Supporting Information

Selective Desaturation of Amides: A Direct Approach to Enamides

Xinwei $Li^{\dagger,\$}$, Zengrui Cheng^{$\dagger,\$}$, Jianzhong Liu^{\dagger} , Ziyao Zhang^{\dagger}, Song Song^{$*,\dagger$} and Ning Jiao^{$*,\dagger,\ddagger$}</sup>

[†] State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China

[‡] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China

§ These authors contributed equally to this work.

Table of Contents

General remarks	S2
Preparation of substrates	S2-S5
Optimization of reaction conditions	S6-S11
Variable temperature ¹ H NMR analysis	S12
Preliminary mechanistic studies	S12-13
Experimental procedure and characterization data	S14-S38
X-Ray Structure and Crystal Data of 3c	S38
References	S39
NMR spectra	S40-S153

General remarks

All manipulations were conducted with tubes. ¹H-NMR spectra were recorded on a Bruker AVANCE III-400 spectrometers. Chemical shifts are given in parts per million (ppm, δ), referenced to the solvent peak of CDC13, defined at δ = 7.26 ppm (¹H NMR) and δ = 77.16 (¹³C NMR). Coupling constants are quoted in Hz (*J*). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q) and quintet (quint) as they appeared in the spectrum. If the appearance of a signal differs from the expected splitting pattern, the observed pattern is designated as apparent (app). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m) or broad (br). High Resolution Mass spectra were recorded using a Fourier Transform Ion Cyclotron Resonance Mass spectrometer (Waters Xevo G2 Q-TOF). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Preparation of substrates

Method A^1 :

Method B²:

$$\begin{array}{c} O \\ R^{1} \\ OH \\ 1.0 \text{ eq.} \end{array} + H_{2}N^{2}R^{2} \xrightarrow{\text{NEt}_{3}(4.1 \text{ eq.})}{\text{CICO}_{2}\text{Pr}(1.12 \text{ eq.})} \xrightarrow{\text{O}} \\ THF(0.33 \text{ M}) \\ 0 \ ^{\circ}\text{C}, 1\text{ h} \end{array} \xrightarrow{\text{O}} R^{1} \xrightarrow{\text{O}} R^{2}$$

1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1l, 1m, 1n, 1o, 1p, 1q, 1r, 1u, 1v, 1w, 1y, 1z, 1aa, 1ab, 1ac, 1ad, 1ae, 1af, 1ah, 1ai, 1aj were prepared according Method A. 1s, 1t, and 1ag were prepared according Method B.

Analytical data for products

5-Chloro-1-(piperidin-1-yl)pentan-1-one (1r)³

Method A: A solution of Et_3N (1.52 g, 12.5 mmol) in DCM (20 mL) was added piperidine (1.02 g, 12 mmol) at room temperature. 5-Chloropentanoyl chloride (1.55 g, 10 mmol) was added in one portion with solution boiling. After allowing the reaction mixture to stir for 5 h at r.t., the precipitate formed was filtered off, the filtrate was concentrated, and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording product **1r** as a colorless liquid in 92% yield. **¹H NMR** (400 MHz, CDCl₃) δ 3.54-3.47 (m, 4H), 3.35 (t, *J* = 5.6 Hz, 2H), 2.31 (t, *J* = 7.2 Hz, 2H), 1.84-1.69 (m, 4H), 1.64-1.56 (m, 2H), 1.56-1.44 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃) δ 170.5, 46.5, 44.6, 42.5, 32.3, 32.1, 26.4, 25.5, 24.4, 22.5.

HRMS *m/z* (ESI) calcd for C₁₀H₁₉NOCl [M+H]⁺ 204.1155, found: 204.1156.

1-(Piperidin-1-yl)pentane-1,4-dione (1s)⁴

Method B: A solution of 4-oxopentanoic acid (580.6 mg, 5.0 mmol) and triethylamine (632.2 mg, 6.25 mmol) in THF (10 mL) was cooled to 0 °C on an ice bath. Propyl chloroformate (643.4 mg, 5.25 mmol) was added dropwise to the cold solution. After allowing the reaction mixture to stir for 10 min at 0 °C, piperidine (510.9 mg, 6 mmol) was added and the reaction mixture was stirred for 60 min at 0 °C. The precipitate formed was filtered off, the filtrate was concentrated, and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording product **1s** as a colorless liquid in 86% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 3.48-3.44 (m, 2H), 3.39-3.75 (m, 2H), 2.70 (t, *J* = 6.4 Hz, 2H), 2.52 (t, *J* = 6.4 Hz, 2H), 2.15 (s, 3H), 1.56-1.54 (m, 2H), 1.54-1.48 (m, 2H), 1.48-1.41 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 208.0, 169.6, 46.3, 42.7, 38.0, 30.1, 26.9, 26.2, 25.4, 24.4.

HRMS *m/z* (ESI) calcd for C₁₀H₁₈NO₂ [M+H]⁺ 184.1338, found: 184.1337.

Methyl 4-oxo-4-(piperidin-1-yl)butanoate (1u)

Method A: A solution of Et_3N (1.52 g, 12.5 mmol) in DCM (20 mL) was added piperidine (1.02 g, 12 mmol) at room temperature. Methyl 4-chloro-4-oxobutanoate (1.50 g, 10 mmol) was added in one portion with solution boiling. After allowing the reaction mixture to stir for 5 h at r.t., the precipitate formed was filtered off, the filtrate was concentrated, and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording product **1u** as a colorless liquid in 90% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 3.67 (s, 3H), 3.54-3.50 (m, 2H), 3.42-3.37 (m, 2H), 2.66-2.57 (m, 4H), 1.65-1.58 (m, 2H), 1.58-1.47 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 169.2, 51.6, 46.3, 42.8, 29.2, 27.9, 26.3, 25.4,

HRMS m/z (ESI) calcd for C₁₀H₁₈NO₃ [M+H]⁺ 200.1287, found: 200.1285.

To the solution of azacyclotridecan-2-one (1.0 g, 5.07 mmol) in THF (25 mL) at r.t. under argon, LiAlH₄ (349 mg, 9.19 mmol) was added gradually and the reaction mixture was refluxed during 16 h. Then, a saturated solution of Na₂SO₄ was added gradually at 0 °C to neutralize the excess of LiAlH₄, followed diethyl ether/*n*-hexane 1:1 (50 mL) and excess of solid K₂CO₃ to absorb the whole aqueous phase. The organic phase was decanted and the precipitate was washed three times with diethyl ether/pentane 1:1. The solvent was removed under reduced pressure to give azacyclotridecane (0.90 g, 97%) as a colorless oil. And then, according to Method A, a solution of Et₃N (816 mg, 5.90 mmol) in DCM (10 mL) was added azacyclotridecane (0.90 g, 4.92 mmol) at room temperature. Benzoyl chloride (622 mg, 4.43 mmol) was added in one portion with solution boiling. After allowing the reaction mixture to stir for 5 h at r.t., the precipitate formed was filtered off, the filtrate was concentrated, and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording product **1x** as a colorless liquid in 90% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (s, 5H), 3.46 (t, *J* = 7.9 Hz, 2H), 3.17 (t, *J* = 7.5 Hz, 2H), 1.85-1.70 (m, 2H), 1.63-1.49 (m, *J* = 7.6 Hz, 2H), 1.46-1.31 (m, 14H), 1.25–1.13 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.5, 129.1, 128.4, 126.5, 50.7, 46.1, 26.8, 26.1, 25.5, 24.9, 24.5.

HRMS *m/z* (ESI) calcd for C₁₉H₂₉NO₃ [M+H]⁺ 288.2327, found: 288.2322.

N,*N*-bis(cyclopropylmethyl)-4-methylbenzamide (1ak)

24.5.

A solution of *N*-(cyclopropylmethyl)-4-methylbenzamide (567.9 mg, 3 mmol) in dry THF (30 mL) was added NaH (150 mg, 3.75 mmol, ca 60% dispersion in oil) at 0 °C under Ar atmosphere. After stirring for 1 h, (bromomethyl)cyclopropane (607.5 mg, 4.5 mmol) was added dropwise at 0 °C. The reaction mixture was allowed to warm to r.t., and after stirring for 5 h at r.t., the solution was concentrated, and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording desired product **1ak** as a colorless liquid in 57% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 3.62-

3.14 (m, 4H), 2.36 (s, 3H), 1.20-0.83 (m, 2H), 0.57-0.44 (m, 4H), 0.40-0 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 138.5, 133.9, 128.4, 126.3, 52.9, 48.1, 20.9, 9.5, 3.4.

