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1. Experimental Materials and methods 

Materials. All reagents were commercially available from Energy, and were used 

without further purification. Cucurbit[7]uril (CB[7]) and Cucurbit[8]uril (CB[8]) were 

synthesized according to the published procedure.1 Monomer NPN (Naph-Phen-Naph), 

ethyl-NPN, and model compounds (Naph and Phen) were synthesized according to the 

previous report.2 

 

Nuclear Magnetic Resonance Spectroscopy (NMR). 1H NMR, 13C NMR, 1H-13C 

HSQC, 1H-13C HMBC, 1H-13C HSQC-NOESY, NOESY, and DOSY spectra were 

acquired in D2O and recorded on a Bruker Avance III 500 MHz spectrometer with 

PABBO probe, a Bruker Avance III 600 MHz spectrometer with BBFO Cryoprobe, a 

Bruker Avance III 850 MHz spectrometer with TCI Cryoprobe at 298 K. 1H-13C HSQC 

experiments were carried out using a pulse sequence ‘hsqcedetgpsisp2.3’, 1H-13C 

HMBC experiments were carried out using a pulse sequence ‘hmbcetgpl3nd’, 1H-13C 

HSQC-NOESY experiments were carried out using a pulse sequence ‘hsqcetgpnosp’ 

with a 1s relaxation delay and a 0.3 s mixing time, and NOESY experiments were 

carried out using the pulse sequence ‘noesyphpp’ with a 2 s relaxation delay and a 0.5 

s mixing time on an 850 MHz NMR instrument. DOSY experiments were carried out 

using a pulse sequence ‘stebpgp1s’ with a 0.08 s diffusion time and a 5000 μs length of 

the gradient pulse on a 500 MHz NMR instrument. Note that the conventional DOSY 

as well as 1H NMR monitoring experiments were carried out immediately loaded after 

the vortex mixing.  

 

Microfluidic-NMR (μF-NMR). The microfluidic-NMR experiments were carried out 

using a Varian NMR system (USA) operating at a proton Larmor frequency of 500 MHz. 

The original probe was replaced with our custom-built transmission line NMR probe 

head. The radio-frequency magnetic field transmitted by the double-stripline is 

concentrated in the rectangular sample chamber to ensure enough sensitivity. PMMA 

chips were used, which consist of a mixing channel, a 2 μL buffering section, and a 2 



μL NMR sampling section. The volume from the front end of buffering section to the 

center of the sampling chamber was about 3 μL, thereby the reaction time at the 

detecting region equals 3 μL divided by the total volumetric flow rate. For example, to 

obtain the NMR spectrum of the polymerization system at 1.5 s, the initial flow rate 

was set as 60 μL/min for both reactants. Then the flow rate varied from 60 μL/min to 

0.25 μL/min in our study, corresponding to the time points from 1.5 s to 360 s. It should 

be noted that the relaxation delay was set to 4 s to ensure the full relaxation of the 

system before the next measurement, therefore the quantitative feature of μF-NMR did 

not affect by the flow rate changes, despite the signal to noise ratio (S/N) as well as 

linewidth may increase as the flow rate increase.3, 4 More detailed information about 

the μF-NMR setup as parameters setting can be found in previous papers.5-7 

 

Scheme S1. Schematic representation of µF-NMR. 

  



2. Results and discussion 

Table S1. Association constants between mentioned hosts and guests2 
 

hosts           guests            association constants (M-1) 

   CB[7]          Naph                  7.8*105 

Phen                  7.4*109 

   CB[8]          Naph              K1=2.6*105, K2=2.3*105 

                  Phen                  4.1*107 

 

 
Figure S1. 1H NMR spectra of a) NPN • CB[7]3, b) depolymerization sample, 

polymerization sample at about c) 3min and d) 1 h. Several peaks of the 

depolymerization sample and polymerization sample have chemical shifts similar to the 

ones of NPN•CB[7]3, suggesting similar structural fragments.  

In the following NMR studies (Figure S2-S15), the peak assignment of 1H NMR 

spectra of NPN•CB[7]3 and depolymerization sample were carried out under the 

assistance of 2D NMR spectra. Finally, the peak assignment of transient 1H NMR 

spectrum of polymerization sample were carried out referring to the spectra of 

NPN•CB[7]3 and depolymerization sample. 

