Supplementary Information for

Iron-Catalysed Hydroalumination of Internal Alkynes

Wen-Tao Li,^a Meng-Yang Hu,^a Jun-Wen Xiong,^a Xin-Yu Zhang,^a Shou-Fei Zhu*^{,a,b}

^a Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

^b Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China Email: sfzhu@nankai.edu.cn

Table of Contents

1. General Information	
2. Synthesis of Ligands and Catalysts	
3. Preparation of Internal Alkynes	S6
4. Additional Data of Reaction Condition Optimization	S10
5. Typical Procedure of Iron-Catalyzed Hydroalumination	S17
6. Mechanistic Studies	S18
7. Analytical Data of Products	S21
8. Transformations of Product 2aa'	
9. NMR Spectra of New Compounds	S63
10. References	

1. General Information

Unless otherwise noted, all manipulations were carried out using standard Schlenk, high-vacuum and glovebox techniques. Iron(II) chloride (99.99%) was purchased from Sigma-Aldrich and used as received. Anhydrous solvents were purified and dried following standard procedures.¹ The 2,9-di(anthracen-9-yl)-1,10-phenanthroline was prepared according to reported literature.² The known complexes of 2,9-diaryl-1,10-phenanthrolines with FeCl₂ were prepared according to the literature procedures.³ HAIEt₂,⁴ DAIEt₂, and DAI(^{*i*}Bu)₂⁵ were prepared according to reported literature. All commercially available reagents were used as received unless otherwise noted. Liquid internal alkynes were dried over CaH₂ and distilled prior to use; viscous internal alkynes and solid internal alkynes were dried under vacuum. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Flash column chromatography was performed on silica gel (200-300 mesh) or Al₂O₃ (100 mesh).

Melting points were measured on a RY-I apparatus and uncorrected. Infrared spectra were recorded on a Bruker Fourier transform spectrometric (FT-IR) and reported in wave number. High resolution mass spectrometric (HRMS) analyses spectra were determined on an IonSpec FT-ICR mass spectrometer and Waters GCT Premier mass spectrometer. Trace metal contamination analyses of iron precatalysts by ICP-OES (spectro-blue) were performed using a X7 (Thermo Electron Corporation) instruments. Magnetic moment was measured on SQUID VSM (Quantum Design). ¹H NMR, ¹³C NMR, ¹⁹F NMR, ¹¹B NMR spectra were recorded on a Bruker 400 AV spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 376 MHz (¹⁹F NMR), and 128 MHz (¹¹B NMR)in CDCl₃. Chemical shifts for protons were quoted in parts per million downfield from tetramethylsilane and are referenced to the solvent peak (for CDCl₃, ¹H NMR: 7.26 ppm, ¹³C NMR: 77.16 ppm. for C₆D₆, ¹H NMR: 7.16 ppm, ¹³C NMR: 128.06 ppm). Abbreviations are used in the description of NMR data as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (*J*, Hz).

2. Synthesis of Ligands and Catalysts

Synthesis of 2,9-di(phenanthren-9-yl)-1,10-phenanthroline (L1h)

A suspension of 2,9-dichloro-1,10-phenanthroline (2 g, 8 mmol), Pd(PPh₃)₄ (1 g, 0.8 mmol, 10 mol%), K₃PO₄ (13.6 g, 64 mmol, 8 equiv) and ArB(OH)₂ (5.3 g, 24 mmol, 3 equiv) in a mixture of DME (20 mL) and H₂O (5 mL) was purged with argon to degas. The mixture was heated up to reflux under argon atmosphere until the reaction was finished. After cooling to room temperature, the mixture was filtered and washed with H₂O (100 mL \times 3). The residue was successively washed with CHCl₃ and toluene to give 2,9-di(phenanthren-9-yl)-1,10-phenanthroline.

Serial number: Lwt-3-178. 3.85 g, 90 % yield, white solid, melting point: 310-314 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 8.3 Hz, 2H, Ar-H), 8.71 (d, *J* = 8.3 Hz, 2H,

Ar-H), 8.58 (d, *J* = 8.2 Hz, 2H, Ar-H), 8.44 (d, *J* = 8.3 Hz, 2H, Ar-H), 8.18 (s, 2H, Ar-H), 8.07 (d, *J* = 8.3 Hz, 2H, Ar-H), 7.98 – 7.93 (m, 4H, Ar-H),

7.67 (t, *J* = 7.7 Hz, 4H, Ar-H), 7.59 (dt, *J* = 13.6, 7.3 Hz, 4H, Ar-H).

 $\frac{13}{C} NMR (101 MHz, CDCl_3) \delta 159.28, 146.34, 137.35, 136.17, 131.44, 130.85, 130.60,$

129.78, 129.17, 127.76, 127.03, 126.86, 126.70, 126.62, 126.40, 125.03, 122.87, 122.53, 109.98.

<u>HRMS (ESI)</u> calcd for $[M+H, C_{40}H_{25}N_2]^+$: 533.2012; found 533.2016. Synthesis of iron complex C1g

In an argon-filled glovebox, a Schlenk flask (50 mL) was charged with L1g (1 mmol), FeCl₂ (1 mmol) and dry THF (20 mL). The reaction mixture was stirred at 90 °C for 48 h, during which a yellow solid precipitated, then washed with 20 mL hexanes, and dried under vacuum to get the desired complex C1g.

Serial number: Lwt-2-196. 600 mg, 91% yield, yellow solid, decomposition temperature >320 °C.

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 1.26, 0.84.

- <u>IR</u> (neat) 3075w, 3054w, 3021w, 1623w, 1586m, 1555m, 1509m, 1496m, 1484m, 1444m, 1353m, 1203w, 1169w, 1150w, 1012w, 945w, 893m, 871s, 848m, 790m, 734s, 630m, 558w, 549w, 502w, 437w, 416w cm⁻¹.
- <u>Anal. calcd. for</u> C₄₄H₃₂N₂Cl₂FeO: C, 72.25; H, 4.41; N, 3.83. found: C, 72.45; H, 4.19; N, 3.88.

<u>Magnetic moment</u> $\chi_{\rm M} = 2.08 \text{ cm}^3 \text{mol}^{-1} \text{K}.$

Synthesis of iron complex C1h

Complex C1h was prepared from L1h and FeCl₂ through a similar procedure as that for C1g.

Serial number: Lwt-4-56. 625 mg, 95% yield, yellow solid, decomposition temperature >320 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 1.20, 0.78.

<u>IR</u> (neat) 3064m, 3031w, 2975w, 2930w, 2859w, 2361w, 2341w, 1626m, 1588s, 1556m, 1528m, 1493s, 1450m, 1422w, 1389w, 1250w, 1210w, 1158m, 1142m, 1043m, 954m, 910m, 876m, 865m, 847w, 767s, 728m, 663w, 638w, 623w, 554w, 504w, 430w cm⁻¹.

	Ar N Re Cl	C1g Ar = anthryl C1h Ar = phenanthryl
Element	C1g	C1h
Mg	-	-
Al	-	-
Ti	-	-
V	-	-
Cr	-	-
Mn	-	-
Fe	8.22	7.35
Со	-	-
Ni	0.168	0.114
Cu	0.071	0.055
Zn	-	-
Ru	-	-
Pd	0.005	0.025
Cd	-	-
Pt	-	-
Au	0.020	0.020
Pb	-	-

Table S1. ICP-OES analysis of iron precatalysts (wt%)

'-' means < 1 ppm

3. Preparation of Internal Alkynes

Procedure A: preparation of internal aryl alkynes (**1aa-1ap**, **1ba-1bd**, **1cc-1ch**, **1ee**, **1fc**) and enynes via Sonogashira coupling.⁶

Arl/ArBr +
$$R^1 = \frac{Pd(PPh_3)_2Cl_2 (5 mol\%)}{Cul (10 mol\%)}$$
 Ar $= R^1$
THF, 30-70 °C, 12 h

A typical operation: a dry schlenk flask was charged with aryl halide or vinyl halide (10.0 mmol), Pd(PPh₃)₂Cl₂ (5 mol%), CuI (10 mol%). The mixture was degassed under argon for three times. Et₃N (20 mL) and the terminal alkyne (1.2 equiv) was then added. The mixture was stirred at 30 °C until all the aryl halide or vinyl halide was consumed. The reaction mixture was diluted with diethyl ether, washed with water and brine, dried over anhydrous MgSO₄, and filtered. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography.

Procedure B: preparation of propargylamines (**1cj**, **1ck**, **1ea-1ed**) via copper-catalyzed Mannich reaction.⁷

$$R^{1} = + HCHO + HNR^{2}R^{3} \xrightarrow{\text{Cul (2 mol%)}} R^{1} = NR^{2}R^{3}$$

A typical operation: a dry schlenk flask was charged with alkyne (10 mmol), amine (1.2 equiv), aqueous formaldehyde (35% in H₂O, 4 mL) and CuI (2 mol%). The mixture was dissolved in 20 mL of DMSO, purged with argon to degas and stirred at 30 °C till the end of the reaction. After basic aqueous workup and extraction with chloroform or ether, the product was purified through silica gel flash chromatography.

Procedure C: preparation of **1de**, **1df** and **1dg** through nickel-catalyzed Kumada cross coupling.⁸

$$X + H_3C - MgBr \qquad Mi(PPh_3)_2Cl_2 (5 mol\%) CH_3$$

$$Cul (10 mol\%) + H_3C - MgBr \qquad Harrow MgBr \qquad Harrow CH_3$$

$$R^1 = R^2 + R^2 + H_3C - MgBr \qquad R^1 = R^2$$

A typical operation: a dry schlenk flask was charged with vinyl halides or vinyl trifluoromethanesulfonate (1 mmol), Ni(PPh₃)₂Cl₂ (5 mol%), CuI (10 mol%) in dry THF (4.0 mL) was stirred at 30 °C under argon for 5 minutes, and then treated with 1-propynylmagnesium bromide (3.0 mL, 0.5 M in THF, 1.50 mmol). The resulting suspension was stirred at 80 °C for 12 hours till the end of the reaction. At ambient temperature, aqueous HCl (2.0 mL, 3M), Et₂O (10 mL), and H₂O (3 mL) were added to the reaction mixture. The separated aqueous phase was extracted with Et₂O (10 mL × 2). The combined organic layer was dried over anhydrous MgSO₄ and concentrated under vacuum. The remaining residue was purified through silica gel flash chromatography.

The analytical data of new alkynes were listed as following.

2-(4-(hex-1-yn-1-yl)phenyl)-1,3-dioxolane (1ai)

Procedure A, Serial number: Lwt-3-176. 91% yield (1.04 g, 5 mmol starting material, SM), colorless oil, $R_f = 0.25$ (PE/EA = 20:1).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H, Ar-H), 5.79 (s, 1H, OCH), 4.15 – 3.98 (m, 4H, OCH₂CH₂), 2.41 (t, *J* = 7.1 Hz, 2H, CH₂), 1.64 – 1.55 (m, 2H, CH₂), 1.50 – 1.43 (m, 2H, CH₂), 0.95 (t, *J* = 7.3 Hz, 3H, CH₃).

 13 C NMR (101 MHz, CDCl₃) δ 136.97 (1C, Ar-C), 131.48 (2C, Ar-C), 126.27 (2C, Ar-C), 124.95 (1C, Ar-C), 103.36 (2C, OCH), 91.01 (1C, ≡C), 80.25 (1C, ≡C), 65.25 (2C, OCH₂), 30.76 (1C, CH₂), 21.99 (1C, CH₂), 19.09 (1C, CH₂), 13.62 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M-H, C₁₅H₁₇O₂]⁺: 229.1223; found 229.1222.

5-(hex-1-yn-1-yl)-1H-indole (1bd)

Procedure A, Serial number: Lwt-3-110-1. 54% yield (532 mg, 5 mmol SM), brown oil,

 $R_f = 0.57 (PE/EA = 1:1).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.15 (br, 1H, N-H), 7.72 (dd, J = 1.5, 0.8 Hz, 1H, Ar-H), 7.30 (dt, J = 8.4, 0.9 Hz, 1H, Ar-H), 7.24 (dd, J = 8.4, 1.5 Hz, 1H, Ar-H), 7.20 (dd, J = 3.2, 2.4 Hz, 1H, Ar-H), 6.51 (ddd, J = 3.1, 2.0, 0.9 Hz, 1H, Ar-H), 2.43 (t, J = 7.0 Hz, 2H, CH₂), 1.65 – 1.56 (m, 2H, CH₂), 1.54 – 1.45 (m, 2H, CH₂), 0.96 (t, J = 7.3 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 134.98 (1C, Ar-C), 127.68 (1C, Ar-C), 125.66 (1C, Ar-C), 124.78 (1C, Ar-C), 124.25 (1C, Ar-C), 115.21 (1C, Ar-C), 110.87 (1C, Ar-C), 102.67 (1C, Ar-C), 87.51 (1C, =C), 81.63 (1C, =C), 31.07 (1C, CH₂), 22.04 (1C, CH₂), 19.16 (1C, CH₂), 13.69 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₄H₁₅N]⁺: 197.1204; found 197.1197.

(Z)-hex-2-en-4-yn-3-ylbenzene (1df)

Pecedure C, Serial number: Lwt-4-149. 70% yield (437 mg, 4 mmol SM), colorless oil, $R_f = 0.8$ (PE).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 2H, Ar-H), 7.36 – 7.27 (m, 2H, Ar-H), 7.23 (dd, *J* = 6.4, 2.3 Hz, 1H, Ar-H), 6.38 (q, *J* = 7.0 Hz, 1H, =CH), 2.10 (s, 3H, CH₃), 2.03 (d, *J* = 6.9 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 138.88 (1C, Ar-C), 131.66 (1C, =CH), 128.18 (2C, Ar-

C), 127.12 (1C, Ar-C), 125.83 (2C, Ar-C), 124.67 (1C, =C), 91.92 (1C, ≡C),

76.86 (1C, ≡C), 16.71 (1C, CH₃), 4.45 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₂]⁺: 156.0939; found 156.0909.

4-(prop-1-yn-1-yl)-1,2,3,6-tetrahydro-1,1'-biphenyl (1dg)

Ph-____Me

Procedure C, Serial number: Lwt-3-151-1. 92% yield (905 mg, SM = 5 mmol), white solid, $R_f = 0.23$ (PE).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.3, 6.9 Hz, 2H, Ar-H), 7.21 (d, J = 7.5 Hz, 3H, Ar-H), 6.08 (q, J = 2.8 Hz, 1H, =CH), 2.76 (ddq, J = 11.4, 7.9, 2.9 Hz, 1H, CH), 2.43 – 2.15 (m, 4H, CH₂CH₂), 1.95 (s, 3H, CH₃), 1.98 – 1.90 (m, 1H, CH), 1.84 – 1.69 (m, 1H, CH).

 $\frac{^{13}$ C NMR (101 MHz, CDCl₃) δ 146.51 (1C, Ar-C), 132.51 (1C, =C), 128.39 (2C, Ar-C), 126.81 (2C, Ar-C), 126.11 (1C, Ar-C), 120.96 (1C, =C), 83.40 (1C, ≡C), 81.02 (1C, ≡C), 39.21 (1C, CH), 33.66 (1C, CH₂), 30.15 (1C, CH₂), 29.58 (1C, CH₂), 4.19 (1C, CH₃).

HRMS (EI) calcd for [M, C₁₅H₁₆]⁺: 196.1252; found 196.1245.

4-(prop-1-yn-1-yl)-1,2-dihydronaphthalene (1dh)

Procedure C, Serial number: Lwt-3-165-2. 80% yield (2.27 g, 5 mmol SM), colorless oil, $R_f = 0.42$ (PE).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.5, 1.4 Hz, 1H, Ar-H), 7.24 – 7.16 (m, 1H, Ar-H), 7.16 (td, J = 7.4, 1.5 Hz, 1H, Ar-H), 7.11 – 7.07 (m, 1H, Ar-H), 6.36 (t, J = 4.8 Hz, 1H, =CH), 2.77 (t, J = 8.1 Hz, 2H, CH₂), 2.35 (td, J = 8.1, 4.9 Hz, 2H, =CHCH₂), 2.06 (s, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 135.10 (1C, Ar-C), 133.94 (1C, Ar-C), 133.11 (1C, Ar-C), 127.40 (1C, Ar-C), 127.21 (1C, Ar-C), 126.45 (1C, Ar-C), 124.99 (1C, =C), 121.98 (1C, =C), 86.44 (1C, ≡C), 77.43 (1C, ≡C), 27.23 (1C, CH₂), 23.48 (1C, CH₂), 4.28 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₂]⁺: 168.0939; found 168.0926.