HRMS *m*/*z* (ESI) calcd for C₁₆H₂₂NO [M+H]⁺ 244.1701, found: 244.1698.

Optimization of reaction conditions General procedures in Table S1

Piperidin-1-yl(p-tolyl)methanone **1a** (81.3 mg, 0.4 mmol), NIS (270.0 mg, 1.2 mmol) and NaN₃ (78.0 mg, 1.2 mmol) were added to a 20 mL tube with a magnetic stir bar. Then different solvent was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

1a 0.4 mmol	NIS (3.0 eq.) <u>NaN₃ (3.0 eq.)</u> Sol (2 mL) 80 °C, Ar	
Entry	Sol	NMR Yield/%
1	EA	54
2	DCE	trace
3	MeCN	12
4	ΤοΙ	trace
5	PhCl	trace
6	dioxane	NR
7	EtOH	NR
8	CCI ₄	trace
9	Acetone	8.5
10	MeNO ₂	NR

Table S1. Screening the solvent of the dehydrogenation of amides^a

^{*a*}Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (81.3 mg, 0.4 mmol), NIS (270.0 mg, 1.2 mmol) and NaN₃ (78.0 mg, 1.2 mmol) in solvent (2.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard.

General procedures in Table S2

Piperidin-1-yl(p-tolyl)methanone **1a** (81.3 mg, 0.4 mmol), oxidant (1.2 mmol) and NaN₃ (78.0 mg, 1.2 mmol) were added to a 20 mL tube with a magnetic stir bar. Then dry EA was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

0 1a 0.4 mmol	[X] ⁺ (3.0 eq.) <u>NaN₃ (3.0 eq.)</u> EA, 80 °C, Ar	\rightarrow N $2a$
Entry	[X] ⁺ / 3.0 eq.	2a (%)
1	DIDMH	ND
2	I ₂	ND
3	NBS	NR
4	Py•HBr ₃	NR
5	DBDMH	ND
6	NCS	NR
7	DCDMH	NR
8	NFSI	NR
9	SelectFluor	NR
10	PIDA	23
11	PhIO	NR
12	NalO ₄	NR
13 ^b	PIDA	NR

Table S2. Screening the oxidant of the dehydrogenation of amides^a

^{*a*}Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (81.3 mg, 0.4 mmol), oxidant (1.2 mmol) and NaN₃ (78.0 mg, 1.2 mmol) in dry EA (4.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard. ^[b] Under Air atmosphere.

General procedures in Table S3

Piperidin-1-yl(p-tolyl)methanone **1a** (81.3 mg, 0.4 mmol), NaI (12.0 mg, 0.08 mmol), PIDA (231.9 mg, 0.72 mmol), NaN₃ (78.0 mg, 1.2 mmol) and different catalysts were added to a 20 mL tube with a magnetic stir bar. Then dry EA was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

O N 1a 0.4 mmol	cat. (10 mol%) Nal (20 mol%) PIDA (1.8 eq.) NaN ₃ (3.0 eq.) EA (2 mL) 80 °C, Ar, 12 h	→ <i>/</i>	
Entry	cat.	2a (%)	1a (%)
1	FeCl ₂	61	29
2	Fe(OAc) ₂	58	29
3	Cu(OAc) ₂	42	33
4	CuCl ₂	26	37
5	MnBr ₂	31	52
 6		47	29

Table S3. Screening the catalyst of the dehydrogenation of amides^a

^{*a*} Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (81.3 mg, 0.4 mmol), NaI (12.0 mg, 0.08 mmol), PIDA (231.9 mg, 0.72 mmol), NaN₃ (78.0 mg, 1.2 mmol) and different catalysts in dry EA (4.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard.

General procedures in Table S4

Piperidin-1-yl(p-tolyl)methanone **1a** (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (12.0 mg, 0.08 mmol), PIDA and NaN₃ were added to a 20 mL tube with a magnetic stir bar. Then dry EA was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard. *Table S4.* Screening the amount of PIDA and NaN₃ of the dehydrogenation of amides^{*a*}

0 N 1a 0.4 mmol	FeCl₂ (10 mol%) Nal (20 mol%) PIDA (X eq.) <u>NaN₃ (2X eq.)</u> EA, 80 °C, Ar, 12 h	
Entry	Х	2 a (%)
1	1.8	56
2	1.1	45
3	1.5	55
4	1.8	64
5	2.0	50
6	2.5	36
7	1.8, in air	24

^{*a*}Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (12.0 mg, 0.08 mmol), PIDA and NaN₃ was added as mentioned in above table in dry EA (4.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard.

General procedures in Table S5

Piperidin-1-yl(p-tolyl)methanone **1a** (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI, PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) were added to a 20 mL tube with a magnetic stir bar. Then dry EA was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

Table S5. Screening the amount of PIDA and NaN₃ of the dehydrogenation of amides^a

0 1a 0.4 mmol	FeCl ₂ (10 mol%) Nal (X mol%) PIDA (1.8 eq.) <u>NaN₃ (3.6 eq.)</u> EA 80 °C, Ar, 12 h	\rightarrow N $2a$
Entry	X	yield of 2a (%)
1	0	14
2	5	21
3	10	27
4	20	59
5	30	71 (64)
6	50	67
7	100	58

^{*a*}Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (81.3 mg, 0.4 mmol), FeCl₂(5.1 mg, 0.04 mmol), NaI, PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard. The numbers in parentheses are the isolated yields.

General procedures in Table S6

Piperidin-1-yl(p-tolyl)methanone **1a** (40.7 mg, 0.2 mmol), NIS and TMSN₃ were added to a 20 mL tube with a magnetic stir bar. Then solvent was added to the tube and the mixture was stirred at 80 °C for 12 h under Air atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane

as internal standard.

Me 0.2	0 N 1a 2 mmol	NIS TMSN ₃ Solvent 80 °C, air, 12 h	Me	O N J 3a	
Entry	NIS/eq.	TMSN ₃ /eq.	Solvent	3a (%)	•
1	2.0	1.5	DCE	34	
2	2.0	1.5	DCM	8	
3	2.0	1.5	Tol	12	
4	2.0	1.5	n-hexane	11	
5	2.0	1.5	MeCN	32	
6	2.0	1.5	PhCl	trace	
7	2.0	1.5	CCl ₄	53 (48)	
8	1.0	1.0	CCl ₄	38	
9	1.5	1.5	CCl ₄	51	
10	2.0	2.0	CCl ₄	62	
11	2.2	2.2	CCl ₄	63	
12	2.5	2.5	CCl ₄	68 (65)	
13	3.0	3.0	CCl ₄	69	

Table S6. Optimization of the oxidative dehydrogenation β -iodination of amides^{*a*}

^{*a*}Reaction conditions: Piperidin-1-yl(p-tolyl)methanone (**1a**) (40.7 mg, 0.2 mmol), NIS and TMSN₃ in solvent (2.0 mL) under Air atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard. The numbers in parentheses are the isolated yields.

General procedures in Table S7 – S8

Phenyl(piperidin-1-yl)methanone **1b** (40.7 mg, 0.2 mmol), DBDMH and TogniN₃ were added to a 20 mL tube with a magnetic stir bar. Then DCE (2 mL) was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated affording rude product. And the yield of the desired compound **2a** was detected by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

O N	DBD Togni 80 °C	MH (<mark>X</mark> eq.) N ₃ (1.1 eq.) DCE C, Ar, 12 h	O N Br	
1b			3g	
Entry	Х	TogniN ₃ /eq.	yield of 3g (%)	Br //
1	0.4	1.1	51	N-V
2	0.55	1.1	65 (57)	O [∽] [∼] N Br
3	0.65	1.1	65	DBDMH
4	0.8	1.1	59	
5	1.0	1.1	54	N ₃
6	0.55	1.2	62	
7	0.55	1.5	52	
8	0.55	1.8	14	TogniN ₃

Table S7. Optimization of the oxidative dehydrogenation β -bromination of amides^{*a*}

^{*a*}Reaction conditions: Phenyl(piperidin-1-yl)methanone **1b** (40.7 mg, 0.2 mmol), DBDMH and TogniN₃ in DEC (2.0 mL) under Ar atmosphere stirring at 80 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard. The numbers in parentheses are the isolated yields.