 



2.1 The peak assignment of 1H NMR spectrum of NPN•CB[7]3 

 

Figure S2. The 1H-13C HSQC spectrum of NPN•CB[7]3. The protons α and β of CB[7] 

bond to the same carbon atom C1, therefore they are correlated with a same carbon 

peak. Besides, both the protons α and β of CB[7] are methylene protons and the protons 

γ of CB[7] are methine protons, therefore they were readily distinguished by the phase-

sensitive HSQC experiment. Note: for all the HSQC spectra in this study, CH and CH3 

signals were marked with blue color, and CH2 signals were marked with green color, 

unless otherwise stated. 



 

Figure S3. Superimposed spectra of HSQC (blue & green) and HMBC (red) of NPN•

CB[7]3. Since the HMBC experiment gives correlations between long-range coupled 

1H and 13C, all the signals of NPN in HSQC spectrum were then assigned under the 

assistance of HMBC spectrum. Only half of the NPN structure was shown for clarity. 

  



 

Figure S4. The assignment of 1H NMR peaks of NPN•CB[7]3 according to the analyses 

in figures S2 & S3. Only half of the NPN structure was shown for clarity. 

  



2.2 The peak assignment of 1H NMR spectrum of depolymerization sample 

 

Figure S5. The HSQC spectrum of depolymerization sample. The protons of CB[7] 

together with CB[8] were assigned as shown in the spectrum. The protons α and β of 

CB[7] bond to the carbon atom C1, therefore they are correlated with a same carbon 

peak. Then the signal of C2 was readily distinguished from the signal of C1. The 

assignment of signals of CB[8] followed the same rules.  



 

Figure S6. a) Superimposed HSQC spectra of depolymerization sample (blue and green) 

and NPN•CB[7]3 (CH and CH3 signals in red and CH2 signals in pink). The protons of 

CB[7] complexed with the naphthalene and p-phenylene groups, the protons of CB[8] 

and methylene of NPN in the depolymerization sample were assigned according to the 

assignment results of NPN • CB[7]3 in Figure S2&S4. b) NOESY spectrum of 

depolymerization sample. The correlation signals further confirmed the proton 

assignment of CB[7] that complexed with the naphthalene group. 



 

 

Figure S7. The HSQC spectrum of depolymerization sample (blue) superimposed on 

the spectrum of NPN•CB[7]3 (red). The protons of naphthalene, p-phenylene, and 

methyl of NPN in the depolymerization sample were assigned according to the 

assignment results of NPN•CB[7]3 in Figures S3&S4. 

 

Figure S8. The HSQC-NOESY spectrum of depolymerization sample. The protons of 

p-phenylene, and methyl adjacent to p-phenylene of NPN, were assigned as shown in 

the spectrum. The results further confirmed the assignment results in Figure S7. 



 

Figure S9. The assignment of 1H NMR peaks of depolymerization sample. The 

integration results further confirmed the above assignment results in Figure S5-S8. 

 

Figure S10. DOSY spectrum of depolymerization sample. Three states of p-phenylene 

can be distinguished from three different diffusion coefficients in the spectrum. 

 



 

Figure S11. The NOESY spectrum of depolymerization sample. The cross peak 

between two doublets means the protons are close to each other, indicating that this 

state of p-phenylene of NPN is in an asymmetric chemical environment. 

 

Figure S12. Three states of p-phenylene of NPN were proposed based on the results of 

figures S10&S11, and the protons were assigned as shown in the spectrum. The 

integration results suggested the ratio of P1, P2, and P3 was about 1:2:1. The reason 

may be the same binding free energies for the two naphthalene end groups,8 which was 

further confirmed in Figure S13.  



 

Figure S13. a) The DOSY spectrum and b) the 1H NMR spectrum of NPN+2CB[7]. 

The results displayed a discrete binomial distribution of the three species NPN•CB[7], 

NPN•CB[7]2, and NPN•CB[7]3 in a ratio of about 1:2:1. The results further confirmed 

that the binding free energies for the two naphthalene end groups are the same, and the 

complexation between CB[7] and naphthalene is independent of the state of p-

phenylene.  

  



2.3 The peak assignment of 1H NMR spectrum of the final supramolecular polymers  

 

Figure S14. The HSQC spectrum of polymerization sample at equilibrium. The protons 

of CB[7] and CB[8] were assigned according to the assignment results of the 

depolymerization sample in Figure S6. 