4. Additional Data of Reaction Condition Optimization

Method A (using in situ generated metal complexes):

In an argon-filled glovebox, a vial (10 mL) was charged with ligand (0.006 mmol), metal salt (0.005 mmol), anhydrous THF (1 mL). The reaction mixture was stirred at 70 °C for 6 h, then cooled to room temperature. Internal alkynes (0.2 mmol), DIBAL-H (1.0 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. After stirring at 30 °C for 10 hours, the vial was removed from the glovebox and the reaction mixture was quenched with D₂O (30 °C, 30 minutes) and filtered over silica gel with hexanes. The combined organic phases were concentrated by rotary evaporation, and determined the product yield, conversion, regioisomeric ratio (r.r., **2aa/3aa**), and *Z/E* (**2aa-Z/2aa-E**) by NMR analysis.

Method B (using pre-formed iron complexes):

In an argon-filled glovebox, a vial (10 mL) was charged with complex **C1g** (0.005 mmol), anhydrous solvent (1 mL) and internal alkynes (0.2 mmol), aluminium reagent (0.24 mmol, 1.2 equiv) was added sequentially. The reaction mixture was stirred at room temperature for 1 minute, then additive (0.03 mmol, 6 mol%) was added when noted. After stirring at 30 °C for 10 hours, the vial was removed from the glovebox and the reaction mixture was quenched with D_2O (30 °C, 30 minutes) and filtered over silica

gel with hexanes. The combined organic phases were concentrated by rotary evaporation, and determined the product yield, conversion, r.r. (2aa/3aa), and Z/E (2aa-Z/2aa-E) by NMR analysis.

Table S2. Control experiments

Ph	Bu + DIBAL-H (1.0 M in Hex) 1.2 equiv Cat. (2.5 mol%) THF/Hex, 30 °C	(ⁱ Bu) ₂ Al Ph 2aa' Ph 3aa'	$\begin{bmatrix} \frac{1}{2} & 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	Ph ⁿ Bu 2aa-Z + Ph ⁿ Bu 3aa-Z	Ph 2aa-E + ⁿ Bu Ph D 3aa-E
Entry ^a	Condition	Conv.	2aa	r.r.	Z/E
		(%)	(yield %) ^{b}	$(2aa/3aa)^c$	$(2aa)^{c}$
1	C1g , 30 °C	100	81	91:9	97:3
2	Without C1g, 30 °C, 12 h	trace	NA^d	NA	NA
3	Without C1g, 80 °C, 12 h	trace	NA	NA	NA
4	Without FeCl ₂ , 30 °C, 12 h	trace	NA	NA	NA
5	Without FeCl ₂ , 80 °C, 12 h	trace	NA	NA	NA
6	Without L1g, 30 °C, 12 h	trace	NA	NA	NA
7	Without L1g, 80 °C, 12 h	trace	NA	NA	NA

^{*a*} Method A. ^{*b*} NMR yields with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} NA = not analyzed.

Table S3. Evaluation of other ligands

^{*a*} Method A. ^{*b*} NMR yield with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} FeCl₂/ligand = 1:1.2 ^{*d*} Determined by ¹H NMR. ^{*e*} Not analyzed.

Ph- <u></u> 1aa	^{−<i>n</i>} Bu + [Al] − 1.2 equiv	C1g (2.5 mol%) THF, 30 °C, 10 h	(ⁱ Bu) ₂ Al Ph ² ⁿ Bu 2aa' + Al(ⁱ Bu) ₂ Ph ³ ⁿ Bu 3aa'	$ \begin{array}{c} $	$\begin{array}{c} D \\ -Bu \\ -Z \\ -Z \\ -Bu \\ -Bu$
Entry	[A1]	conv. (%)	yield $(\%)^b$	r.r. ^c	Z/E^{c}
1	DIBAL-H	100	81	91:9	97:3
2	Red-Al	<1	\mathbf{NA}^d	NA	NA
3	LiAlH ₄	20	15	49:51	90:10
4	LiAlH(O ^t Bu) ₃	0	NA	NA	NA
5	$HAlCl_2 \cdot 2THF$	100	50	65:35	98:2
6	$Al(^{i}Bu)_{3}$	11	8	82:18	98:2
7	Al(ⁱ Bu) ₂ Cl	<5	NA	NA	NA
8	AlEt ₂ Cl	0	NA	NA	NA

Table S4. Evaluation of Al reagents

^{*a*} Method B. ^{*b*} NMR yield with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} Not analyzed.

Ph 1aa	C1g ^{.7} Bu + DIBAL-H (1.0 M in Hex) ^{THF/H} 1.2 equiv	g (2.5 mol%) tant (3 mol%) Hex, 30 °C, 10 h	u) ₂ AI Ph	$\begin{array}{c} D \\ Ph \\ nBu \\ 30 \ ^{\circ}C \\ \end{array} \qquad \begin{array}{c} D \\ Ph \\ 2aa-Z \\ + \\ D \\ Ph \\ nBu \\ 3aa-Z \end{array}$	D Ph 2aa-E + Ph D 3aa-E
Entry	Reductant	Conv. (%)	Yield $(\%)^b$	r.r. ^c	Z/E^{c}
1	None	100	81	91:9	97:3
2	EtMgBr	99	87	89:11	95:5
3	MeMgCl	90	83	88:12	97:3
4	"BuLi	37	32	81:19	95:5
5	TMSCH ₂ Li	29	25	80:20	93:7
6	NaHBEt ₃	76	59	74:26	93:7
7	$Mg(C_4H_6)(THF)_2$	6	NA^d	NA	NA
8	^t BuOK	18	17	79:21	95:5

Table S5. Evaluation of reductants

^{*a*} Method B. ^{*b*} NMR yield with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} Not analyzed.

Ph— <u>—</u> 1a:	^{_ n} Bu + DIBAL-H a (1.0 M in H 1.2 equiv	C1g (2.5 mol ex) solvent, 30 °C,	$ \overset{\%)}{10 \text{ h}} \overbrace{\qquad Ph}^{('Bu)_2Al} \xrightarrow{\qquad Ph}^{}_{2a} \qquad + \\ & & & & \\ & & & \\ & & & & \\$	$\begin{bmatrix} & & & \\ & & \\ & & \\ \mathbf{a'} & \\ & \\ & & $	$\begin{array}{c} D \\ nBu \\ n$
Entry	Solvent	Conv. (%)	Yield $(\%)^b$	r.r. ^{<i>c</i>}	Z/E^{c}
1	THF	100	81	91:9	97:3
2	2-MeTHF	100	87	82:18	96:4
3	dioxane	69	58	78:22	>98:2
4	Et ₂ O	24	22	66:34	98:2
5	$MTBE^{d}$	39	28	39:61	93:7
6	CPME ^e	24	22	54:46	96:4
7	PhOMe	62	44	73:27	98:2
8	hexanes	26	21	87:13	>98:2
9	benzene	60	38	82:18	98:2
10	toluene	76	61	81:19	98:2

Table S6. Evaluation of solvents

^{*a*} Method B. ^{*b*} NMR yield with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} MTBE = methyl tertbutyl ether. ^{*e*} CPME = cyclopentyl methyl ether.

Ph——— ^{"n} Bu 1aa	+ DIBAL-H — (1.0 M in Hex) [™] 1.2 equiv	[M] (2.5 mol%) L1g (3.0 mol%) F/Hex, 30 °C, 10 h	(^{/Bu}) ₂ Al Ph ² ⁿ Bu 2aa' + Al([/] Bu) ₂ Ph ³ ⁿ Bu 3aa'	$\begin{array}{c} D \\ Ph \\ n_{Bu} \\ 2aa-Z \\ + \\ 30 \ ^{\circ}C \\ m_{Bu} \\ 3aa-Z \end{array}$	Ph 2aa-E + Ph Bu Ph D 3aa-E
Entry	[M]	Conv. (%)	Yield $(\%)^b$	r.r. (2aa/3aa) ^c	Z/E (2aa) ^c
1	FeF ₂	0	NA^d	NA	NA
2	FeCl ₂	100	81	91:9	97:3
3 ^c	FeBr ₂	100	88	89:11	97:3
4	Fe(acac) ₂	<5	NA	NA	NA
5	Fe(SO ₃ CF ₃) ₂	87	82	83:17	96:4
6	Fe(OAc) ₂	8	8	72:28	94:6
7	CoCl ₂	65	57	54:46	85:15
8	CuCl ₂	<3	NA	NA	NA
9	NiCl ₂	99	87	76:24	93:7
10	MnCl ₂	12	11	79:21	85:15
11	PdCl ₂	50	48	50:50	89:11
12	AuCl ₃	0	NA	NA	NA

Table S7. Evaluation of metal salts

^{*a*} Method A. ^{*b*} NMR yield with 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} Not analyzed.

5. Typical Procedure of Iron-Catalyzed Hydroalumination

General procedure: In an argon-filled glovebox, a vial (10 mL) was charged with C1g (0.005 mmol) and THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute. Alkynes (0.2 mmol), DIBAL-H (1 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. After stirring at 30 °C for 1 hour, the vial was removed from the glovebox and the reaction mixture was quenched with D₂O (30 °C, 30 minutes) and filtered over silica gel with PE as eluant. The combined organic phases were concentrated by rotary evaporation to give the product. The regioselectivity was determined by NMR analysis.

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (0.005 mmol) and THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute. 1aa (0.2 mmol), DIBAL-H (1 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. After stirring for 1 h at 30 °C, THF was removed under vacumm. The reaction mixture was filtered through a pad of Celite and washed with hexanes. Then the filtrate was concentrated under vacumm to afford dark purple oil 2aa'-THF. The structure was determined by NMR analysis with C₆D₆.

In an argon-filled glovebox, a vial (10 mL) was charged with **C1g** (0.005 mmol) and THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute. **1aa** (0.2 mmol), DIBAL-H (1 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. After stirring for 1 h at 30 °C, the reaction mixture was added into DMAP. After stirring for 6 h at 30 °C, THF was removed under vacumm. The residue was stired in hexanes with Celite, filtered through a pad of Celite and washed with hexanes. Then the filtrate was concentrated under vacumm to afford yellow solid **2aa'-DMAP**. The structure was determined by NMR analysis with C₆D₆.

6. Mechanistic Studies

(a) Deuterium labelling experiment of DIBAL-D

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (1.6 mg, 0.0025 mmol), THF (1 mL), 1aa (15.8 mg, 0.1 mmol). The reaction mixture was stirred at 30 °C for 1 minute, Al(i Bu)₂D (0.12 mmol) was added. After stirring at 30 °C for 3 hours, the vial was removed from the glovebox. The reaction mixture was quench with water (30 °C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa), and Z/E (2aa-Z/2aa-E) were determined by NMR analysis.

(b) Hydroalumination of 1aa and AlHEt2

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (1.6 mg, 0.0025 mmol), toluene (1 mL), 1aa (15.8 mg, 0.1 mmol). The reaction mixture was stirred at 30 °C for 1 minute, then AlEt₂H (1M in toluene, 0.12 mmol) was added. After stirring at 30 °C for 3 hours, the vial was removed from the glovebox. The reaction mixture was quench with D₂O (30 °C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa), and Z/E (2aa-Z/2aa-E) were determined by NMR analysis.

(c) Deuterium labelling experiment of AlDEt₂

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (1.6 mg, 0.0025 mmol), THF (1 mL), 1aa (15.8 mg, 0.1 mmol). The reaction mixture was stirred at 30 °C for 1 minute, then AlEt₂D (1M in toluene, 0.12 mmol) was added. After stirring at 30 °C for 3 hours, the vial was removed from the glovebox. The reaction mixture was quench with water (30 °C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa), and Z/E (2aa-Z/2aa-E) were determined by NMR analysis.

(d) Kinetic isotopic effect experiment

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (1.6 mg, 0.0025 mmol), toluene (1 mL), 1aa (15.8 mg, 0.1 mmol). The reaction mixture was stirred at 30 °C for 1 minute, then AlEt₂H (1 M in toluene, 120 µL, 0.12 mmol) and AlEt₂D (1 M in toluene, 120 µL, 0.12 mmol) was added. After stirring at 30 °C for 3 hours, the vial was removed from the glovebox. The reaction mixture was quench with water (30 °C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa/12) was determined by NMR analysis.(LWT-6-74). The ratio of 2aa, 3aa, 12 is 0.14: 0.61: 0.25. The inverse KIE is 0.33, (KIE = $k_{\rm H}/k_{\rm D} = 12/(2aa+3aa) = 0.33$).

(e) Alkyne crossover experiment

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (3.3 mg, 0.005 mmol), THF (1 mL), 1aa (31.6 mg, 0.2 mmol). The reaction mixture was stirred at 30 °C for 1 minute, then DIBAL-H (1.0 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added. After stirring at 30 °C for 1 hour, the vial was removed from the glovebox. The alkyne 1af (37.7 mg, 0.2 mmol) was added and stirring at 30 °C for 1 hour. The reaction mixture was quench with D₂O (30°C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa), and *Z/E* (2aa-*Z*/2aa-*E*) were determined by NMR analysis.

(f) Radical trap experiment

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (3.3 mg, 0.005 mmol), THF (1 mL), 1aa (31.6 mg, 0.2 mmol), 1,1-diphenylethylene (36.1 mg, 0.2 mmol), DIBAL-H (1.0 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. After stirring at 30 °C for 2 hours, the vial was removed from the glovebox and the reaction mixture was quench with D₂O (30 °C, 30 minutes) and filtered over silica gel with PE. The combined organic phases were concentrated by rotary evaporation, and isolated yield was given. The r.r. (2aa/3aa), and *Z/E* (2aa-Z/2aa-*E*) were determined by NMR analysis.⁹

7. Analytical Data of Products

(Z)-(hex-1-en-1-yl-1-D)benzene (2aa)

Serial number: Lwt-3-142G. colorless oil, TLC $R_f = 0.8$ (PE), 81% yield (26.1 mg), r.r. = 91:9, Z/E = 97:3.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H, Ar-H), 7.23 – 7.19 (m, 1H, Ar-H),
5.66 (tt, J = 7.3, 1.7 Hz, 1H, =CH), 2.33 (q, J = 7.3 Hz, 2H, CH₂), 1.46-1.32 (m, 4H, CH₂CH₂), 0.90 (t, J = 7.2 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 137.74 (1C, Ar-C), 133.08 (1C, =C), 128.72 (2C, Ar-

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₅D]⁺: 161.1315; found 161.1308.

The r.r. (**2aa**/**3aa**) and Z/E (**2aa**-Z/2**aa**-E) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right). The corresponding data of **2ab**-**2ap** were obtained similarly.

11100		8 8 885 1 1 225	
-------	--	--------------------	--

N	L		iluli				M
ļ				1000			
6.55 6.45	6.35 6.25 6.15 6.05	5.95 5.85 5.7	5 5.65 5.55 5.45	60 6.50 6.40	6.30 6.20 6.10 6.00	5.90 5.80	5.70 5.60 5.50 5.
Peak	Chem shift	Area	Area (%)	Product	Chem shift	Area	Area (%)
	(ppm)				(ppm)		
1	6.40	1.00	48.5	3aa-Z	6.40	0.08	8
2	6.36	0.02	1	3aa- <i>E</i>	6.36	0.01	1
3	6.23	0.04	2	2aa- <i>E</i>	6.23	0.03	3
4	5.66	1.00	48.5	2aa-Z	5.66	0.92	88

(Z)-(hex-1-en-1-yl-2-D)benzene (3aa)

Serial number: Lwt-6-72. colorless oil, TLC $R_f = 0.8$ (PE), 92% yield (15.0 mg, 0.1 mmol SM), r.r. = 92:8, Z/E = 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.34 – 7.31 (m, 2H, Ar-H), 7.29 – 7.26 (m, 2H, Ar-H), 7.23 – 7.18 (m, 1H, Ar-H), 6.40 s, 1H, =CH), 2.33 (t, *J* = 7.3 Hz, 2H, CH₂), 1.47 – 1.30 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.2 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 137.82 (1C, Ar-C), 132.84 (1C, t, J = 23.2 Hz, 1C, =CD), 128.73 (2C, Ar-C), 128.54(1C, =C), 128.07 (2C, Ar-C), 126.37 (1C, Ar-C), 32.13 (1C, CH₂), 28.24 (1C, CH₂), 22.42 (1C, CH₂), 13.96 (1C, CH₃).
 <u>HRMS (EI)</u> calcd for [M, C₁₂H₁₅D]⁺: 161.1315; found 161.1308.

(Z)-1-fluoro-4-(hex-1-en-1-yl-1-D)benzene (2ab)

Serial number: Lwt-3-80. **C1h** was used instead. colorless oil, TLC $R_f = 0.75$ (PE), 98% yield (35.1 mg), r.r. = 88:12, Z/E = 98:2.

