired product **3a** was obtained in a similar yield (90%) when **7c** was used as starting material under standard conditions, all these results suggest *gem*-difluoroalkene is an intermediate in this reaction.

(b) Acyl fluoride species is a possible intermediate in the reaction

Reaction procedure: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene **1a** (24.8 mg, 0.1 mmol, 1.0 equiv.), cyclohexyltrifluoroborate **2a** (28.5 mg, 1.5 equiv.), Mes-3,6-*t*Bu₂ Acr-Ph⁺BF₄⁻ (1.2 mg, 2 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe followed by the addition of H₂O (30 μL) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 16 h. After the reaction was completed, the reaction mixture was then diluted with ethyl acetate, poured into a separatory funnel, before being washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, the crude reaction mixture was analyzed by ¹H NMR spectroscopy.

Results: 53% of the product **3a** was obtained when the reaction was carried out under standard conditions but without base-acid work-up procedure, about 39% yield of compound **7d** was detected according to the ¹H NMR, ¹⁹F NMR spectroscopy (Figure S8, S10) and HRMS-ESI ([M-H⁻] calculated for (C₂₁H₂₂FO) 309.1660, found 309.1658. Compound **7d** transformed into product **3a** after the treatment of the crude reaction mixture with aq. NaOH and then acidified with HCl (2N) (Figure S8). Additionally, when replacing aq. NaOH with 1.5 equiv. of *n*-butyl amine during the work-up procedure (2), 27% of product **5b** was obtained, indicated *n*-butyl amine acted as a nucleophile during the work-up procedure to trap electrophilic species **7d**. Based on these observations, compound **7d** was an acyl fluoride intermediate.

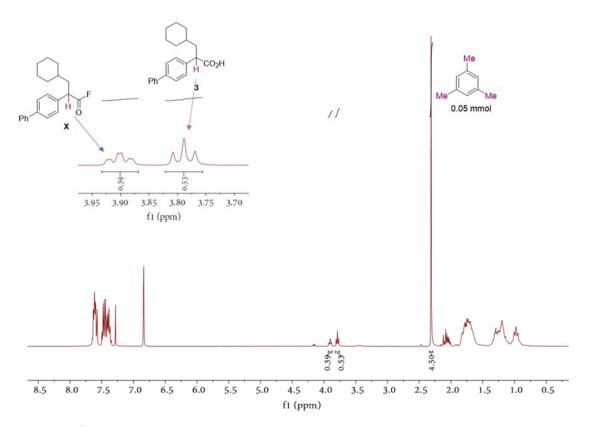


Figure S8 ¹H NMR spectroscopy of the crude reaction mixture without work-up procedure (mesitylene as IS)

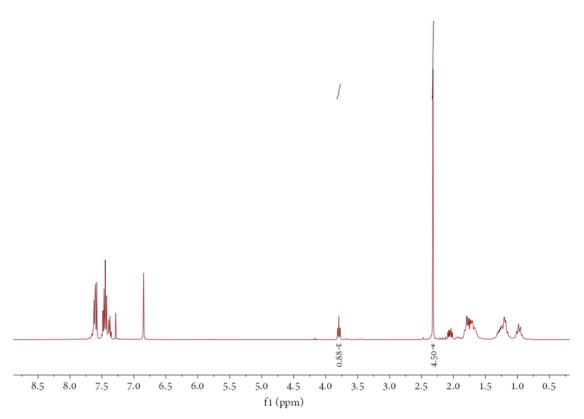


Figure S9 ¹H NMR spectroscopy of the crude reaction mixture after work-up procedure (mesitylene as IS)

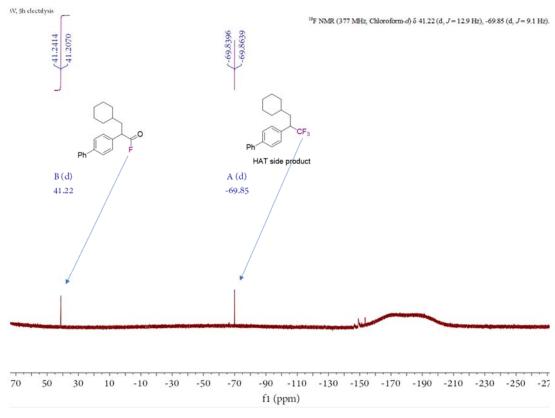


Figure S10 19 F NMR spectroscopy of the crude reaction mixture without work-up procedure

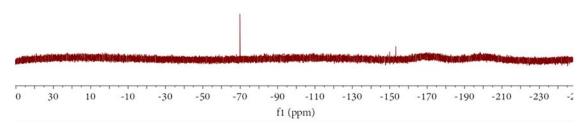
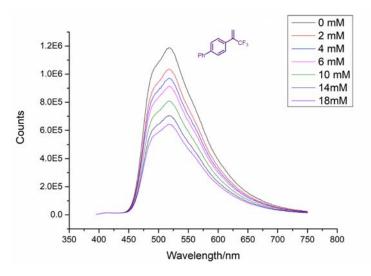
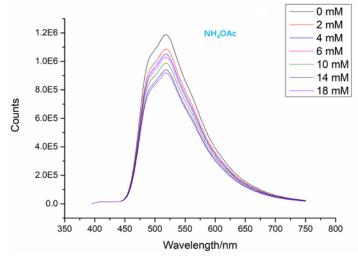
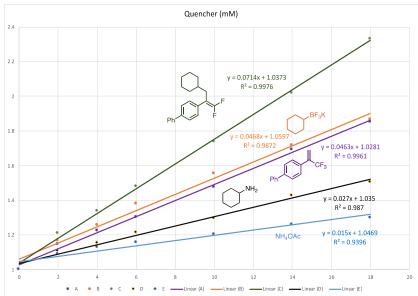


Figure S11 19 F NMR spectroscopy of the crude reaction mixture after work-up procedure

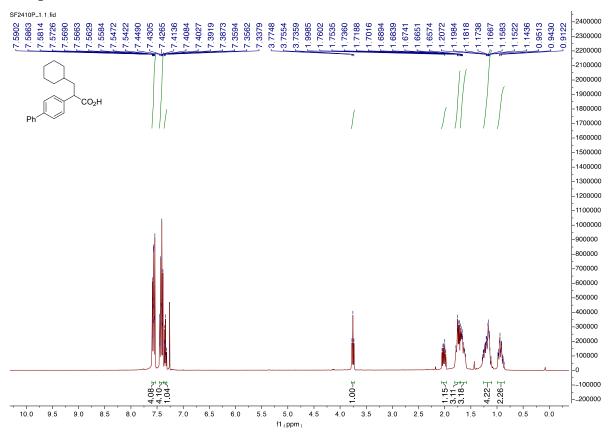

Reaction procedure: A 10-mL Schlenk tube equipped with a magnetic stir bar was charged with α-trifluoromethyl alkene 1a (24.8 mg, 0.1 mmol, 1.0 equiv.), cyclohexyltrifluoroborate 2a (28.5 mg, 1.5 equiv.), Mes-3,6-tBu₂ Acr-Ph⁺BF₄⁻ (1.2~2.9 mg, 2~5 mol%). The flask was evacuated and backfilled with N₂ 3 times. MeCN (1.0 mL) was then added via syringe followed by the addition of N-nucleophile (4-(*tert*-butyl)aniline or butyl amine) under N₂. The reaction mixture was then vigorously stirred under blue LED light (30 W) at room temperature (two fans were used to cool down the reaction mixture) for 24 h. After that, H₂O (100 uL) was added, and the reaction mixture was stirred for another hour in the dark. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. the crude reaction mixture was analyzed by ¹H NMR spectroscopy.

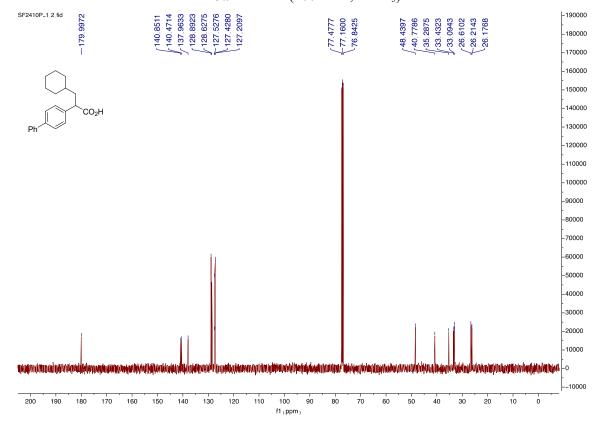
Results: The desired products were not formed in the absence of H₂O during the photocatalytic systems, considerable amount of *gem*-difluoroalkene were obtained instead. These results indicated that aniline, alkyl amine could not react with *gem*-difluoroalkene under the given reaction conditions to yield the products.


6.3 Stern-Volmer quenching studies

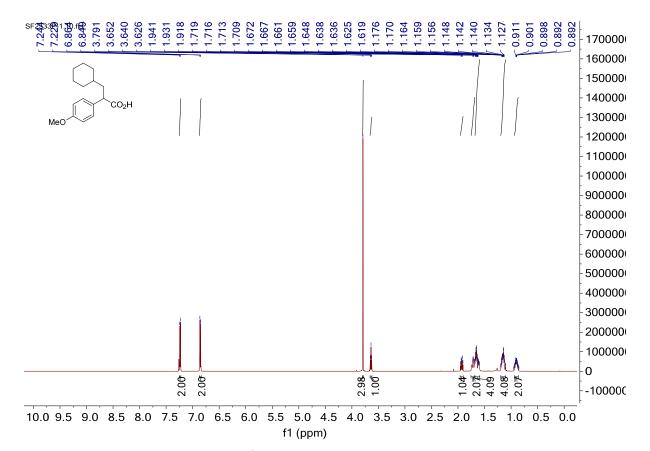

The photocatalyst, potential quenchers and MeCN/H₂O (10:1) were weighed into vials inside a glovebox under nitrogen. Prior to fluorescence experiments, 3,6-di-*tert*-butyl-9-mesityl-10-phenylacridin-10-ium tetrafluroborate (2.5* 10⁻⁵ M) in 2.0 ml of MeCN/H₂O (10:1) was recorded in 1 cm path quartz cuvettes using a Thermo Nanodrop 2000c UV/Vis spectrometer. The emission spectra were recorded using an Edinburgh FLS980 spectrometer.

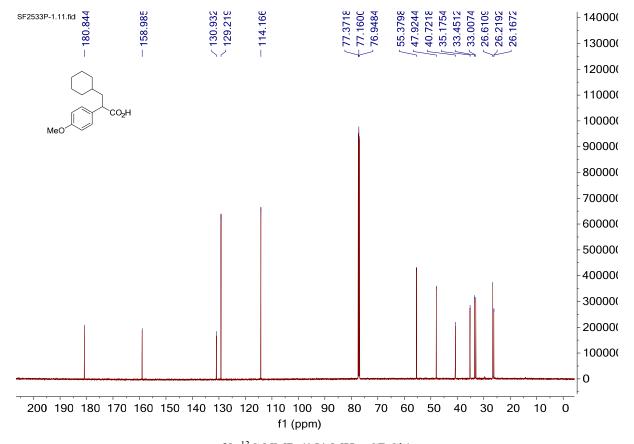
3,6-Di-*tert*-butyl-9-mesityl-10-phenylacridin-10-ium tetrafluroborate was excited at 375 nm and the emission intensity was collected at 519 nm. In a typical experiment, to a 2.5*10⁻⁵ M solution of 3,6-di-*tert*-butyl-9-mesityl-10-phenylacridin-10-ium tetrafluroborate in MeCN/H₂O (10:1) was added the appropriate amount of trifluoromethyl alkene, potassium cyclohexyl trifluoroborate, *gem*-difluoroalkene, cyclohexyl amine or ammonium acetate in a screw-top quartz cuvette, the emission of the sample was collected.

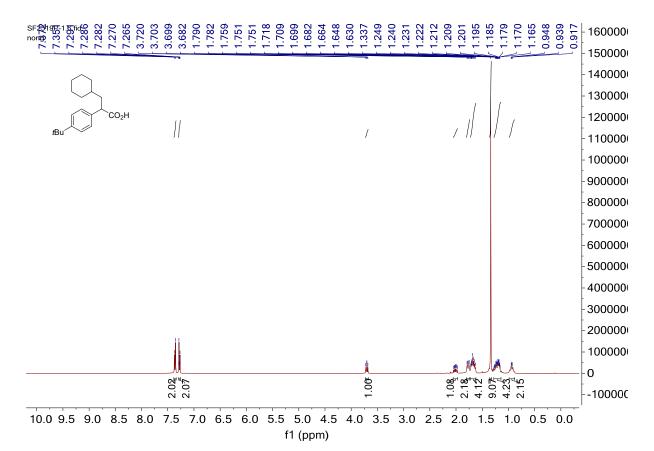


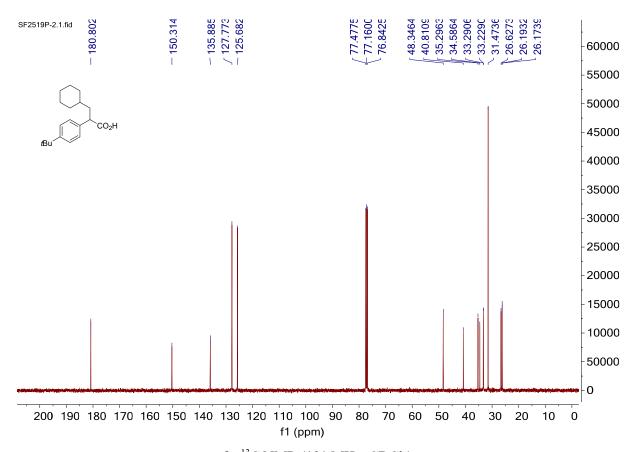

7. References

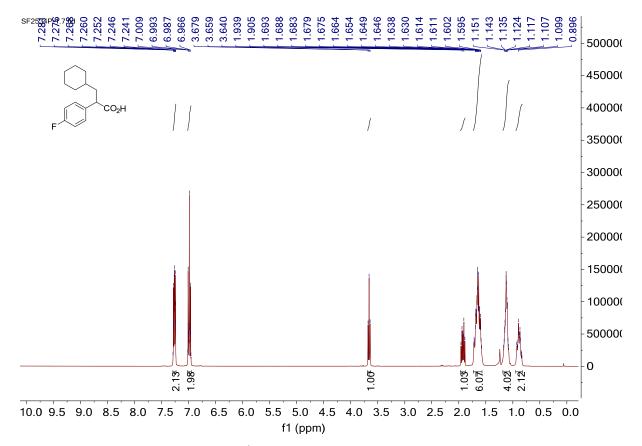
- 1. (a) J. Walkowiak, T. M. del Campo, B. Ameduri and V. Gouverneur, Synthesis 2010, 11, 1883–1890;
- (b) Y.-Q. Guo, R.-G. Wang, H.-J. Song, Y.-X. Liu and Q.-M. Wang, Org. Lett. 2020, 22, 709–713.
- 2. O. Kobayashi, D. Uraguchi and T. Yamakawa, J. Fluorine Chem. 2009, 130, 591–594.
- 3. Y. Lan, F.-Y. Yang and C. Wang, ACS Catal. 2018, 8, 9245–9251.
- 4. X. Wang, Y. Xu, Y.-F. Deng, Y.-J. Zhou, J.-J. Feng, G.-J. Yan, Y. Zhang and J.-B. Wang, *Chem. Eur. J.* 2014, **20**, 961–965.
- 5. Y. Liu, Y.-H. Zhou, Y.-L. Zhao and J.-P. Qu, Org. Lett. 2017, 19, 946–949.
- 6. X.-Y. Lu, R.-C. Jiang, J.-M. Li, C.-C. Liu, Q.-Q. Wang and H.-P. Zhou, *Org. Biomol. Chem.*, 2020, **18**, 3674–3678.
- 7. Z. Lin, Y. Lan and C. Wang, ACS Catal. 2019, 9, 775–780.
- 8. S. B. Lang, R. J. Wiles, C. B. Kelly and G. A. Molander, *Angew. Chem. Int. Ed.*, 2017, **56**, 15073–15077.
- 9. S.-S. Xie, D.-F. Li, H.-C. Huang, F.-Y. Zhang and Y.-Y. Chen, *J. Am. Chem. Soc.* 2019, **141**, 16237–16242.
- 10. S. A. Shipilovskikh, V. Y. Vaganov, E. I. Denisova, A. E. Rubtsov and A. V. Malkov, *Org. Lett.* 2018, **20**, 728–731.
- 11. M. Movassaghi and M. D. Hill, J. Am. Chem. Soc. 2006, 128, 14254–14255.
- 12. B.-Y. Wang, X.-H. Zhao, Q.-Y. Liu and S. Cao, Org. Biomol. Chem., 2018, 16, 8546–8552.
- 13. H. Chen, D. Anand and L. Zhou, Asian J. Org. Chem. 2019, 8, 661–664.

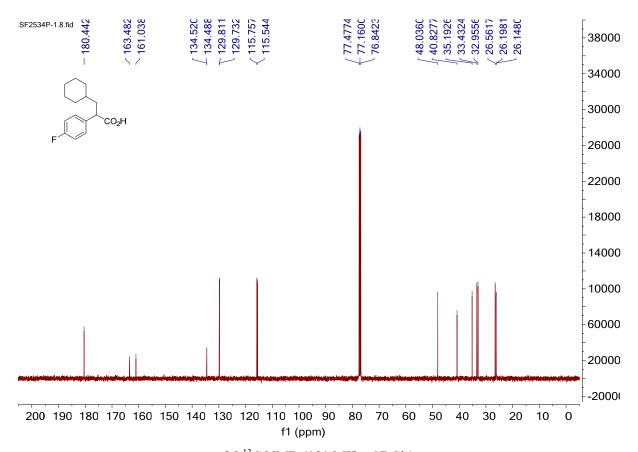

8. Spectral Data

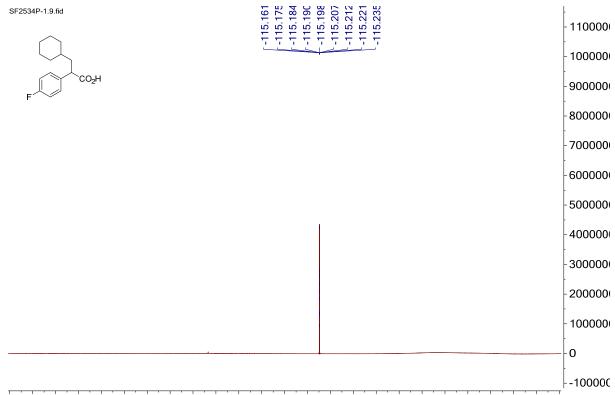



3a ¹³C NMR (101 MHz, CDCl₃)

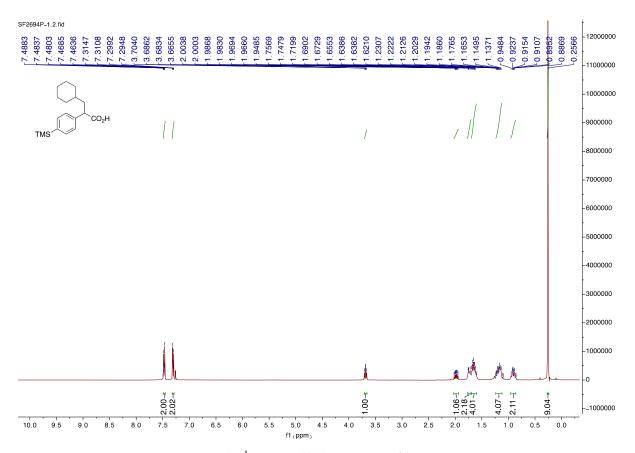

3b ¹H NMR (600 MHz, CDCl₃)


3b ¹³C NMR (151 MHz, CDCl₃)

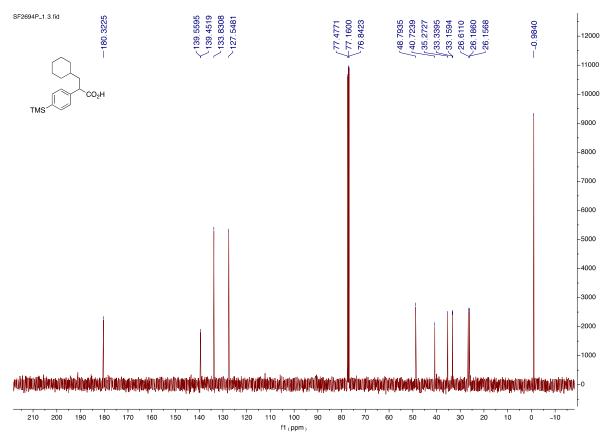

3c ¹H NMR (400 MHz, CDCl₃)