Table S8. Optimization of the oxidative dehydrogenation of amides by $TogniN_3^a$

	FeBr ₃ (10 mol%) <u>TogniN₃ (X eq.)</u> EA 60 °C, Ar, 12 h	- N 2b
Entry	Х	yield of 2b (%)
1	0.8	33
2	1.2	48
3	1.5	55
4	2.0	59

^{*a*}Reaction conditions: Phenyl(piperidin-1-yl)methanone **1b** (40.7 mg, 0.2 mmol), DBDMH and TogniN₃ in EA (2.0 mL) under Ar atmosphere stirring at 60 °C for 12 h. Determined by ¹H NMR using 1,1,2,2-tetrachloroethane (0.19 mmol, 20 μ L) as internal standard.

Coution:

The IN₃ solution generated in situ by NIS and TMSN₃ is a frequently used strategy in organic synthesis.⁵ And we have not encountered any problems even on prolonged reflux under our reaction conditions.

The azidobenziodoxolone (TogniN₃) can be stored in refrigerator for several months without noticeable decomposition. Shocks of the compound are not recommended. This compound decomposes with explosion upheating to 138-140 $^{\circ}C.^{6}$

Variable temperature ¹H NMR analysis

It is interesting that rotamerism was observed form many products in this work. For example, the *N*- β -iodine enamide product **3a** display distinguishable rotameric ¹H NMR signals (263 K), and variable-temperature (263 K–313K) ¹H NMR spectroscopy revealed smooth coalescence of the rotameric (Figure S1).

Figure S1. VT ¹H NMR spectra (CDCl₃) of **3a** showing the coalescence of *N*- β -iodine enamide rotamer peaks with increasing temperature.

Preliminary mechanistic studies

¹H NMR analysis

As shown in the Fig. S2, some *in situ* experiments were carried out and detected by ¹H-NMR analysis to gain additional insight of the mechanism of dehydrogenation β -halogenation process. In order to avoid the influence of deuterated reagent on the reaction system, specific standard solution or reaction solution was put into 5 mm NMR tube directly, the we use a 3 mm NMR tube containing 300 µL CDCl₃ and put this tube into the 5 mm NMR tube.

First of all, piperidin-1-yl(p-tolyl)methanone **1a**, intermediate **5** and product **3a** were dissolved in 300 μ L CCl₄ separately, the ¹H NMR spectrums were obtained (Fig. S2a, b and c). The characteristic signal at 4.6 ppm is from hydrogen at N₃- α position of intermediate **5**, the characteristic signal at 2.7 ppm is from hydrogen at allylic position of product **3a**.

Then, eight reactions from 0.5 h to 7 h were carried out in parallel and finally stopped together. Piperidin-1-yl(p-tolyl)methanone **1a** (0.2 mmol), TMSN₃ (2.5 equiv.) and NIS (2.5 equiv.) were mixed in CCl₄, and the reaction was stirred at 80 °C for specified time. After the mixture was filtered, 300 μ L filtrate was put into 5 mm NMR tube and conducted ¹H-NMR analysis according to the above method.

The ¹H NMR spectrum showed that the reaction system did not change

significantly before 1 hour (Fig. S2 d and e), and intermediates **5** gradually increased between 2 to 4 hours (Fig. S2 f, g and h). Then, the signal of intermediates **5** gradually weakened (Fig. S2 i and j). Finally, the product peak signal was obviously observed when the reaction time was 7 hours (Fig. S2 k).

Figure S2. ¹H NMR analysis.

Experimental procedure and characterization data General procedures for the dehydrogenation of amides reaction

Amide 1 (0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) were added to a 20 mL tube with a magnetic stir bar. Then dry EA (4 mL) was added to the tube and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. After cooling to room temperature, the solution was concentrated and isolated by column chromatography (silica gel, petroleum ether/AcOEt), affording product **2**.

(3,4-Dihydropyridin-1(2H)-yl)(p-tolyl)methanone (2a)

The reaction of phenyl(piperidin-1-yl)methanone **1b** (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 51.5 mg (64%) of **2a** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of 3.3:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 6.46 (d, *J* = 8.4 Hz, 1H), 4.72 (app s, 1H), 3.80 (app s, 2H), 2.36 (s, 3H), 2.13-2.06 (m, 2H), 1.98-1.73 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 7.6 Hz, 2H), 7.19 (d, J = 7.6 Hz, 2H), 5.19 (app s, 1H), 3.56 (app s, 2H), 2.36 (s, 3H), 2.13-2.06 (m, 2H), 1.98-1.73 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 140.3, 132.1, 128.8, 128.2, 127.6, 107.1, 41.0, 21.8, 21.6, 21.3.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₁₃H₁₆NO [M+H]⁺ 202.1232, found: 202.1231.

 $(3,4-Dihydropyridin-1(2H)-yl)(phenyl)methanone (2b)^7$

The reaction of phenyl(piperidin-1-yl)methanone **1b** (75.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃

(93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 43.5 mg (58%) of **2b** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of 3.5:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.43 (m, 2H), 7.43-7.36 (m, 3H), 6.43 (d, J = 8.4 Hz, 1H), 4.83 (app s, 1H), 3.86-3.78 (m, 2H), 2.14-2.08 (m, 2H), 1.98-1.89 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.43 (m, 2H), 7.43-7.36 (m, 3H), 7.26 (app s, 1H), 5.22 (app s, 1H), 3.54 (app s, 2H), 2.14-2.08 (m, 2H), 1.83-1.72 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 135.1, 130.0, 128.2, 128.1, 127.4, 107.5, 41.0, 21.8, 21.6.

Minor isomer: ¹³C NMR could not be clearly identified.

MS (EI): m/z (%): 51.0 (22), 77.0 (65), 105.0 (100), 187.0 (M⁺, 25).

(4-(*Tert*-butyl)phenyl)(3,4-dihydropyridin-1(2*H*)-yl)methanone (2c)

The reaction of (4-(tert-butyl)phenyl)(piperidin-1-yl)methanone 1c (98.2 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 60.2 mg (62%) of 2c as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of 3.3:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.43-7.38 (m, 4H), 6.49 (d, J = 8.4 Hz, 1H), 4.83-4.79 (m, 1H), 3.85-3.76 (m, 2H), 2.14-2.06 (m, 2H), 2.00-1.86 (m, 2H), 1.31 (s, 9H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.38 (m, 4H), 7.23 (app s, 1H), 5.19 (app s, 1H), 3.56 (app s, 2H), 2.14-2.06 (m, 2H), 1.86-1.71 (m, 2H), 1.31 (s, 9H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 153.4, 132.1, 128.0, 127.7, 125.1, 107.0, 41.0, 34.7, 31.1, 21.8, 21.6.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (**ESI**) calcd for C₁₆H₂₂NO[M+H]⁺ 244.1701, found: 244.1699.

(4-Bromophenyl)(3,4-dihydropyridin-1(2*H*)-yl)methanone (2d)

The reaction of (4-bromophenyl)(piperidin-1-yl)methanone **1d** (107.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded

54.5 mg (51%) of **2d** as a white solid. The desired enamide was obtained as two rotamers in a ratio of around 3.4:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.37 (d, *J* = 8.0 Hz, 1H), 4.91-4.80 (m, 1H), 3.85-3.72 (m, 2H), 2.14-2.06 (m, 2H), 1.97-1.85 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.22 (app s, 1H), 5.23 (app s, 1H), 3.56-3.46 (m, 2H), 2.14-2.06 (m, 2H), 1.82-1.70 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 133.8, 131.5, 129.8, 127.0, 124.5, 108.1, 41.1, 21.8, 21.5.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₁₂H₁₃NOBr [M+H]⁺ 266.0181, found: 266.0179.

Melting Point: 46-48 °C.

IR (neat) v_{max}: 2925, 1625, 1591, 1410, 1376, 1258, 1070, 994.

(2-Bromophenyl)(3,4-dihydropyridin-1(2*H*)-yl)methanone (2e)

The reaction of (2-bromophenyl)(piperidin-1-yl)methanone **1e** (107.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 66.9 mg (63%) of **2e** as a yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.3:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.57 (m, 1H), 7.42-7.25 (m, 3H), 6.11 (d, *J* = 8.4 Hz, 1H), 4.99-4.79 (m, 1H), 4.02-3.79 (m, 2H), 2.18-2.09 (m, 2H), 2.04-1.88 (m, 2H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.57 (m, 1H), 7.42-7.25 (m, 3H), 5.32-5.25 (m, 1H), 3.50-3.19 (m, 2H), 2.18-2.09 (m, 2H), 1.87-1.79 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 137.4, 132.8, 130.5, 128.3, 127.6, 125.9, 119.5, 109.0, 40.6, 21.9, 21.2.