- $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.24 7.21 \text{ (m, 2H, Ar-H)}, 7.03 6.98 \text{ (m, 2H, Ar-H)}, 5.64 \text{ (tt, } J = 7.4 \text{ Hz}, 1.7 \text{ Hz}, 1\text{H}, =\text{CH}), 2.29 \text{ (q, } J = 7.3 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 1.45 1.31 \text{ (m, 4H, CH}_{2}\text{CH}_{2}), 0.89 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_{3}).$
- $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 161.39 (d, J = 245.5 Hz, 1C, Ar-C), 133.73 (d, J = 2.9 Hz, 1C, Ar-C), 132.90 (1C, =C), 130.22 (d, J = 7.8 Hz, 2C, Ar-C), 127.23 (t, J = 23.2 Hz, 1C, =CD), 114.93 (d, J = 21.7 Hz, 2C, Ar-C), 32.07 (1C, CH₂), 28.18 (1C, CH₂), 22.39 (1C, CH₂), 13.94 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DF]⁺: 179.1221; found 179.1212.

(Z)-1-chloro-4-(hex-1-en-1-yl-1-D)benzene (2ac)

Serial number: Lwt-3-81. colorless oil, TLC $R_f = 0.70$ (PE), 98% yield (38.3 mg), r.r. = 90:10, Z/E = 96:4.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.3 Hz, 2H, Ar-H), 7.19 (d, *J* = 8.3 Hz, 2H, Ar-H), 5.67 (tt, *J* = 7.4, 1.6 Hz, 1H, =CH), 2.29 (q, *J* = 7.3 Hz, 2H, CH₂), 1.45-1.31 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.1 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 136.16 (1C, Ar-C), 133.74 (1C, =C), 132.08 (1C, Ar-C), 129.98 (2C, Ar-C), 128.23 (2C, Ar-C), 127.18 (t, *J* = 23.2 Hz, 1C, =CD), 32.02 (1C, CH₂), 28.26 (1C, CH₂), 22.38 (1C, CH₂), 13.92 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DCl]⁺: 195.0925; found 195.0915.

(Z)-1-bromo-4-(hex-1-en-1-yl-1-D)benzene (2ad)

Serial number: Lwt-3-87. **C1h** was used instead. colorless oil, TLC R_f = 0.80 (PE), 94% yield (45.0 mg), r.r. = 90:10, Z/E = 98:2.

 $\frac{1}{1}$ H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H, Ar-H), 7.18 – 7.11 (m, 2H, Ar-H),

5.68 (tt, *J* = 7.3 Hz, 1.6 Hz, 1H, =CH), 2.28 (q, *J* = 7.3 Hz, 2H, CH₂), 1.46 –

1.31 (m, 4H, CH₂CH₂), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 136.57 (1C, Ar-C), 133.87 (1C, =C), 131.17 (2C, Ar-C), 130.32 (2C, Ar-C), 127.20 (t, *J* = 23.2 Hz, 1C, =CD), 120.20 (1C, Ar-C), 32.00 (1C, CH₂), 28.27 (1C, CH₂), 22.38 (1C, CH₂), 13.94 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DBr]⁺: 239.0420; found 239.0413.

(Z)-1-(hex-1-en-1-yl-1-D)-4-(trifluoromethyl)benzene (2ae)

Serial number: Lwt-3-84. colorless oil, TLC R_f = 0.90 (PE), 83% yield (38.1 mg), r.r. = 88:12, Z/E = 97:3.
<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H, Ar-H), 7.37 (d, J = 8.0 Hz, 2H, Ar-H), 5.78 (dd, J = 7.4 Hz, 1H, =CH), 2.31 (q, J = 7.4 Hz, 2H, CH₂), 1.46 – 1.41 (m, 2H, CH₂), 1.38 – 1.31 (m, 2H, CH₂), 0.89 (t, J = 7.2 Hz, 3H, CH₃).
<u>¹³C NMR</u> (101 MHz, CDCl₃) δ 141.28 (1C, Ar-C), 135.26 (1C, =C), 128.88 (2C, Ar-C), 127.18 (t, J = 23.2 Hz, 1C, =CD), 126.46 (q, J = 255.5 Hz, 1C, CF₃), 125.01 (q, J = 3.7 Hz, 2C, Ar-C), 122.93 (1C, Ar-C), 31.97 (1C, CH₂), 28.33 (1C, CH₂), 22.38 (1C, CH₂), 13.91 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₄DF₃]⁺: 229.1189; found 229.1182.

(Z)-1-(hex-1-en-1-yl-1-D)-4-methoxybenzene (2af)

Serial number: Lwt-3-54. colorless oil, TLC $R_f = 0.40$ (PE/EA = 50:1), 95% yield (36.3 mg), r.r. = 94:6, Z/E = 98:2.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.24 7.20 (m, 2H, Ar-H), 6.90 6.84 (m, 2H, Ar-H), 5.56 (t, *J* = 7.2 Hz, 1H, =CH), 3.80 (s, 3H, OCH₃), 2.32 (q, *J* = 7.3 Hz, 2H, CH₂), 1.45 – 1.39 (m, 2H, CH₂), 1.35 (q, *J* = 7.3 Hz, 2H, CH₂), 0.90 (t, *J* = 7.1 Hz, 3H, CH₃).
- ¹³C NMR (101 MHz, CDCl₃) δ 158.11 (1C, Ar-C), 131.48 (1C, =C), 130.46 (1C, Ar-C), 129.89 (2C, Ar-C), 127.72 (t, *J* = 23.2 Hz, 1C, =CD), 113.51 (2C, Ar-C), 55.21 (1C, OCH₃), 32.22 (1C, CH₂), 28.32 (1C, CH₂), 22.44 (1C, CH₂), 13.97

(1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₇DO]⁺: 191.1420; found 191.1414.

(Z)-4-(hex-1-en-1-yl-1-D)phenol (2ag)

Serial number: Lwt-3-184A. pink oil, TLC *Rf* = 0.55 (PE/EA = 3:1), 79% yield (28.0 mg), r.r. = 90:10, *Z/E* =98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.19 – 7.16 (m, 2H, Ar-H), 6.81 – 6.78 (m, 2H, Ar-H), 5.56 (t, *J* = 7.2 Hz, 1H, =CH), 5.09 (s, 1H, OH), 2.31 (q, *J* = 7.3 Hz, 2H, CH₂), 1.45 – 1.32 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.1 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 153.94 (1C, Ar-C), 131.56 (1C, =C), 130.60 (1C, Ar-C), 130.08 (2C, Ar-C), 127.60 (t, *J* = 23.2 Hz, 1C, =CD), 114.96 (2C, Ar-C), 32.17 (1C, CH₂), 28.29 (1C, CH₂), 22.42 (1C, CH₂), 13.97 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₅DO]⁺: 177.1264; found 177.1257.

(Z)-4-(hex-1-en-1-yl-1-D)-N,N-dimethylaniline (2ah)

Me₂N

Serial number: Lwt-3-196A. colorless oil, TLC Rf = 0.38 (PE/EA = 50:1), 96% yield (39.2 mg), r.r. = 90:10, Z/E = 95:5.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.21 (d, J = 8.8 Hz, 2H, Ar-H), 6.70 (d, J = 8.8 Hz, 2H, Ar-H), 5.48 (t, J = 7.1 Hz, 1H, =CH), 2.94 (s, 6H, N(CH₃)₂), 2.35 (q, J = 7.2 Hz, 2H, CH₂), 1.46 – 1.32 (m, 4H, CH₂CH₂), 0.90 (t, J = 7.1 Hz, 3H, CH₃). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 149.07 (1C, Ar-C), 129.85 (1C, =C), 129.66 (2C, Ar-C), 128.01 (t, J = 23.2 Hz, 1C, =CD), 126.36 (1C, Ar-C), 112.13 (2C, Ar-C), 40.54 (2C, N(CH₃)₂), 32.35 (1C, CH₂), 28.50 (1C, CH₂), 22.49 (1C, CH₂), 14.03 (1C, CH₃). <u>HRMS (EI)</u> calcd for [M, C₁₄H₂₀DN]⁺: 204.1737; found 204.1720.

(Z)-2-(4-(hex-1-en-1-yl-1-D)phenyl)-1,3-dioxolane (2ai)

Serial number: Lwt-3-177B. **C1h** was used instead, colorless oil, TLC $R_f = 0.25$ (PE/EA = 20:1), 87% yield (40.6 mg), r.r. = 87:13, Z/E > 98:2.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.29 (d, *J* = 8.1 Hz, 2H, Ar-H), 5.80 (s, 1H, OCH), 5.68 (t, *J* = 7.3 Hz, 1H, =CH), 4.15 4.01 (m, 4H, CH₂CH₂), 2.32 (q, *J* = 7.3 Hz, 2H, CH₂), 1.44 1.31 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.2 Hz, 3H, CH₃).
- $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}}$ (101 MHz, CDCl₃) δ 138.70 (1C, Ar-C), 135.81 (1C, Ar-C), 133.61 (1C, =C), 128.70 (2C, Ar-C), 128.00 (t, *J* = 22.2 Hz, 1C, =CD), 126.17 (2C, Ar-C), 103.64 (1C, OCH), 65.28 (2C, OCH₂), 32.08 (1C, CH₂), 28.28 (1C, CH₂), 22.38 (1C, CH₂), 13.94 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M-H, C₁₅H₁₈DO₂]⁺: 232.1442; found 232.1440.

(Z)-(4-(hex-1-en-1-yl-1-D)phenyl)trimethylsilane (2aj)

Me₃Si

Serial number: Lwt-4-27B. **C1h** was used instead, colorless oil, TLC $R_f = 0.9$ (PE), 96% yield (39.2 mg), r.r. = 91:9, Z/E = 97:3.

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H, Ar-H), 7.31 – 7.22 (m, 2H, Ar-H),
5.67 (t,
$$J$$
 = 7.3 Hz, 1H, =CH), 2.35 (q, J = 7.3 Hz, 2H, CH₂), 1.46 – 1.39 (m,
2H, CH₂), 1.38 – 1.32 (m, 2H, CH₂), 0.90 (t, J = 7.2 Hz, 3H, CH₃). 0.27 (s,
9H, Si(CH₃)₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 138.37 (1C, Ar-C), 138.17 (1C, Ar-C), 133.38 (1C, =C), 133.14 (2C, Ar-C), 128.28 (t,$ *J*= 23.2 Hz, 1C, =CD), 128.05 (2C, Ar-C), 32.20 (1C, CH₂), 28.48 (1C, CH₂), 22.46 (1C, CH₂), 14.01 (1C, CH₃), -1.11 (3C, Si(CH₃)₃).

<u>HRMS (EI)</u> calcd for [M, C₁₅H₂₃DSi]⁺: 233.1710; found 233.1704.

(Z)-1-fluoro-3-(hex-1-en-1-yl-1-D)benzene (2ak)

Serial number: Lwt-3-162B. **C1h** was used instead, colorless oil, TLC $R_f = 0.75$ (PE), 93% yield (33.3 mg), r.r. = 88:12, Z/E = 97:3.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 1H, Ar-H), 7.04 (dt, *J* = 7.7, 1.3 Hz, 1H, Ar-H), 6.98 (ddd, *J* = 10.3, 2.6, 1.5 Hz, 1H, Ar-H), 6.91 (tdd, *J* = 8.5, 2.6, 1.0 Hz, 1H, Ar-H), 5.70 (tt, *J* = 7.4, 1.6 Hz, 1H, =CH), 2.32 (q, *J* = 7.3 Hz, 2H, CH₂), 1.46 – 1.30 (m, 4H, CH₂CH₂), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 162.65 (d, J = 244.5 \text{ Hz}, 1\text{C}, \text{Ar-C}), 139.92 (d, J = 8.0 \text{ Hz}, 1\text{C}, \text{Ar-C}), 134.28 (1\text{C}, =\text{C}), 129.45 (d, J = 8.3 \text{ Hz}, 1\text{C}, \text{Ar-C}), 127.30 (t, J = 22.7 \text{ Hz}, 1\text{C}, =\text{CD}), 124.48 (d, J = 2.6 \text{ Hz}, 1\text{C}, \text{Ar-C}), 115.35 (d, J = 21.5 \text{ Hz}, 1\text{C}, \text{Ar-C}), 113.21 (d, J = 21.1 \text{ Hz}, 1\text{C}, \text{Ar-C}), 32.01 (1\text{C}, \text{CH}_2), 28.30 (1\text{C}, \text{CH}_2), 22.38 (1\text{C}, \text{CH}_2), 13.94 (1\text{C}, \text{CH}_3).$

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DF]⁺: 179.1221; found 179.1216.

(Z)-1-chloro-3-(hex-1-en-1-yl-1-D)benzene (2al)

Serial number: Lwt-3-159C. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 95% yield (37.1 mg), r.r. = 89:11, Z/E = 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H, Ar-H), 7.18 (dt, *J* = 8.0, 1.5 Hz, 1H, Ar-H), 7.14 (dt, *J* = 7.4, 1.5 Hz, 1H, Ar-H), 5.70 (tt, *J* = 7.3, 1.7 Hz, 1H,

=CH), 2.30 (q, *J* = 7.3 Hz, 2H, CH₂), 1.45 – 1.32 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.2 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 139.53 (1C, Ar-C), 134.43 (1C, Ar-C), 133.95 (1C, =C), 129.30 (1C, Ar-C), 128.67 (1C, Ar-C), 127.35 (t,$ *J*= 23.2 Hz, 1C, =CD), 126.85 (1C, Ar-C), 126.44 (1C, Ar-C), 31.98 (1C, CH₂), 28.24 (1C, CH₂), 22.35 (1C, CH₂), 13.92 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DCl]⁺: 195.0925; found 195.0919.

(Z)-1-(hex-1-en-1-yl-1-D)-3-methoxybenzene (2am)

Serial number: Lwt-3-175C. colorless oil, TLC $R_f = 0.5$ (PE/EA = 10:1), 87% yield (33.3 mg), r.r. = 96:4, Z/E > 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.24 (t, *J* = 7.9 Hz, 1H, Ar-H), 6.88 (dt, *J* = 7.5, 1.3 Hz, 1H, Ar-H), 6.83 (t, *J* = 2.1 Hz, 1H, Ar-H), 6.77 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H, Ar-H), 5.66 (tt, *J* = 7.5, 1.7 Hz, 1H, =CH), 3.80 (s, 3H, OCH₃), 2.34 (q, *J* = 7.3 Hz, 2H, CH₂), 1.45 – 1.32 (m, 4H, CH₂CH₂), 0.89 (t, *J* = 7.2 Hz, 3H, CH₃). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 159.33 (1C, Ar-C), 139.11 (1C, Ar-C), 133.36 (1C, =C), 129.02 (1C, Ar-C), 128.21 (t, *J* = 22.7 Hz, 1C, =CD), 121.30 (1C, Ar-C), 114.27 (1C, Ar-C), 111.90 (1C, Ar-C), 55.13(1C, OCH₃), 32.13 (1C, CH₂), 28.39 (1C, CH₂), 22.42 (1C, CH₂), 13.98 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₇DO]⁺: 191.1420; found 191.1414.

(Z)-1-fluoro-2-(hex-1-en-1-yl-1-D)benzene (2an)

Serial number: Lwt-3-106B. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 72% yield (25.8 mg), r.r. = 95:5, Z/E = 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 1H, Ar-H), 7.23 (tdd, J = 7.4, 5.2, 1.8

Hz, 1H, Ar-H), 7.12 (td, *J* = 7.5, 1.3 Hz, 1H, Ar-H), 7.06 (ddd, *J* = 9.7, 8.2, 1.3 Hz, 1H, Ar-H), 5.82 (tt, *J* = 7.4, 1.7 Hz, 1H, =CH), 2.26 (q, *J* = 7.4 Hz, 2H, CH₂), 1.46 – 1.30 (m, 4H, CH₂CH₂), 0.88 (t, *J* = 7.2 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 161.12 (d, J = 246.4 \text{ Hz}, 1\text{C}, \text{Ar-C}), 135.07 (1\text{C}, =\text{C}), 130.48 (d, J = 3.5 \text{ Hz}, 1\text{C}, \text{Ar-C}), 128.22 (d, J = 8.6 \text{ Hz}, 1\text{C}, \text{Ar-C}), 125.30 (d, J = 14.8 \text{ Hz}, 1\text{C}, \text{Ar-C}), 123.45 (d, J = 3.6 \text{ Hz}, 1\text{C}, \text{Ar-C}), 120.89 (t, J = 23.7 \text{ Hz}, 1\text{C}, =\text{CD}), 115.28 (d, J = 22.2 \text{ Hz}, 1\text{C}, \text{Ar-C}), 31.84 (1\text{C}, \text{CH}_2), 28.47 (1\text{C}, \text{CH}_2), 22.36 (1\text{C}, \text{CH}_2), 13.91 (1\text{C}, \text{CH}_3).$

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DF]⁺: 179.1221; found 179.1215.

(Z)-1-chloro-2-(hex-1-en-1-yl-1-D)benzene (2ao)

Serial number: Lwt-3-92B. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 95% yield (37.1 mg), r.r. = 95:5, Z/E > 98:2.