3c ¹³C NMR (101 MHz, CDCl₃)

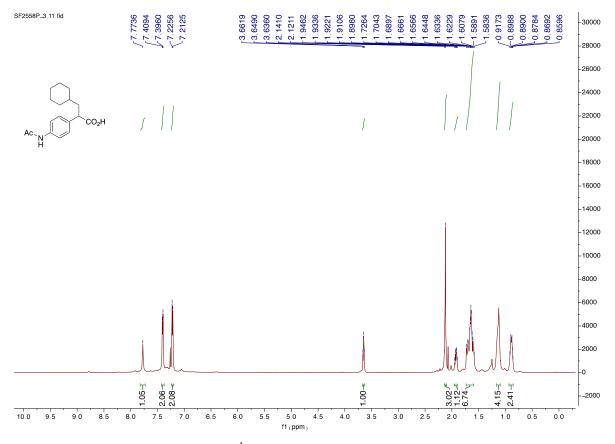
3d ¹H NMR (400 MHz, CDCl₃)

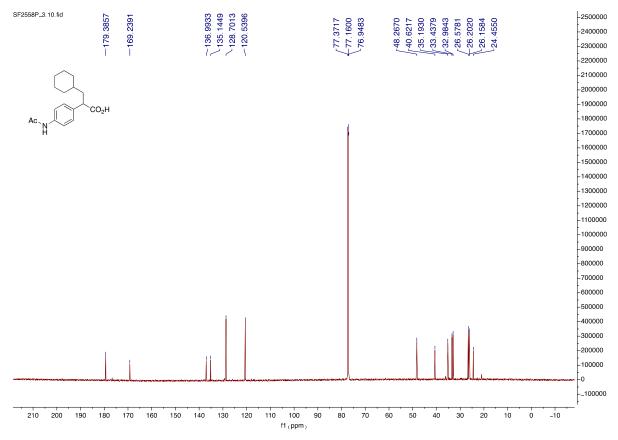


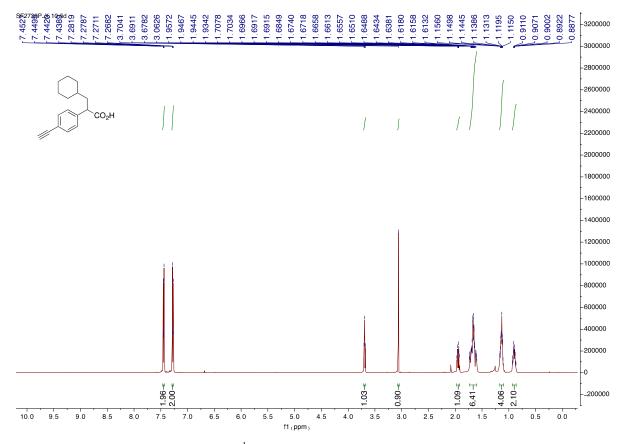
3d ¹³C NMR (101 MHz, CDCl₃)

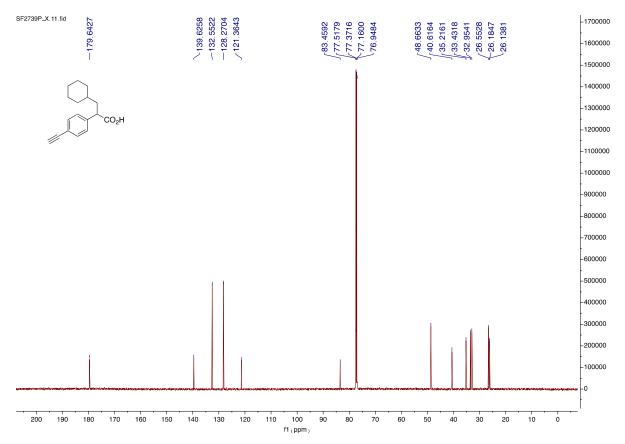


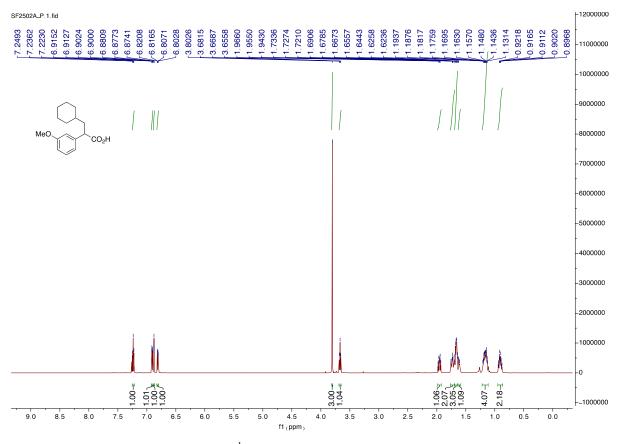
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210-220 f1 (ppm)

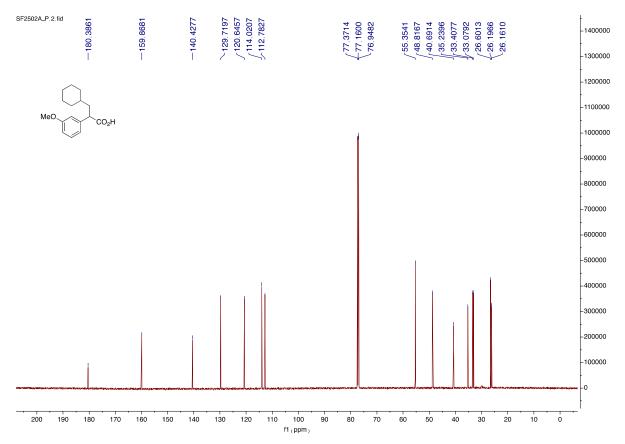

3d ¹⁹F NMR (376 MHz, CDCl₃)

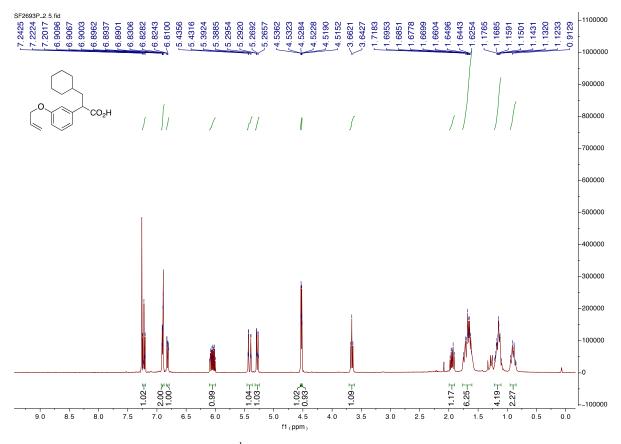

3e ¹H NMR (400 MHz, CDCl₃)

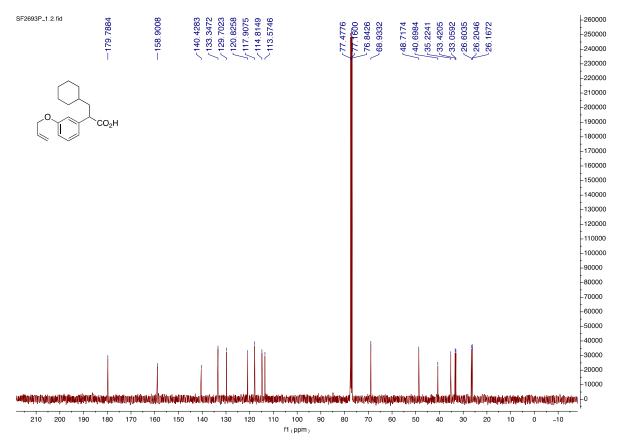

3e ¹³C NMR (101 MHz, CDCl₃)

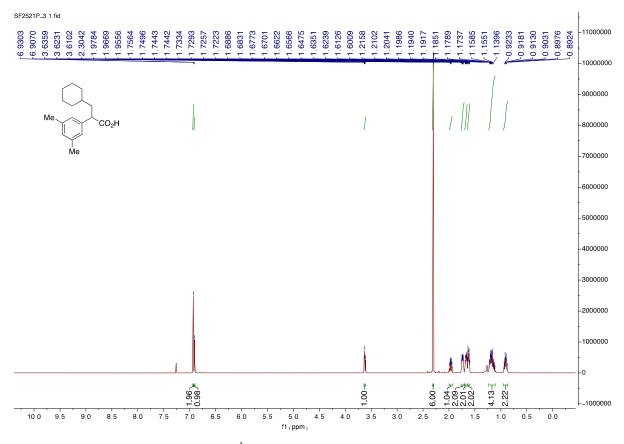

3f ¹H NMR (600 MHz, CDCl₃)

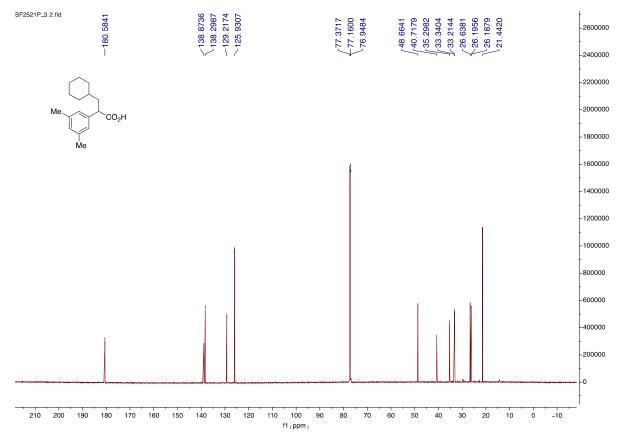

3f 13C NMR (151 MHz, CDCl₃)

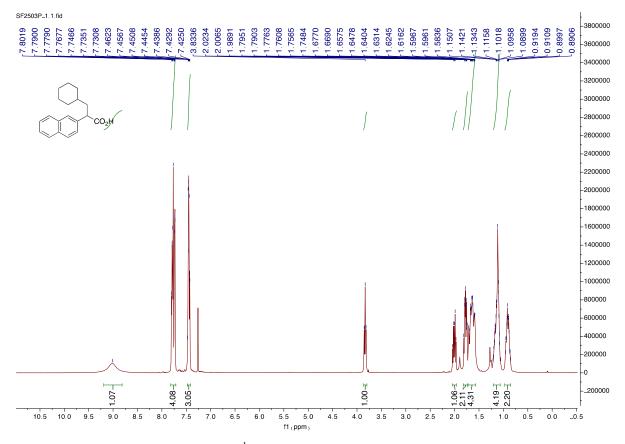

3g ¹H NMR (600 MHz, CDCl₃)

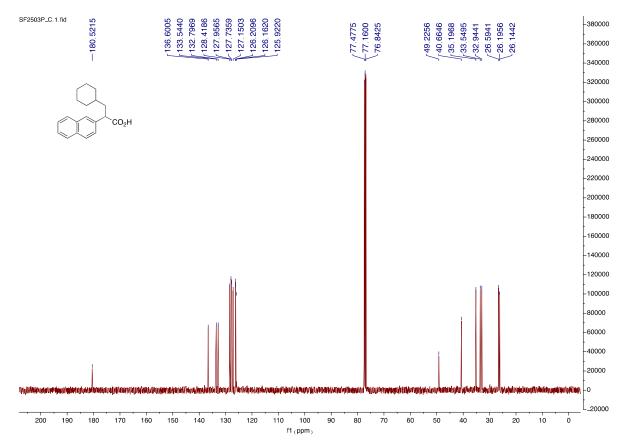

3g ¹³C NMR (151 MHz, CDCl₃)

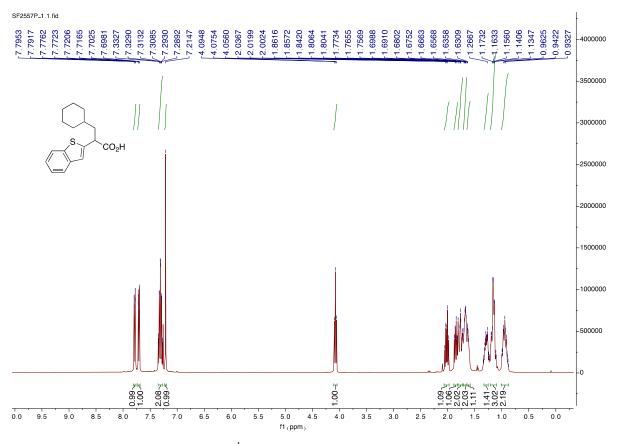

3h ¹H NMR (600 MHz, CDCl₃)

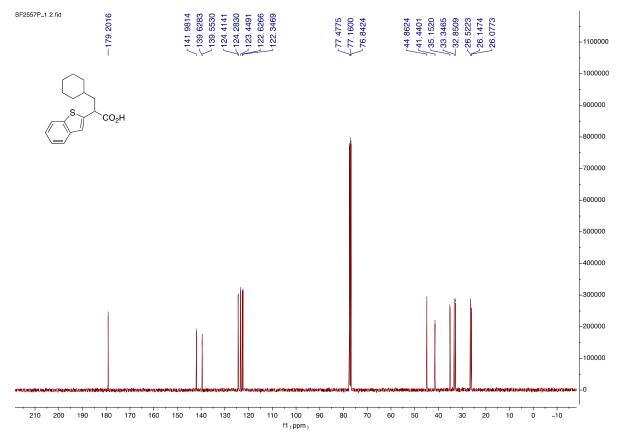

3h ¹³C NMR (151 MHz, CDCl₃)

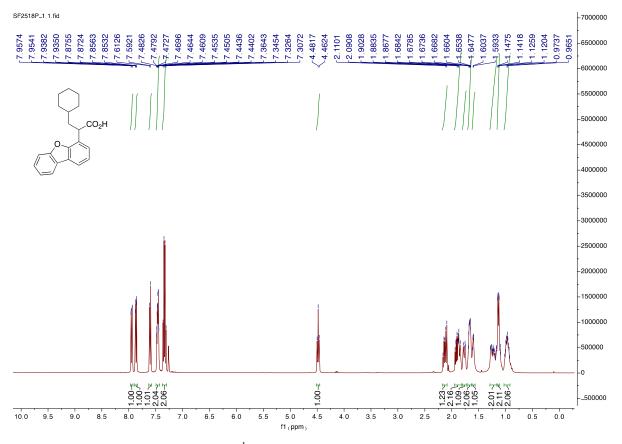

3i ¹H NMR (600 MHz, CDCl₃)

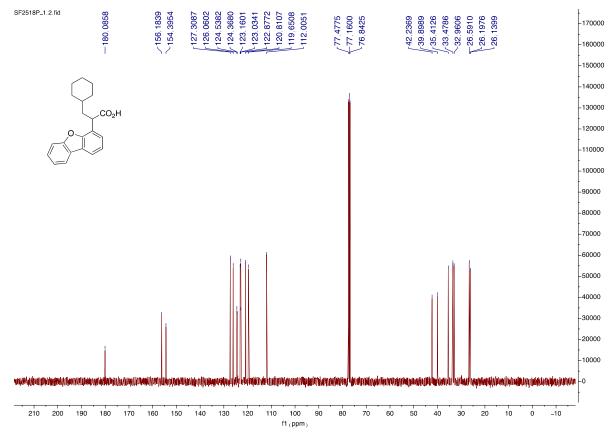

3i 13C NMR (101 MHz, CDCl₃)

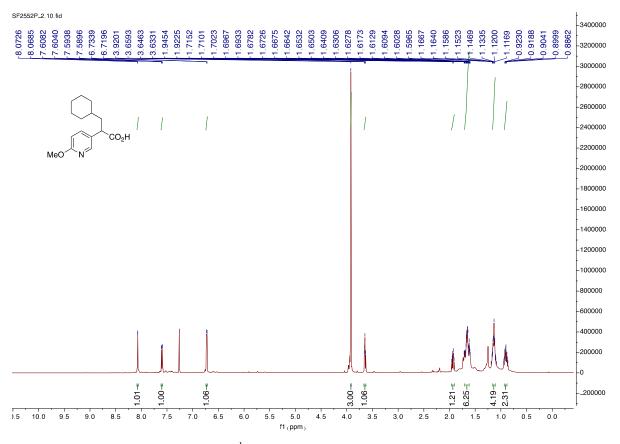

3j ¹H NMR (600 MHz, CDCl₃)

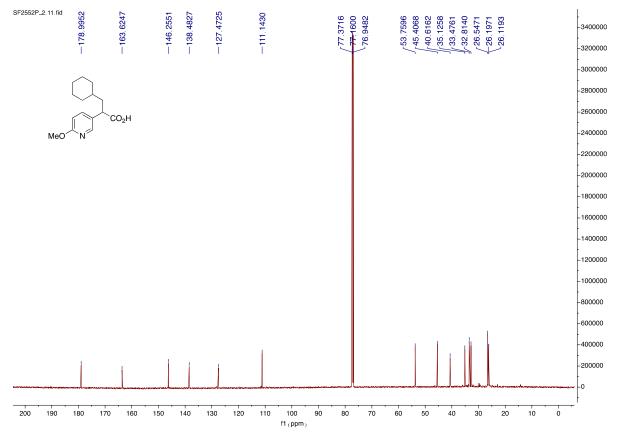

3j ¹³C NMR (151 MHz, CDCl₃)

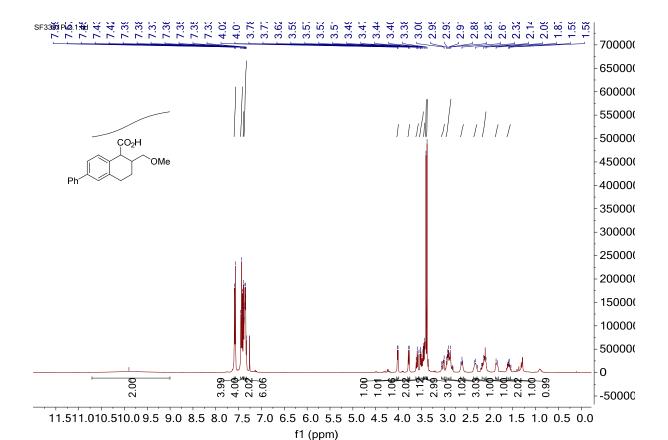

3k ¹H NMR (400 MHz, CDCl₃)

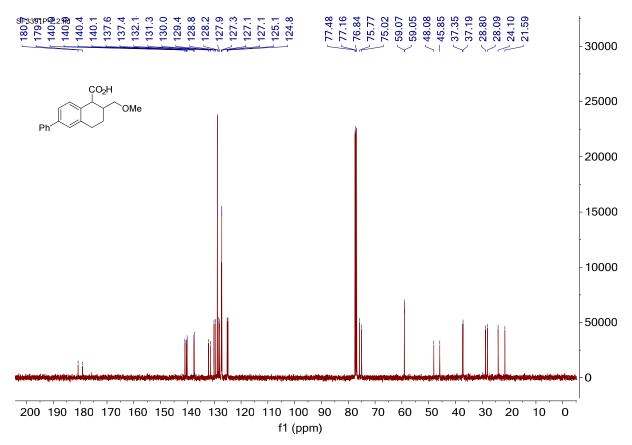

3k ¹³C NMR (101 MHz, CDCl₃)

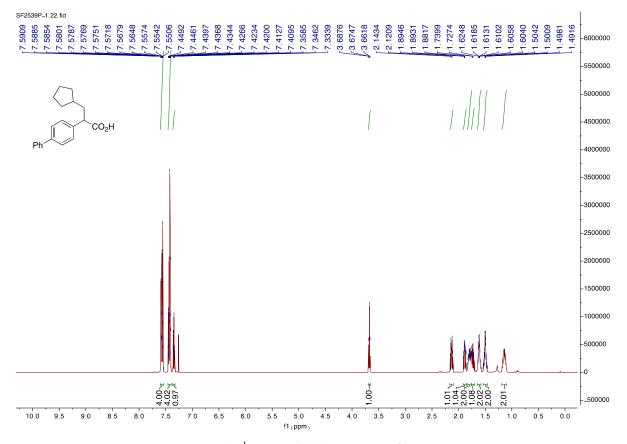

31 ¹H NMR (400 MHz, CDCl₃)