  



 

Figure S15. The HSQC spectrum of supramolecular polymers (blue) superimposed on 

the spectrum of depolymerization sample (CH and CH3 peaks in red). The protons of 

naphthalene and p-phenylene of NPN, the protons of methyl adjacent to naphthalene 

and p-phenylene are assigned according to the assignment results of the 

depolymerization sample in Figure S7-S9. 



2.4 The identification of intermediates during supramolecular polymerization  

Multiple dynamic peaks of the polymerization sample have similar chemical shifts 

to the ones of the depolymerization sample (Figure S1), suggesting similar structure 

fragments. In this section, we confirmed that the peak at 5.35 ppm represents the N7 

structure in all intermediates, and the peak at 3.20 ppm represents the N7P7 structure. 

Besides, two new peaks at 2.79 ppm and 2.82 ppm were observed during 

polymerization. The former was observed by convention NMR while the latter was only 

observed by μF-NMR. The peak at 2.79 ppm represents the structure of N28P8, and the 

peak at 2.82 ppm represents the structure of N7P8. 

 

Figure S16. 1H NMR spectra of a) CB[7], b) NPN+CB[8], polymerization sample at 

about c) 3min and d) 35 min, e) NPN•CB[7]. Multiple dynamic peaks in 1H NMR 

spectra were observed during the polymerization. Most of the peaks from the two raw 

materials for polymerization, NPN+CB[8] and CB[7], were not observed in spectrum 

c, suggesting that the raw materials immediately converted to various intermediates. 



 

Figure S17. Time-dependent 1H NMR spectra of polymerization process within ~35 

min monitored by conventional NMR technique. The spectra were acquired at 200 s 

interval. The dynamic peaks were identified according to the following NMR studies 

(Figure S18-S32). 

  



 

Figure S18. a) Superimposed HSQC spectra of polymerization sample (blue) recorded 

immediately after mixing NPN+CB[8] with CB[7] solutions, and depolymerization 

sample (red). The proton γ of CB[7] combined with the naphthalene group was assigned 

according to the assignment results of the depolymerization sample in Figure S6 as 

shown in the spectra. b) The NOESY spectrum of polymerization sample recorded 

immediately after mixing. The protons α and β of CB[7] that combined with the 

naphthalene group were assigned as shown in the spectrum. 

 

 



 

Figure S19. Partial 1H NMR spectra of a) model compound Naph+, b) Naph+•CB[7], c) 

Naph++CB[8], d) Naph+
2•CB[8], e) model compound Phen2+, f) Phen2+•CB[7], and g) 

Phen2+•CB[8]. The methyl protons of Phen2+ experienced a significantly upfield shift 

after complexing with CB[8]. 

  



 

Figure S20. Partial 1H NMR spectra of a) model compound Naph2+, b) Naph2+•CB[7], 

c) Naph2++CB[8], d) Naph2+
2•CB[8], e) model compound Phen4+, f) Phen4+•CB[7], 

and g) Phen4+ • CB[8]. The methyl protons of Phen4+ adjacent to p-phenylene 

experienced a significantly upfield shift after complexing with CB[8], while the methyl 

protons adjacent to naphthalene experienced a downfield shift after complexing with 

CB[8]. Besides, all the methyl protons of Naph2+ experienced downfield shifts after 

complexing with CB[8] in a 2:1 mode. 

  



 

Figure S21. NMR titration experiments. Specifically, 15 mM of NPN was titrated into 

2 mM of NPN+CB[8]. Based on the binding constants of CB[8] with naphthalene (K1 

= 2.6 x 105 M-1, K2 = 2.3 x 105 M-1) and with p-phenylene (K1 = 4.1 x 107 M-1), it could 

be calculated that only the structures that CB[8] complexed with two naphthalene 

(abbreviated as N28P) and free monomer (abbreviated as NP) exist when excess NPN 

added. As the increase of CB[8], partial CB[8] were complexed with p-phenylene, 

resulting in the formation of N28P8 and NP8 as shown in the figure. Combining the 

NMR results in Figure S19&20, the methyl protons were assigned as shown in the 

spectrum. 

 



 

Figure S22. Partial 1H NMR spectra of a) polymerization sample at about 3min after 

mixing, b) NPN+2CB[7], c) NPN+CB[8]. Peaks with similar chemical shifts suggest 

similar chemical structures. 