- $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.4, 1.6 Hz, 1H, Ar-H), 7.29 (dd, J = 7.5, 2.0 Hz, 1H, Ar-H), 7.19 (dtd, J = 18.5, 7.4, 1.7 Hz, 2H, Ar-H), 5.79 (tt, J = 7.4, 1.6 Hz, 1H, =CH), 2.20 (q, J = 7.4 Hz, 2H, CH₂), 1.45 – 1.29 (m, 4H, CH₂CH₂), 0.88 (t, J = 7.2 Hz, 3H, CH₃).
- ¹³C NMR (101 MHz, CDCl₃) δ 135.83 (1C, Ar-C), 134.26 (1C, =C), 133.59 (1C, Ar-C), 130.50 (1C, Ar-C), 129.28 (1C, Ar-C), 127.87 (1C, Ar-C), 126.09 (1C, Ar-C), 125.64 (t, *J* = 24.2 Hz, 1C, =CD), 31.84 (1C, CH₂), 28.13 (1C, CH₂), 22.31 (1C, CH₂), 13.89 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₄DCl]⁺: 195.0925; found 195.0919.

(Z)-1-(hex-1-en-1-yl-1-D)-2-methoxybenzene (2ap)

Serial number: Lwt-3-58. colorless oil, TLC $R_f = 0.38$ (PE/EA = 50:1), 80% yield (30.6

mg), r.r. = 95:5, *Z*/*E* > 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.30 – 7.13 (m, 2H, Ar-H), 6.92 (t, *J* = 7.4 Hz, 1H, Ar-H), 6.87 (t, *J* = 8.2 Hz, 1H, Ar-H), 5.72 (t, *J* = 7.4 Hz, 1H, =CH), 3.83 (s, 3H, OCH₃), 2.25 (q, *J* = 7.4 Hz, 2H, CH₂), 1.45 – 1.31 (m, 4H, CH₂CH₂), 0.88 (t, *J* = 7.1 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 156.97 (1C, OAr-C), 132.91 (1C, =C), 129.98 (1C, Ar-C), 127.89 (1C, Ar-C), 126.50 (1C, Ar-C), 123.63 (t, *J* = 23.7 Hz, 1C, =CD), 119.95 (1C, Ar-C), 110.32 (1C, Ar-C), 55.39 (1C, OCH₃), 32.14 (1C, CH₂), 28.38 (1C, CH₂), 22.45 (1C, CH₂), 13.97 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₇DO]⁺: 191.1420; found 191.1413.

(Z)-2-(hex-1-en-1-yl-1-D)naphthalene (2ba)

Serial number: Lwt-4-107a. colorless oil, TLC $R_f = 0.60$ (PE), 98% yield (41.4 mg), r.r. = 91:9, Z/E = 98:2.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.79 (t, J = 7.6 Hz, 3H, Ar-H), 7.71 (s, 1H, Ar-H), 7.47
- 7.39 (m, 3H, Ar-H), 5.74 (t, J = 7.3 Hz, 1H, =CH), 2.42 (q, J = 7.3 Hz, 2H, CH₂), 1.46 (q, J = 7.6 Hz, 2H, CH₂), 1.36 (q, J = 7.4 Hz, 2H, CH₂), 0.90 (t, J = 7.2 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 135.29 (1C, Ar-C), 133.57 (1C, =C), 133.32 (1C, Ar-C), 132.09 (1C, Ar-C), 128.36 (t, J = 22.7 Hz, 1C, =CD), 127.89 (1C, Ar-C), 127.54 (1C, Ar-C), 127.50 (1C, Ar-C), 127.32 (1C, Ar-C), 127.25 (1C, Ar-C), 125.96 (1C, Ar-C), 125.58 (1C, Ar-C), 32.16 (1C, CH₂), 28.42 (1C, CH₂), 22.42 (1C, CH₂), 13.99 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₆H₁₇D]⁺: 211.1471; found 211.1466.

(*Z*)-2-(hex-1-en-1-yl-1-D)furan (2bb)

Serial number: Lwt-3-115A. colorless oil, TLC $R_f = 0.60$ (PE), 77% yield (23.3 mg), r.r. = 98:2, Z/E = 98:2. ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.36 (d, J = 1.8 Hz, 1H, Ar-H), 6.38 (dd, J = 3.3, 1.9 Hz, 1H, Ar-H), 6.24 (d, J = 3.4 Hz, 1H, Ar-H), 5.55 (tt, J = 7.3, 1.8 Hz, 1H, =CH), 2.44 (q, J = 7.3 Hz, 2H, CH₂), 1.50 – 1.35 (m, 4H, CH₂CH₂), 0.92 (t, J = 7.1Hz, 3H, CH₃). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 153.35 (1C, Ar-C), 141.10 (1C, Ar-C), 131.28 (1C, =C), 116.90 (t, J = 24.2 Hz, 1C, =CD), 111.00 (1C, Ar-C), 108.62 (1C, Ar-C), 31.68 (1C, CH₂), 28.93 (1C, CH₂), 22.46 (1C, CH₂), 13.98 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₀H₁₃DO]⁺: 151.1107; found 151.1103.

The r.r. (**2bb**/**3bb**) and Z/E (**2bb-Z**/**2bb-***E*) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right). The corresponding data of **2ba** and **2bc-2be** were obtained similarly.

(Z)-2-(hex-1-en-1-yl-1-D)thiophene (2bc)

Serial number: Lwt-3-101. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 79% yield (26.4 mg), r.r. = 94:6, Z/E > 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.24 (dd, J = 5.1, 1.3 \text{ Hz}, 1\text{H, Ar-H}), 7.00 (dd, J = 5.1, 3.6 \text{ Hz}, 1\text{H, Ar-H}), 6.97 (dd, J = 3.6, 1.3 \text{ Hz}, 1\text{H, Ar-H}), 5.58 (t, J = 7.0 \text{ Hz}, 1\text{H}, =\text{CH}), 2.41 (q, J = 7.2 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 1.53 - 1.38 (m, 4\text{H}, \text{CH}_{2}\text{CH}_{2}), 0.93 (t, J = 7.2 \text{ Hz}, 3\text{H}, \text{CH}_{3}).$

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 140.77 (1C, Ar-C), 131.11 (1C, Ar-C), 126.95 (1C, =C), 126.65 (1C, Ar-C), 124.82 (1C, Ar-C), 121.31 (t,$ *J*= 24.2 Hz, 1C, =CD), 31.62 (1C, CH₂), 28.97 (1C, CH₂), 22.49 (1C, CH₂), 13.98 (1C, CH₃).

<u>HRMS (EI)</u> calcd for $[M, C_{10}H_{13}DS]^+$: 167.0879; found 167.0874.

(Z)-5-(hex-1-en-1-yl-1-D)-1H-indole (2bd)

Serial number: Lwt-3-116A. colorless oil, TLC $R_f = 0.75$ (PE/EA = 2:1), 98% yield (39.2 mg), r.r. = 97:3, Z/E = 97:3.

 $\frac{1 \text{H NMR}}{1 \text{H NMR}}$ (400 MHz, CDCl₃) δ 8.02 (br, 1H, NH), 7.57 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.31 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.19 – 7.10 (m, 2H, Ar-H), 6.53 (t, *J* = 2.6 Hz, 1H, Ar-H), 5.60 (tt, *J* = 7.2, 1.6 Hz, 1H, =CH), 2.40 (q, *J* = 7.3 Hz, 2H, CH₂), 1.48 – 1.42 (m, 2H, CH₂), 1.40 – 1.31 (m, 2H, CH₂), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃). $\frac{1^{3}\text{C NMR}}{101 \text{ MHz}}$ (101 MHz, CDCl₃) δ 134.52 (1C, Ar-C), 130.94 (1C, =C), 129.70 (1C, Ar-C), 129.17 (t, *J* = 23.2 Hz, 1C, =CD), 127.78 (1C, Ar-C), 124.44 (1C, Ar-C), 123.53 (1C, Ar-C), 120.70 (1C, Ar-C), 110.52 (1C, Ar-C), 102.74 (1C, Ar-C), 32.35 (1C, CH₂), 28.39 (1C, CH₂), 22.46 (1C, CH₂), 14.02 (1C, CH₃). HRMS (EI) calcd for [M, C₁₄H₁₆DN]⁺: 200.1424; found 200.1416.

(Z)-1-(prop-1-en-1-yl-1-D)ferrocene (2be)

Serial number: Lwt-4-147C. **C1h** was used instead, orange oil, TLC $R_f = 0.6$ (PE/EA = 50:1), 87% yield (39.5 mg), r.r. = 93:7, Z/E = 97:3.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 5.56 (ddd, J = 8.4, 6.7, 5.1 Hz, 1H, =CH), 4.33 (t, J =

1.9 Hz, 2H, Ar-H), 4.19 (t, *J* = 1.9 Hz, 2H, Ar-H), 4.10 (s, 5H, Ar-H), 1.82 (d, *J* = 7.0 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 126.51 (t, J = 24.2 Hz, 1C, =CD), 123.37 (1C, =C), 82.29 (1C, Ar-C), 69.03 (2C, Ar-C), 68.99 (5C, Ar-C), 68.19 (2C, Ar-C), 14.76 (1C, CH₃).

<u>HRMS (ESI)</u> calcd for [M, C₁₃H₁₃DFe]⁺: 227.0508; found 227.0501.

(Z)-1-methoxy-4-(prop-1-en-1-yl-1-D)benzene (2ca)

Serial number: Lwt-3-56. colorless oil, TLC $R_f = 0.48$ (PE/EA = 50:1), 87% yield (26.0 mg), r.r. = 92:8, Z/E = 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.24 \text{ (d, } J = 8.7 \text{ Hz, 2H, Ar-H}), 6.92 - 6.85 \text{ (m, 2H, Ar-H)}, 5.69 \text{ (tdd, } J = 8.0, 5.2, 2.1 \text{ Hz, 1H, =CH}), 3.80 \text{ (s, 3H, OCH}_{3}), 1.88 \text{ (dd, } J = 7.2, 2.2 \text{ Hz, 3H, CH}_{3}).$

¹³C NMR (101 MHz, CDCl₃) δ 158.08 (1C, OAr-C), 130.25 (1C, Ar-C), 129.96 (2C, Ar-C), 128.91 (t, J = 23.2 Hz, 1C, =CD), 124.89 (1C, =C), 113.52 (2C, Ar-C), 55.20 (1C, OCH₃), 14.53 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₀H₁₁DO]⁺: 149.0951; found 149.0943.

(Z)-1-(but-1-en-1-yl-1-D)-4-methoxybenzene (2cb)

Serial number: Lwt-3-49. colorless oil, TLC $R_f = 0.48$ (PE/EA = 50:1), 91% yield (29.8 mg), r.r. = 90:10, Z/E = 98:2.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.22 (d, J = 8.7 Hz, 2H, Ar-H), 6.86 (d, J = 8.7 Hz, 2H, Ar-H), 5.57 (tt, J = 7.2, 1.7 Hz, 1H, =CH), 3.80 (s, 3H, OCH₃), 2.34 (p, J = 7.4 Hz, 2H, CH₂), 1.06 (t, J = 7.5 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.12 (1C, OAr-C), 133.00 (1C, =C), 130.37 (1C, Ar-

C), 129.87 (2C, Ar-C), 127.28 (t, *J* = 23.2 Hz, 1C, =CD), 113.51 (2C, Ar-C),

55.21 (1C, OCH₃), 21.91 (1C, CH₂), 14.51 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₁H₁₃DO]⁺: 163.1107; found 163.1100.

(Z)-1-(2-cyclopropylvinyl-1-D)-4-methoxybenzene (2cc)

Serial number: Lwt-3-60. colorless oil, TLC $R_f = 0.40$ (PE/EA = 50:1), 98% yield (34.3 mg), r.r. = 87:13, Z/E > 98:2.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 2H, Ar-H), 6.87 (d, J = 8.7 Hz, 2H, Ar-

H), 4.99 (dd, *J* = 9.7, 1.6 Hz, 1H, =CH), 3.80 (s, 3H, OCH₃), 1.90 – 1.81 (m,

1H, CH), 0.83 – 0.79 (m, 2H, CH₂), 0.44 (dt, *J* = 6.5, 4.3 Hz, 2H, CH₂).

¹³C NMR (101 MHz, CDCl₃) δ 158.07 (1C, OAr-C), 134.90 (1C, =C), 130.52 (1C, Ar-

C), 129.76 (2C, Ar-C), 126.59 (t, *J* = 23.2 Hz, 1C, =CD), 113.54 (2C, Ar-C),

55.21 (1C, OCH₃), 10.94 (1C, CH), 7.96 (2C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₃DO]⁺: 175.1107; found 175.1100.

(Z)-1-(2-cyclohexylvinyl-1-D)-4-methoxybenzene (2cd)

Serial number: Lwt-4-42A. colorless oil, TLC Rf = 0.50 (PE/EA = 50:1), 99% yield (43.0 mg), r.r. = 88:12, Z/E = 96:4.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.22 - 7.19 \text{ (m, 2H, Ar-H), } 6.88 - 6.86 \text{ (m, 2H, Ar-H), } 5.40 \text{ (d, } J = 12 \text{ Hz, 1H, =CH), } 3.81 \text{ (s, 3H, OCH}_{3}\text{), } 2.56 \text{ (dddd, } J = 11.0, 7.6, } 5.3, 2.3 \text{ Hz, 1H, CH}\text{), } 1.79 - 1.63 \text{ (m, 4H, CH}_{2}\text{CH}_{2}\text{), } 1.36 - 1.08 \text{ (m, 6H, CH}_{2}\text{).} \\ \frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_{3}) \delta 158.15 \text{ (1C, OAr-C), } 137.43 \text{ (1C, =C), } 130.53 \text{ (1C, Ar-C), } 129.77 \text{ (2C, Ar-C), } 125.90 \text{ (t, } J = 23.2 \text{ Hz, 1C, =CD), } 113.62 \text{ (2C, Ar-C), } 55.26 \text{ (1C, OCH}_{3}\text{), } 36.88 \text{ (1C, CH), } 33.34 \text{ (2C, CH}_{2}\text{CH}_{2}\text{), } 26.09 \text{ (1C, CH}_{2}\text{), } 25.78 \text{ (2C, CH}_{2}\text{CH}_{2}\text{).} \\ \end{cases}$

<u>HRMS (EI)</u> calcd for [M, C₁₅H₁₉DO]⁺: 217.1577; found 217.1570.

(Z)-1-methoxy-4-(3-phenylprop-1-en-1-yl-1-D)benzene (2ce)

Serial number: Lwt-4-31A. colorless oil, TLC $R_f = 0.66$ (PE/EA = 50:1), 99% yield (44.6 mg), r.r. = 93:7, Z/E = 95:5.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.33 - 7.27 \text{ (m, 4H, Ar-H)}, 7.25 - 7.19 \text{ (m, 3H, Ar-H)}, 6.89 \text{ (d, } J = 8.8 \text{ Hz}, 2\text{H}, \text{Ar-H)}, 5.77 \text{ (dd, } J = 8.2, 6.7 \text{ Hz}, 1\text{H}, =\text{CH}), 3.82 \text{ (s, 3H, OCH}_{3}), 3.68 \text{ (d, } J = 7.4 \text{ Hz}, 2\text{H}, \text{CH}_{2}).$

¹³C NMR (101 MHz, CDCl₃) δ 158.42 (1C, OAr-C), 140.91 (1C, =C), 129.87 (2C, Ar-C), 129.78 (1C, Ar-C), 129.29 (1C, =CD), 128.97 (1C, Ar-C), 128.47 (2C, Ar-C), 128.31 (2C, Ar-C), 125.99 (1C, Ar-C), 113.65 (2C, Ar-C), 55.21 (1C, OCH₃), 34.62 (1C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₆H₁₅DO]⁺: 225.1264; found 225.1257.

(Z)-1-methoxy-4-(4-methoxybut-1-en-1-yl-1-D)benzene (2cf)

Serial number: Lwt-4-32B-2. **C1h** was used instead, colorless oil, TLC $R_f = 0.39$ (PE/EA = 20:1), 95% yield (36.8 mg), r.r. = 91:9, Z/E = 96:4.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H, Ar-H), 6.90 – 6.83 (m, 2H, Ar-H), 5.59 (t, *J* = 7.2 Hz, 1H, =CH), 3.80 (s, 3H, OCH₃), 3.48 (td, *J* = 6.7, 1.3 Hz, 2H, OCH₂), 3.35 (s, 3H, OCH₃), 2.62 (qd, *J* = 6.9, 1.4 Hz, 2H, CH₂).

¹³C NMR (101 MHz, CDCl₃) δ 158.33 (1C, OAr-C), 130.00 (1C, =C), 129.94 (2C, Ar-

C), 129.66 (t, *J* = 23.2 Hz, 1C, =CD), 126.86 (1C, Ar-C), 113.60 (2C, Ar-C),

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₅DO₂]⁺: 193.1213; found 193.1207.