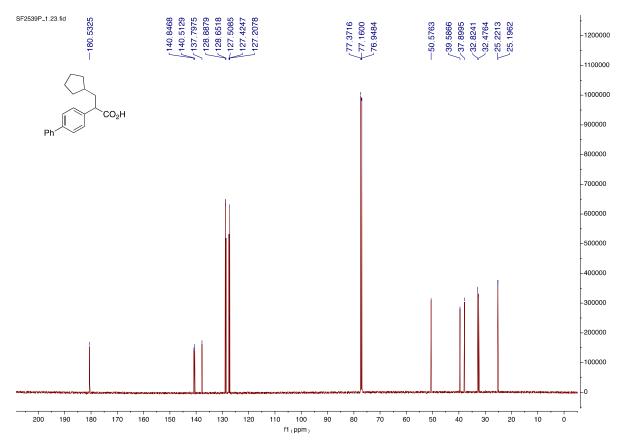

31 13C NMR (101 MHz, CDCl₃)

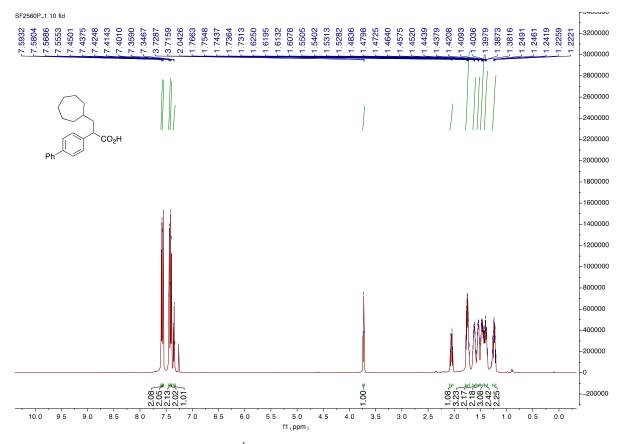

3m ¹H NMR (400 MHz, CDCl₃)

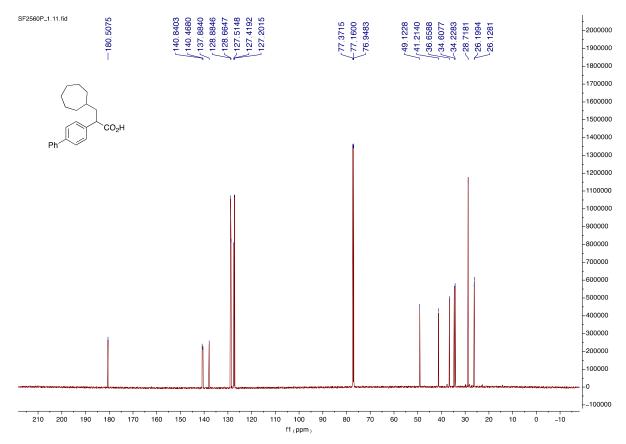

3m ¹³C NMR (101 MHz, CDCl₃)

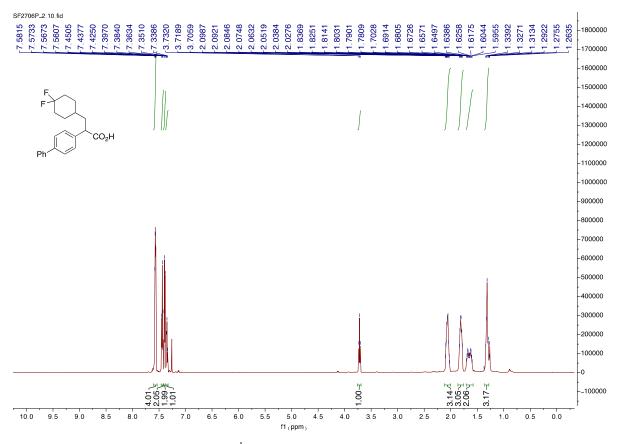

3n ¹H NMR (600 MHz, CDCl₃)

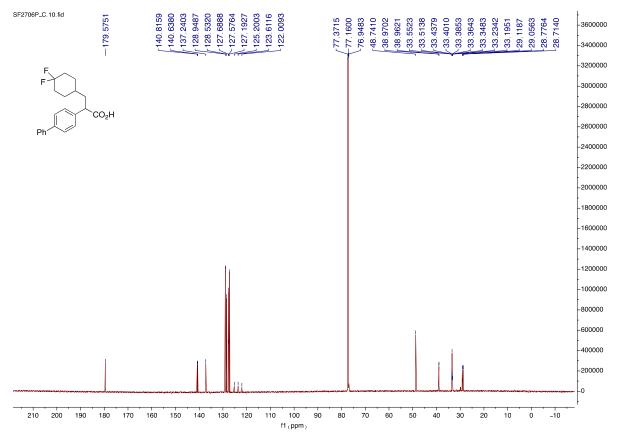

3n 13 C NMR (151 MHz, CDCl₃)

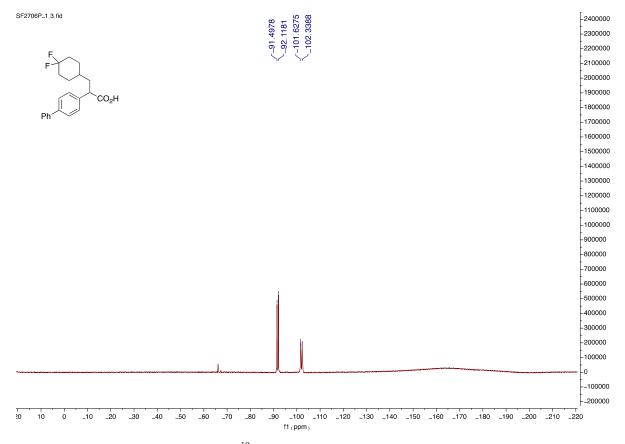

30 ¹H NMR (400 MHz, CDCl₃)

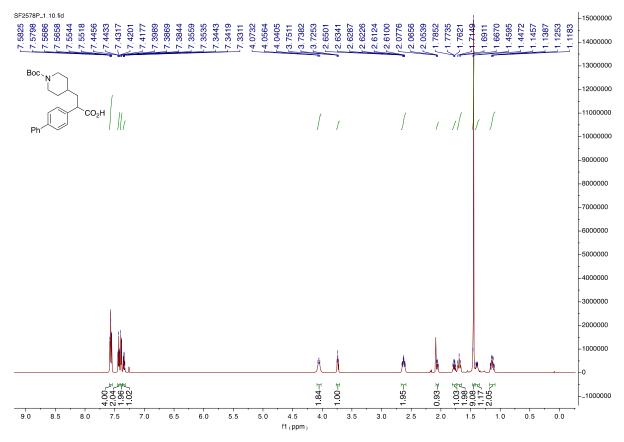

30 ¹³C NMR (101 MHz, CDCl₃)

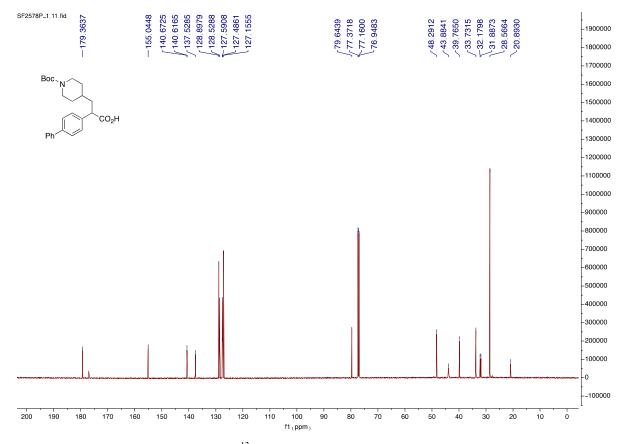

3p ¹H NMR (600 MHz, CDCl₃)

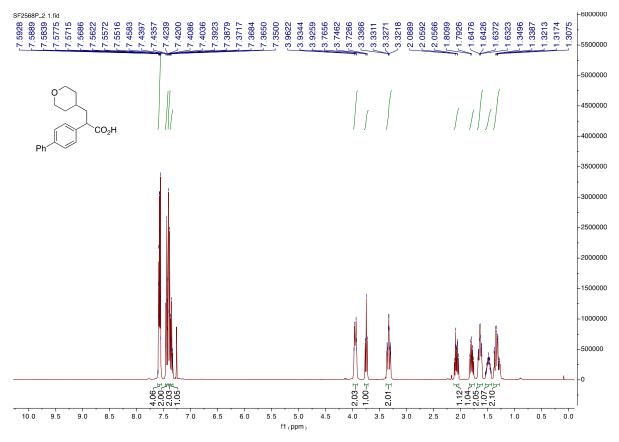

3p ¹³C NMR (151 MHz, CDCl₃)

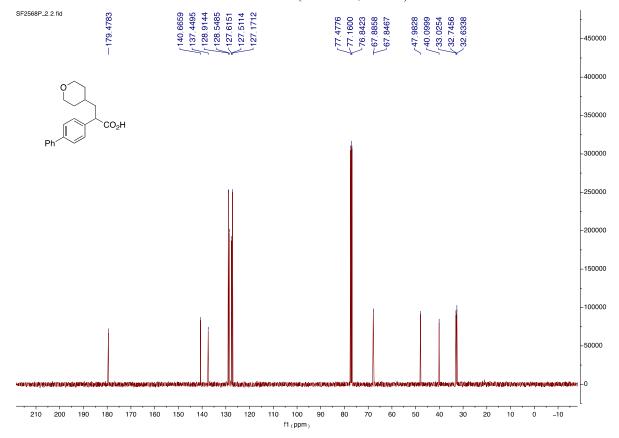

3q ¹H NMR (600 MHz, CDCl₃)

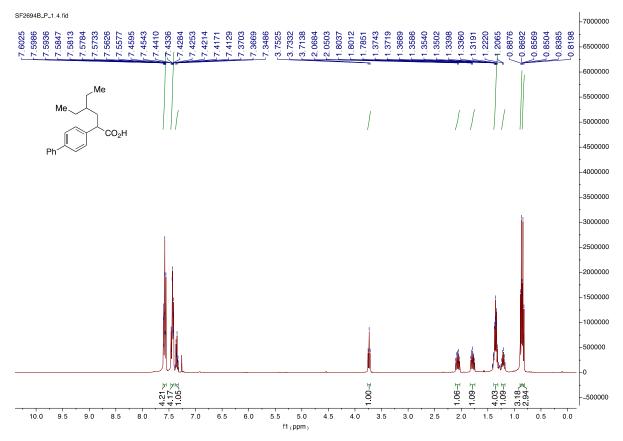

3q ¹³C NMR (151 MHz, CDCl₃)

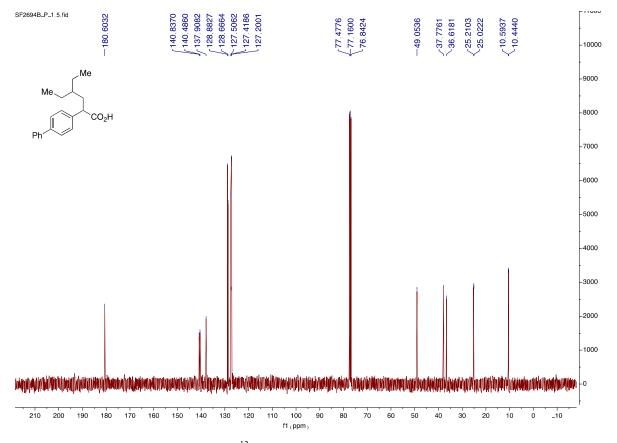

3r ¹H NMR (600 MHz, CDCl₃)

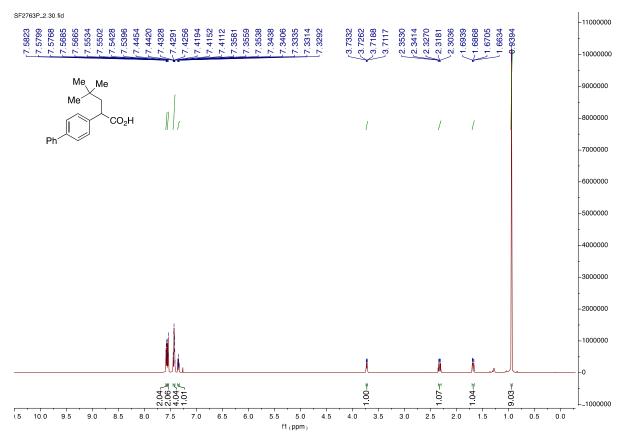

3r ¹³C NMR (151 MHz, CDCl₃)

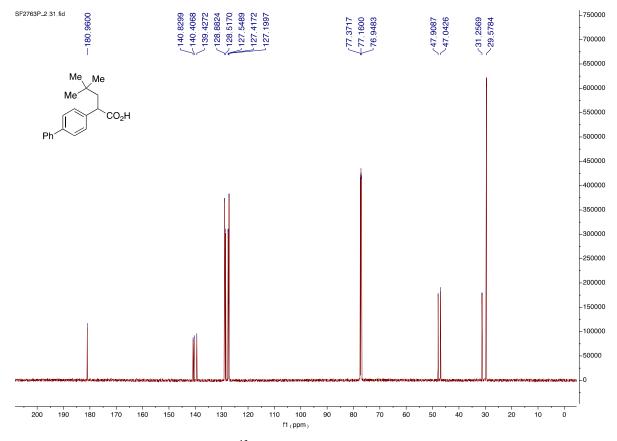

3r ¹⁹F NMR (376 MHz, CDCl₃)

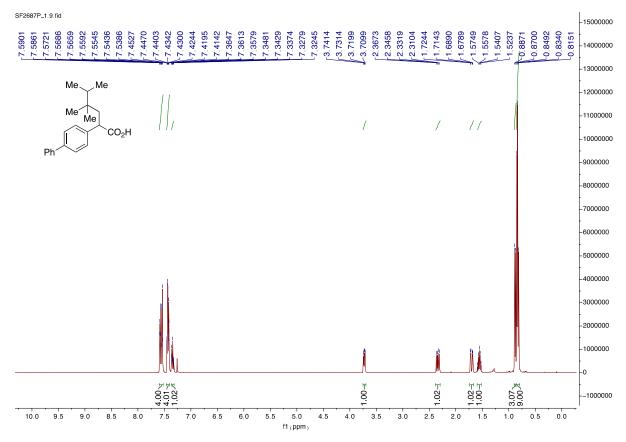

3s ¹H NMR (600 MHz, CDCl₃)

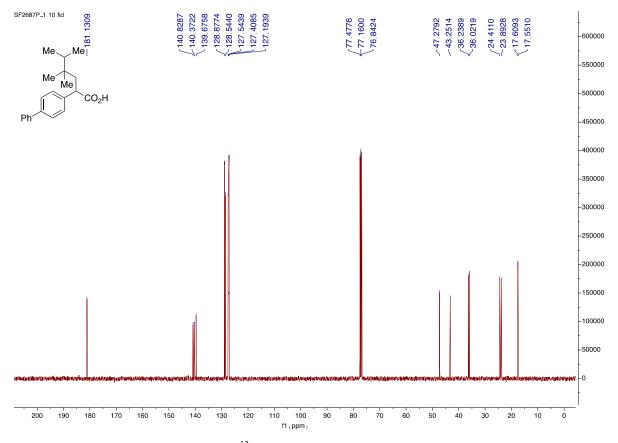

3s ¹³C NMR (151 MHz, CDCl₃)

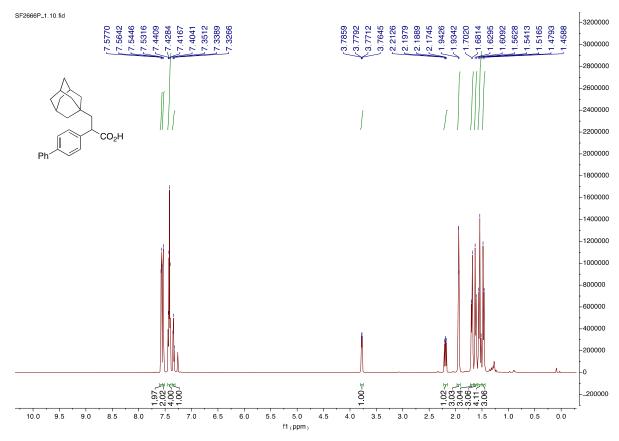


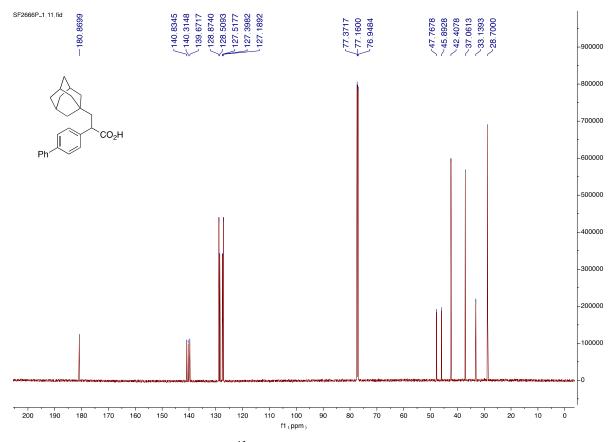

3t ¹³C NMR (101 MHz, CDCl₃)

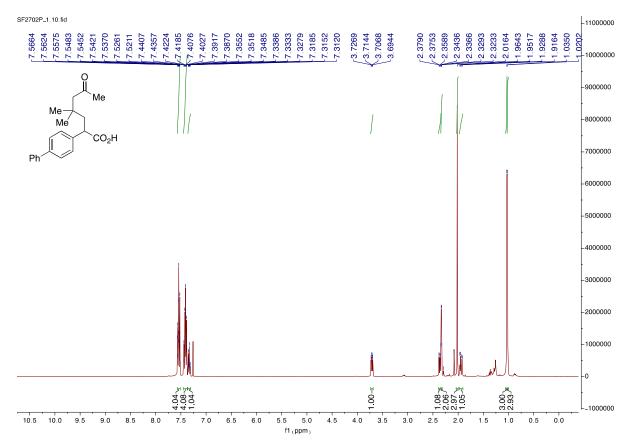

3u ¹H NMR (400 MHz, CDCl₃)

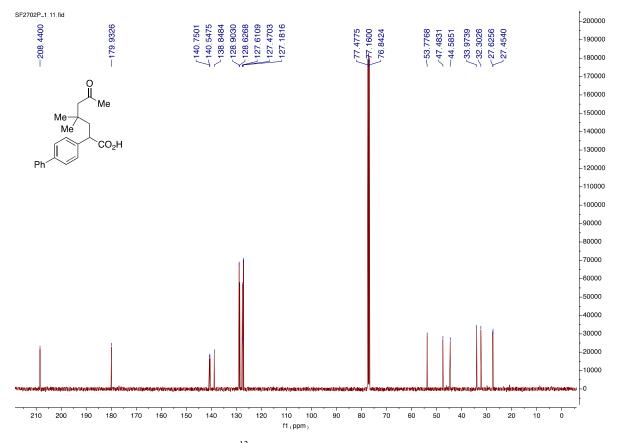

3u ¹³C NMR (101 MHz, CDCl₃)

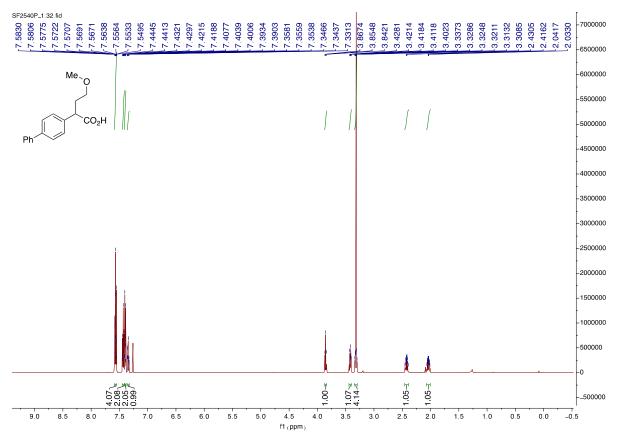

3v ¹H NMR (600 MHz, CDCl₃)