  



 

Figure S23. Superimposed HSQC spectra of polymerization sample (blue) recorded 

immediately after mixing, NPN+2CB[7] (red), and NPN+CB[8] (purple). The peak at 

3.20 ppm represents the protons 5 from N7P7 (abbreviated as 5(N7P7)), and the peak 

at 2.79 ppm represents the protons 2 from P8. Since either CB[8] or CB[7] complexed 

with the naphthalene group can induce downfield NMR shifts of the methyl protons 

adjacent to p-phenylene (Figure S20), the peak at 2.79 ppm may represent the structures 

of N28P8 or N7P8 as shown in the figure. 

  



 

Figure S24. NMR titration experiments of polymerization. Specifically, 4 mM of CB[7] 

was titrated into 4 mM of NPN+CB[8]. The peak at 2.80 ppm has a similar chemical 

shift to the dynamic peak of 2.79 ppm of the polymerization mixture.  

  



 

Figure S25. Superimposed HSQC spectra of polymerization sample (blue) recorded 

immediately after mixing, NPN+CB[8]+0.5CB[7] mixture (red), and the partial 1H 

NMR spectra of NPN+CB[8]+0.5CB[7] (green). Since the strongest binding affinity 

between CB[7] and p-phenylene (K = 7.4E9 M-1), it is highly unlikely that CB[7] can 

still combine with the naphthalene group when the monomer NPN is excess. Therefore, 

the peak at 2.80 ppm of NPN+CB[8]+0.5CB[7] does not represent the structure of 

N7P8. It is reasonable to deduce that the peak at 2.79 ppm represents the structure of 

N28P8 rather than N7P8. 

  



 

Figure S26. NOESY spectra of polymerization sample recorded immediately after 

mixing NPN+CB[8] with CB[7] solutions. The protons of N28P8 were assigned as 

shown in the spectra. 

  



 

Figure S27. Time-dependent 1H NMR spectra of polymerization process monitored by 

μF-NMR technique. Specifically, 4 mM of CB[7] and 4 mM of NPN+CB[8] were 

pumped into the microfluidic chip simultaneously in a same volumetric flow rate. 

 

Figure S28. Integration of the 1H NMR spectrum of the complexation between CB[7] 

and NPN at 1.5 s. The spectrum was monitored by μF-NMR. All the μF-NMR spectra 

were integrated in this way, and the average concentration at each time point was 

obtained from three parallel µF-NMR experiments. 

  



 

Figure S29. A transient peak at 2.82 ppm was observed from the onset to 15 s during 

polymerization. Because the complexation of CB[7] with the naphthalene group can 

induce the downfield shift of the methyl protons adjacent to p-phenylene (Figure S20), 

the peak at 2.82 ppm probably comes from the structure of N7P8 as shown in the figure.  



 

Figure S30. Partial 1H NMR spectra of free NPN, NPN+2CB[7], and polymerization 

titration experiments. Protons of naphthalene and p-phenylene which are free or 

complexed were assigned as shown in the spectra. 



 

Figure S31. Partial time-dependent 1H NMR spectra of polymerization monitored by 

μF-NMR. Free naphthalene or p-phenylene groups were determined based on the 

results of Figure S30. It indicates the existence of metastable intermediates bearing free 

naphthalene or p-phenylene group during polymerization on the time scale of seconds. 



 

Figure S32. 1H NMR spectra of a) NPN •CB[7]3, b) depolymerization sample, 

polymerization sample at about c) 3 min, and d) 1 h. The peaks were assigned according 

to the results of Figures S1 to S31.  

  



2.5 Complexation between NPN and CB[7] 

 

Figure S33. Time-dependent 1H NMR spectra of complexation process between CB[7] 

and NPN monitored by μF-NMR. Specifically, 4 mM of CB[7] and 4 mM of NPN were 

pumped into the microfluidic chip in a same volumetric flow rate. 

 



 

Figure S34. Partial time-dependent 1H NMR spectra of complexation process between 

CB[7] and NPN monitored by μF-NMR. Free monomer, NPN•CB[7], NPN•CB[7]2, 

and NPN•CB[7]3 were observed during the process. All of them finally converted into 

the equilibrium product NPN•CB[7]. 

  



 

Figure S35. a) Proposed complexation pathways between CB[7] and NPN; b) Time-

dependent concentrations of free NPN, NPN•CB[7], NPN•CB[7]2, and NPN•CB[7]3. 