(Z)-(2-cyclopentylvinyl-1-D)benzene (2cg)

Serial number: Lwt-7-182. colorless oil, TLC $R_f = 0.8$ (PE), 81% yield (28 mg), r.r. = 95:5, Z/E = 95:5.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.36 7.25 (m, 4H, Ar-H), 7.24 7.16 (m, 1H, Ar-H), 5.57 (dd, J = 10.1, 2.0 Hz, 1H, =CH), 3.04 – 2.88 (m, 1H, CH), 1.87 (dq, J = 10.0, 5.6, 4.9 Hz, 2H, CH₂), 1.76 – 1.65 (m, 2H, CH₂), 1.59 (ddt, J = 12.8, 9.7, 4.2 Hz, 2H, CH₂), 1.42 – 1.28 (m, 2H, CH₂).
- <u>1³C NMR</u> (101 MHz, CDCl₃) δ 138.22 (1C, =C), 137.84 (1C, Ar-C), 128.62 (2C, Ar-C), 128.07 (2C, Ar-C), 126.97 (t, *J* = 23.2 Hz, 1C, =CD), 126.37 (1C, Ar-C), 38.77 (1C, CH), 34.19 (2C, 2CH₂), 25.56 (2C, 2CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₅D]⁺: 173.1315; found 173.1310.
(Z)-(2-cyclohexylvinyl-1-D)benzene (2ch)

Serial number: Lwt-7-189. colorless oil, TLC $R_f = 0.8$ (PE), 98% yield (39 mg), r.r. = 93:7, Z/E = 93:7.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.36 - 7.25 \text{ (m, 4H, Ar-H)}, 7.24 - 7.16 \text{ (m, 1H, Ar-H)}, 5.57 \text{ (dd, } J = 10.1, 2.0 \text{ Hz}, 1\text{H}, =\text{CH}), 3.04 - 2.88 \text{ (m, 1H, CH)}, 1.87 \text{ (dq, } J = 10.0, 5.6, 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 1.76 - 1.65 \text{ (m, 2H, CH}_{2}), 1.59 \text{ (ddt, } J = 12.8, 9.7, 4.2 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 1.42 - 1.28 \text{ (m, 2H, CH}_{2}).$

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 138.84 (1C, Ar-C), 137.86 (1C, =C), 128.56 (2C, Ar-C), 128.15 (2C, Ar-C), 126.45 (t, *J* = 23.2 Hz, 1C, =CD), 126.22 (1C, Ar-C), 36.87 (1C, CH₂), 33.24 (2C, CH₂), 26.02 (1C, CH₂), 25.67 (2C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₄H₁₇D]⁺: 187.1471; found 187.1465.

(Z)-(penta-1,4-dien-1-yl-1-D)benzene (2ci)

Serial number: Lwt-4-48B. **C1h** was used instead, colorless oil, TLC $R_f = 0.55$ (PE), 75 yield (21.8 mg), r.r. = 92:8, Z/E = 97:3.

 1 H NMR (400 MHz, CDCl₃) δ 7.43 – 7.15 (m, 5H, Ar-H), 5.91 (ddt, *J* = 16.3, 10.1, 6.0

Hz, 1H, =CH), 5.70 (tt, *J* = 7.6, 1.7 Hz, 1H, =CH), 5.13 (dq, *J* = 17.1, 1.7 Hz,

1H, =CH), 5.06 (dq, *J* = 10.2, 1.7 Hz, 1H, =CH), 3.11 – 3.02 (m, 2H, CH₂).

 $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 137.20 (1C, Ar-C), 136.64 (1C, =C), 129.69 (1C, J =

22.7 Hz, =CD), 129.31 (1C, =C), 128.61 (2C, Ar-C), 128.15 (2C, Ar-C),

126.69 (1C, Ar-C), 115.26 (1C, =C), 32.66 (1C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₁H₁₁D]⁺: 145.1002; found 145.0995.

(Z)-N,N-diisopropyl-3-phenylprop-2-en-1-amine-3-D (2cj)

Serial number: Lwt-4-26A. 4 h, colorless oil, TLC $R_f = 0.5$ (EA), 89% yield (39 mg), r.r. = 96:4, Z/E > 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.37 (t, J = 7.6 Hz, 2H, Ar-H), 7.27 – 7.19 (m, 3H, Ar-H), 5.82 (t, J = 6.2 Hz, 1H, =CH), 3.38 (d, J = 6.0 Hz, 2H, NCH₂), 3.13 – 3.03 (m, 2H, NCH), 1.02 (dd, J = 6.6, 1.6 Hz, 12H, 4CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 137.56 (1C, Ar-C), 135.36 (1C, =C), 128.90 (2C, Ar-C), 128.07 (2C, Ar-C), 127.95 (1C, J = 24.2 Hz, =CD), 126.52 (1C, Ar-C), 48.87 (2C, NCH), 43.44 (1C, NCH₂), 20.73 (4C, CH₃).

HRMS (EI) calcd for [M, C₁₅H₂₂DN]⁺: 218.1893; found 218.1890.

The r.r. (2cj/3cj) and Z/E (2cj-Z/2cj-E) was determined by analysis of 400 MHz ¹H

NMR spectra of the protonated sample (below left) with deuterated product (below

right). The corresponding data of **2ca-2ci** and **2ck-2cm** were obtained similarly.

(Z)-N-methyl-N-(3-phenylallyl-3-D)aniline (2ck)

Serial number: Lwt-4-128A. C1h was used instead, 4 h, colorless oil, TLC $R_f = 0.5$

(EA), 98% yield (44.0 mg), r.r. = 90:10, *Z*/*E* > 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H, Ar-H), 7.26 (dt, *J* = 8.0, 1.3 Hz, 3H,

Ar-H), 7.24 – 7.15 (m, 2H, Ar-H), 6.75 – 6.64 (m, 3H, Ar-H), 5.69 (td, 1H, J

= 6.0, 3.0 Hz, =CH), 4.22 (d, *J* = 6.0 Hz, 2H, CH₂), 2.91 (s, 3H, CH₃).

 $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 149.25 (1C, NAr-C), 136.82 (1C, =C), 131.02 (t, J

=23.2 Hz, 1C, =CD), 129.44 (1C, Ar-C), 129.09 (2C, Ar-C), 128.90 (2C, Ar-C), 128.27 (2C, Ar-C), 127.03 (1C, Ar-C), 116.66 (1C, Ar-C), 112.91 (2C, Ar-C), 50.99 (1C, NCH₂), 38.29 (1C, NCH₃).

<u>HRMS (EI)</u> calcd for $[M, C_{16}H_{16}DN]^+$: 224.1424; found 224.1419.

(Z)-phenyl(3-phenylallyl-3-d)sulfane (2cl)

Serial number: Lwt-8-170B. 4 h, yellow oil, TLC $R_f = 0.3$ (PE), 95% yield (43.1 mg), r.r. = 83:17, Z/E = 97:3.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H, Ar-H), 7.32 – 7.24 (m, 7H, Ar-H),
 7.22 – 7.17 (m, 1H, Ar-H), 5.82 (t, J = 7.8 Hz, 1H, =CH), 3.82 (d, J = 7.7 Hz, 2H, CH₂).

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 136.30 (1C, Ar-C), 135.97 (1C, Ar-C), 131.63 (t, J = 22.2 Hz, 1C, =CD), 129.32 (2C, Ar-C), 128.77 (2C, Ar-C), 128.69 (2C, Ar-C), 128.28 (2C, Ar-C), 127.14 (1C, Ar-C), 126.84 (1C, Ar-C), 126.01 (1C, =C), 31.95 (d, J = 9.09 Hz, 1C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₅H₁₃DS]⁺: 227.0879; found 227.0872.

(Z)-N,N-dimethyl-4-phenylbut-3-en-1-amine-4-d (2cm)

Serial number: Lwt-8-170C. 12 h, yellow oil, TLC $R_f = 0.3$ (EA), 98% yield (34.9 mg), r.r. = 87:13, Z/E = 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 4H, Ar-H), 7.21 (td, J = 6.8, 1.8 Hz, 1H, Ar-H), 5.67 (tt, J = 7.1, 1.6 Hz, 1H, =CH), 2.57 – 2.48 (m, 2H, CH₂), 2.40 (t, J = 7.1 Hz, 2H, CH₂), 2.22 (s, 6H, N(CH₃)₂).

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}}$ (101 MHz, CDCl₃) δ 137.41 (1C, Ar-C), 130.03 (1C, Ar-C), 129.50 (t, *J* = 22.7 Hz, 1C, =CD), 128.63 (2C, Ar-C), 128.09 (2C, Ar-C), 126.53 (1C, =C), 59.49 (1C, CH₂), 45.35 (2C, N(CH₃)₂), 26.98 (1C, CH₂).

<u>HRMS (ESI)</u> calcd for $[M+H, C_{12}H_{17}DN]^+$: 177.1496; found 177.1496.

((1E,3Z)-penta-1,3-dien-1-yl-3-D)benzene (2da)

Serial number:Lwt-3-51. **C1h** was used instead, colorless oil, TLC $R_f = 0.85$ (PE), 82% yield (23.8 mg), r.r. = 84:16, Z/E = 97:3.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.42 (d, J = 8.2 Hz, 2H, Ar-H), 7.34 – 7.28 (m, 2H, Ar-H), 7.24 – 7.19 (m, 1H, Ar-H), 7.09 (d, J = 15.7 Hz, 1H, =CH), 6.52 (d, J = 15.6 Hz, 1H, =CH), 5.60 (q, J = 7.3 Hz, 1H, =CH), 1.86 (dd, J = 7.1, 1.4 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 137.66 (1C, Ar-C), 131.78 (1C, =C), 129.28 (t, *J* = 17.2 Hz, 1C, =CD), 128.55 (2C, Ar-C), 127.29 (1C, =C), 127.01 (1C, Ar-C), 126.29 (2C, Ar-C), 124.10 (1C, =C), 13.58 (1C, CH₃).

<u>HRMS (EI)</u> calcd for $[M, C_{11}H_{11}D]^+$: 145.1002; found 145.1017.

((1Z,3Z)-penta-1,3-dien-1-yl-3-D)benzene (2db)

Serial number:Lwt-3-144C-2. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 99% yield (28.8 mg), r.r. = 92:8, Z/E > 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 4H, Ar-H), 7.24 – 7.21 (m, 1H, Ar-H),

6.59 – 6.50 (m, 1H, =CH), 6.45 (dd, *J* = 11.7, 1.5 Hz, 1H, =CH), 5.66 (dt, *J* = 7.2, 1.6 Hz, 1H, =CH), 1.83 (d, *J* = 7.1 Hz, 3H, CH₃).

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 137.55 (1C, Ar-C), 129.26 (1C, =C), 129.08 (2C, Ar-C), 128.78 (1C, =C), 128.12 (2C, Ar-C), 126.80 (1C, Ar-C), 125.31 (t, J = 23.2 Hz, 1C, =CD), 124.96 (1C, =C), 13.36 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₁H₁₁D]⁺: 145.1002; found 145.0997.

((1Z,3Z)-penta-1,3-dien-1-yl-3-D)cyclohexane (2dc)

Serial number: Lwt-6-101B. C1h was used instead, colorless oil, TLC R_f = 0.78 (PE), 76% yield (23.1 mg), r.r. = 93:7, Z/E >98:2
<u>¹H NMR</u> (400 MHz, CDCl₃) δ 6.27 (dt, J = 10.7 Hz, 1H, =CH), 5.62 – 5.40 (m, 2H, =CH, =CH), 2.16 (d, J = 7.3 Hz, 2H, =CHCH₂), 1.74 (d, J = 7.0 Hz, 3H, =CHCH₃), 1.43 – 1.19 (m, 10H, 5CH₂), 0.88 (t, J = 6.7 Hz, 3H, CH₃).
<u>¹³C NMR</u> (101 MHz, CDCl₃) δ 137.85 (1C, =C), 125.77 (1C, =C), 124.45 (1C, J = 23.2 Hz, =CD), 121.32 (1C, =C), 36.55 (1C, CH₂), 33.23 (2C, 2CH₂), 26.02 (1C, -CH₂)

CH₂), 25.90 (2C, 2CH₂), 13.05 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₁H₁₇D]⁺: 151.1471; found 151.1467.

(2Z,4Z)-dodeca-2,4-diene-3-D (2dd)

Serial number: Lwt-6-109B. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 90% yield (30.0 mg), r.r. = 97:3, Z/E =97:3.

 $\frac{1}{\text{H NMR}} (400 \text{ MHz, CDCl}_3) \delta 6.17 (\text{dt}, J = 11.0, 1.5 \text{ Hz}, 1\text{H}, =\text{CH}), 5.57 - 5.45 (\text{m}, 1\text{H}, =\text{CH}), 5.31 (\text{t}, J = 10.2 \text{ Hz}, 1\text{H}, =\text{CH}), 2.52 - 2.36 (\text{m}, 1\text{H}, \text{CH}), 1.74 (\text{d}, J = 7.1 \text{ Hz}, 5\text{H}, \text{CH}_2), 1.72 - 1.59 (\text{m}, 3\text{H}, \text{CH}_2), 1.29 (\text{qt}, J = 11.8, 2.9 \text{ Hz}, 2\text{H}, \text{CH}_2), 1.18 (\text{tt}, J = 12.5, 3.1 \text{ Hz}, 1\text{H}, \text{CH}_2), 1.13 - 1.01 (\text{m}, 2\text{H}, \text{CH}_3).$ $\frac{1^3\text{C NMR}}{101 \text{ MHz}, \text{CDCl}_3} \delta 131.99 (1\text{C}, =\text{C}), 125.69 (1\text{C}, =\text{C}), 124.28 (1\text{C}, J = 23.2 \text{ Hz}, =\text{CD}), 123.18 (1\text{C}, =\text{C}), 31.85 (1\text{C}, \text{CH}_2), 29.68 (1\text{C}, \text{CH}_2), 29.27 (1\text{C}, \text{CH}_3) (1\text{C}, =\text{C}), 123.18 (1\text{C}, =\text{C}), 31.85 (1\text{C}, \text{CH}_2), 29.68 (1\text{C}, \text{CH}_2), 29.27 (1\text{C}, \text{CH}_3) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C}) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C}) (1\text{C}, \text{C}, \text{C}) (1\text{C}, \text{C})$

CH₂), 29.21 (1C, 1CH₂), 27.53 (1C, 1CH₂), 22.67 (1C, 1CH₂), 14.09 (1C,

1CH₂), 13.07 (1C, =CHCH₃).

<u>HRMS (EI)</u> calcd for $[M, C_{12}H_{21}D]^+$: 167.1784; found 167.1778.

((1*E*,3*Z*)-2-methylpenta-1,3-dien-1-yl-3-D)benzene (2de)

Serial number: Lwt-3-145C. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 91% yield (29 mg), r.r. = 95:5, Z/E > 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.36 - 7.28 \text{ (m, 4H, Ar-H)}, 7.24 - 7.19 \text{ (m, 1H, Ar-H)}, 6.42 \text{ (s, 1H, =CH)}, 5.57 \text{ (dt, } J = 7.3, 1.6 \text{ Hz}, 1\text{H}, =\text{CH}), 2.05 \text{ (s, 3H, CH}_{3}), 1.90 \text{ (d, } J = 7.2 \text{ Hz}, 3\text{H}, \text{CH}_{3}).$

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 137.97 (1C, Ar-C), 135.16 (1C, =C), 133.94 (t, J = 23.2)$ Hz, 1C, =CD), 129.67 (1C, =C), 129.04 (2C, Ar-C), 128.03 (2C, Ar-C), 126.25 (1C, Ar-C), 125.17 (1C, =C), 18.63 (1C, CH₃), 14.95 (1C, CH₃).

HRMS (EI) calcd for [M, C₁₂H₁₃D]⁺: 159.1158; found 159.1153.

The r.r. (**2de/3de**) and *Z/E* (**2de-Z/2de-E**) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right). The corresponding data of **2da-2dd** and **2df-2di** were obtained similarly.

	M		_WWW				,M
.8 6.7 6.6 0	6, 5 6, 4 6, 3 6, 2 6, 1 6, 0	5.9 5.8 5.7	5.6 5.5 5.4 5.3 5	.8 6.7 6.6 6.5	6,4 6,3 6,2 6,1 6,0	5,9 5,8 5,7	5.6 5.5 5.4 5.3 5
Peak	Chem shift	Area	Area (%)	Product	Chem shift	Area	Area (%)
	(ppm)				(ppm)		
1	5.99	0.96	49.0	3de-Z	5.99	0.05	5
2	5.56	1.00	51.0	2de-Z	5.56	0.95	95

((2E,4Z)-hexa-2,4-dien-3-yl-4-D)benzene (2df)

Serial number: Lwt-3-150B. **C1h** was used instead, 3 h, colorless oil, TLC $R_f = 0.70$ (PE), 63% yield (20.1 mg), r.r. = 96:4, Z/E = 97:3.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H, Ar-H), 7.29 (t, *J* = 7.6 Hz, 2H, Ar-H), 7.25 – 7.14 (m, 1H, Ar-H), 5.98 (q, *J* = 7.0 Hz, 1H, =CH), 5.82 (qt, *J* = 6.9, 1.6 Hz, 1H, =CH), 1.76 (d, *J* = 7.0 Hz, 3H, CH₃), 1.50 (d, *J* = 6.9 Hz, 3H, CH₃).