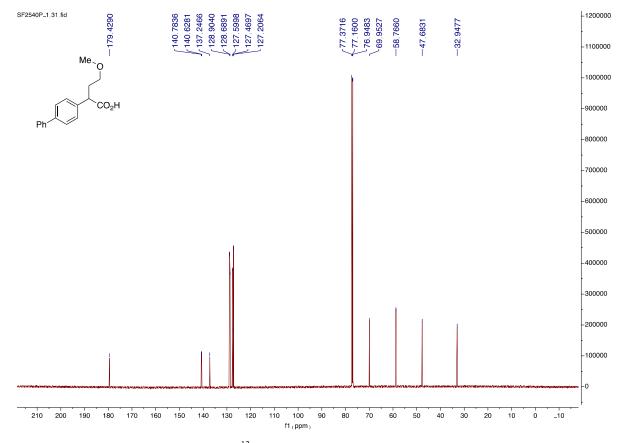

3v ¹³C NMR (151 MHz, CDCl₃)

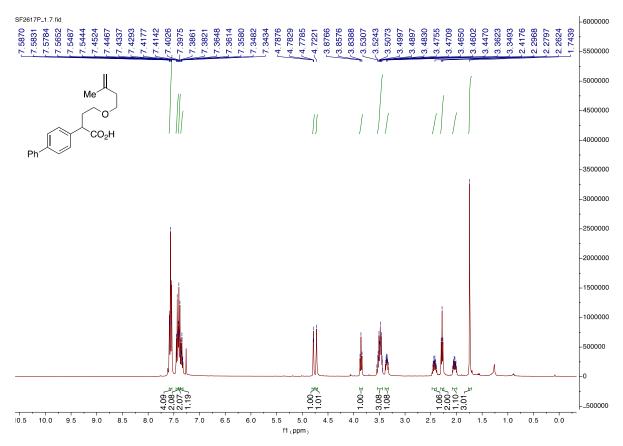

3w ¹H NMR (400 MHz, CDCl₃)

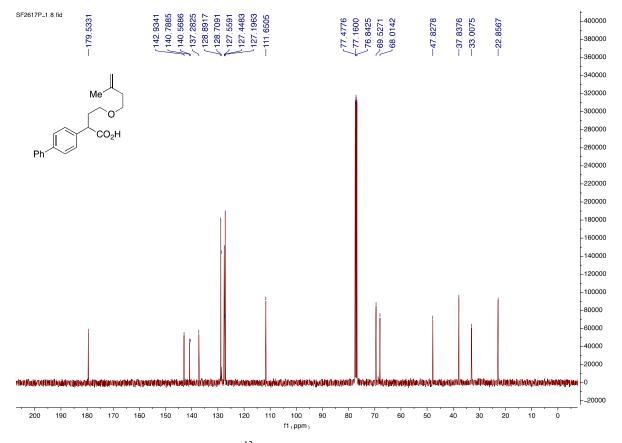

3w ¹³C NMR (101 MHz, CDCl₃)

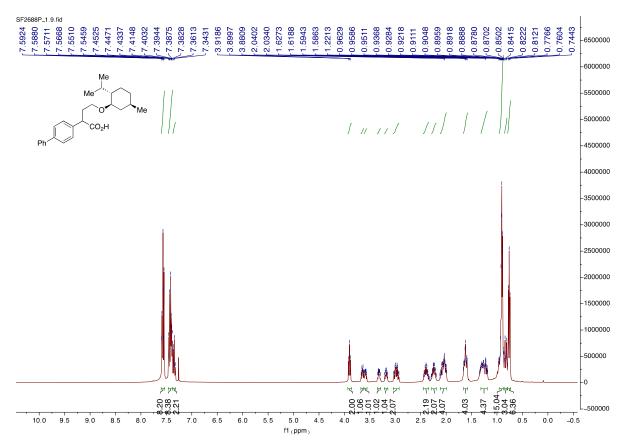

3x ¹H NMR (600 MHz, CDCl₃)

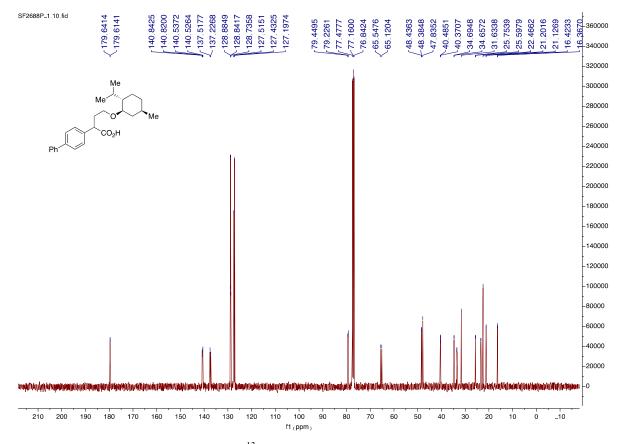

3x ¹³C NMR (151 MHz, CDCl₃)

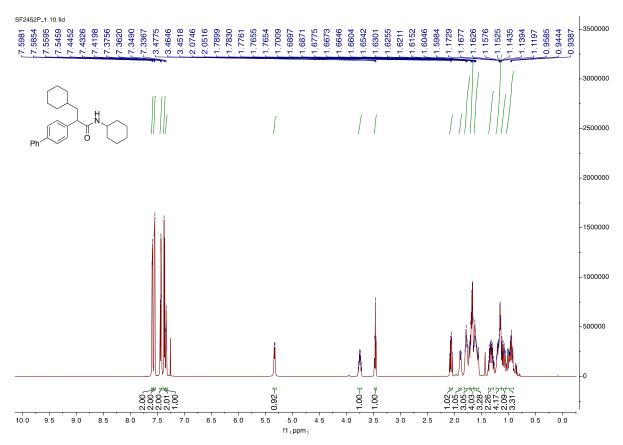

3y ¹H NMR (400 MHz, CDCl₃)

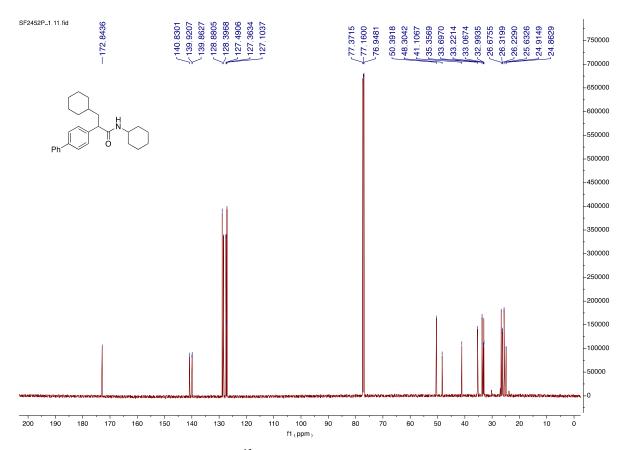

3y ¹³C NMR (101 MHz, CDCl₃)

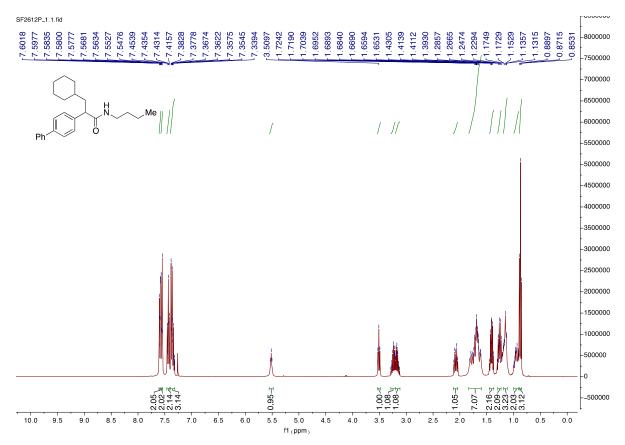

3z ¹H NMR (600 MHz, CDCl₃)

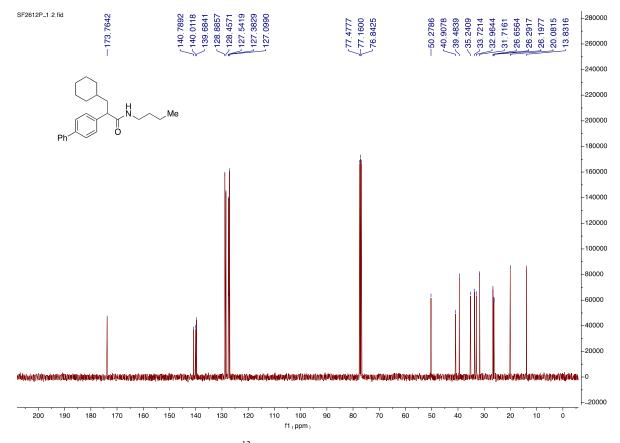

3z ¹³C NMR (151 MHz, CDCl₃)

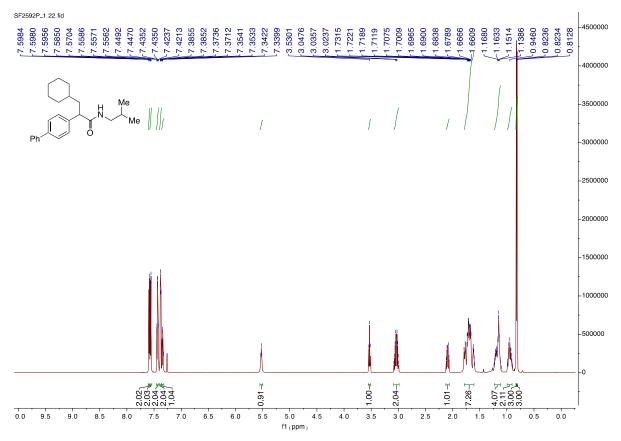

3aa ¹H NMR (400 MHz, CDCl₃)

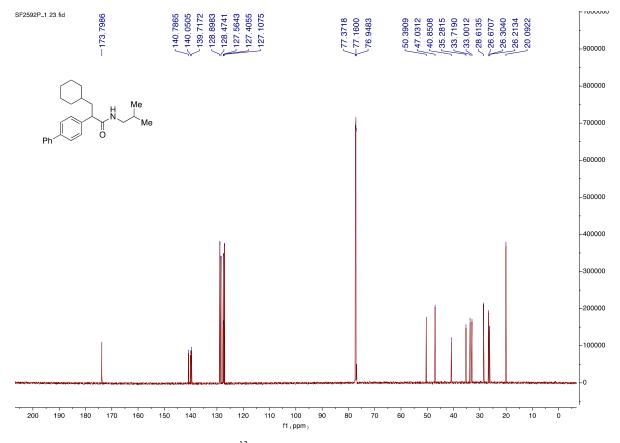

3aa ¹³C NMR (101 MHz, CDCl₃)

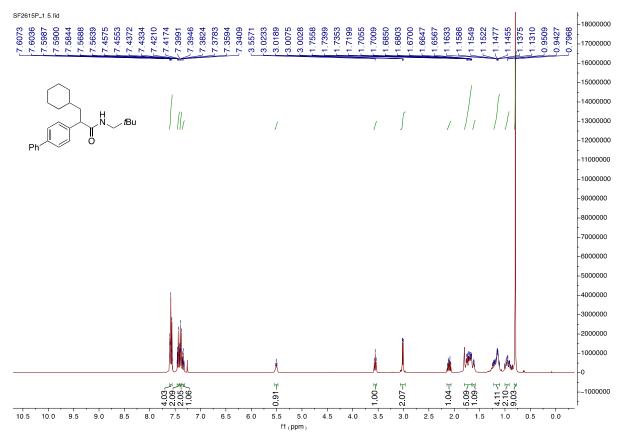

3ab ¹H NMR (400 MHz, CDCl₃)

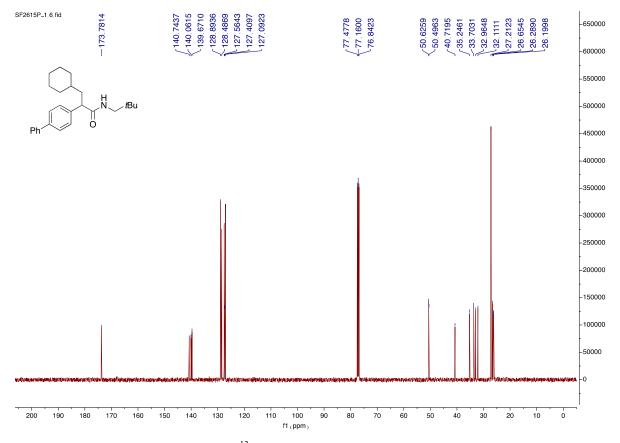

3ab ¹³C NMR (101 MHz, CDCl₃)

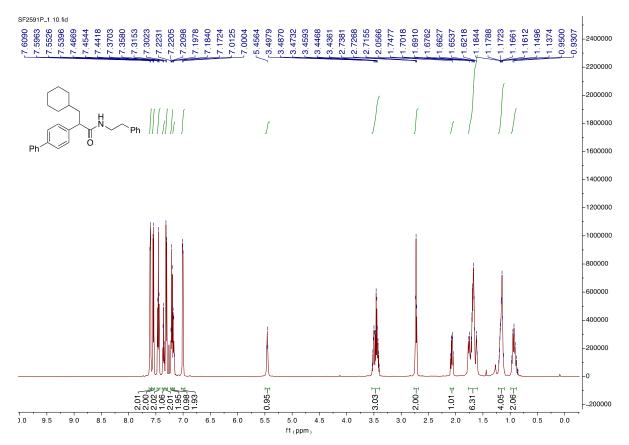

5a ¹H NMR (600 MHz, CDCl₃)

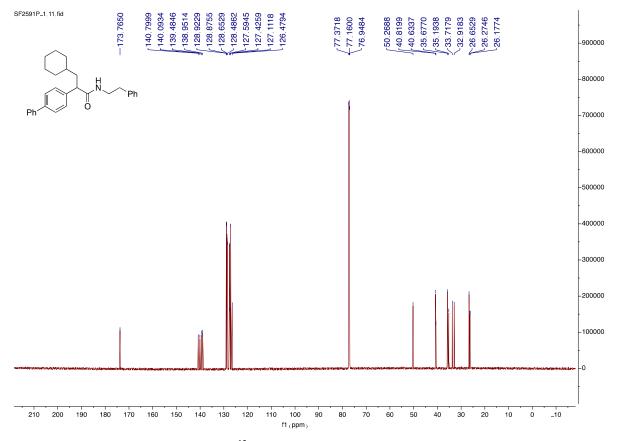

5a ¹³C NMR (151 MHz, CDCl₃)

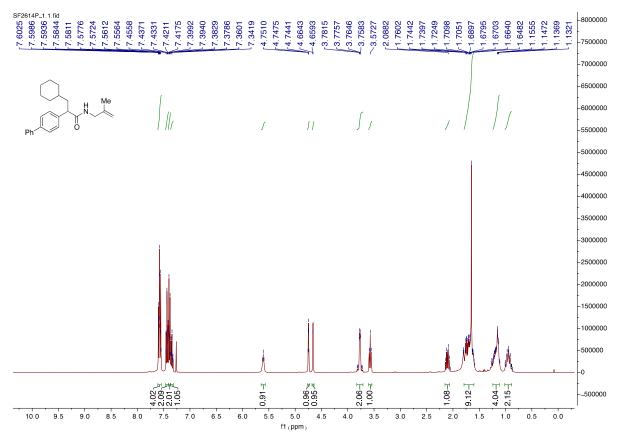

5b ¹H NMR (400 MHz, CDCl₃)

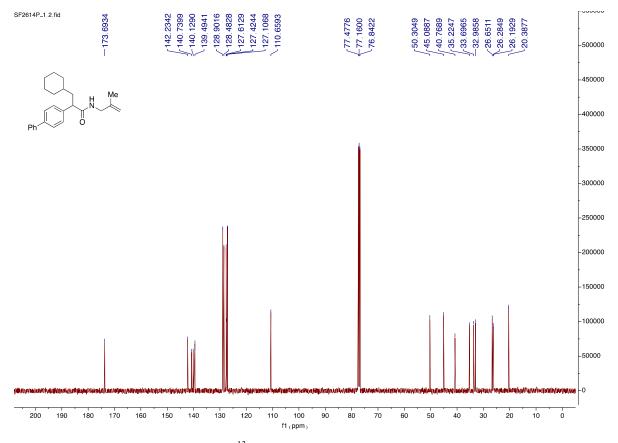

5b ¹³C NMR (101 MHz, CDCl₃)

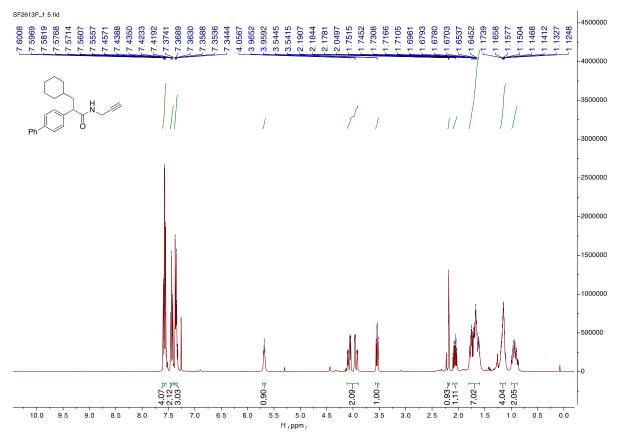

5c ¹H NMR (600 MHz, CDCl₃)

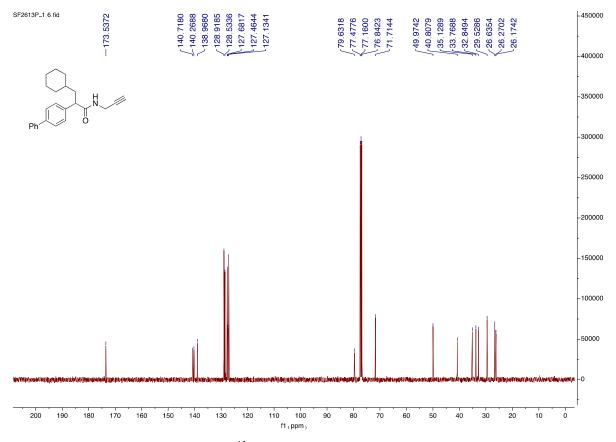

5c ¹³C NMR (151 MHz, CDCl₃)

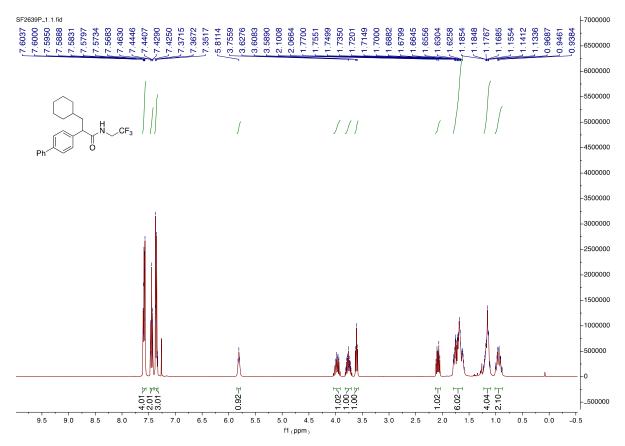

5d ¹H NMR (400 MHz, CDCl₃)

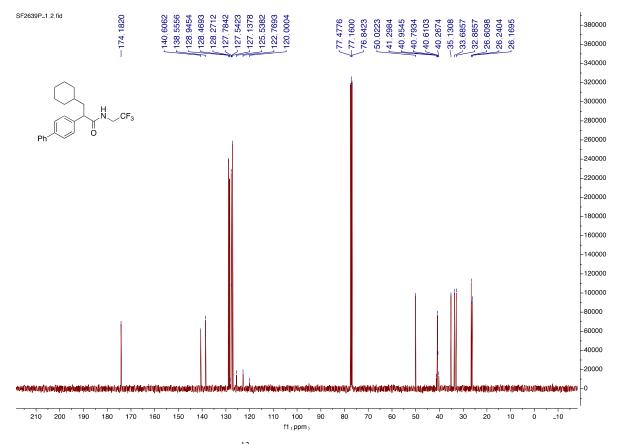

5d ¹³C NMR (101 MHz, CDCl₃)

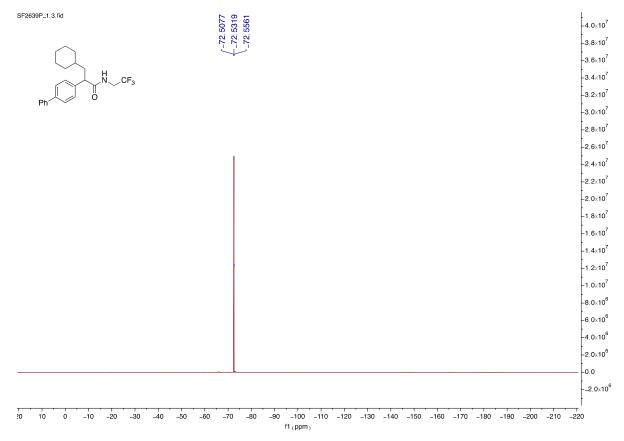

5e ¹H NMR (600 MHz, CDCl₃)