Minor isomer: ¹³C NMR (100 MHz, CDCl3) δ 166.2, 137.9, 132.7, 130.4, 127.8, 127.7, 123.8, 119.2, 111.2, 45.1, 22.1, 22.1.

HRMS *m*/*z* (**ESI**) calcd for C₁₂H₁₃NOBr [M+H]⁺ 266.0181, found: 266.0175.

(3,4-Dihydropyridin-1(2H)-yl)(4-fluorophenyl)methanone $(2f)^8$

The reaction of (4-fluorophenyl)(piperidin-1-yl)methanone **1f** (82.9 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 45.1 mg (55%) of **2f** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 3.8:1.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.43 (m, 2H), 7.14-7.02 (m, 2H), 6.41 (d, *J* = 8.0 Hz, 1H), 4.91-4.81 (m, 1H), 3.87-3.69 (m, 2H), 2.16-2.04 (m, 2H), 2.01-1.85 (m, 2H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.43 (m, 2H), 7.14-7.02 (m, 2H), 5.22 (app s, 1H), 3.54 (app s, 2H), 2.16-2.04 (m, 2H), 1.85-1.69 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 163.6 (d, ¹*J* = 250.6 Hz), 131.0, 130.5 (d, ³*J* = 8.4 Hz), 129.8, 127.2, 115.3 (d, ²*J* = 21.8 Hz), 107.9, 41.2, 21.8, 21.6. Minor isomer: ¹³C NMR could not be clearly identified.

MS (EI): m/z (%): 75.0 (17), 95.0 (46), 123.0 (100), 205.1 (M⁺, 21).

(3,4-Dihydropyridin-1(2*H*)-yl)(4-nitrophenyl)methanone (**2g**)

The reaction of (4-nitrophenyl)(piperidin-1-yl)methanone **1g** (93.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 42.2 mg (45%) of **2g** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 3.2:1.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.24 (m, 2H), 7.69-7.59 (m, 2H), 6.32-6.25 (m, 1H), 5.00-4.89 (m, 1H), 3.89-3.77 (m, 2H), 2.18-2.10 (m, 2H), 2.01-1.90 (m, 2H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.24 (m, 2H), 7.69-7.59 (m, 2H), 5.35-5.22 (m, 1H), 3.55-3.45 (m, 2H), 2.18-2.10 (m, 2H), 1.85-1.77 (m, 2H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 148.5, 141.2, 129.1, 126.3, 123.6, 109.4, 41.1, 21.8, 21.4.

HRMS m/z (ESI) calcd for C₁₂H₁₃N₂O₃ [M+H]⁺ 233.0926, found: 233.0926.

(3,4-Dihydropyridin-1(2H)-yl)(4-methoxyphenyl)methanone (**2h**)⁸

The reaction of (4-methoxyphenyl)(piperidin-1-yl)methanone **1g** (87.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 31.6 mg (36%) of **2h** as a colorless liquid.

Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.43 (m, 2H), 6.90-6.87 (m, 2H), 6.93 and 6.50 (m, 1H), 5.25-4.76 (m, 1H), 3.82 (s, 3H), 3.83 and 3.77 (m, 2H), 2.14-2.06 (m, 2H), 2.02-1.83 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 161.1, 130.3, 127.8, 127.7, 113.7, 113.5, 107.0, 55.3, 55.3, 41.2, 21.9.

MS (EI): m/z (%): 77.0 (20), 92.0 (17), 135.0 (100), 217.1 (M⁺, 15).

4-(1,2,3,4-Tetrahydropyridine-1-carbonyl)benzonitrile (2i)

The reaction of 4-(piperidine-1-carbonyl)benzonitrile **1i** (85.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 40.5 mg (48%) of **2i** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 3.0:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.67 (m, 2H), 7.60-7.50 (m, 2H), 6.28 (d, *J* = 8.0 Hz, 1H), 4.99-4.86 (m, 1H), 3.86-73 (m, 2H), 2.16-2.08 (m, 2H), 1.99-1.90 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.67 (m, 2H), 7.60-7.50 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 1H), 5.34-5.16 (m, 1H), 3.57-3.42 (m, 2H), 2.16-2.08 (m, 2H), 1.85-1.75 (m, 2H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 139.3, 132.2, 128.7, 126.3, 124.1, 118.0, 113.8, 109.2, 41.1, 21.7, 21.4.

HRMS *m/z* (ESI) calcd for C₁₃H₁₃N₂O [M+H]⁺ 213.1028, found: 213.1027.

N,*N*-diphenyl-3,4-dihydropyridine-1(2*H*)-carboxamide (**2j**)

2i

The reaction of N,N-diphenylpiperidine-1-carboxamide 1j (112.2 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 51.2 mg (46%) of 2j as a white solid. No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26-7.19 (m, 4H), 7.08-7.02 (m, 2H), 6.99-6.93 (m, 4H), 6.61-6.56 (m, 1H), 4.74-4.68 (m, 1H), 3.37-3.26 (m, 2H), 1.92-1.85 (m, 2H), 1.71-1.62 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.4, 144.5, 129.2, 126.6, 125.2, 124.8, 106.7, 44.1, 21.63, 21.58.

HRMS *m/z* (ESI) calcd for C₁₈H₁₉N₂O [M+H]⁺ 279.1497, found: 279.1497.

Melting Point: 64-65 ℃.

IR (neat) vmax: 2929, 1674, 1590, 1493, 1403, 1366, 1355, 1296, 1260, 1233, 755, 696.

Phenyl 3,4-dihydropyridine-1(2H)-carboxylate $(2k)^9$

The reaction of phenyl piperidine-1-carboxylate 1k (82.1 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 55.5 mg (68%) of 2k as a white solid. The desired enamide was obtained as two rotamers in a ratio of around 1.5:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.24-7.19 (m, 1H), 7.16-7.12 (m, 2H), 7.00-6.94 (m, 1H), 5.04-4.97 (m, 1H), 3.84-3.78 (m, 2H), 2.14-2.08 (m, 2H), 1.96-1.88 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.24-7.19 (m, 1H), 7.16-7.12 (m, 2H), 6.93-6.88 (m, 1H), 5.11-5.04 (m, 1H), 3.74-3.67 (m, 2H), 2.14-2.08 (m, 2H), 1.96-1.88 (m, 2H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 151.2, 129.3, 125.4, 125.2, 124.8, 121.7, 121.6, 107.9, 107.5, 43.0, 42.5, 21.7, 21.6, 21.4, 21.3. MS (EI): m/z (%): 65.0 (32), 82.0 (85), 110.0 (100), 203.0 (M⁺, 55). Melting Point: 61-62 °C.

IR (neat) vmax: 2942, 1723, 1655, 1600, 1495, 1408, 1359, 1260, 1204, 1039, 750, 689.

1-Tosyl-1,2,3,4-tetrahydropyridine (21)¹⁰

The reaction of 1-tosylpiperidine **11** (95.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44

mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 58.3 mg (55%) of **2l** as a white solid. No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.65-6.59 (m, 1H), 4.99-4.93 (m, 1H), 3.38-3.33 (m, 2H), 2.42 (s, 3H), 1.94-1.86 (m, 2H), 1.68-1.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 143.5, 135.1, 129.7, 127.0, 125.0, 108.2, 43.8, 21.5, 20.90, 20.86.

MS (EI): m/z (%): 55.0 (82), 91.0 (100), 155.0 (24), 237.0 (M⁺, 79). **Melting Point:** 54-55 °C.

IR (neat) v_{max}: 2928, 2852, 1649, 1448, 1351, 1166, 1101, 931, 681, 550.

1-(3,4-dihydropyridin-1(2*H*)-yl)-2-phenylethan-1-one (**2m**)

The reaction of 2-phenyl-1-(piperidin-1-yl)ethan-1-one **1m** (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 35.9 mg (45%) of **2m** as a light red liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.4:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 7.19-7.12 (m, 3H), 6.60-6.55 (m, 1H), 4.90-4.80 (m, 1H), 3.73-3.67 (m, 2H), 3.66-3.60 (m, 2H), 2.00-1.92 (m, 2H), 1.76-1.64 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 7.19-7.12 (m, 3H), 6.60-6.55 (m, 1H), 5.02-4.95 (m, 1H), 3.73-3.67 (m, 2H), 3.47-3.41 (m, 2H), 2.00-1.92 (m, 2H), 1.76-1.64 (m, 2H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 134.5, 128.7, 128.5, 126.7, 125.3, 108.5, 41.1, 40.5, 21.7, 21.4.