 

 

Figure S36. Pathways and kinetic study of the complexation between NPN and CB[7]. 

Considering the symmetry of the molecular structure, the schematic shows only half of 

the NPN structure for clarity. a) Formation pathways of NP7. The red arrow lines 

represent the rate-determining step. b) Time-dependent concentrations of reactant NP, 

intermediate N7P7, and product NP7, and the simulated kinetic traces with R2 = 0.985, 

0.986, and 0.985, respectively. Initial concentrations: [NPN]0 = 2 mM, [CB[7]]0 = 2 mM. 

  



2.6  The starting species of supramolecular polymerization  

 

Figure S37. Partial 1H NMR spectrum of NPN+CB[8] at 4 mM. The integration results 

indicated that about 25% of CB[8] (calculated by 3.27/12) are complexed with the p-

phenylene group. For the detailed assignment sees Figure S21. 

 

Figure S38. DOSY spectrum of NPN+CB[8] at 4 mM. A uniform structure of oligomers 

composed of NPN and CB[8] was proposed according to the DOSY result, and the 

conclusion that the ratio of CB[8] complexed with naphthalene to p-phenylene is about 

3:1 obtained from Figure S37. 



2.7  The change of averaged molecular weight during supramolecular 

polymerization 

 

Figure S39. a) The mathematical relationship between molecular weight (M) of 

polymer and diffusion coefficient (D) was established according to the literature9 as 

well as the three model structures with defined M and D. b) Plots of the diffusion 

coefficient of proton γ of CB[7] which complexed with p-phenylene within the polymer 

(γ(polymer, P7)). Note that three parallel DOSY monitoring experiments were carried 

out and the samples were immediately loaded after the vortex mixing. To further reduce 

the error in the timing, the time points of the three parallel experiments were averaged. 

  



2.8  The dissociation rate constants of CB[7] from naphthalene for N7P7 and N7P 

structures 

The N7P7 was constructed by mixing CB[7] with NPN, and the N7P was constructed 

by mixing CB[7] with ethyl-NPN. The structure of N7P7 and N7P were confirmed by 

the NMR titration experiments. 

 

 

Figure S40. a) 1H NMR (D2O, 298 K) titration spectra of NPN and CB[7]. b) 1H NMR 

(D2O, 298 K) titration spectra of ethyl-NPN and CB[7]. Note: calculated volume of 

NPN/ ethyl-NPN (5 mM) was added to the 500 μL of CB[7] (1 mM). 

The above results showed that CB[7] could thread to the p-phenylene group of NPN, 



but could not thread to the p-phenylene group of ethyl-NPN. Therefore, N7P7 and N7P 

with or without p-phenylene complexed by CB[7] were constructed respectively after 

adding excess CB[7]. 

 

 

Figure S41. a) 1D EXSY (D2O, 318 K) experiment of NPN with 5 equivalents of CB[7]. 



b) 1D EXSY (D2O, 318 K) experiment of ethyl-NPN with 4 equivalents of CB[7]. Note: 

the concentration of unbound CB[7] plotted versus mixing time was fitted by the first 

order approaching equilibrium to obtain the rate constant.10 [NPN]0 = [ethyl-NPN]0 = 1 

mM. Since the exchange rates are too slow for the 1D EXSY experiment at 298 K, the 

temperature was increased to 318 K. The significant displacements of chemical shifts 

compared with the spectra in Figure S40 resulted from the increase of temperature.  

The above results showed that the two dissociation rate constants of CB[7] from 

naphthalene to solution are 0.463 s-1 and 0.432 s-1 either with or without p-phenylene 

complexed by CB[7]. These two rate constants only have difference less than 7 percent. 

Therefore, it is reasonable to assume that the rate constant for the association or 

dissociation of CB7 or CB[8] with naphthalene was independent of the status of p-

phenylene. 

 

  



2.9  Kinetic models 

Considering the fact that the association/dissociation rate constants of CB[7] with 

naphthalene are independent of the status of p-phenylene (Figure S40&41), the rate 

constants were set to be the same in the following models, no matter the p-phenylene 

complexes with CB[7] or not. This principle also applies to the case of CB[8] with  

naphthalene.  