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}}$ (101 MHz, CDCl₃) δ 141.72 (1C, =C), 137.29 (1C, Ar-C), 128.31 (1C, =C), 128.14 (2C, Ar-C), 126.69 (t, *J* = 24.2 Hz, 1C, =CD), 126.59 (1C, Ar-C), 126.37 (2C, Ar-C), 124.47 (1C, =C), 15.49 (1C, CH₃), 14.90 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₁₃D]⁺: 159.1158; found 159.1152.

(Z)-4-(prop-1-en-1-yl-1-D)-1,2,3,6-tetrahydro-1,1'-biphenyl (2dg)

Serial number: Lwt-3-153B. **C1h** was used instead, colorless oil, TLC $R_f = 0.70$ (PE), 85% yield (33.9 mg), r.r. = 91:9, Z/E > 98:2.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H, Ar-H), 7.26 – 7.15 (m, 3H, Ar-H),
5.72(dq, J = 4.6 Hz, 2.4 Hz, 1H, =CH), 5.44 (q, J = 7.3 Hz, 1H, =CH), 2.79 (ddt, J = 14.9 Hz, 8.0 Hz, 2.8 Hz, 1H, CH), 2.45 – 2.21 (m, 4H, CH₂CH₂),
2.02 – 1.96 (m, 1H, CH), 1.83 (d, J = 7.2 Hz, 3H, CH₃), 1.81 –1.73 (m, 1H, CH).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 147.01 (1C, Ar-C), 135.13 (1C, =C), 131.71 (t, J = 23.2 Hz, 1C, =CD), 128.34 (2C, Ar-C), 126.84 (2C, Ar-C), 126.71 (1C, =C), 125.99 (1C, Ar-C), 123.56 (1C, =C), 39.75 (1C, CH), 33.84 (1C, CH₂), 30.03 (1C, CH₂), 29.63 (1C, CH₂), 14.91 (1C, CH₃).$

HRMS (EI) calcd for [M, C₁₅H₁₇D]⁺: 199.1471; found 199.1466.

(Z)-4-(prop-1-en-1-yl-1-D)-1,2-dihydronaphthalene (2dh)

Serial number: Lwt-3-174B. **C1h** was used instead, colorless oil, TLC Rf = 0.80 (PE), 82% yield (28.1 mg), r.r. = 89:11, Z/E > 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz}, \text{CDCl}_{3}) \delta 7.20 - 7.13 \text{ (m, 4H, Ar-H)}, 5.94 \text{ (t, } J = 4.7 \text{ Hz}, 1\text{H}, =\text{CH}), 5.82 \text{ (q, } J = 7.1 \text{ Hz}, 1\text{H}, =\text{CH}), 2.79 \text{ (t, } J = 8.0 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 2.40 - 2.33 \text{ (m, 2H, CH}_{2}), 1.74 \text{ (dd, } J = 6.9, 1.1 \text{ Hz}, 3\text{H}, \text{CH}_{3}).$

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 136.20 (1C, =C), 135.02 (1C, Ar-C), 133.58 (1C, Ar-C), 127.84 (t, *J* = 7.1 Hz, 1C, =CD), 127.69 (1C, Ar-C), 127.59 (1C, Ar-C), 127.48 (1C, Ar-C), 126.84 (1C, Ar-C), 126.38 (1C, =C), 124.07 (1C, =C), 28.10 (1C, CH₂), 23.13 (1C, CH₂), 14.73 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₃D]⁺: 171.1158; found 171.1151.

(Z)-(hexa-3,5-dien-1-yl-4-d)benzene (2di)

Serial number: Lwt-8-170A. colorless oil, TLC $R_f = 0.7$ (PE), 72% yield (23 mg), r.r. = 82:18 (5.49 : 6.02 ppm), Z/E = 98:2. (5% byproduct).

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.28 (td, J = 7.6, 6.9, 2.4 Hz, 2H, Ar-H), 7.20 (dd, J = 7.1, 2.3 Hz, 3H, Ar-H), 5.49 (t, J = 7.8Hz, 1H, =CH), 5.25 5.15 (m, 1H, =CH), 5.08 (d, J = 10.2Hz, 1H, =CH), 2.70 (td, J = 8.2, 7.8, 2.2 Hz, 2H, CH₂), 2.51 (qd, J = 7.6, 2.3 Hz, 2H, CH₂).
- ¹³C NMR (101 MHz, CDCl₃) δ 141.65 (1C, Ar-C), 132.01 (1C, Ar-C), 131.39 (2C, Ar-C), 129.35 (t, J = 21.2 Hz, 1C, =CD), 128.39 (2C, Ar-C), 128.31 (2C, Ar-C), 125.86 (1C, Ar-C), 117.20 (1C, =C), 35.81 (1C, CH₂), 29.54 (1C, CH₂).

<u>HRMS (EI)</u> calcd for $[M, C_{12}H_{13}D]^+$: 159.1158; found 159.1151.

(Z)-1-(3-phenylallyl-2-D)pyrrolidine (3ea)

Serial number: Lwt-4-3C. C1i was used instead, 10 h, colorless oil, TLC $R_f = 0.5$ (MeOH), 98% yield (36.9 mg), r.r. = 96:4, Z/E > 98:2.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H, Ar-H), 7.26 – 7.21 (m, 3H, Ar-H), 6.53 (s, 1H, =CH), 3.41 (d, *J* = 2.0 Hz, 2H, NCH₂), 2.59 – 2.49 (m, 4H, 2CH₂), 1.79 (p, *J* = 3.2 Hz, 4H, CH₂CH₂).

¹³C NMR (101 MHz, CDCl₃) δ 137.51 (1C, Ar-C), 135.32 (1C, =C), 128.85 (2C, Ar-C), 128.02 (2C, Ar-C), 127.91 (t, J = 23.2 Hz, 1C, =CD), 126.47 (1C, Ar-C), 48.82 (2C, NCH₂), 43.39 (1C, CH), 20.69 (2C, CH₂).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₁₆DN]⁺: 188.1424; found 188.1408.

The r.r. (**3ea**/**2ea**) and Z/E (**3ea**-Z/3ea-E) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right).

(Z)-N,N-dimethyl-3-phenylprop-2-en-1-amine-2-D (3eb)

Serial number: Lwt-4-156B. C1i was used instead, 10 h, colorless oil, TLC $R_f = 0.5$

(EA), 98% yield (31.8 mg), r.r. = 94:6, Z/E > 98:2.

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H, Ar-H), 7.28 – 7.25 (m, 3H, Ar-H),
 6.58 (s, 1H), 3.22 (s, 2H, CH₂), 2.27 (s, 6H, N(CH₃)₂).

 $\frac{^{13}\text{C NMR}}{\text{Hz, CDCl}_3} \delta 137.10 (1\text{C, Ar-C}), 130.64 (1\text{C, =C}), 129.98 (t, J = 24.2)$ Hz, 1C, =CD), 128.83 (2C, Ar-C), 128.03 (2C, Ar-C), 126.73 (1C, Ar-C),

57.27 (2C, CH₂), 45.37 (2C, N(CH₃)₂).

<u>HRMS (EI)</u> calcd for [M, C₁₁H₁₄DN]⁺: 162.1267; found 162.1262.

The r.r. (**3eb**/**2eb**) and Z/E (**3eb**-Z/3eb-E) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right).

- .	1000 1000 1000 1000 1000 1000 1000 100						たいかし 11-10日 11-11 11-11
					٨		
	Μ.		illi		Л		
	F100		- je				
00 6.85	6.70 6.55 6.40 6.25	6.10 5.95	5.80 5.65 5.	00 6.85 6.70	6.55 6.40 6.25	6.10 5.95	5.80 5.65 5.
Реак	Chem shift	Area	Area (%)	Product	Chem shift	Area	Area (%)
	(ppm)				(ppm)		
1	6.56	1.01	49.5	3eb-Z	6.56	0.96	92
2	6.50	0.01	0.50	3eb- <i>E</i>	6.50	0.02	2
3	6.27	0.02	1.00	2eb- <i>E</i>	6.25	0.02	2
4	5.78	1.00	49.0	2eb-Z	5.77	0.04	4

(Z)-1-(non-2-en-1-yl-2-D)pyrrolidine (3ec)

Serial number: Lwt-4-148A. **C1h** was used instead, 10 h, colorless oil, TLC $R_f = 0.5$ (EA), 80% yield (31.5 mg), r.r. > 98:2, Z/E > 98:2.

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 5.48 (t, *J* = 8.0 Hz, 1H, =CH), 3.12 (s, 2H, NCH₂), 2.50

(t, *J* = 8.0 Hz, 4H, NCH₂CH₂), 2.06 (q, *J* = 7.1 Hz, 2H, CH₂), 1.83 – 1.71 (m,

4H, CH₂CH₂), 1.53 – 1.27 (m, 8H, CH₂CH₂), 0.88 (t, *J* = 4.0 Hz, 3H, CH₃).

 $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 131.84 (1C, =C), 126.63 (t, J = 23.2 Hz, 1C, =CD),

54.08 (2C, NCH₂), 52.48 (1C, NCH₂), 31.75 (1C, CH₂), 29.58 (1C, CH₂), 28.98 (1C, CH₂), 27.47 (1C, CH₂), 23.47 (2C, 2CH₂), 22.64 (1C, CH₂), 14.10 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M, C₁₃H₂₄DN]⁺: 196.2050; found 196.2045.

(E)-3-cyclohexyl-2-iodo-N,N-dimethylprop-2-en-1-amine (3ed)

I

Serial number: Lwt-4-169A. **C1i** was used instead, with 0.02 mmol EtMgBr, 10 h, colorless oil, TLC $R_f = 0.5$ (EA), 67% yield (39.2 mg), r.r. > 98:2, Z/E < 2:98.

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 6.23 (d, *J* = 9.8 Hz, 1H, =CH), 3.00 (s, 2H, NCH₂), 2.46

– 2.33 (m, 1H, CH), 2.25 (s, 6H, N(CH₃)₂), 1.75 – 1.57 (m, 5H, CH₂), 1.32 – 1.04 (m, 5H, CH₂).

 $\frac{^{13}\text{C NMR}}{^{44.74}(2\text{C}, \text{N}(\text{CH}_3)_2), 40.76(1\text{C}, \text{CH}_2), 32.60(2\text{C}, \text{CH}_2\text{CH}_2), 25.71(1\text{C}, \text{CH}_2), 25.62(2\text{C}, \text{CH}_2\text{CH}_2).}$

<u>HRMS (EI)</u> calcd for [M, C₁₁H₂₀IN]⁺: 293.0640; found 293.0635.

Stereochemistry of C=C bond was determined by NOESY (**Figure S1**). Because H^c and H^d has NOE interaction, the **3ed** should be with *E* configuration.

Figure S1. NOESY for 3ed

(Z)-N,N-dimethyl-2-(2-phenylvinyl-1-D)aniline (3ee)

Serial number: Lwt-4-41A. 10 h, colorless oil, TLC R_f = 0.25 (PE/EA= 50:1), 98% yield (44.1 mg), r.r. = 95:5, Z/E = 95:5.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.33 7.29 (m, 2H, Ar-H), 7.23 7.13 (m, 5H, Ar-H),
 6.99 (dd, J = 8.1, 1.2 Hz, 1H, Ar-H), 6.76 (td, J = 7.4, 1.2 Hz, 1H, Ar-H),
 6.55 (s, 1H, =CH), 2.82 (s, 6H, N(CH₃)₂).
- $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 152.47 (1C, Ar-C), 137.25 (1C, Ar-C), 130.43 (1C, =C), 129.27 (t,$ *J* $= 23.5 Hz, 1C, =CD), 128.71 (2C, Ar-C), 128.61 (1C, Ar-C), 128.10 (2C, Ar-C), 127.98 (2C, Ar-C), 127.79 (1C, Ar-C), 126.83 (1C, Ar-C), 121.14 (1C, Ar-C), 117.18 (1C, Ar-C), 44.14 (2C, N(CH_3)_2).$

<u>HRMS (EI)</u> calcd for [M, C₁₆H₁₆DN]⁺: 224.1424; found 224.1415.

The r.r. (**3ee/2ee**) and Z/E (**3ee-Z/3ee-E**) was determined by analysis of 400 MHz ¹H NMR spectra of the protonated sample (below left) with deuterated product (below right).¹¹

Reaction site was determined by NOESY of protonated **3ee** (Figure S2). Because NCH₃ and H^e has NOE interaction.

Figure S2. NOESY for protonated 3ee

(Z)-(ethene-1,2-diyl-1-D)dibenzene (2fa)¹²

Serial number: Lwt-9-38A. 24 h, colorless oil, TLC $R_f = 0.70$ (PE), 83% yield (30 mg),

$$Z/E = 96:4.$$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.29 – 7.14 (m, 10H, Ar-H), 6.60 (d, J = 2.2 Hz, 1H,

¹³C NMR (101 MHz, CDCl₃) δ 137.10 (2C, Ar-C), 130.07 (2C, Ar-C), 128.83 (4C, Ar-

C), 128.17 (4C, Ar-C), 127.06 (1C, =CH).

(Z)-4,4'-(ethene-1,2-diyl-1-D)bis(methoxybenzene) (2fb)¹³

Serial number: Lwt-9-30. 24 h, colorless oil, TLC $R_f = 0.60$ (PE/EA = 20:1), 95% yield (47 mg), Z/E = 96:4.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 4H, Ar-H), 6.80 – 6.73 (m, 4H, Ar-H),

6.43 (s, 1H, =CH),3.76 (s, 6H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.46 (2C, Ar-C), 129.98 (4C, Ar-C), 128.16 (4C, Ar-

(Z)-1-methoxy-2-(2-phenylvinyl-1-D)benzene (2fc)¹⁴

Serial number: Lwt-9-38C. 12 h, colorless oil, TLC $R_f = 0.60$ (PE/EA = 20:1), 99% yield (47 mg), r.r. = 77:23, Z/E = 96:4.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.27 – 7.12 (m, 8H, Ar-H), 6.89 (dd, *J* = 8.2, 1.1 Hz, 1H, Ar-H), 6.75 (td, *J* = 7.5, 1.3 Hz, 1H, Ar-H), 6.63 (s, 1H, =CH), 3.82 (d, J = 1.2 Hz, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 157.12 (1C, Ar-C), 137.24 (1C, Ar-C), 137.16 (1C, Ar-

C), 130.03 (1C, Ar-C), 128.78 (2C, Ar-C), 128.54 (1C, Ar-C), 127.98 (2C, Ar-C), 126.85 (1C, Ar-C), 126.50 – 125.39 (1C, =C), 120.12 (1C, =C), 120.12 (1C, Ar-C), 110.56 (1C, Ar-C), 55.36 (1C, OCH₃).

(Z)-1-methoxy-4-(2-(4-(trifluoromethyl)phenyl)vinyl-1-D)benzene (2fd)¹⁵

Serial number: Lwt-9-38B. 24 h, colorless solid, TLC $R_f = 0.60$ (PE/EA = 20:1), 99% yield (28 mg, 0.1 mmol SM, 5mol% C1g), r.r. = 68:32, Z/E = 87:13.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ7.48 (d, J = 8.5 Hz, 2H, Ar-H), 7.36 (d, J = 8.1 Hz, 2H,

Ar-H), 7.15 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.77 (d, *J* = 9.0 Hz, 2H, Ar-H), 6.64 (s, 1H, =CH), 3.79 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.99 (1C, Ar-C), 141.20 (1C, Ar-C), 131.66 (1C, Ar-

C), 130.13 (2C, Ar-C), 129.03 (2C, Ar-C), 128.85 (q, *J* = 32.3 Hz, 1C, Ar-C), 126.24 (1C, =C), 126.24 (1C, =C), 125.14 (q, *J* = 3.9 Hz, 2C, Ar-C), 124.93

(q, J = 210 Hz, 1C, CF₃), 113.74 (2C, Ar-C), 55.17 (1C, OCH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.47.