HRMS *m/z* (**ESI**) calcd for C₁₃H₁₆NO [M+H]⁺ 202.1232, found: 202.1232.

1-(3,4-dihydropyridin-1(2H)-yl)ethan-1-one $(2n)^{11}$

The reaction of 1-(piperidin-1-yl)ethan-1-one **1n** (50.9 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 28.5 mg (57%) of **2n** as a colorless volatile liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.7:1.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 6.51 (d, J = 9.2Hz, 1H), 4.95-4.91 (m,

1H), 3.71-3.59 (m, 2H), 2.17-2.11 (m, 3H), 2.10-2.03 (m, 2H), 1.80-1.76 (m, 2H). Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.4 Hz, 1H), 5.08-4.96 (m, 1H), 3.56-3.54 (m, 2H), 2.17-2.11 (m, 3H), 2.10-2.03 (m, 2H), 1.89-1.80 (m, 2H). Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 125.7, 108.0, 40.0, 21.6, 21.36, 21.25. Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 123.8, 108.3, 44.3, 22.0, 21.7, 21.40. MS (EI): m/z (%): 68.0 (67), 82.0 (100), 125.0 (M⁺, 50).

1-(3,4-Dihydropyridin-1(2*H*)-yl)-2,2-dimethylpropan-1-one (20)

The reaction of 2,2-dimethyl-1-(piperidin-1-yl)propan-1-one **1o** (67.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 33.3 mg (50%) of **2o** as a colorless liquid.

No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 6.99-6.94 (m, 1H), 4.93-4.86 (m, 1H), 3.71-3.65 (m, 2H), 2.09-2.02 (m, 2H), 1.86-1.78 (m, 2H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 126.9, 106.9, 42.5, 39.1, 28.3, 22.2, 22.0. HRMS *m/z* (ESI) calcd for C₁₀H₁₈NO [M+H]⁺ 168.1388, found: 168.1388.

Cyclopropyl(3,4-dihydropyridin-1(2*H*)-yl)methanone (**2p**)

The reaction of cyclopropyl(piperidin-1-yl)methanone **1p** (61.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 38.7 mg (64%) of **2p** as a colorless volatile liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.1:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.88 (d, J = 8.4 Hz, 1H), 5.01-4.87 (m, 1H), 3.69-3.55 (m, 2H), 2.09-2.00 (m, 2H), 1.81-1.68 (m, 3H), 1.00-0.90 (m, 2H), 0.79-0.70 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (d, J = 8.8 Hz, 1H), 5.01-4.87 (m, 1H), 3.80-3.69 (m, 2H), 2.09-2.00 (m, 2H), 1.90-1.81 (m, 3H), 1.00-0.90 (m, 2H), 0.79-0.70 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 125.3, 107.8, 40.6, 21.8, 21.51, 11.0, 7.5.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 124.3, 107.6, 43.4, 22.1, 21.48, 11.1, 7.9.

HRMS *m/z* (ESI) calcd for C₉H₁₄NO [M+H]⁺ 152.1075, found: 152.1074.

1-(3,4-dihydropyridin-1(2*H*)-yl)butan-1-one (**2q**)

The reaction of 1-(piperidin-1-yl)butan-1-one 1q (62.1 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 31.3 mg (51%) of 2q as a colorless volatile liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.9:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.58 (d, J = 8.3 Hz, 1H), 4.94-4.87 (m, 1H), 3.68-3.60 (m, 2H), 2.37-2.29 (m, 2H), 2.08-2.02 (m, 2H), 1.81-1.74 (m, 2H), 1.71-1.59 (m, 2H), 0.97-0.91 (m, 3H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ . 7.17 (d, J = 8.5 Hz, 1H), 5.05-4.98 (m, 1H), 3.58-3.51 (m, 2H), 2.37-2.29 (m, 2H), 2.08-2.02 (m, 2H), 1.87-1.81 (m, 2H), 1.71-1.59 (m, 2H), 0.97-0.91 (m, 3H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 125.3, 107.8, 40.1, 35.2, 22.2, 21.6, 18.4, 13.9.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 124.2, 108.1, 43.6, 35.5, 21.8, 18.3. One peak could not be detected presumably due to an overlapping with a peak of the major species.

HRMS *m/z* (ESI) calcd for C₉H₁₆NO [M+H]⁺ 154.1232, found: 154.1231.

5-Chloro-1-(3,4-dihydropyridin-1(2*H*)-yl)pentan-1-one (2**r**)

The reaction of 5-chloro-1-(piperidin-1-yl)pentan-1-one 1r (81.5 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 48.1 mg (60%) of 2r as a yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.6:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.56 (d, *J* = 8.4 Hz, 1H), 4.93 (dt, *J* = 8.1, 3.9 Hz, 1H), 3.68-3.50 (m, 4H), 2.43-2.35 (m, 2H), 2.09-2.01 (m, 2H), 1.88-1.74 (m, 6H).

Minor isomer:-¹**H NMR** (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.6 Hz, 1H), 5.03 (dt, *J* = 8.1, 3.8 Hz, 1H), 3.68-3.50 (m, 4H), 2.43-2.35 (m, 2H), 2.09-2.01 (m, 2H), 1.88-1.74 (m,

6H).

Major isomer:-¹³C NMR (100 MHz, CDCl₃) δ 169.8, 125.0, 108.2, 44.58, 40.2, 32.2, 32.01, 22.11, 21.8, 21.51.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 124.0, 108.4, 44.62, 43.5, 32.5, 31.99, 22.09, 22.0, 21.53.

HRMS *m/z* (ESI) calcd for C₁₀H₁₇NOCl [M+H]⁺ 202.0999, found: 202.0997.

1-(3,4-Dihydropyridin-1(2*H*)-yl)pentane-1,4-dione (2s)

The reaction of 1-(piperidin-1-yl)pentane-1,4-dione **1s** (73.3 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 42.4 mg (58%) of **2s** as a yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.3:1.

Major isomer:-¹**H NMR** (400 MHz, CDCl₃) δ 6.61 (d, *J* = 8.4 Hz, 1H), 4.94 (dt, *J* = 8.1, 3.9 Hz, 1H), 3.65-3.60 (m, 2H), 2.79-2.72 (m, 2H), 2.67-2.59 (m, 2H), 2.19 (s, 3H), 2.07-2.01 (m, 2H), 1.81-1.73 (m, 2H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.5 Hz, 1H), 5.02 (dt, *J* = 8.2, 3.9 Hz, 1H), 3.60-3.56 (m, 2H), 2.79-2.72 (m, 2H), 2.67-2.59 (m, 2H), 2.19 (s, 3H), 2.07-2.01 (m, 2H), 1.88-1.81 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 207.52, 168.9, 124.9, 108.3, 40.3, 37.6, 30.0, 27.1, 21.8, 21.4.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 207.58, 168.8, 124.0, 108.4, 43.3, 37.7, 27.3, 21.9, 21.5. One peak could not be detected presumably due to an overlapping with a peak of the major species.

HRMS m/z (ESI) calcd for C₁₀H₁₆NO₂ [M+H]⁺ 182.1181, found: 182.1182.

1-(3,4-Dihydropyridin-1(2*H*)-yl)but-2-yn-1-one (2t)

The reaction of 1-(piperidin-1-yl)but-2-yn-1-one **1t** (60.5 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 42.8 mg (72%) of **2t** as a yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.9:1.

Major isomer:-¹H NMR (400 MHz, CDCl₃) δ 7.03 (dt, J = 8.4, 2.0 Hz, 1H), 5.00 (dt, J

= 8.2, 4.0 Hz, 1H), 3.71-3.62 (m, 2H), 2.11-2.03 (m, 2H), 1.99 (s, 3H), 1.81-1.73 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (dt, J = 8.5, 2.1 Hz, 1H), 5.11 (dt, J = 8.2, 3.9 Hz, 1H), 3.82-3.75 (m, 2H), 2.11-2.03 (m, 2H), 1.99 (s, 3H), 1.87-1.81 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 126.2, 108.8, 90.47, 72.5, 40.2, 21.84, 21.0, 3.9.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ151.5, 123.2, 110.5, 90.49, 73.1, 45.0, 22.1, 21.80, 4.0.