2.9.1 Kinetic model for the complexation between NPN and CB[7] 

The process is given by:  

 

In the process, the dissociation of CB[7] from naphthalene is the rate-determining step. 

and the corresponding rate equations are given by: 

�[�7�7]

��
= ��,�[��7][��7] − ��,��[�7�7] 

�[��]

��
= −��,�[��](0.5[��] − [�7�7]) 

with  

[�7�7] + [��7] + [��] = [�]� = 2�� 

[��7] + 1.5[�7�7] + 0.5[��7] = [��7]� = �� 

The Equation can be simplified as: 

[�7�7] = � ∙ (1 − ����,��∙�) 

2�[��]

[��]([��] − 2[�7�7])
= −��,���� 

�
1

[��] − 2[�7�7]
−

1

[��]
� �[��] = −��,��[�7�7]�� 

The exact solutions of this equation were solved in Mathematica. The code is given by: 

DSolve[{y'[t]==k2 y[t] (y[t]-c1 Exp[-k1 t]),y[t],t] 

The approximate solutions are shown as follows: 

[��] = � ⋅ ����� ⋅ ���(� ⋅ �)� + � ⋅ exp(−� ⋅ �) + � 

[��7] = � ⋅ ����� ⋅ ���(� ⋅ �)� + � 

In these equations, A represents the maximum concentrations of the species, B 



represents a complex integral formula including k7,1, k7,-1, kex, and C0, C represents k7,-1, 

and D represents a correction term of concentration. 

 

2.9.2 Kinetic model for the stage I of supramolecular polymerization  

The process is given by:  

 

Stage I of the polymerization can be summarized into three processes: 1) the 

dissociation of CB[7] or CB[8] from naphthalene, 2) the threading of CB[7] or CB[8] 

from naphthalene to p-phenylene, and 3) the association of naphthalene with CB[7]. 

The processes are similar to the ones between NPN and CB[7], and the concentration 

of N7 is described as follows: 

[�7] = � ⋅ ����� ⋅ ���(� ⋅ �)� + � 

In the equation, A represents the maximum concentration of N7, B represents a complex 

integral formula including k8,-2, k7,1, k7,-1, kex, and C0, and C represents the sum of k7,-1 

and k8,-2, D represents the initial concentration of N7. 

 

2.9.3 Kinetic model for the error-correction pathways in stage II of 

supramolecular polymerization  

For the error correction of N7, two parallel pathways are involved: 1) the disassociation 

of N7, and then the association of released CB[7] to free p-phenylene from the 

disassociation of N28; 2) the disassociation of N28, and then the fast sequential 

threading from naphthalene to p-phenylene. The former pathway follows second-order 

kinetics, and the latter one follows first-order kinetics, the corresponding rate equations 

are given by: 



�[�7]�
��

= ��,�� ⋅ [�7] ⋅ ��,�� ⋅ [�7] 

�[�7]�
��

= ��,�� ⋅ [�7] 

the N71, N72, and N7 can be solved as： 

[�7]� =
1

��,�� ∙ ��,�� ∙ �′ ∙ � +
1
�′

 

[�7]� = (�� − �′) ∙ �
���,��∙� 

[�7] = [�7]� + [�7]� = (�� − �′) ∙ �
���,��∙� +

1

��,�� ∙ ��,�� ∙ �′ ∙ � +
1
�′

 

In the equations, [N7]1 and [N7]2 represent the concentration of N7 following the 

pathway 1 and 2 respectively, c0 represents the maximum concentration of N7, c’ 

represents the total concentration of N71, ��,��  represents the rate constant of one 

naphthalene dissociated from CB[8], ��,�� represents the rate constant of naphthalene 

dissociated from CB[7]. 

 

2.9.4 Kinetic model for the supramolecular depolymerization 

The depolymerization mainly includes two processes which are the dissociation of one 

naphthalene from CB[8], and then the association of naphthalene with CB[7]. The 

corresponding rate equations are given by: 

�[��7]

��
= ��,�� ∙ [��8�7] 

with 

[�7�7] = �� ∙ [��7] ∙ [��7] 

[��8�7] + [��7] + [�7�7] ≈ [��8�7] + [�7�7] = �� 

[��7] + [�7�7] = �� 

the N7P7 can be solved as： 

[�7�7] = �� ∙ �
��,��∙� ∙ (�� − �� ∙ �

��,��∙�) 

In this equation, c0 represents final concentration of N7P7, c1 represents the total 

concentration of additional added CB7, ��,��  represents the rate constant of the 

dissociation of one naphthalene from CB[8] ternary complex.  
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