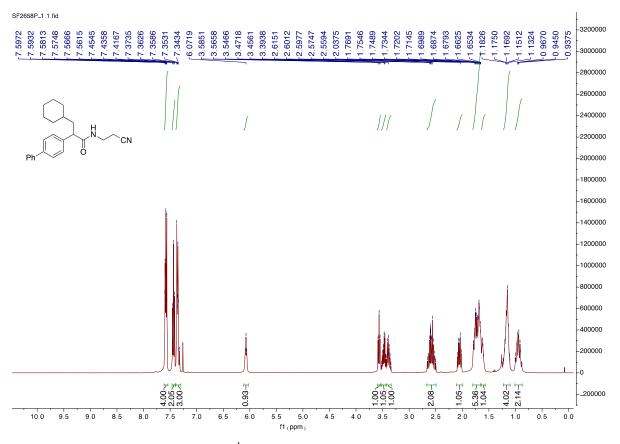

5e ¹³C NMR (151 MHz, CDCl₃)

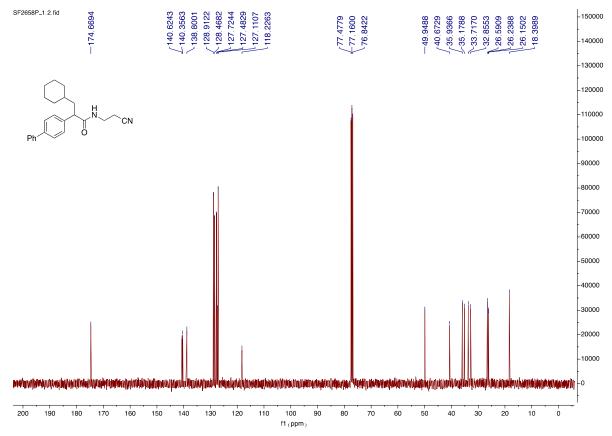

5f ¹H NMR (400 MHz, CDCl₃)

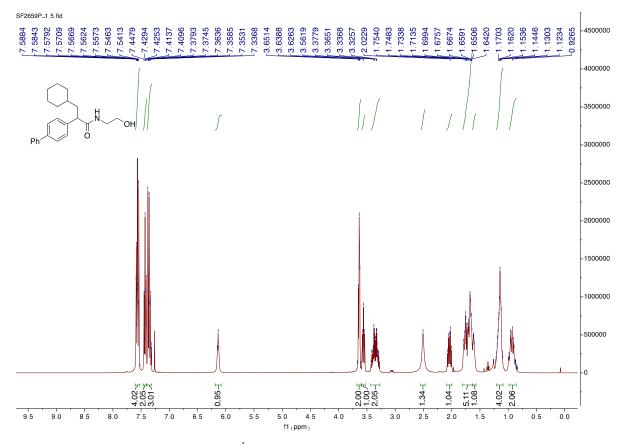

5f ¹³C NMR (101 MHz, CDCl₃)

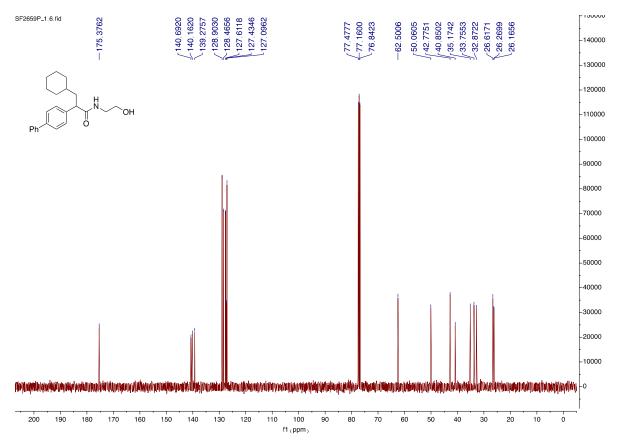

5g ¹H NMR (400 MHz, CDCl₃)

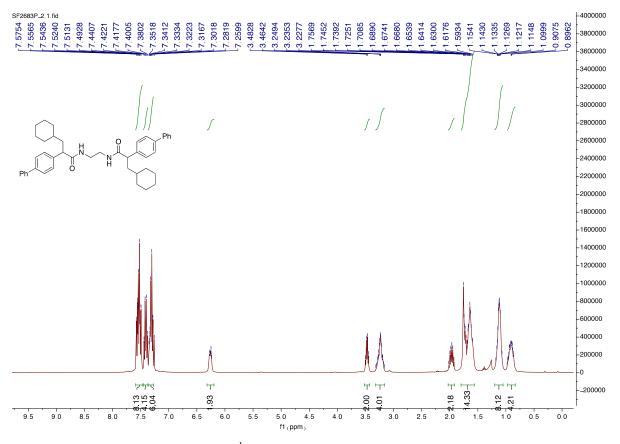

5g ¹³C NMR (101 MHz, CDCl₃)

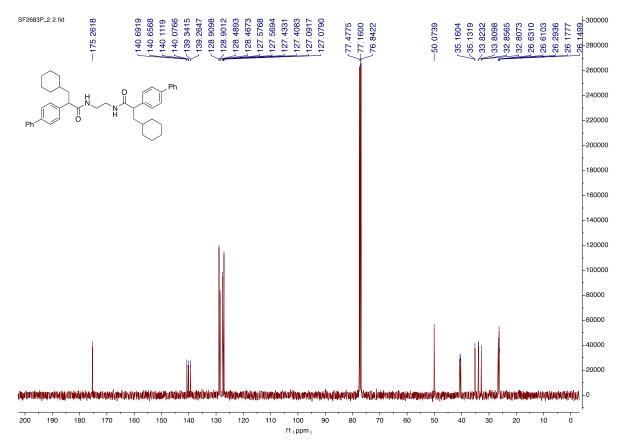

5h ¹H NMR (400 MHz, CDCl₃)

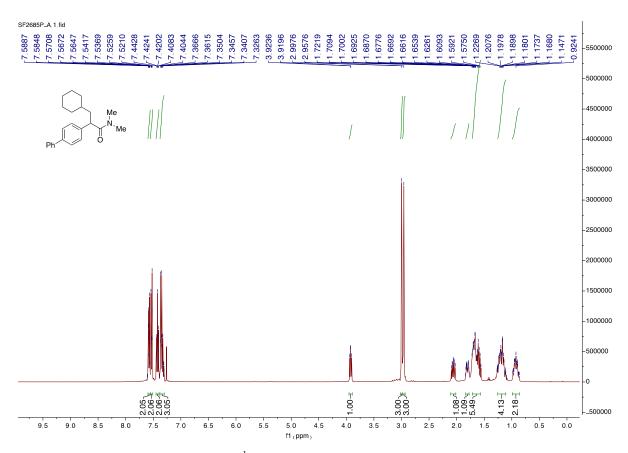

5h ¹³C NMR (101 MHz, CDCl₃)


5h ¹⁹F NMR (376 MHz, CDCl₃)

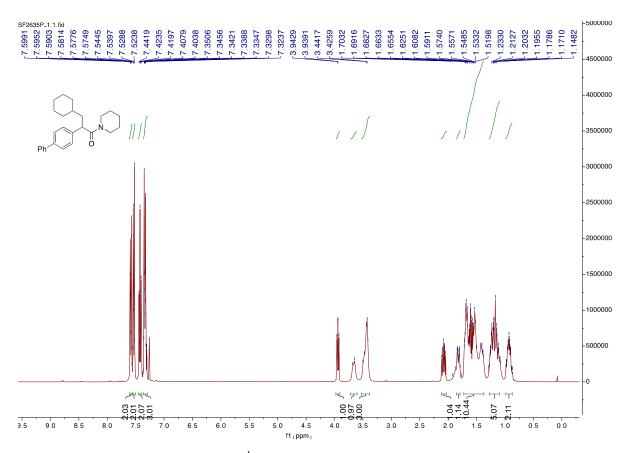

5i ¹H NMR (400 MHz, CDCl₃)

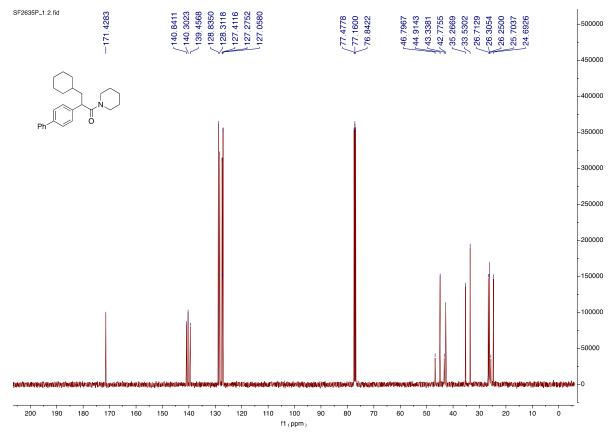

5i ¹³C NMR (101 MHz, CDCl₃)

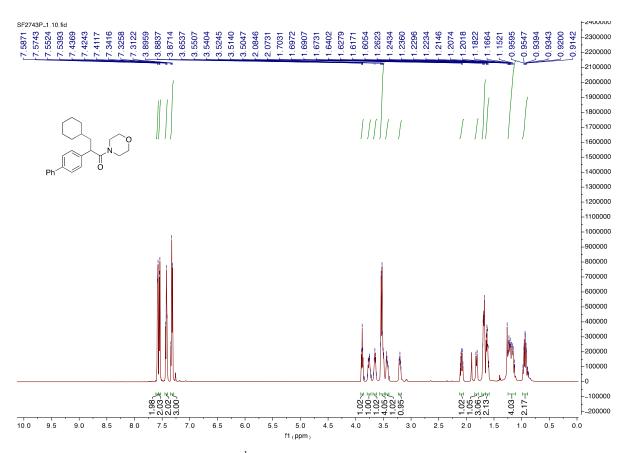

5j ¹H NMR (400 MHz, CDCl₃)

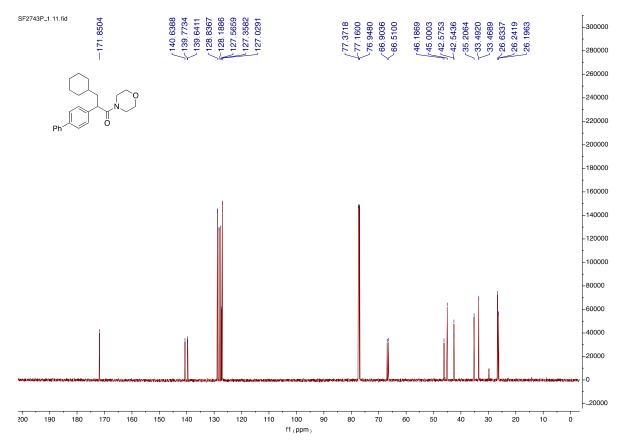

5j ¹³C NMR (101 MHz, CDCl₃)

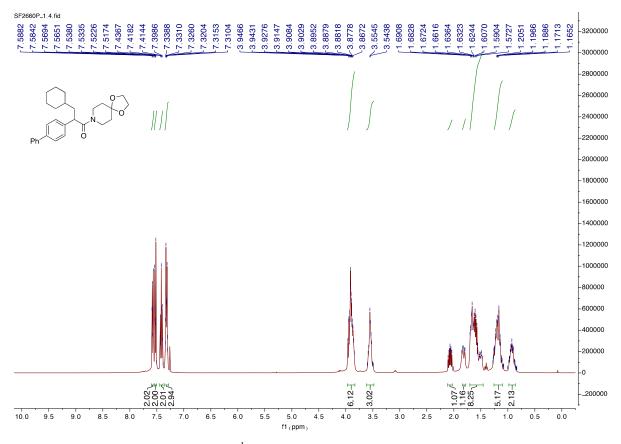

5k ¹H NMR (400 MHz, CDCl₃)

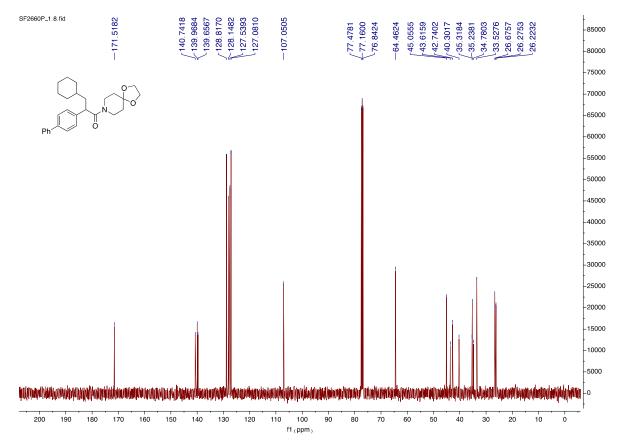

5k ¹³C NMR (101 MHz, CDCl₃)

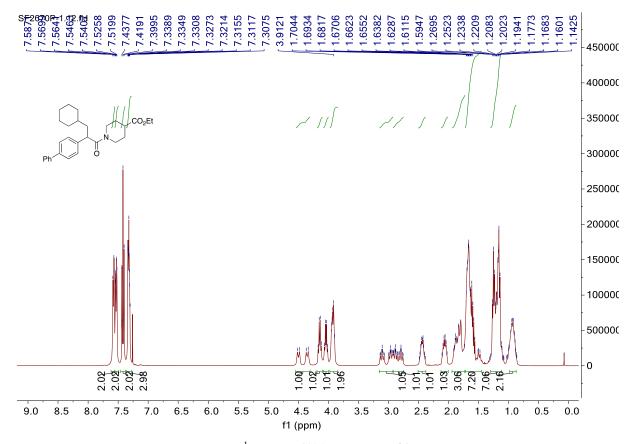

51 ¹H NMR (400 MHz, CDCl₃)

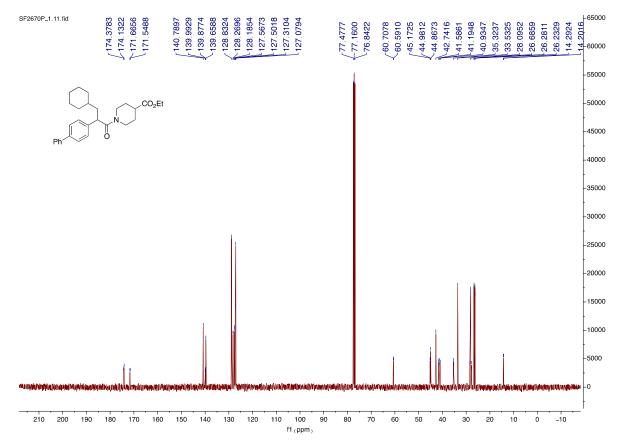

5l ¹³C NMR (101 MHz, CDCl₃)

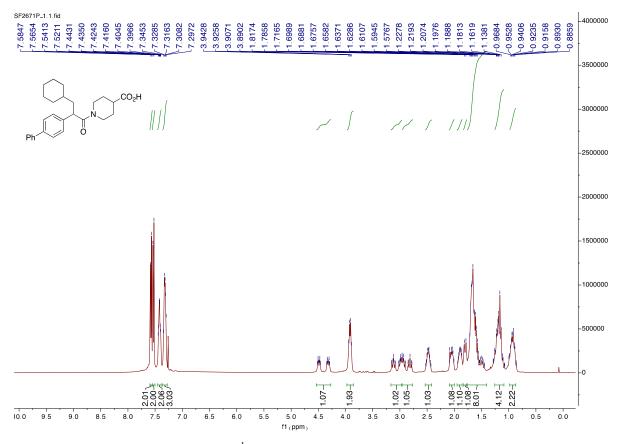

5m ¹H NMR (400 MHz, CDCl₃)

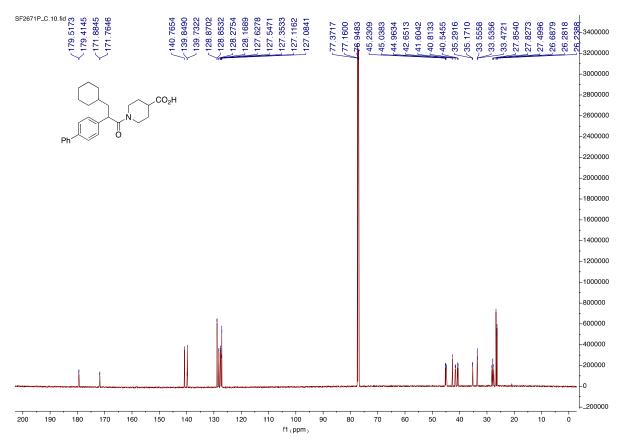

5m ^{13}C NMR (101 MHz, CDCl₃)

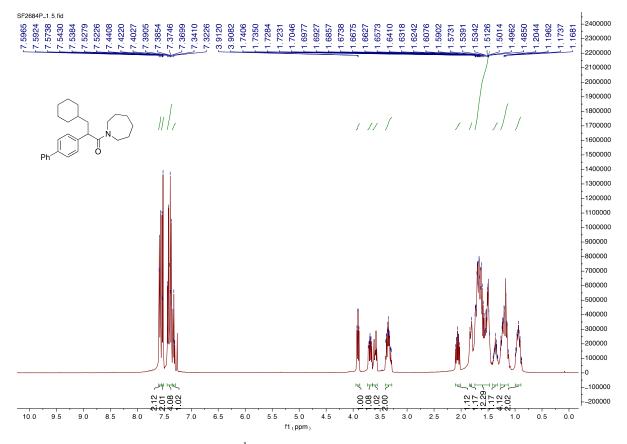

5n ¹H NMR (600 MHz, CDCl₃)

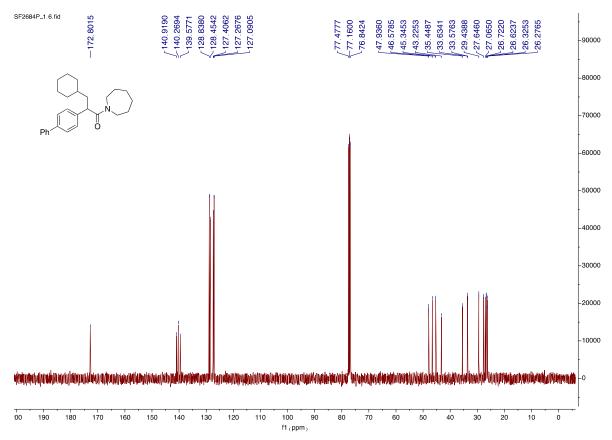

5n ¹³C NMR (151 MHz, CDCl₃)

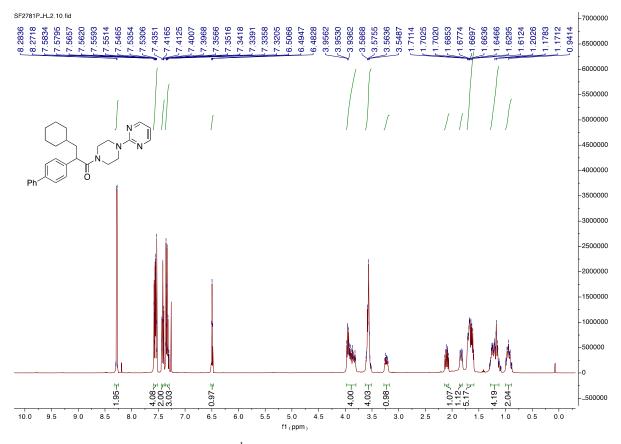

50 ¹H NMR (400 MHz, CDCl₃)

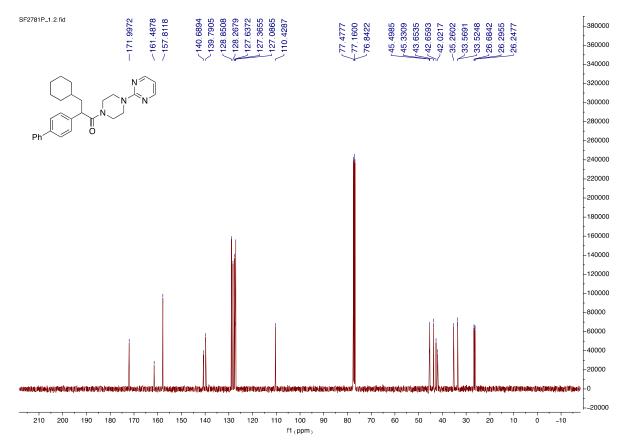

50 ¹³C NMR (101 MHz, CDCl₃)