HRMS *m/z* (**ESI**) calcd for C₉H₁₂NO [M+H]⁺ 150.0919, found: 150.0917.

Methyl 4-(3,4-dihydropyridin-1(2*H*)-yl)-4-oxobutanoate (2**u**)

The reaction of methyl 4-oxo-4-(piperidin-1-yl)butanoate 1u (79.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 46.8 mg (59%) of 2u as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.1:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.59 (dt, J = 8.4, 2.0 Hz, 1H), 4.95 (dt, J = 8.1, 3.9 Hz, 1H), 3.66 (s, 3H), 3.65-3.62 (m, 2H), 2.70-2.61 (m, 4H), 2.08-2.02 (m, 2H), 1.81-1.70 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (dt, J = 8.6, 2.0 Hz, 1H), 5.03 (dt, J = 8.2, 3.9 Hz, 1H), 3.66 (s, 3H), 3.59-3.55 (m, 2H), 2.70-2.61 (m, 4H), 2.08-2.02 (m, 2H), 1.88-1.81 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 168.5, 124.7, 108.43, 51.7, 40.3, 28.7, 28.0, 21.8, 21.4.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 168.4, 124.0, 108.41, 51.7, 43.3, 28.8, 28.3, 21.9, 21.5. There is an overlapping peak at δ = 51.7 ppm.

HRMS m/z (**ESI**) calcd for C₁₀H₁₆NO₃ [M+H]⁺ 198.1130, found: 198.1130.

Phenyl(2,3,4,5-tetrahydro-1*H*-azepin-1-yl)methanone $(2v)^{12}$

The reaction of azepan-1-yl(phenyl)methanone 1v (81.3 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 49.6 mg (57%)

of 2v as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 5.6:1.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.44 (m, 2H), 7.43-7.32 (m, 3H), 6.29-6.07 (m, 1H), 5.11-4.93 (m, 1H), 3.99-3.83 (m, 2H), 2.30-2.22 (m, 2H), 1.94-1.73 (m, 4H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.44 (m, 2H), 7.43-7.32 (m, 3H), 7.09-6.85 (m, 1H), 5.32-5.11 (m, 1H), 3.69-3.39 (m, 2H), 2.30-2.22 (m, 2H), 1.94-1.73 (m, 4H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 136.0, 132.8, 130.0, 128.2, 128.0, 116.6, 46.1, 27.8, 26.5, 24.7.

Minor isomer: ¹³C NMR could not be clearly identified.

MS (EI): m/z (%): 77.0 (58), 105.0 (100), 201.1 (M⁺, 22).

(Z)-phenyl(3,4,5,6-tetrahydroazocin-1(2H)-yl)methanone (2w)

The reaction of azocan-1-yl(phenyl)methanone 1w (86.8 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 44.8 mg (52%) of 2w as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 6.9:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.52-7.33 (m, 5H), 6.33-6.12 (m, 1H), 5.09-4.89 (m, 1H), 4.00-3.83 (m, 2H), 2.44-2.21 (m, 2H), 2.03-1.78 (m, 2H), 1.74-1.60 (m, 4H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.52-7.33 (m, 5H), 6.33-6.12 (m, 1H), 5.27-5.15 (m, 1H), 3.78-3.55 (m, 2H), 2.44-2.21 (m, 2H), 2.03-1.78 (m, 2H), 1.74-1.60 (m, 4H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 136.6, 131.1, 129.9, 129.7, 129.0, 128.2, 128.0, 126.8, 117.4, 45.4, 41.3, 29.6, 27.4, 26.7, 25.7, 25.4, 24.7, 24.3, 24.1.

HRMS *m*/*z* (**ESI**) calcd for C₁₄H₁₇NO [M+H]⁺ 216.1388, found: 216.1390.

(*Z*)-(azacyclotridec-2-en-1-yl)(phenyl)methanone (2x)

The reaction of (azacyclotridecan-1-yl)(phenyl)methanone 1x (114.8 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded

38.9 mg (34%) of **2x** as a colorless liquid. Both rotamers are described together: **¹H NMR** (400 MHz, CDCl₃) δ 7.56-7.33 (m, 5H), 6.36-6.17 (m, 1H), 5.35-5.05 (m, 1H), 3.91-3.31 (m, 2H), 2.09-1.89 (m, 2H), 1.84-1.65 (m, 2H), 1.49-1.23 (m, 14H). **¹³C NMR** (100 MHz, CDCl₃) δ 170.1, 136.2, 130.1, 128.4, 127.3, 126.9, 116.1, 43.6, 29.6, 27.4, 26.6, 25.8, 25.5, 25.3, 24.4, 24.2.

HRMS m/z (ESI) calcd for C₁₉H₂₇NO [M+H]⁺ 286.2171, found: 286.2166.

(4-Methyl-3,4-dihydropyridin-1(2*H*)-yl)(*p*-tolyl)methanone (2y)

The reaction of methyl (4-methylpiperidin-1-yl)(p-tolyl)methanone 1y (86.9 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 51.5 mg (60%) of 2y as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.6:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.45 (d, J = 8.4 Hz, 1H), 4.80-4.65 (m, 1H), 3.72-3.48 (m, 2H), 2.40-2.32 (m, 4H), 2.08-1.98 (m, 1H), 1.63-1.38 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.12-4.80 (m, 1H), 4.08-3.95 (m, 2H), 2.40-2.32 (m, 4H), 1.98-1.83 (m, 1H), 1.63-1.38 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 140.3, 132.1, 128.9, 128.3, 126.5, 113.4, 39.8, 29.9, 27.3, 21.4, 21.2.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS m/z (ESI) calcd for C₁₄H₁₈NO [M+H]⁺ 216.1388, found: 216.1386.

(4-Benzyl-3,4-dihydropyridin-1(2*H*)-yl)(*p*-tolyl)methanone (2z)

The reaction of methyl (4-benzylpiperidin-1-yl)(*p*-tolyl)methanone **1z** (117.4 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 55.3 mg (57%) of **2z** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.4:1. Both rotamers are described together: ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 7.34-7.28 (m, 2H), 7.25-7.16 (m, 5H), 6.55-6.45 (m, 1H), 5.18-4.68 (m, 1H), 4.16-3.62 (m, 1H), 3.62-3.45 (m, 1H), 2.75-2.66 (m, 1H), 2.66-2.50 (m, 2H), 2.39 (s, 3H), 2.03-1.90 (m, 1H), 1.72-1.50 (m, 1H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 140.4, 139.6, 131.9, 128.9, 128.8, 128.3, 127.2, 126.1, 110.9, 42.0, 39.8, 34.3, 27.5, 21.3. Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₂₀H₂₂NO [M+H]⁺ 292.1701, found: 292.1699.

(4-Phenyl-3,4-dihydropyridin-1(2*H*)-yl)(*p*-tolyl)methanone (**2aa**)

The reaction of (4-phenylpiperidin-1-yl)(*p*-tolyl)methanone **1aa** (111.8 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 59.7 mg (54%) of **2aa** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.6:1. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.41-7.31 (m, 2H), 7.27-7.21 (t, *J* = 7.5 Hz, 2H), 7.20-7.11 (m, 5H), 6.67-6.58 (m, 1H), 5.23-4.72 (m, 1H), 3.95-3.43 (m, 3H), 2.31 (s, 3H), 2.25-1.76 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 144.6, 140.6, 131.9, 128.9, 128.6, 128.4, 128.3, 127.5, 126.5, 109.6, 39.5, 38.5, 31.1, 21.4.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₁₉H₂₀NO [M+H]⁺ 278.1545, found: 278.1543.

N-(prop-1-en-1-yl)-*N*-propylbenzamide (2ab)

The reaction of *N*,*N*-dipropylbenzamide **1ab** (82.1 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 34.6 mg (43%) of **2ab** as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.35 (m, 5H), 6.41-6.28 (m, 1H), 5.11-4.95 (m, 1H), 3.78-3.35 (m, 2H), 1.77-1.63 (m, 3H), 1.63-1.51 (m, 2H), 1.06-0.84 (m, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 169.8, 136.0, 129.7, 129.6, 128.6, 128.2, 127.8, 126.7, 105.9, 45.0, 20.1, 15.3, 11.2, 9.9.