<u>HRMS (EI)</u> calcd for [M, C₁₆H₁₂DF₃O]⁺: 279.0981; found 279.0972. **4-(vinyl-1-d)-1,1'-biphenyl (2ga)**¹⁶

Serial number: Lwt-9-48B. **C1i** was used instead, 6 h, white solid, TLC $R_f = 0.65$ (PE), 84% NMR yield (36 mg), r.r. = 63:37 (5.26 : 6.75 ppm). (13% byproduct)

<u>¹H NMR</u> (400 MHz, CDCl₃) δ7.61 – 7.54 (m, 4H, Ar-H), 7.47 (d, J = 8.1 Hz, 2H, Ar-

¹³C NMR (101 MHz, CDCl₃) δ 140.70 (1C, Ar-C), 140.54 (1C, Ar-C), 136.50 (1C, Ar-C), 136.27 (1C, =C), 128.75 (2C, Ar-C), 127.28 (1C, Ar-C), 127.19 (2C, Ar-C), 126.93 (2C, Ar-C), 126.60 (2C, Ar-C), 113.71 (1C, =C).

(E)-diisobutyl(1-phenylhex-1-en-1-yl)aluminum tetrahydrofuran adduct (2aa'-THF)

¹<u>H NMR</u> (400 MHz, C₆D₆) δ 7.23 (t, *J* = 7.5 Hz, 2H, Ar-H), 7.11 (d, *J* = 7.6 Hz, 2H, Ar-H), 7.01 (t, *J* = 7.4 Hz, 1H, Ar-H), 6.20 (t, *J* = 6.7 Hz, 1H, =CH), 3.34 (d, *J* = 6.4 Hz, 4H, OCH₂), 2.21 (dq, *J* = 20.5, 6.8 Hz, 4H, 2CH+CH₂), 1.52 – 1.38 (m, 2H, CH₂), 1.36 – 1.31 (m, 2H, CH₂), 1.27 (d, *J* = 6.5 Hz, 12H, 4CH₃), 0.86 (br, 4H, 2CH₂), 0.83 (t, *J* = 7.3 Hz, 3H, CH₃), 0.31 (d, *J* = 7.3 Hz, 4H, 2CH₂).

¹³C NMR (101 MHz, C₆D₆) δ149.83 (1C, =C), 141.68 (1C, Ar-C), 128.08 (2C, Ar-C), 127.14 (2C, Ar-C), 123.54 (1C, =C), 70.99 (2C, OCH₂), 32.89 (2C, 2CH₂), 30.27 (2C, 2CH₂), 28.93 (4C, 4CH₃), 27.07 (2C, 2CH), 24.76 (2C, 2CH₂), 22.79 (2C, 2CH₂), 14.26 (1C, CH₃).

(E)-diisobutyl(1-phenylhex-1-en-1-yl)aluminum DMAP adduct (2aa'-DMAP)

¹<u>H NMR</u> (400 MHz, C₆D₆) δ 8.03 (br, 2H, DMAP-H), 7.25 (ddt, *J* = 12.3, 8.0, 4.1 Hz, 4H, Ar-H), 7.08 – 6.95 (m, 1H, Ar-H), 6.43 (t, *J* = 6.8 Hz, 1H, =CH), 5.72 – 5.51 (m, 2H, DMAP-H), 2.35 (m, 4H, 2CH+CH₂), 1.87 (s, 6H, NMe₂), 1.54

(ddd, *J* = 12.4, 8.7, 6.5 Hz, 2H, CH₂), 1.40 – 1.36 (m, 2H, CH₂), 1.36 (d, *J* = 6.5 Hz, 12H, 4CH₃), 0.86 (t, *J* = 7.3 Hz, 3H, CH₃), 0.66 (d, *J* = 7.1 Hz, 4H, 2A1-CH₂).

<u>1³C NMR</u> (101 MHz, C₆D₆) δ 155.05 (1C, =C), 150.57 (1C, Ar-C), 146.98 (1C, Ar-C), 140.67 (2C, Ar-C), 127.96 (2C, Ar-C), 127.26 (2C, Ar-C), 123.21 (2C, Ar-C), 106.46 (1C, Ar-C), 38.17 (2C, NMe₂), 33.20 (1C, CH₂), 30.56 (2C, 2CH₂), 29.25 (1C, CH), 29.21 (2C, 2CH₃), 27.78 (1C, CH), 27.59 (2C, 2CH₃), 22.94 (1C, CH₂), 22.80 (1C, CH₂), 14.43 (1C, CH₃).

8. Transformations of Product 2aa'

8.1 Synthesis of (E)-(1-iodohex-1-en-1-yl)benzene (4)

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (0.005 mmol), anhydrous THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute, then internal alkyne 1aa (0.2 mmol), DIBAL-H (1.0 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 1 hour. After that, I₂ (153 mg, 0.6 mmol, 3 equiv, in 2mL THF) was added into the reaction solution at 30 °C and stirred for 2 hours before the reaction was quenched with saturated potassium sodium tartrate solution and extracted with EA. The combined organic layer was dried over anhydrous MgSO₄, filtered and concentrated under vacumm to afford yellow oil, which was purified by silica gel chromatography (PE) to afford the desired product **4**.

Serial number: Lwt-3-189. colorless oil, TLC $R_f = 0.7$ (PE), 91% yield (52.1 mg), r.r. = 92:8 (1.98 : 2.55 ppm). The spectroscopic data are in agreement with that previously reported.¹⁷

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 4H, Ar-H), 7.25 – 7.22 (m, 1H, Ar-H),

6.47 (t, *J* = 7.7 Hz, 1H, =CH), 1.98 (q, *J* = 7.4 Hz, 2H, CH₂), 1.36 – 1.22 (m, 4H, CH₂CH₂), 0.82 (t, *J* = 7.2 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.68 (1C, =C), 141.79 (1C, Ar-C), 128.68 (2C, Ar-C), 128.09 (2C, Ar-C), 127.87 (1C, Ar-C), 94.47 (1C, =CI), 31.86 (1C, CH₂), 31.25 (1C, CH₂), 22.04 (1C, CH₂), 13.80 (1C, CH₃).

8.2 Synthesis of (Z)-4,4,5,5-tetramethyl-2-(1-phenylhex-1-en-1-yl)-1,3,2dioxaborolane (5)

Prepared according to a literature procedure¹⁸: In an argon-filled glovebox, a vial (10 mL) was charged with **C1g** (0.005 mmol), anhydrous THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute, then internal alkyne **1aa** (0.2 mmol), DIBAL-H (1.0 M in hexanes, 240 µL, 0.24 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 1 hour. After that, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (^{*i*}PrO-Bpin; 122.4 µL, 0.60 mmol, 3 equiv) was added dropwise through a syringe into the reaction solution at 30 °C. The vial was removed from the glovebox and allowed to be heated to 80 °C and stirred for 24 hours. The reaction was quenched by dropwise addition of water (3.0 mL) at 0 °C (ice bath) and extracted with with Et₂O (5.0 mL x 3). The combined organic layer was dried over anhydrous MgSO₄, filtered and concentrated under vacumm to afford yellow oil, which was purified by silica gel chromatography (PE/EA = 40:1) to afford the desired product **5**. The spectroscopic data are in agreement with that previously reported¹⁹.

Serial number: Lwt-3-197. colorless oil, TLC *Rf* = 0.6 (PE/EA = 30:1), 86% yield (49.2 mg), r.r. = 91:9 (2.15 : 2.38 ppm).

 $\frac{^{1}\text{H NMR}}{^{7}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.33 - 7.28 \text{ (m, 2H, Ar-H)}, 7.22 - 7.17 \text{ (m, 1H, Ar-H)}, 7.16 - 7.10 \text{ (m, 2H, Ar-H)}, 6.58 \text{ (td, } J = 7.3, 1.5 \text{ Hz}, 1\text{H}, =\text{CH}), 2.14 \text{ (qd, } J = 7.4, 1.5 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.31 - 1.30 \text{ (m, 2H, CH}_{2}), 1.42 - 1.35 \text{ (m, 2H, CH}_{2}), 1.42 -$

 $1.28 - 1.25 \text{ (m, 12H, CH}_3\text{), } 0.83 \text{ (td, } J = 7.2, 1.5 \text{ Hz}, 3\text{H}, \text{CH}_3\text{).}$ $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz}, \text{CDCl}_3\text{)} \delta 148.48 (1\text{C}, =\text{C}), 140.24 (1\text{C}, \text{Ar-C}), 128.93 (2\text{C}, \text{Ar-C}), 128.01(1\text{C}, =\text{C}), 127.66 (2\text{C}, \text{Ar-C}), 125.75 (1\text{C}, \text{Ar-C}), 83.36 (1\text{C}, \text{OC}), 31.50 (1\text{C}, \text{CH}_2), 29.63 (1\text{C}, \text{CH}_2), 24.76 (4\text{C}, \text{CH}_3), 22.45 (1\text{C}, \text{CH}_2), 13.91$

 $(1C, CH_3).$

 $\frac{11}{B}$ NMR (128 MHz, CDCl₃) δ 29.80.

8.3 Synthesis of (E)-1-methoxy-4-(1-phenylhex-1-en-1-yl)benzene (6)

Prepared according to a literature procedure²⁰: In an argon-filled glovebox, a vial (10 mL) was charged with **C1g** (0.005 mmol), anhydrous THF (1 mL), The reaction mixture was stirred at 30 °C for 1 minute, then internal alkynes **1aa** (0.2 mmol), DIBAL-H (1.0 M in hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 1 hour. After that, ZnBr₂ (50 mg, 0.22 mmol, 1.1 equiv) was added into the reaction solution at 30 °C. The resulting solution was allowed to stir at 30 °C for 2 hours. Pd(PPh₃)₄ (9 mg, 0.008 mmol, 4 mol %), 4-bromoanisole (46 mg, 0.24 mmol, 1.2 equiv) were added sequentially. The vial was allowed to be heated to 80 °C and stirred for 10 hours before the reaction was quenched by dropwise addition of water. The combined organic layer was dried over anhydrous MgSO₄ , filtered and concentrated under vacumm to afford afford yellow oil, which was purified by silica gel chromatography (PE/EA = 50:1) to afford the desired product **6**. The spectroscopic data are in agreement with that previously reported²¹.

Serial number: Lwt-4-176. TLC *Rf* = 0.32 (PE/EA = 50:1), 77% yield (41 mg), colorless oil, r.r. = 91:9 (5.98 : 6.64 ppm).

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 7.43 – 7.32 (m, 2H, Ar-H), 7.30 (dd, *J* = 6.9, 5.3 Hz, 1H,

Ar-H), 7.19 – 7.10 (m, 4H, Ar-H), 6.79 (d, *J* = 8.8 Hz, 2H, Ar-H), 5.98 (t, *J*

= 7.5 Hz, 1H, =CH), 3.78 (s, 3H, OCH₃), 2.08 (q, *J* = 7.4 Hz, 2H, CH₂), 1.45

- 1.36 (m, 2H, CH₂), 1.35 – 1.25 (m, 2H, CH₂), 0.85 (t, J = 7.2 Hz, 3H, CH₃).
¹³C NMR (101 MHz, CDCl₃) δ 158.59 (1C, Ar-C), 140.80 (1C, Ar-C), 140.59 (1C, Ar-C), 135.68 (1C, =C), 129.90 (2C, Ar-C) ,128.61 (1C, Ar-C) , 128.23 (2C, Ar-C) , 128.04 (2C, Ar-C) , 126.69 (1C, =C), 113.43 (2C, Ar-C), 55.26 (1C, -C) , 128.04 (2C, Ar-C) , 126.69 (1C, =C), 113.43 (2C, Ar-C) , 55.26 (1C, -C) , 128.04 (2C, Ar-C) , 126.69 (1C, -C) , 128.04 (2C, Ar-C) , 55.26 (1C, -C) , 128.04 (2C, -C) , 126.69 (1C, -C) , 128.04 (2C, -C) , 128.04 (2C, -C) , 126.69 (1C, -C) , 113.43 (2C, -C) , 55.26 (1C, -C) , 128.04 (2C, -C) , 128.04 (2C, -C) , 126.69 (1C, -C) , 113.43 (2C, -C) , 55.26 (1C, -C) , 128.04 (2C, -C) , 128.04 (2C,

OCH₃), 32.27 (1C, CH₂), 29.43 (1C, CH₂), 22.34 (1C, CH₂), 13.97 (1C, CH₃).

<u>HRMS (EI)</u> calcd for $[M, C_{19}H_{22}O]^+$: 266.1671; found 266.1662.

8.4 Synthesis of (Z)-nona-1,4-dien-4-ylbenzene (7)

In an argon-filled glovebox, a vial (10 mL) was charged with **C1g** (0.005 mmol), anhydrous THF (1 mL). The reaction mixture was stirred at 30 °C for 1 minute, then internal alkyne **1aa** (0.2 mmol), DIBAL-H (1 M in Hexanes, 240 μ L, 0.24 mmol, 1.2 equiv) were added sequentially. The resulting black solution was allowed to stir for 1 hour. After that, CuCl (1 mg, 0.01 mmol, 5 mol %), allyl bromide (52 μ L, 0.6 mmol, 3 equiv) were added sequentially into the reaction solution at 30 °C and stirred for 10 hours before the reaction was quenched with saturated potassium sodium tartrate solution and extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄, filtered and concentrated under vacumm to afford yellow oil, which was purified by silica gel chromatography (PE) to afford the desired product **7**. The spectroscopic data are in agreement with that previously reported²².

Serial number: Lwt-4-178. colorless oil, TLC Rf = 0.59 (PE), 82 % yield (33 mg), r.r. = 92:8 (5.48 : 6.28 ppm).

- $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.35 7.28 \text{ (m, 2H, Ar-H)}, 7.25 7.20 \text{ (m, 1H, Ar-H)}, 7.17 7.13 \text{ (m, 2H, Ar-H)}, 5.86 5.73 \text{ (m, 1H, =CH)}, 5.46 \text{ (tt, } J = 7.3, 1.3 \text{ Hz}, 1\text{H}, =\text{CH}), 5.05 4.93 \text{ (m, 2H, =CH}_{2}), 3.07 \text{ (dq, } J = 6.8, 1.3 \text{ Hz}, 2\text{H}, =\text{CCH}_{2}), 1.96 \text{ (q, } J = 7.2 \text{ Hz}, 2\text{H}, =\text{CHCH}_{2}), 1.36 1.18 \text{ (m, 4H, CH}_{2} \text{ CH}_{2}), 0.82 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_{3}).$
- ¹³C NMR (101 MHz, CDCl₃) δ 141.29 (1C, Ar-C), 138.76 (1C, =C), 136.70 (1C, =C), 128.51(1C, Ar-C), 128.43 (2C, Ar-C), 127.91 (2C, Ar-C), 126.37 (1C, =CH), 115.73 (1C, =CH₂), 43.45 (1C, CH₂), 32.25 (1C, CH₂), 28.66 (1C, CH₂), 22.28 (1C, CH₂), 13.95 (1C, CH₃).

8.5 Synthesis of (*E*)- 1,2-diphenylhept-2-en-1-ol (8)

In an argon-filled glovebox, a vial (100 mL) was charged with C1g (0.0075 mmol, 4.9 mg), internal alkyne 1aa (47.5 mg, 0.3 mmol, 1.5 equiv), anhydrous toluene (1.5 mL). The reaction mixture was stirred at 30 °C for 1 minute, then HAlEt₂ (1.0 M in toluene, 0.24 mL, 0.24 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 12 hours. After 1aa was consumed, the reaction solution was added into PhCHO (21.5 mg, 0.2 mmol, 1.0 equiv, in 1mL toluene) at 0 °C and stirred for 2 hours. After that the resulting mixture was quenched with 3M HCl and extracted with DCM and washed by brine. The combined organic layers was dried over MgSO₄, concentrated in vacumm, purified by SiO₂ column chromatography (2:1 hexanes/EA as eluent) to afford allylic alcohols **8**.

Serial number: Lwt-7-191. Colorless oil, TLC $R_f = 0.3$ (PE/EA = 2:1), 37% yield (27 mg), r.r = 91:9 (5.42:5.33 ppm).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H, Ar-H), 7.25 – 7.14 (m, 4H, 4H, Ar-H), 7.02 – 6.78 (m, 2H, 4H, Ar-H), 5.87 – 5.82 (t, J = 8.0 Hz, 1H, =CH), 5.42 (s, 1H, OCH), 2.01 (br, 1H, 4H, OH), 1.92 (q, J = 7.8 Hz, 2H, 4H, CH₂), 1.37 – 1.29 (m, 2H, CH₂), 1.25 (m, 2H, CH₂), 0.82 (t, J = 7.1 Hz, 3H, CH₃).

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 142.81 (1C, Ar-C), 142.19 (1C, =C), 137.93 (1C, Ar-C), 129.42 (1C, Ar-C), 129.39 (2C, Ar-C), 128.09 (2C, Ar-C), 127.85 (2C, Ar-C), 127.32 (1C, Ar-C), 126.82 (1C, =CH), 126.60 (2C, Ar-C), 78.53 (1C, OCH), 31.90 (1C, CH₂), 28.25 (1C, CH₂), 22.27 (1C, CH₂), 13.91 (1C, CH₃).