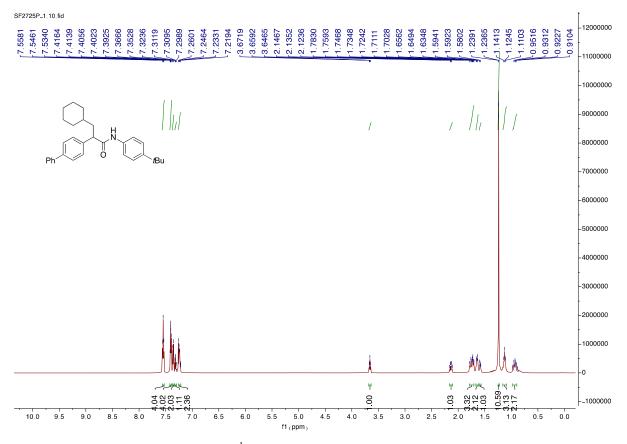

5p ¹H NMR (400 MHz, CDCl₃)

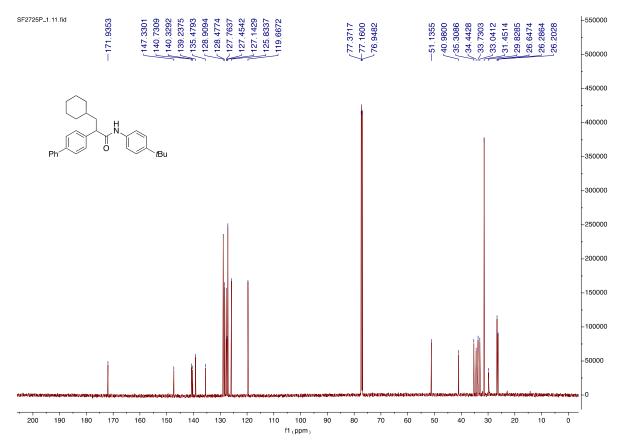

5p ¹³C NMR (101 MHz, CDCl₃)

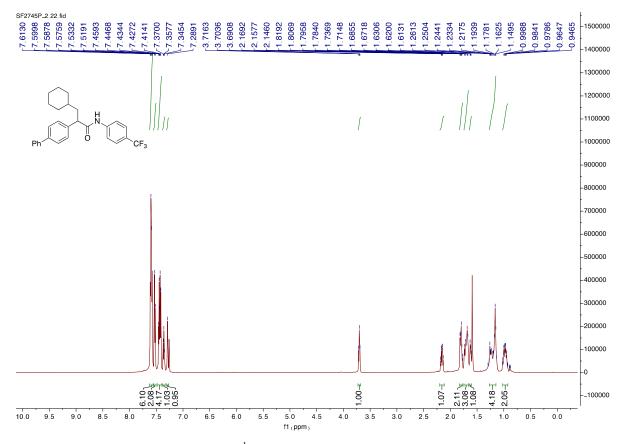

5q ¹H NMR (400 MHz, CDCl₃)

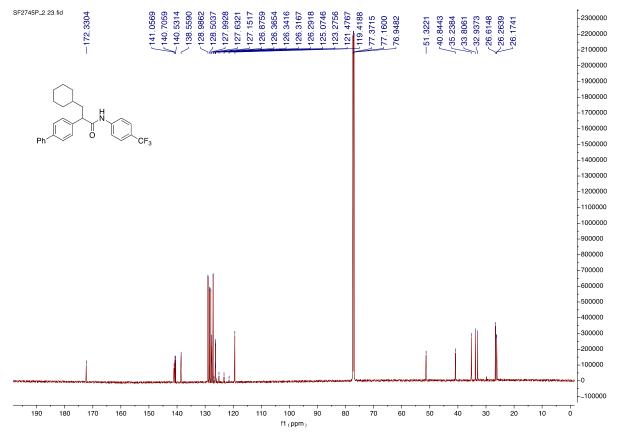

5q ¹³C NMR (151 MHz, CDCl₃)

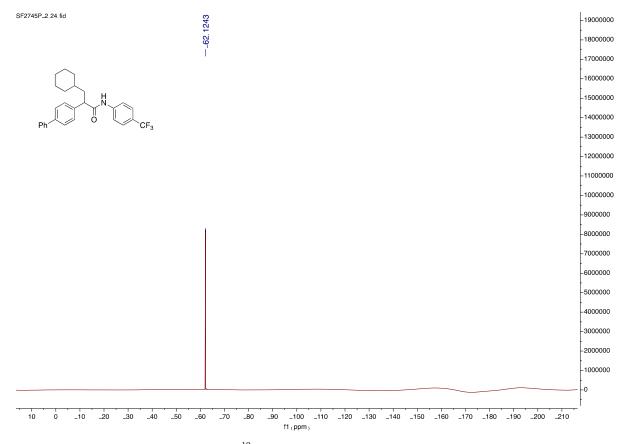

5r ¹H NMR (400 MHz, CDCl₃)

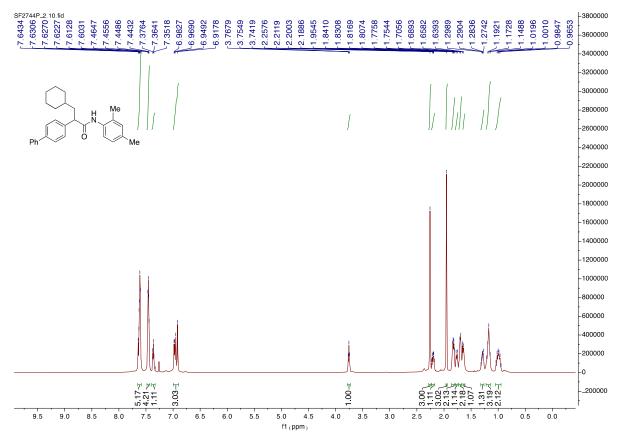

5r ¹³C NMR (101 MHz, CDCl₃)

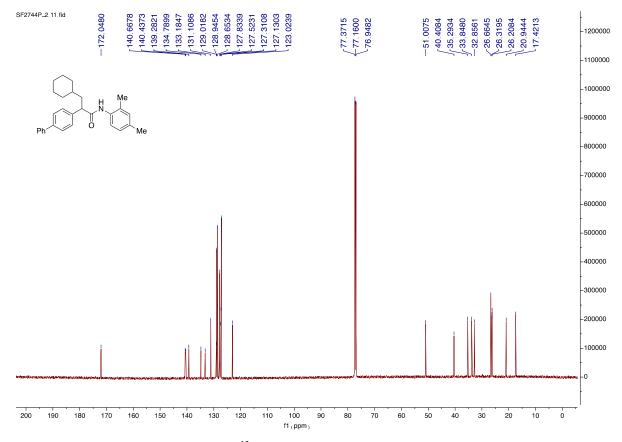

5s ¹H NMR (400 MHz, CDCl₃)

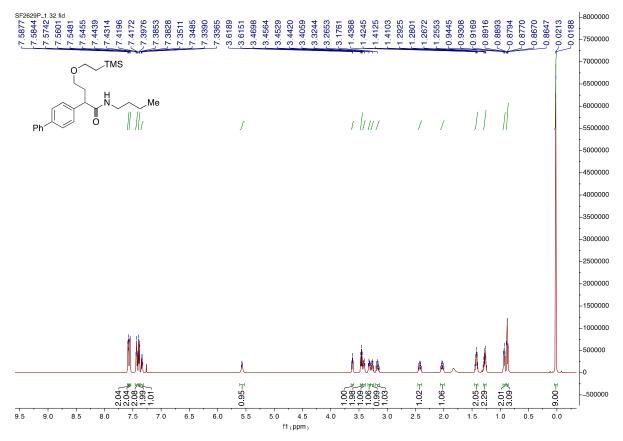

5s ¹³C NMR (101 MHz, CDCl₃)

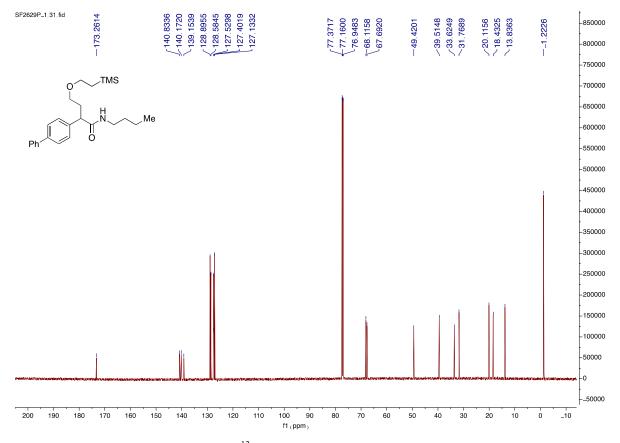

5t ¹H NMR (600 MHz, CDCl₃)

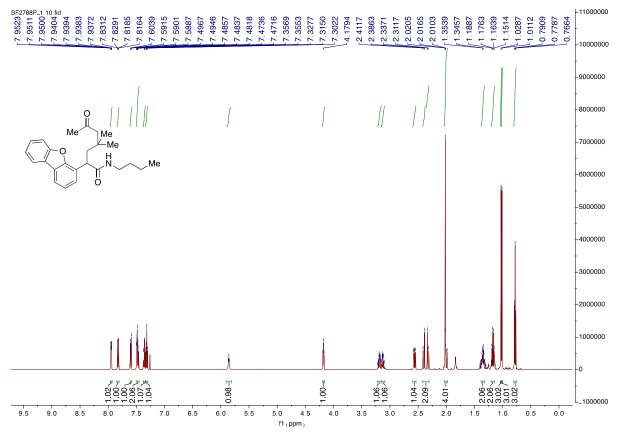

5t ¹³C NMR (151 MHz, CDCl₃)

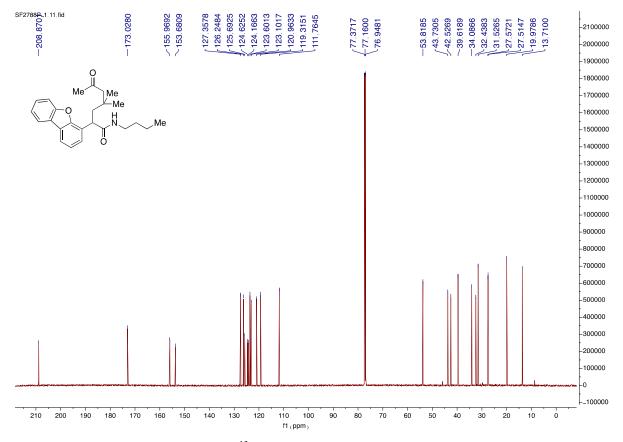

5u ¹H NMR (600 MHz, CDCl₃)

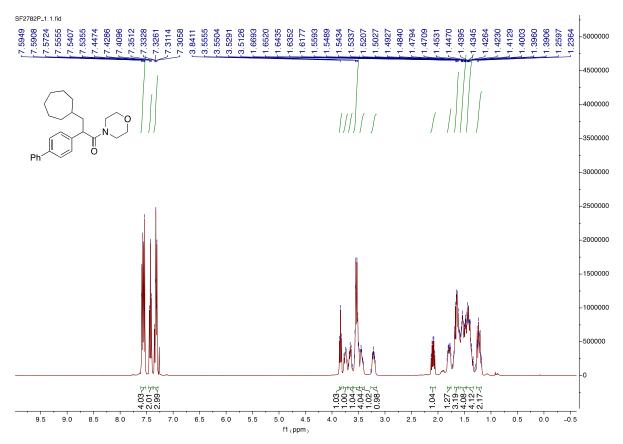

5u ¹³C NMR (151 MHz, CDCl₃)

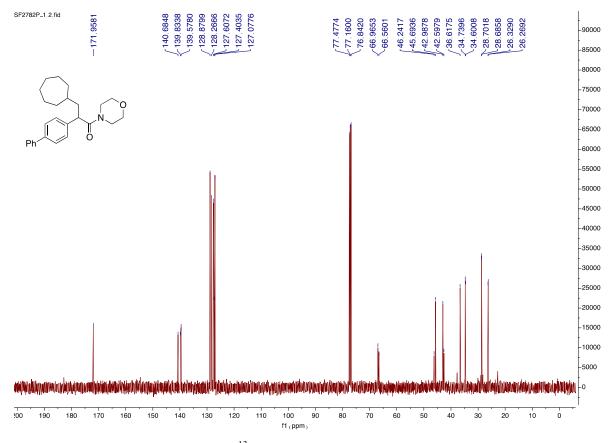

5u ¹⁹F NMR (565 MHz, CDCl₃)

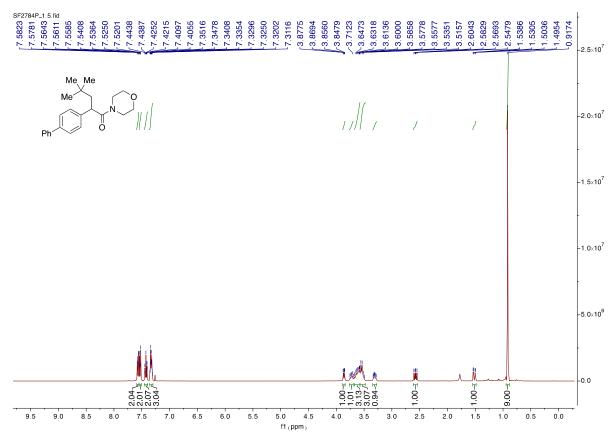

5v ¹H NMR (600 MHz, CDCl₃)

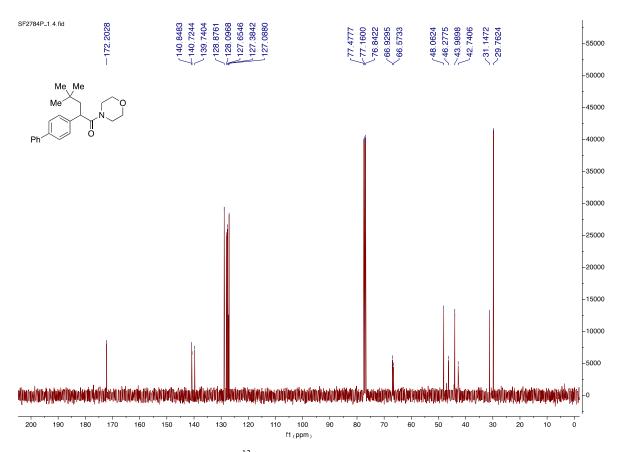

5v ¹³C NMR (151 MHz, CDCl₃)

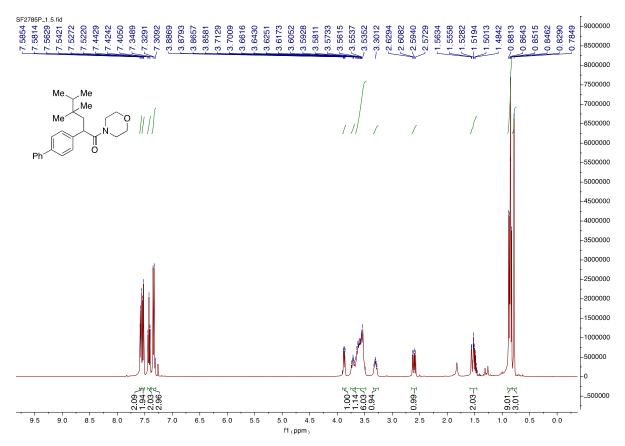

5w ¹H NMR (600 MHz, CDCl₃)

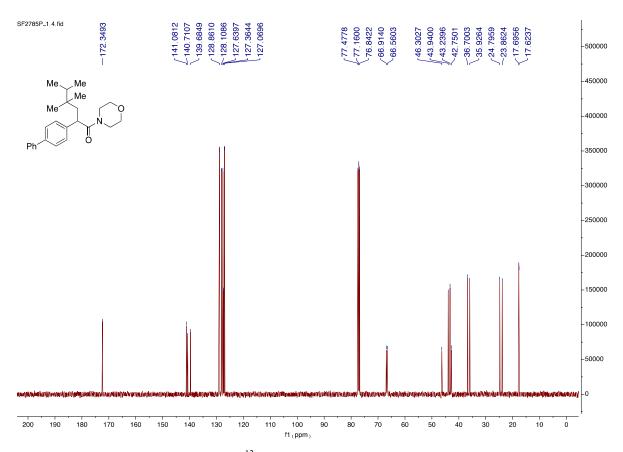

5w ¹³C NMR (151 MHz, CDCl₃)

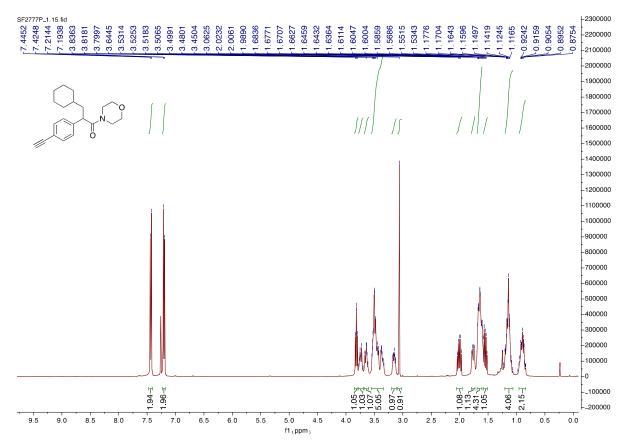

5x ¹H NMR (600 MHz, CDCl₃)

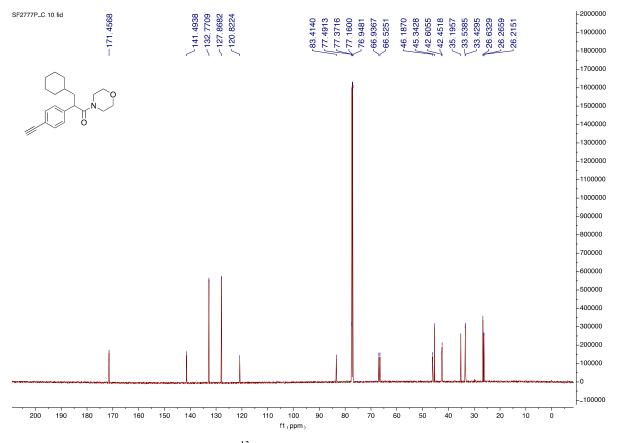

5x ¹³C NMR (151 MHz, CDCl₃)

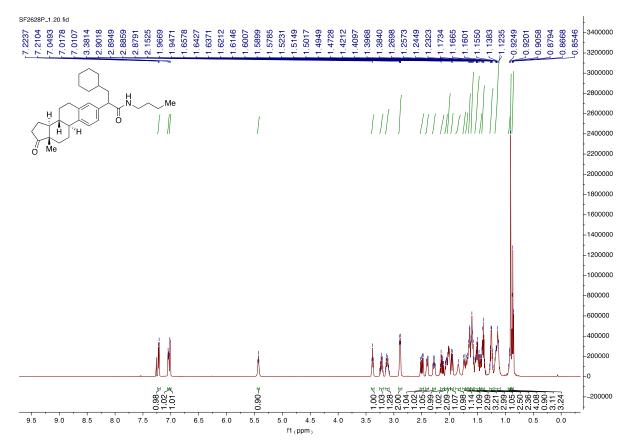

5y ¹H NMR (400 MHz, CDCl₃)

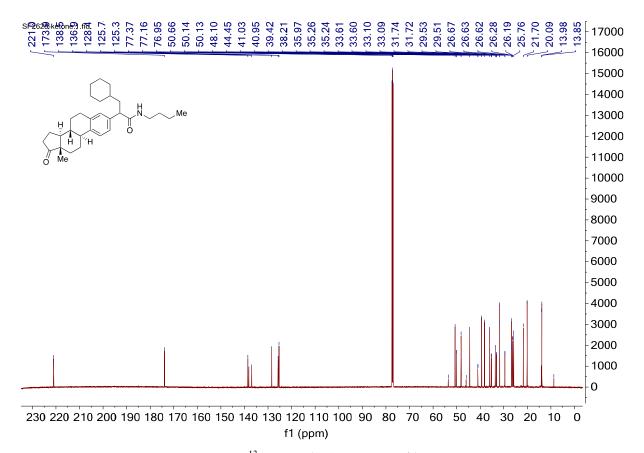

5y ¹³C NMR (101 MHz, CDCl₃)