No rotameric effects were observed via NMR spectroscopy.

HRMS *m*/*z* (**ESI**) calcd for C₁₃H₁₈NO [M+H]⁺ 204.1388, found: 204.1390.

N-(but-1-en-1-yl)-*N*-butyl-4-methylbenzamide (**2ac**)

The reaction of *N*,*N*-dibutyl-4-methylbenzamide **1ac** (93.4 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 49.0 mg (50%) of **2ac** as a light yellow liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.31 (m, 2H), 7.21-7.16 (m, 2H), 6.47-6.32 (m, 1H), 5.11-4.99 (m, 1H), 3.81-3.65 (m, 2H), 2.37 (s, 3H), 2.03-1.89 (m, 2H), 1.67-1.56 (m, 2H), 1.44-1.28 (m, 2H), 1.01-0.84 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 140.0, 133.0, 128.8, 128.0, 126.8, 112.7, 43.3, 28.9, 23.5, 21.3, 20.2, 14.5, 13.8.

No rotameric effects were observed via NMR spectroscopy.

HRMS *m/z* (ESI) calcd for C₁₆H₂₄NO [M+H]⁺ 246.1858, found: 246.1855.

N-(but-1-en-1-yl)-*N*-butyl-5-chloropentanamide (**2ad**)

2ad

The reaction of *N*,*N*-dibutyl-5-chloropentanamide **1ad** (99.1 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 39.0 mg (40%) of **2ad** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 6.3:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.43 (d, J = 13.9 Hz, 1H), 5.16-5.05 (m, 1H), 3.63-3.42 (m, 4H), 2.49-2.39 (m, 2H), 2.14-2.05 (m, 2H), 1.91-1.76 (m, 4H), 1.62-1.45 (m, 2H), 1.38-1.27 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H), 0.98-0.90 (m, 3H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (d, J = 14.7 Hz, 1H), 5.05-4.99 (m, 1H), 3.63-3.42 (m, 4H), 2.49-2.39 (m, 2H), 2.14-2.05 (m, 2H), 1.91-1.76 (m, 4H), 1.62-1.45 (m, 2H), 1.38-1.27 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H), 0.98-0.90 (m, 3H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 126.4, 115.4, 44.8, 43.2, 33.1, 32.2, 29.1, 23.9, 22.4, 20.4, 14.76, 14.0.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 125.1, 113.2, 44.9, 43.2, 32.9, 30.0, 29.4, 23.8, 22.6, 20.3, 14.80, 13.9. There is an overlapping peak at δ = 43.2 ppm. HRMS *m/z* (ESI) calcd for C₁₃H₂₅NOCl [M+H]⁺ 246.1625, found: 246.1626.

N-(but-1-en-1-yl)-*N*-butylbutyramide (2ae)

The reaction of *N*,*N*-dibutylbutyramide **1ae** (79.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 47.9 mg (61%) of **2ae** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.8:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.48 (d, J = 14.0 Hz, 1H), 5.14-4.97 (m, 1H), 3.63-3.50 (m, 2H), 2.45-2.33 (m, 2H), 2.16-2.04 (m, 2H), 1.76-1.63 (m, 2H), 1.61-1.45 (m, 2H), 1.40-1.26 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H), 1.00-0.90 (m, 6H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (d, J = 14.8 Hz, 1H), 5.14-4.97 (m, 1H), 3.50-3.41 (m, 2H), 2.45-2.33 (m, 2H), 2.16-2.04 (m, 2H), 1.76-1.63 (m, 2H), 1.61-1.45 (m, 2H), 1.40-1.26 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H), 1.00-0.90 (m, 6H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 126.5, 114.4, 42.8, 35.9, 28.9, 23.73, 20.21, 18.4, 14.6, 13.87, 13.8.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ171.0, 125.0, 112.6, 44.7, 35.6, 29.8, 23.65, 20.17, 18.6, 14.7, 13.92, 13.7.

HRMS *m/z* (ESI) calcd for C₁₂H₂₄NO [M+H]⁺ 198.1858, found: 198.1857.

Methyl 4-(but-1-en-1-yl(butyl)amino)-4-oxobutanoate (2af)

The reaction of methyl 4-(dibutylamino)-4-oxobutanoate **1af** (97.3 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 41.0 mg (42%) of **2af** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.4:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.46 (d, J = 13.6 Hz, 1H), 5.19-5.00 (m, 1H), 3.70 (s, 3H), 3.62-3.53 (m, 2H), 2.77-2.64 (m, 4H), 2.14-2.04 (m, 2H), 1.67-1.45 (m, 2H), 1.40-1.29 (m, 2H), 1.07-0.98 (m, 3H), 0.98-0.89 (m, 3H).

Major isomer: ¹**H** NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 14.8 Hz, 1H) 5.19-5.00 (m, 1H), 3.70 (s, 3H), 3.53-3.45 (m, 2H), 2.77-2.64 (m, 4H), 2.14-2.04 (m, 2H), 1.67-1.45 (m, 2H), 1.40-1.29 (m, 2H), 1.07-0.98 (m, 3H), 0.98-0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 169.5, 126.2, 115.9, 51.9, 43.4, 29.2, 29.1, 29.0, 23.9, 20.3, 14.7, 13.9.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₁₃H₂₄NO₃ [M+H]⁺ 242.1756, found: 242.1759.

N-(but-1-en-1-yl)-*N*-butyl-4-oxopentanamide (2ag)

The reaction of methyl *N*,*N*-dibutyl-4-oxopentanamide **1ag** (90.9 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 22.1 mg (25%) of **2ag** as a yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.9:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.49 (d, J = 13.6 Hz, 1H), 5.16-5.05 (m, 1H), 3.60-3.50 (m, 2H), 2.83-2.75 (m, 2H), 2.73-2.66 (m, 2H), 2.23 (s, 3H), 2.13-2.04 (m, 2H), 1.65-1.46 (m, 2H), 1.37-1.27 (m, 2H), 1.06-0.98 (m, 3H), 0.97-0.89 (m, 3H). Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (d, J = 14.8 Hz, 1H), 5.05-4.98 (m, 1H), 3.50-3.44 (m, 2H), 2.83-2.75 (m, 2H), 2.73-2.66 (m, 2H), 2.23 (s, 3H), 2.13-2.04 (m, 2H), 1.65-1.46 (m, 2H), 1.37-1.27 (m, 2H), 1.06-0.98 (m, 3H), 0.97-0.89 (m, 3H). Both rotamers are described together: ¹³C **NMR** (100 MHz, CDCl₃) δ 207.6, 169.73, 169.68, 126.1, 125.0, 115.4, 113.0, 44.7, 43.2, 38.0, 37.9, 30.1, 29.6, 28.9, 27.8, 27.7, 23.7, 23.6, 20.2, 14.6, 13.8, 13.7.

HRMS *m/z* (ESI) calcd for C₁₃H₂₄NO₂ [M+H]⁺ 226.1807, found: 226.1808.

(E)-N-(but-1-en-1-yl)-N-methylbenzamide (2ah)

The reaction of methyl N-butyl-N-methylbenzamide **1ah** (76.4 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 22.7 mg (30%) of **2ah** as a yellow liquid. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.54-7.35 (m, 5H), 6.65-5.98 (m, 1H), 5.14 (m, 1H), 3.31-2.74 (m, 3H), 1.92-1.61 (m, 2H), 1.07-0.85 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 135.6, 130.1, 128.8, 128. 5, 127.2, 34.5, 18.6, 14.8, 13.7.

HRMS *m/z* (ESI) calcd for C₁₂H₁₅NO [M+H]⁺ 190.1232, found: 190.1235.

(*E*)-N-(but-1-en-1-yl)-N-ethylbenzamide (**2ai-1**) and N-butyl-N-vinylbenzamide (**2ai-2**)

The reaction of methyl N-butyl-N-ethylbenzamide **1ai** (82.0 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 28.4 mg (35%) of **2ai-1** as a yellow liquid and 7.5 mg (9%) of **2aj-2** as a colorless liquid.

2ai-1: The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.34 (m, 5H), 6.49-6.20 (m, 1H), 5.42-4.98 (m, 1H), 4.01-3.24 (m, 2H), 1.77-1.64 (m, 2H), 1.34-1.14 (m, 3H), 1.00-0.70 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 131.2, 129.7, 128.7, 128.4, 128.3, 126.9, 126.7, 35.1, 23.6, 18.8, 14.6, 13.5.