8.6 Synthesis of (*E*)-2-phenyl-N-(*p*-tolyl)hept-2-enamide (9)

In an argon-filled glovebox, a vial (100 mL) was charged with C1g (0.005 mmol, 3.3 mg), internal alkyne 1aa (31.6 mg, 0.2 mmol, 1.25 equiv), anhydrous toluene (1 mL). The reaction mixture was stirred at 30 °C for 1 minute, then HAlEt₂ (1.0 M in toluene, 0.24 mL, 0.24 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 12 hours. After 1aa was consumed, p-tolyl isocyanate (21.3 mg, 0.16 mmol, 1.0 equiv) was added into the reaction solution at 30 °C and stirred for 2 hours. After that the resulting mixture was quenched with 3M HCl and extracted with EA and washed by brine. The combined organic layers was dried over MgSO₄, concentrated in vacumm, purified by SiO₂ column chromatography (10:1 hexanes/EA as eluent) to afford acrylamide **9**.

Serial number: Lwt-6-145. Yellow solid, TLC *R*_f = 0.45 (PE/EA = 10:1), 82% yield (37 mg), r.r. = 95:5 (2.28 : 2.33 ppm).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.51 – 7.37 (m, 3H, Ar-H), 7.31 – 7.27 (m, 4H, Ar-H),
7.15 (t, J = 7.8 Hz, 1H, =CH), 7.07 (d, J = 8.1 Hz, 2H, Ar-H), 6.98 (s, 1H, NH), 2.28 (s, 3H, CH₃), 2.01 (q, J = 7.5 Hz, 2H, CH₂), 1.45 – 1.37 (m, 2H, CH₂), 1.35 – 1.21 (m, 2H, CH₂), 0.83 (t, J = 7.1 Hz, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 164.54 (1C, =CO), 142.70 (1C, Ar-C), 135.92 (1C, Ar-C), 135.47 (1C, Ar-C), 135.31 (1C, Ar-C), 133.84 (1C, Ar-C), 129.90 (2C, Ar-C), 129.32 (2C, Ar-C), 129.09 (2C, Ar-C), 128.31 (1C, Ar-C), 119.84 (2C, Ar-C), 30.96 (1C, CH₃), 29.15 (1C, CH₂), 22.32 (1C, CH₂), 20.82 (1C, CH₂), 13.80 (1C, CH₃).

<u>HRMS (EI)</u> calcd for [M+Na, C₂₀H₂₃NONa]⁺: 316.1674; found 316.1675.

8.7 Synthesis of (E)-N,N-diisopropyl-3-(2-methoxy-5-methylphenyl)-3-

phenylprop-2-en-1-amine (10)

In an argon-filled glovebox, a vial (100 mL) was charged with C1g (0.1 mmol, 65 mg), anhydrous THF (15 mL). The reaction mixture was stirred at 30 °C for 1 minute, then internal alkyne 1ch (1.075 g, 5 mmol), DIBAL-H (1.0 M in hexanes, 6 mL, 6 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 5 hours. ZnBr₂ (2.25 g, 10 mmol, 2 equiv) was added into the reaction solution at 30 °C and stirred for 1 hour. Pd(PPh₃)₄ (231 mg, 0.2 mmol, 4 mol %), 3-bromo-4methoxytoluene (1.41 g, 7 mmol, 1.4 equiv) was added into the reaction solution at 30 °C. Then the reaction mixture was heated up to 80 °C. After stirring 10 hours, the resulting mixture was cooled down to room temperature, quenched with water and extracted with EA and washed by 1 M NaOH solution and brine. The organic layer was concentrated in vacuo, redissolved in Et₂O, and extracted with 3 M HCl (5 mL x 3). The resulting acidic aqueous layer was then basified by the addition of 5M NaOH solution until the pH > 11, extracted with DCM. The combined organic layers was dried over MgSO₄, concentrated in vacumm, purified by Al_2O_3 column chromatography (100 g Al₂O₃ + 4 g H₂O, 50:1 hexanes/EA with 0.5% MeOH as eluent) to afford allylic amine 9. The spectroscopic data are in agreement with that previously reported.²³

Serial number: Lwt-6-143. colorless oil, TLC $R_f = 0.25$ (EA), 42% yield (700 mg), single isomer.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H, Ar-H), 7.23 – 7.19 (m, 1H, Ar-H), 7.18 – 7.14 (m, 2H, Ar-H), 7.03 – 7.00 (m, 2H, Ar-H), 6.71 (d, *J* = 8.1 Hz, 1H, Ar-H), 5.89 (t, *J* = 6.4 Hz, 1H, =CH), 3.50 (s, 3H, OCH₃), 3.27 (d, *J* = 6.4 Hz, 2H, CH₂), 3.08-3.01 (m, 2H, 2CH), 2.27 (s, 3H, Ar-CH₃), 0.96 (d, *J* = 6.6, Hz, 12H, 4CH₃). <u>1³C NMR</u> (101 MHz, CDCl₃) δ 155.05 (1C, Ar-C), 140.88 (1C, =C), 138.44 (1C, Ar-C), 133.88 (1C, Ar-C), 133.28 (1C, Ar-C), 131.45 (1C, Ar-C), 129.60 (1C, Ar-C), 129.02 (2C, Ar-C), 128.51 (1C, Ar-C), 127.38 (2C, Ar-C), 126.26 (1C, Ar-C), 111.77 (1C, =C), 55.78 (1C, OCH₃), 48.79 (2C, C-H), 43.80 (1C, CH₂), 20.75 (4C, CH₃), 20.44 (1C, CH₃).

8.8 Synthesis of (*E*)-3-cyclopentyl-N,2-diphenylacrylamide (11)

In an argon-filled glovebox, a vial (10 mL) was charged with C1g (0.012 mmol, 8 mg), internal alkyne 1cg (85 mg, 0.5 mmol, 1.25 equiv), anhydrous toluene (2.5 mL). The reaction mixture was stirred at 30 °C for 1 minute, then HAlEt₂ (1.0 M in toluene, 0.6 mL, 0.6 mmol, 1.2 equiv) was added sequentially. The resulting black solution was allowed to stir for 12 hours. After 1cg was consumed, ArNCO (53.3 mg, 10 mmol, 1.0 equiv) was added into the reaction solution at 30 °C and stirred for 2 hours. After that, the resulting mixture was quenched with 3M HCl and extracted with EA and washed by brine. The combined organic layers was dried over MgSO₄, concentrated in vacumm, purified by SiO₂ column chromatography (10:1 hexanes/EA as eluent) to afford acrylamide 11.

Serial number: Lwt-7-183. Light yellow solid, TLC $R_f = 0.45$ (PE/EA = 10:1), 80% yield (91 mg), single isomer.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 3H, Ar-H), 7.31 – 7.26 (m, 4H, Ar-H), 7.07 (d, J = 6.0 Hz, 2H, Ar-H), 7.04 (d, J = 8.2 Hz, 1H, =CH), 6.95(s, br, 1H, N-H), 2.38 – 2.30 (m, 1H, CH), 2.28 (s, 2H, CH₃), 1.70 (ddq, J = 7.6, 5.5, 3.2, 2.8 Hz, 4H, CH₂CH₂), 1.53 – 1.36 (m, 4H, CH₂CH₂). <u>1³C NMR</u> (101 MHz, CDCl₃) δ 164.69 (1C, C=O) , 147.33 (1C, Ar-C) , 135.73 (1C, =CH), 135.36 (1C, =C), 134.35 (1C, Ar-C), 133.83 (1C, Ar-C), 130.00 (2C, Ar-C), 129.33 (2C, Ar-C), 129.06 (2C, Ar-C), 128.28 (1C, Ar-C), 119.84 (2C, Ar-C), 40.04 (1C, CH), 33.46 (1C, CH₂), 25.61 (1C, CH₂), 20.83 (1C, CH₃).
 <u>HRMS (EI)</u> calcd for [M, C₂₁H₂₃NO]⁺: 305.1774; found 305.1772.

9. NMR Spectra of New Compounds

2,9-di(anthracen-9-yl)-1,10-phenanthroline FeCl₂ complexe (C1g)

2-(4-(hex-1-yn-1-yl)phenyl)-1,3-dioxolane (1ai)

5-(hex-1-yn-1-yl)-1H-indole (1bd)

(Z)-hex-2-en-4-yn-3-ylbenzene (1df)

4-(prop-1-yn-1-yl)-1,2,3,6-tetrahydro-1,1'-biphenyl (1dg)

4-(prop-1-yn-1-yl)-1,2-dihydronaphthalene (1dh)

(Z)-(hex-1-en-1-yl-1-D)benzene (2aa)

(Z)-(hex-1-en-1-yl-2-D)benzene (3aa)

(Z)-1-chloro-4-(hex-1-en-1-yl-1-D)benzene (2ac)

(Z)-1-bromo-4-(hex-1-en-1-yl-1-D)benzene (2ad)

(Z)-1-(hex-1-en-1-yl-1-D)-4-(trifluoromethyl)benzene (2ae)

(Z)-1-(hex-1-en-1-yl-1-D)-4-methoxybenzene (2af)

(Z)-4-(hex-1-en-1-yl-1-D)phenol (2ag)

(Z)-4-(hex-1-en-1-yl-1-D)-N,N-dimethylaniline (2ah)

(Z)-2-(4-(hex-1-en-1-yl-1-D)phenyl)-1,3-dioxolane (2ai)

(Z)-(4-(hex-1-en-1-yl-1-D)phenyl)trimethylsilane (2aj)

(Z)-1-fluoro-3-(hex-1-en-1-yl-1-D)benzene (2ak)

(Z)-1-chloro-3-(hex-1-en-1-yl-1-D)benzene (2al)

S83

(Z)-1-fluoro-2-(hex-1-en-1-yl-1-D)benzene (2an)

(Z)-1-chloro-2-(hex-1-en-1-yl-1-D)benzene (2ao)

(Z)-1-(hex-1-en-1-yl-1-D)-2-methoxybenzene (2ap)

(Z)-2-(hex-1-en-1-yl-1-D)naphthalene (2ba)

(Z)-2-(hex-1-en-1-yl-1-D)furan (2bb)

(Z)-2-(hex-1-en-1-yl-1-D)thiophene (2bc)

(Z)-1-(prop-1-en-1-yl-1-D)ferrocene (2be)

(Z)-1-methoxy-4-(prop-1-en-1-yl-1-D)benzene (2ca)

(Z)-1-(but-1-en-1-yl-1-D)-4-methoxybenzene (2cb)

(Z)-1-(2-cyclopropylvinyl-1-D)-4-methoxybenzene (2cc)

(Z)-1-(2-cyclohexylvinyl-1-D)-4-methoxybenzene (2cd)

(Z)-1-methoxy-4-(3-phenylprop-1-en-1-yl-1-D)benzene (2ce)

(Z)-1-methoxy-4-(4-methoxybut-1-en-1-yl-1-D)benzene (2cf)

S97

(Z)-(2-cyclopentylvinyl-1-D)benzene (2cg)

(Z)-(2-cyclohexylvinyl-1-D)benzene (2ch)

(Z)-(penta-1,4-dien-1-yl-1-D)benzene (2ci)

(Z)-N,N-diisopropyl-3-phenylprop-2-en-1-amine-3-D (2cj)

S101

(Z)-phenyl(3-phenylallyl-3-d)sulfane (2cl)

(Z)-N,N-dimethyl-4-phenylbut-3-en-1-amine-4-d (2cm)

((1E,3Z)-penta-1,3-dien-1-yl-3-D)benzene (2da)

((1Z,3Z)-penta-1,3-dien-1-yl-3-D)benzene (2db)

((1Z,3Z)-penta-1,3-dien-1-yl-3-D)cyclohexane (2dc)

((1*E*,3*Z*)-2-methylpenta-1,3-dien-1-yl-3-D)benzene (2de)

(Z)-4-(prop-1-en-1-yl-1-D)-1,2,3,6-tetrahydro-1,1'-biphenyl (2dg)

(Z)-4-(prop-1-en-1-yl-1-D)-1,2-dihydronaphthalene (2dh)

(*Z*)-1-(3-phenylallyl-2-D)pyrrolidine (3ea)

 $\frac{1}{70}$ _

(Z)-1-(non-2-en-1-yl-2-D)pyrrolidine (3ec)

(E)-3-cyclohexyl-2-iodo-N,N-dimethylprop-2-en-1-amine (3ed)

(Z)-N,N-dimethyl-2-(2-phenylvinyl-1-D)aniline (3ee)

(Z)-(ethene-1,2-diyl-1-D)dibenzene (2fa)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(Z)-4,4'-(ethene-1,2-diyl-1-D)bis(methoxybenzene) (2fb)

70 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

(Z)-1-methoxy-2-(2-phenylvinyl-1-D)benzene (2fc)

(Z)-1-methoxy-4-(2-(4-(trifluoromethyl)phenyl)vinyl-1-D)benzene (2fd)

4-(vinyl-1-d)-1,1'-biphenyl (2ga)

_ $\dot{70}$

(Z)-4,4,5,5-tetramethyl-2-(1-phenylhex-1-en-1-yl)-1,3,2-dioxaborolane (5)

(*E*)-1-methoxy-4-(1-phenylhex-1-en-1-yl)benzene (6)

(Z)-nona-1,4-dien-4-ylbenzene (7)

(*E*)-1,2-diphenylhept-2-en-1-ol (8)

7.31 7.731 7.733 7.728 7.728 7.728 7.728 6.6986 6.6986 6.69866 6.6986 6.6986 6.6986 6.6986 6.69866 6.69866 6.6986 6.69866 6.69866 6.69866 6.69

(E)-2-phenyl-N-(p-tolyl)hept-2-enamide (9)

(*E*)-N,N-diisopropyl-3-(2-methoxy-5-methylphenyl)-3-phenylprop-2-en-1-amine (10)

(E)-3-cyclopentyl-N,2-diphenylacrylamide (11)

(E)-diisobutyl(1-phenylhex-1-en-1-yl)aluminum tetrahydrofuran adduct (2aa'-THF)

10. References

- 1 W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals-Six Edition*, Elsevier Inc., London, 2009.
- 2 K. Omoto, S. Tashiro, M. Kuritani and M. Shionoya, J. Am. Chem. Soc., 2014, 136, 17946.
- 3 M.-Y. Hu, Q. He, S.-J. Fan, Z.-C. Wang, L.-Y. Liu. Y.-J. Mu, Q. Peng and S.-F. Zhu. *Nat. Commun.*, 2018, **9**, 221.
- 4 Y.-L. Yang, Y.-Y. Gao, H.-W. Wang, R.-Q. Fan and C.-Y. Zhu, Chinese patent: CN 104774217 (2015).
- 5 J. J. Eisch and S. G. Rhee, J. Am. Chem. Soc., 1974, 96, 7276.
- 6 K. R. Roesch and R. C. Larock, J. Org. Chem., 2001, 66, 412.
- 7 L. W. Bieber and M. F. Silva, Tetrahedron Lett., 2004, 45, 8281.
- 8 K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 1972, 94, 4374.
- 9 S.-G. Xu, G.-X. Liu and Z. Huang, Chin. J. Chem., 2021, 39, 585.
- 10 R. Takeuchi, N. Ue, K. Tanabe, K. Yamashita and N. Shiga, J. Am. Chem. Soc., 2001, **123**, 9525.
- 11 M. Das and D. F. O'Shea, Org. Lett., 2016, 18, 336.
- 12 J. Li, R.-M, Hua and T. Liu, J. Org. Chem., 2010, 75, 2966.
- 13 C.-C. Tai, M.-S. Yu, Y.-L. Chen, W.-H. Chuang, T.-H. Lin, G. P. A. Yap and T.-G.
- Ong, Chem. Commun., 2014, 50, 4344.
- 14 H. Yoon, Y. Kim and Y. Lee, Org. Biomol. Chem., 2017, 19, 790.
- 15 M. K. Armstrong, M. B. Goodstein and G. Lalic, J. Am. Chem. Soc., 2018, 140, 10233.
- 16 Y. Okugawa, K. Hirano and M. Miura, Angew. Chem. Int. Ed., 2016, 55, 13558.
- 17 D. P. Curran and D. Kim, Tetrahedron., 1991, 47, 6171.
- 18 F. Gao and A. H. Hoveyda, J. Am. Chem. Soc., 2010, 132, 10961.
- 19 K. Semba, T. Fujihara, J. Terao and Y. Tsuji, Chem. Eur. J., 2012, 18, 4179.
- 20 E. Métay, Q. Hu and E. Negishi, Org. Lett., 2006, 8, 5773.
- 21 J.-L. Wu, X.-Z. Deng, H. Hirao and N. Yoshikai, J. Am. Chem. Soc., 2016, 138, 9105.
- 22 L. Deloux, E. Skrzypczak-Jankun, B. V. Cheesman and M. Srebnik, J. Am. Chem. Soc., 1994, **116**, 10302.
- 23 Z. Wu, S. D. Laffoon and K. L. Hull, Nat. Commun., 2018, 9, 1185.