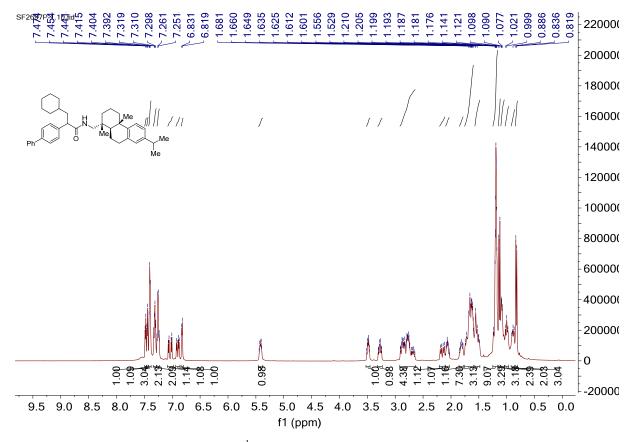

5z ¹H NMR (400 MHz, CDCl₃)

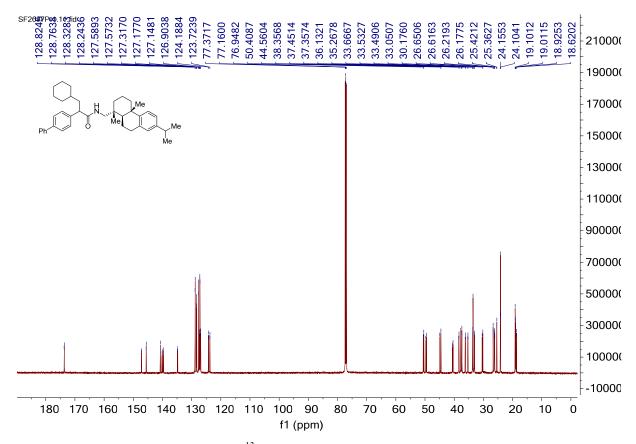

5z ¹³C NMR (101 MHz, CDCl₃)

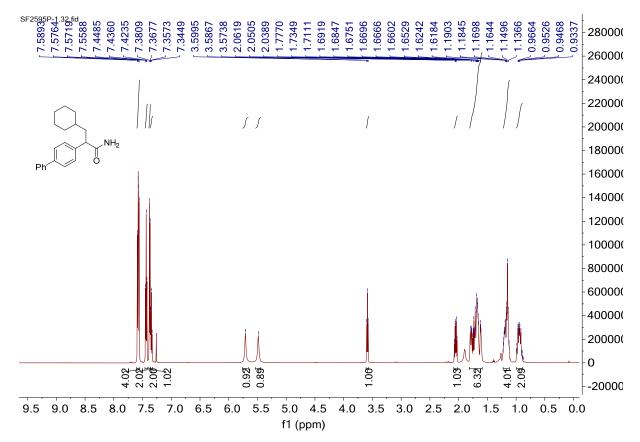

5aa ¹H NMR (400 MHz, CDCl₃)

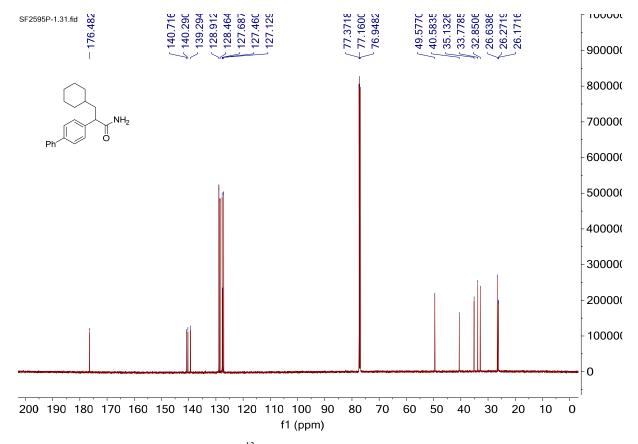

5aa ¹³C NMR (101 MHz, CDCl₃)

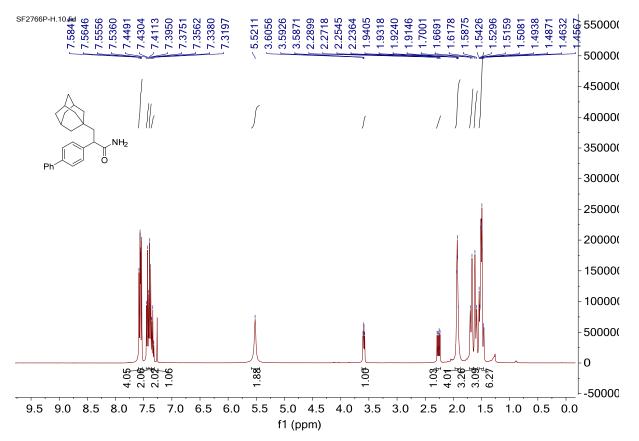

5ab ¹H NMR (400 MHz, CDCl₃)

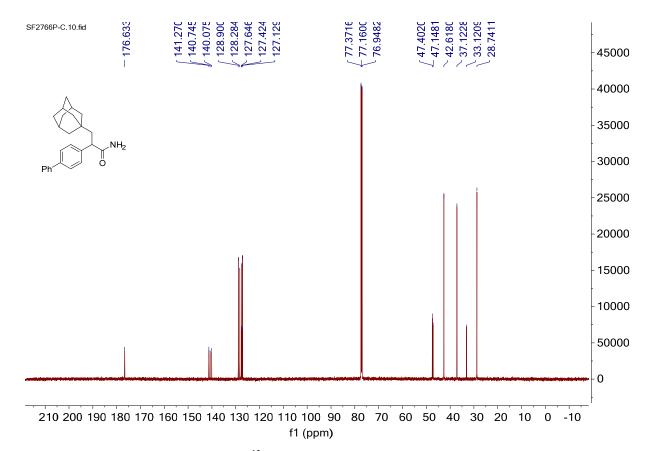

5ab ¹³C NMR (151 MHz, CDCl₃)

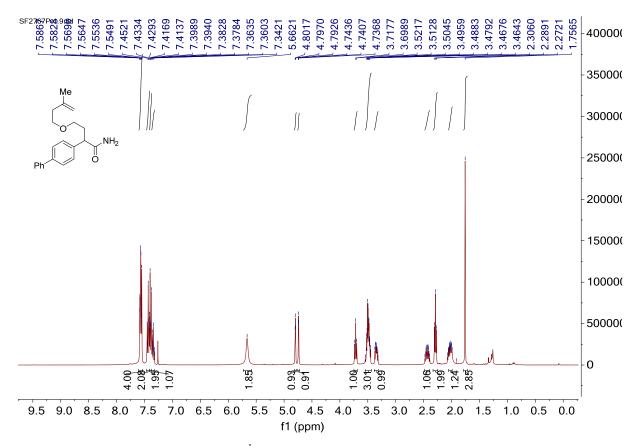

5ac ¹H NMR (600 MHz, CDCl₃)

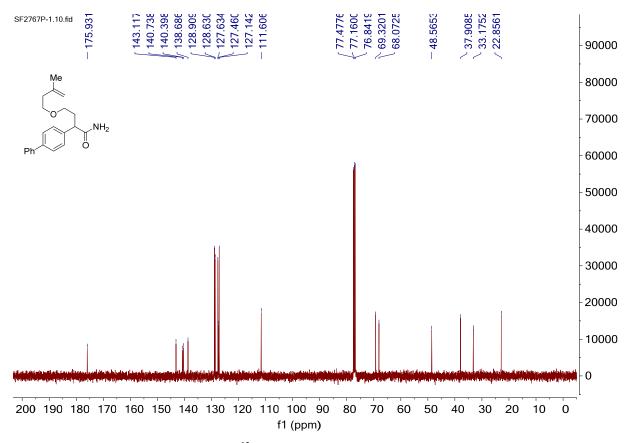

5ac ¹³C NMR (151 MHz, CDCl₃)

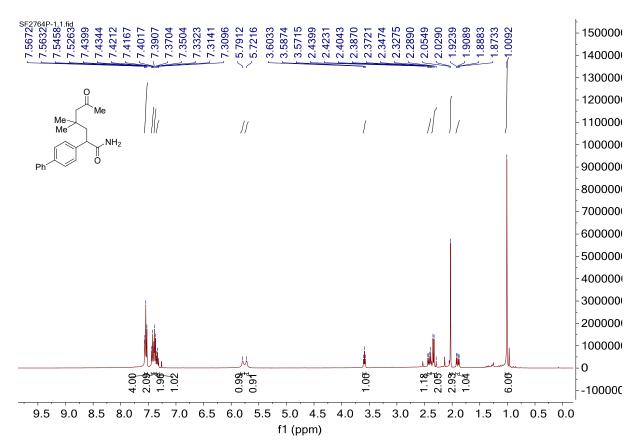

5ad ¹H NMR (600 MHz, CDCl₃)

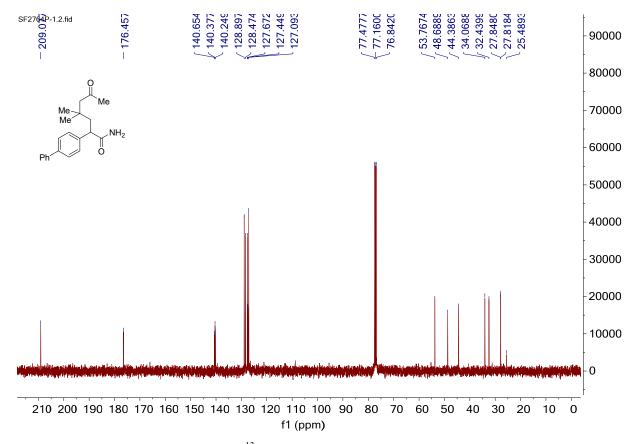

5ad ¹³C NMR (151 MHz, CDCl₃)

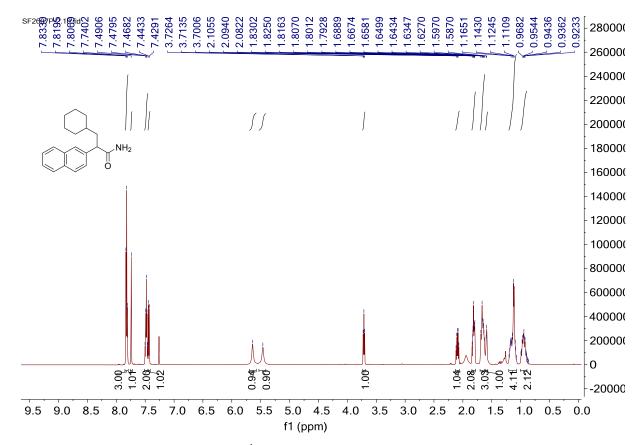

5ae ¹H NMR (600 MHz, CDCl₃)

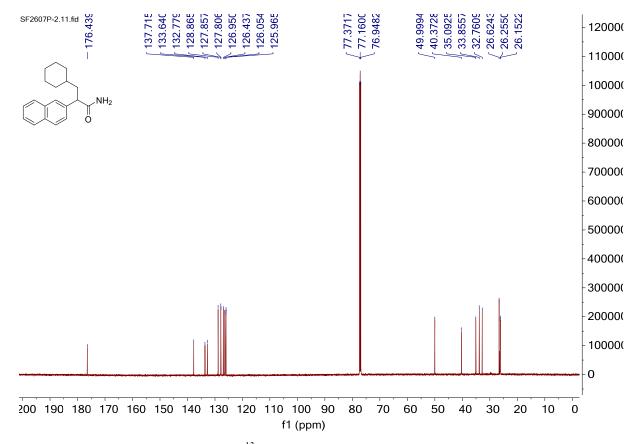

5ae ¹³C NMR (151 MHz, CDCl₃)

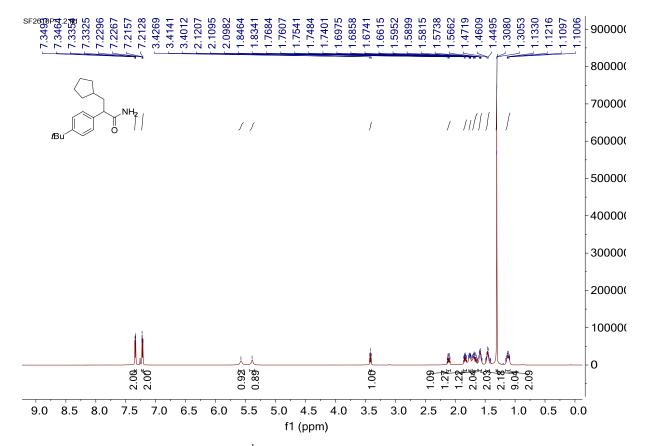

5af ¹H NMR (400 MHz, CDCl₃)

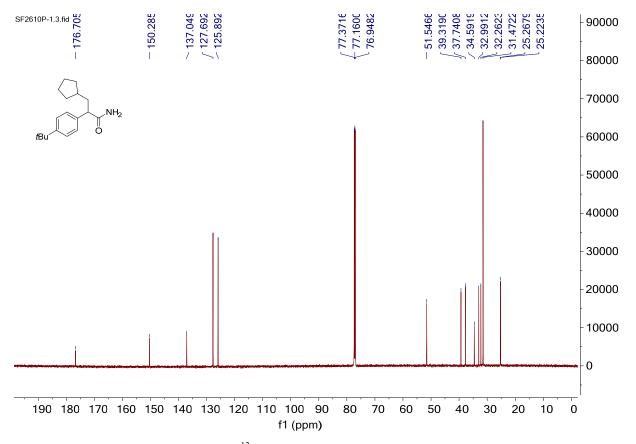

5af ¹³C NMR (151 MHz, CDCl₃)

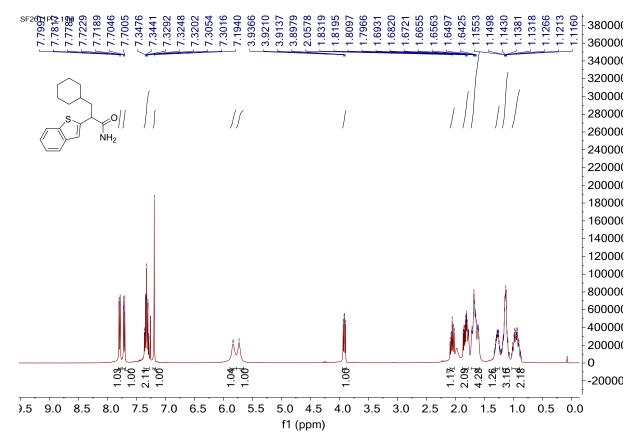

5ag ¹H NMR (400 MHz, CDCl₃)

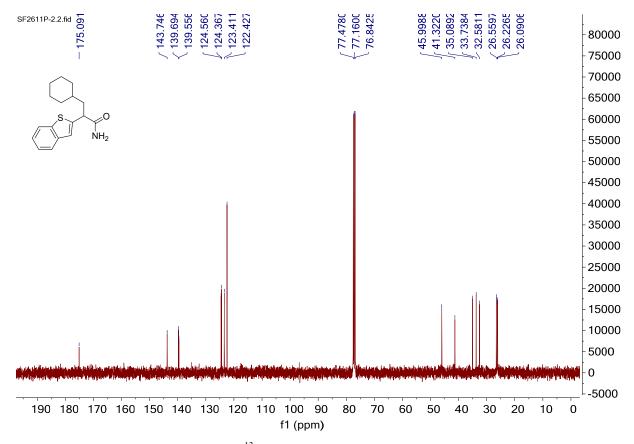

5ag ¹³C NMR (101 MHz, CDCl₃)

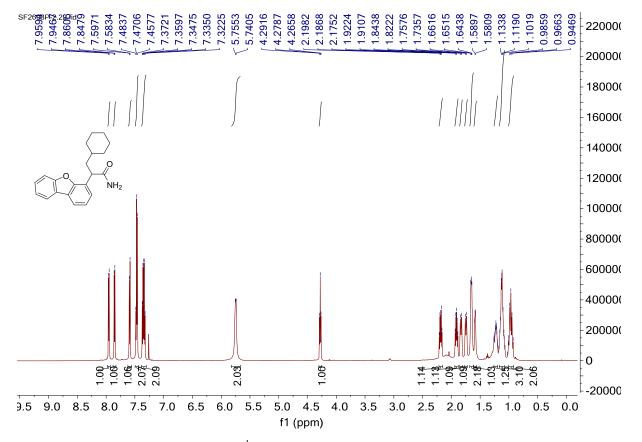

5ah ¹H NMR (400 MHz, CDCl₃)

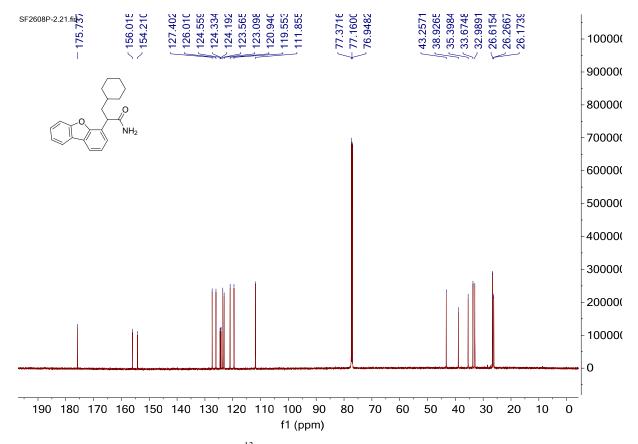

5ah ¹³C NMR (101 MHz, CDCl₃)

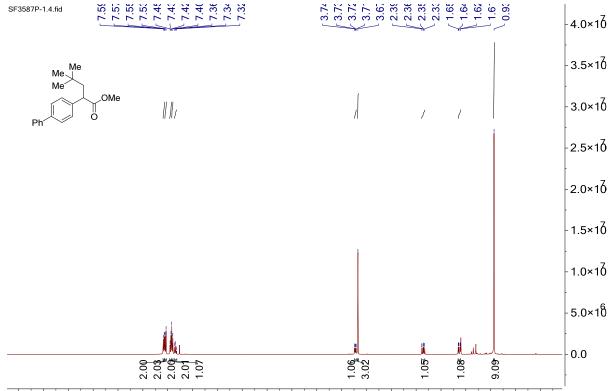

5ai ¹H NMR (600 MHz, CDCl₃)


5ai ¹³C NMR (151 MHz, CDCl₃)

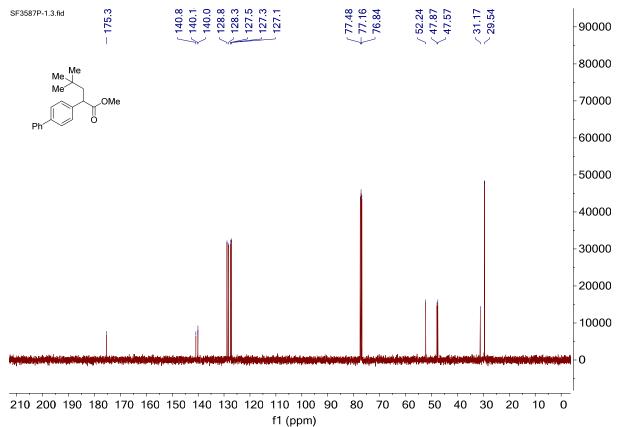

5aj ¹H NMR (600 MHz, CDCl₃)


5aj ¹³C NMR (151 MHz, CDCl₃)

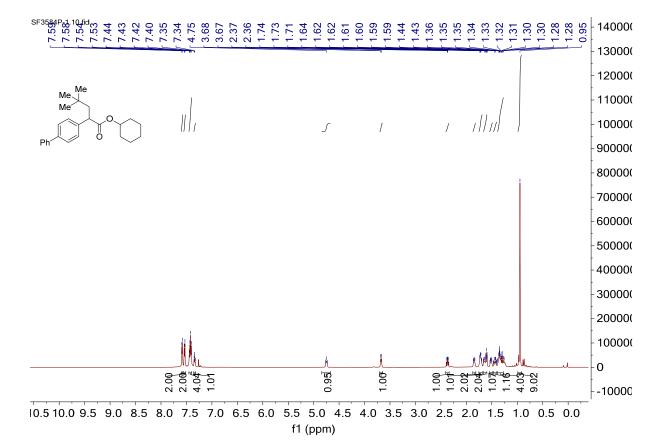

5ak ¹H NMR (400 MHz, CDCl₃)


5ak ¹³C NMR (101 MHz, CDCl₃)

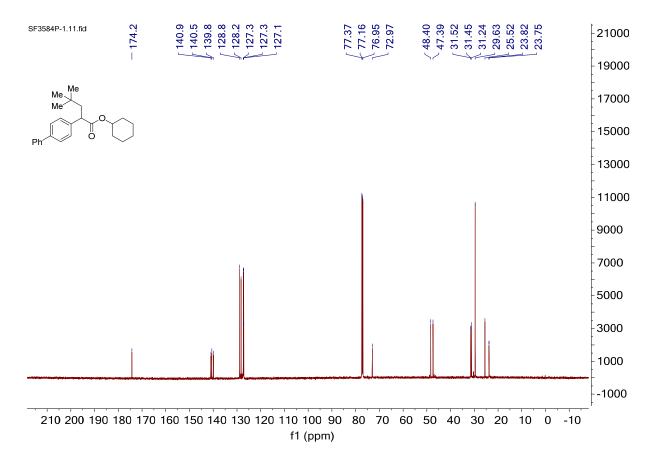
5al ¹H NMR (600 MHz, CDCl₃)

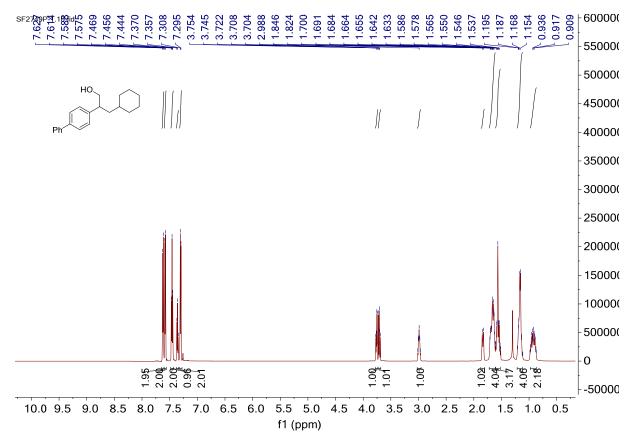


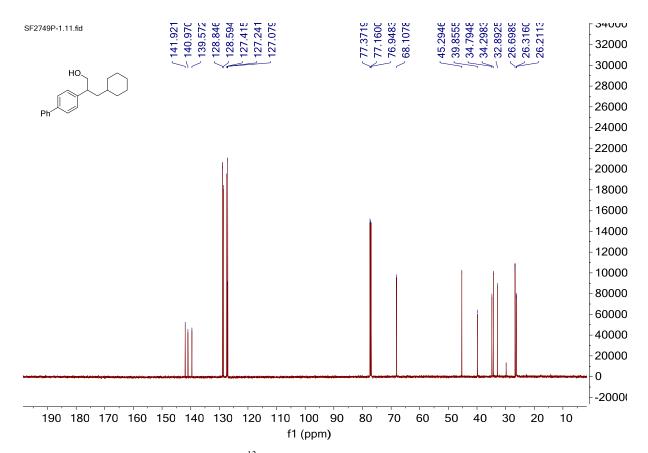
5al ¹³C NMR (101 MHz, CDCl₃)

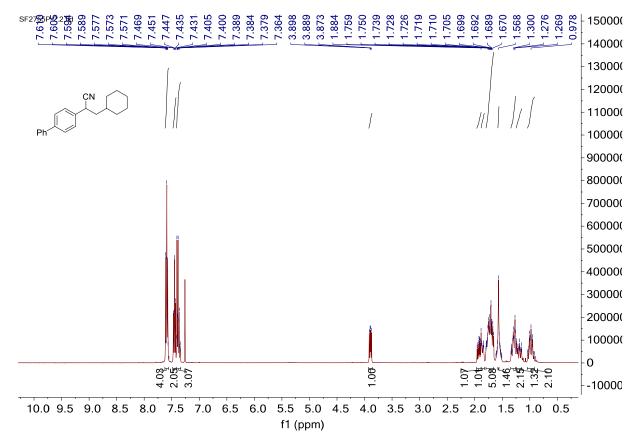


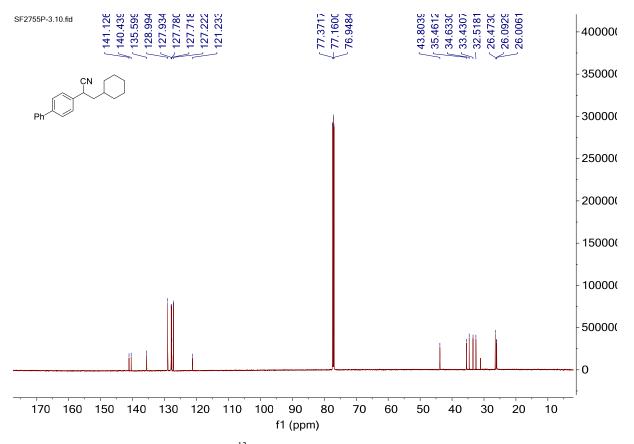
10.510.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

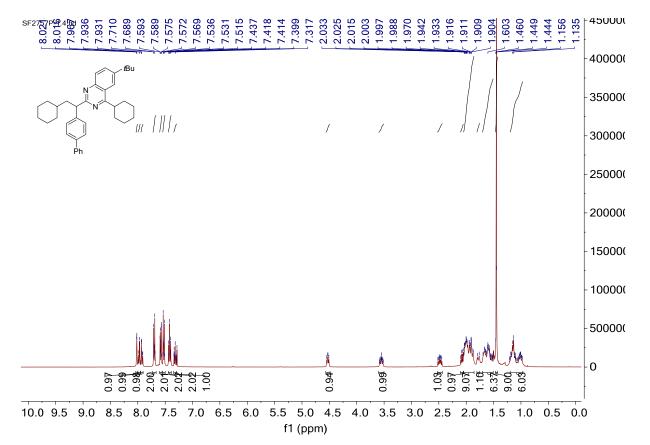


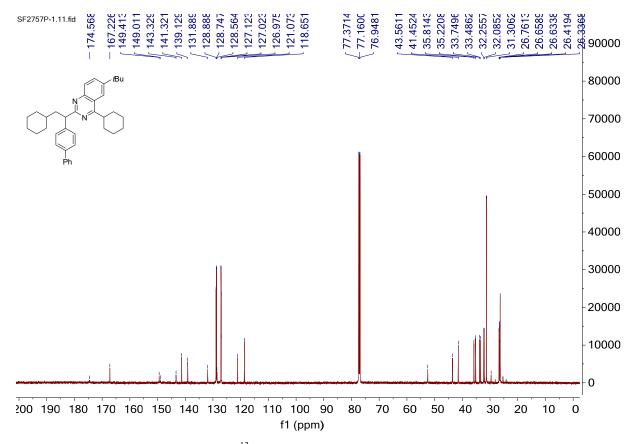

5am ¹³C NMR (101 MHz, CDCl₃)

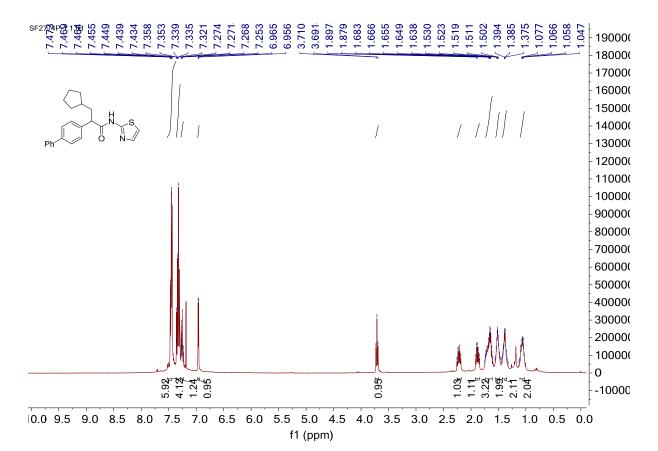

5an ¹H NMR (600 MHz, CDCl₃)

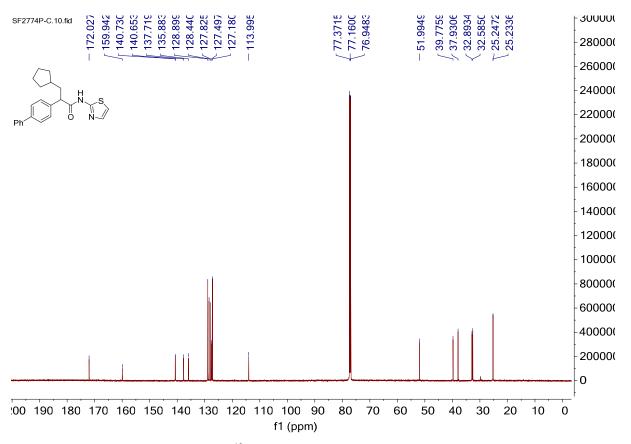

5an ¹³C NMR (151 MHz, CDCl₃)

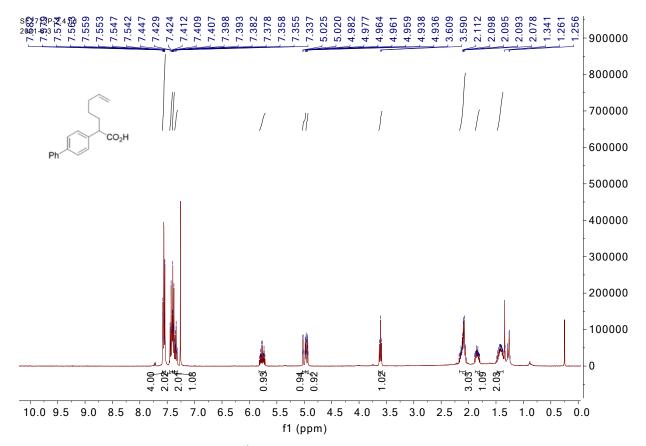

6a ¹H NMR (600 MHz, CDCl₃)

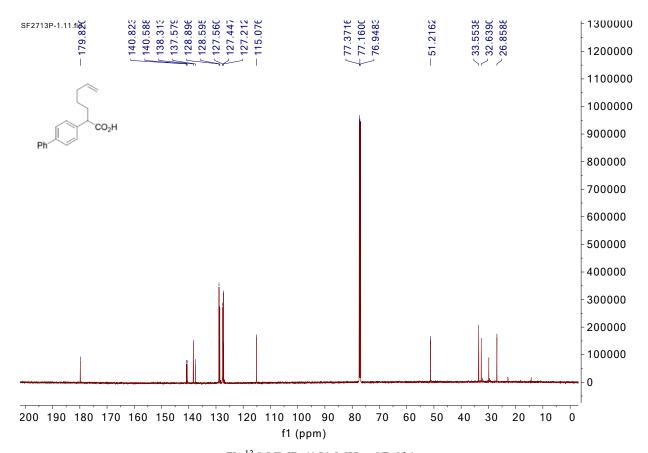

6a ¹³C NMR (151 MHz, CDCl₃)

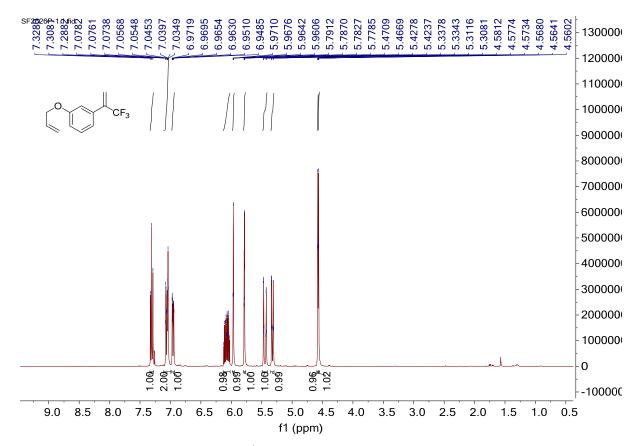

6b ¹H NMR (400 MHz, CDCl₃)

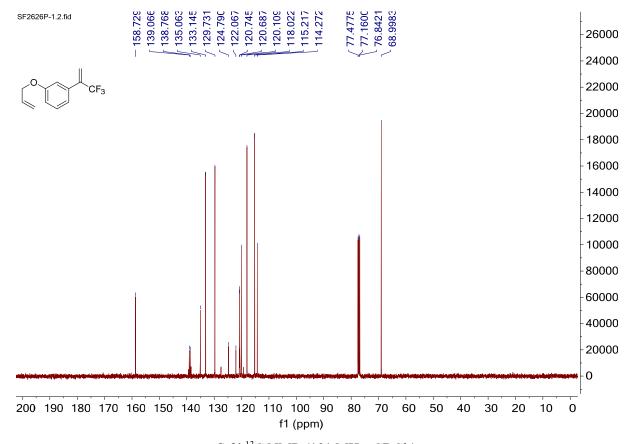

6b ¹³C NMR (151 MHz, CDCl₃)

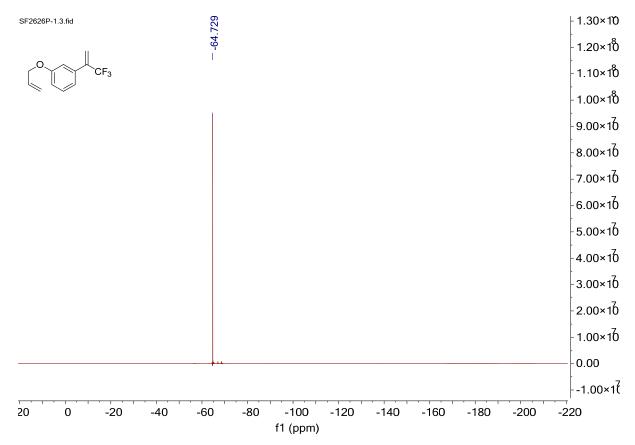

6c ¹H NMR (400 MHz, CDCl₃)

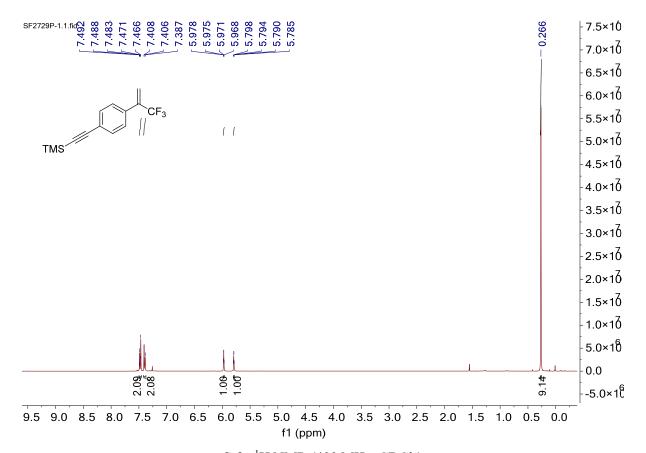

6c ¹³C NMR (151 MHz, CDCl₃)


6f ¹H NMR (400 MHz, CDCl₃)

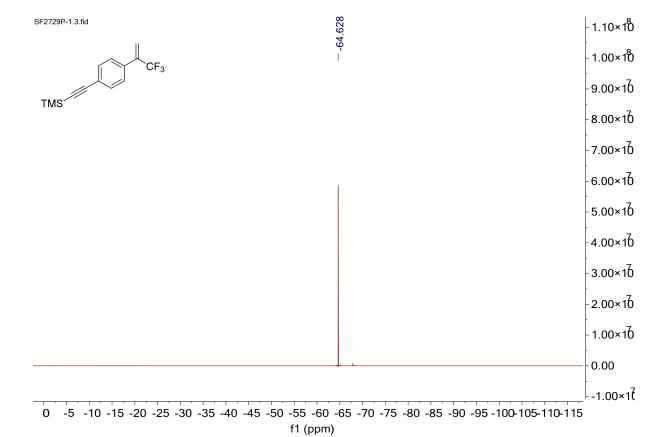

6f ¹³C NMR (151 MHz, CDCl₃)

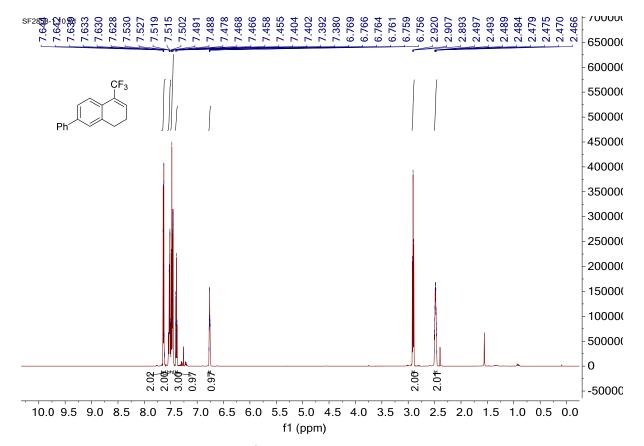

7b ¹H NMR (400 MHz, CDCl₃)

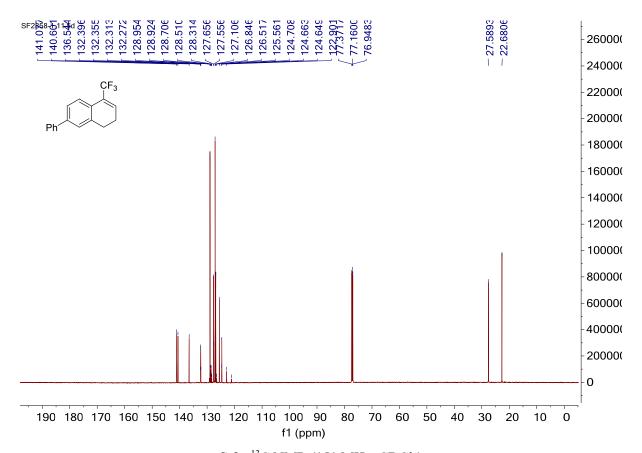

7b ¹³C NMR (151 MHz, CDCl₃)

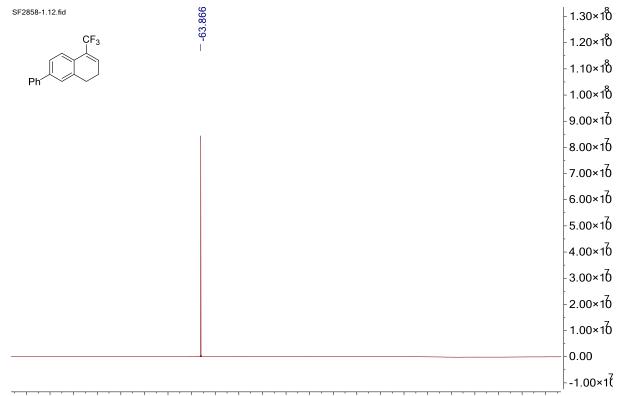

S-3i ¹H NMR (400 MHz, CDCl₃)

S-3i ¹³C NMR (101 MHz, CDCl₃)

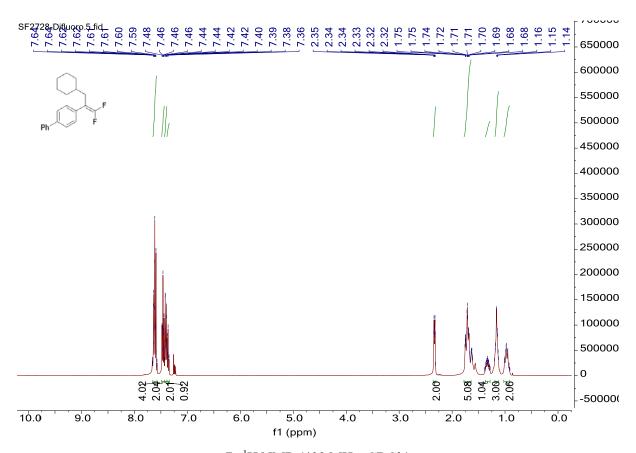

S-3i ¹⁹F NMR (376 MHz, CDCl₃)


S-3g ¹H NMR (400 MHz, CDCl₃)


S-3g ¹³C NMR (101 MHz, CDCl₃)


S-3g ¹⁹F NMR (376 MHz, CDCl₃)

S-30 ¹H NMR (600 MHz, CDCl₃)



S-30 ¹³C NMR (151 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-160-170-180-190-200-210 f1 (ppm)

S-30 ¹⁹F NMR (3565 MHz, CDCl₃)

7c ¹H NMR (400 MHz, CDCl₃)