HRMS *m/z* (ESI) calcd for C₁₃H₁₇NO [M+H]⁺ 204.1388, found: 204.1390.

2ai-2: No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.39 (m, 5H), 6.68 (br, s, 1H), 4.58-4.43 (d, J = 15.6 Hz, 1H), 4.25 (br, s, 1H), 3.88-3.64 (m, 2H), 1.77-1.59 (m, 2H), 1.48-1.33 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H),

¹³C NMR (100 MHz, CDCl₃) δ 170.7, 135.8, 135.0, 130.2, 128.5, 128.0, 93.1, 42.5, 28.9, 20.5, 14.0.

HRMS *m/z* (ESI) calcd for C₁₃H₁₇NO [M+H]⁺ 204.1388, found: 204.1387.

(3-Methyl-3,4-dihydropyridin-1(2H)-yl)(p-tolyl)methanone (**2aj-1**) and (5-methyl-3,4-dihydropyridin-1(2H)-yl)(p-tolyl)methanone (**2aj-2**)

The reaction of (3-methylpiperidin-1-yl)(*p*-tolyl)methanone **1aj** (86.9 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 32.3 mg (38%) of **2aj-1** as a light yellow liquid and 27.9 mg (32%) of **2aj-2** as a colorless liquid.

2aj-1: The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.41-7.35 (m, 2H), 7.23-7.18 (m, 2H), 6.50-6.42 (m, 1H), 5.21-4.77 (m, 1H), 4.24-3.54 (m, 1H), 3.08-2.96 (m, 1H), 2.38 (s, 3H), 2.23-2.13 (m, 1H), 2.08-1.97 (m, 1H), 1.80-1.70 (m, 1H), 1.13-0.84 (m, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 140.5, 132.4, 129.0, 128.4, 127.4, 106.8, 47.4, 30.5, 27.3, 21.5, 19.0.

HRMS *m/z* (ESI) calcd for C₁₄H₁₈NO [M+H]⁺ 216.1388, found: 216.1388.

2aj-2: The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.41-7.32 (m, 2H), 7.23-7.17 (m, 2H), 7.10-6.23 (m, 1H), 3.79-3.46 (m, 2H), 2.38 (s, 3H), 2.07-2.00 (m, 2H), 1.96-1.89 (m, 1H), 1.81-1.72 (m, 2H), 1.61-1.54 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 140.1, 132.4, 128.8, 128.3, 127.5, 122.5, 116.0, 40.6, 27.4, 21.7, 21.4, 20.8.

HRMS *m*/*z* (**ESI**) calcd for C₁₄H₁₈NO [M+H]⁺ 216.1388, found: 216.1383.

(5-Iodo-3,4-dihydropyridin-1(2*H*)-yl)(*p*-tolyl)methanone (**3a**)

The reaction of piperidin-1-yl(*p*-tolyl)methanone **1a** (57.4 mg, 0.2 mmol), NIS (112.5 mg, 0.5 mmol) and TMSN₃ (57.6 mg, 0.5 mmol) in dry CCl₄ (2.0 mL) under Air at 80 °C for 7h, afforded 42.5 mg (65%) of **3a** as a light yellow liquid. The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.03-6.90 (m, 1H), 3.87-3.53(m, 2H), 2.54 (td, *J* = 6.4, 1.8 Hz, 2H), 2.39 (s, 3H), 2.08-1.84 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 131.2, 129.1, 128.4, 39.8, 35.2, 21.4.

HRMS *m*/*z* (**ESI**) calcd for C₁₃H₁₅NOI [M+H]⁺ 328.0198, found: 328.0190.

(4-(*tert*-butyl)phenyl)(5-iodo-3,4-dihydropyridin-1(2*H*)-yl)methanone (**3b**)

The reaction of (4-(tert-butyl)phenyl)(piperidin-1-yl)methanone 1c (49.1 mg, 0.2 mmol), NIS (112.5 mg, 0.5 mmol) and TMSN₃ (57.6 mg, 0.5 mmol) in dry CCl₄ (2.0 mL) under Air at 80 °C for 7h, afforded 46.0 mg (62%) of**3b**as a white solid. The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.46-7.38 (m, 4H), 7.07-6.94 (m, 1H), 3.89-3.57 (m, 2H), 2.54 (td, *J* = 6.3, 1.8 Hz, 2H), 2.07-1.86 (m, 2H), 1.33 (s, 9H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 133.5, 131.1, 128.2, 125.4, 125.2, 35.3, 34.9, 31.1. Minor isomer: ¹³C NMR could not be clearly identified.

HRMS m/z (ESI) calcd for C₁₆H₂₁NOI [M+H]⁺ 370.0668, found: 370.0661.

Melting Point: 84-85 °C.

IR (neat) v_{max}: 2962, 1660, 1626, 1403, 1381, 1345, 1304, 1267, 1187, 1154, 989, 846, 732.

(4-Bromophenyl)(5-iodo-3,4-dihydropyridin-1(2*H*)-yl)methanone (**3c**)

The reaction of (4-bromophenyl)(piperidin-1-yl)methanone **1d** (53.6 mg, 0.2 mmol), NIS (112.5 mg, 0.5 mmol) and TMSN₃ (57.6 mg, 0.5 mmol) in dry CCl₄ (2.0 mL) under Air at 80 °C for 7h, afforded 23.5 mg (30%) of **3c** as a white solid. The desired enamide was obtained as two rotamers in a ratio of around 2.8:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.92-6.82 (m, 1H), 3.88-3.67 (m, 2H), 2.55 (td, J = 6.3, 1.8 Hz, 2H), 2.09-1.95 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.77-7.67 (m, 1H), 3.65-3.50 (m, 2H), 2.55 (td, J = 6.3, 1.8 Hz, 2H), 1.95-1.83 (m, 2H).

Both rotamers are described together: ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 132.7, 131.6, 129.8, 125.1, 74.4, 39.8, 35.1, 31.7, 23.6.

HRMS *m/z* (ESI) calcd for C₁₂H₁₂NOBrI [M+H]⁺ 391.9147, found: 391.9138.

Melting Point: 103-104 °C.

IR (neat) v_{max}: 2923, 1635, 1587, 1443, 1384, 1352, 1307, 1269, 1185, 1148, 1072, 1011, 986, 857, 755.

(4-Fluorophenyl)(5-iodo-3,4-dihydropyridin-1(2*H*)-yl)methanone (**3d**)

The reaction of (4-fluorophenyl)(piperidin-1-yl)methanone **1f** (41.4 mg, 0.2 mmol), NIS (112.5 mg, 0.5 mmol) and TMSN₃ (57.6 mg, 0.5 mmol) in dry CCl₄ (2.0 mL) under Air at 80 °C for 7h, afforded 30.9 mg (47%) of **3d** as a white solid. The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.54-7.46 (m, 2H), 7.16-7.09 (m, 2H), 6.96-6.85 (m, 1H), 3.89-3.54 (m, 2H), 2.55 (td, *J* = 6.3, 1.9 Hz, 2H), 2.08-1.84 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 162.6, 133.1, 130.7, 130.2, 115.8, 115.5, 40.0, 35.2, 23.9.

HRMS *m/z* (ESI) calcd for C₁₂H₁₂NOFI [M+H]⁺ 331.9948, found: 331.9941.

Melting Point: 72-73 ℃.

IR (neat) v_{max}: 2928, 1651, 1628, 1603, 1509, 1485, 1347, 1228, 1150, 846.

(5-Bromo-3,4-dihydropyridin-1(2*H*)-yl)(phenyl)methanone (3e)

The reaction of phenyl(piperidin-1-yl)methanone **1b** (56.8 mg, 0.3 mmol), DBDMH (47.2 mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 \Box for 12h, afforded 45.2 mg (57%) of **3e** as a colorless liquid. The desired enamide was obtained as two rotamers while the ratio could not be clearly identified. Both rotamers are described together:

¹**H** NMR (400 MHz, CDCl₃) δ 7.50-7.37 (m, 5H), 6.78 (m, 1H), 3.84-3.47 (m, 2H), 2.49 (td, J = 6.3, 1.7 Hz, 2H), 2.07-1.82 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 134.2, 130.5, 128.4, 128.1, 39.9, 31.8, 22.7.

HRMS *m/z* (ESI) calcd for C₁₂H₁₃NOBr [M+H]⁺ 266.0181, found: 266.0177.

(5-Bromo-3,4-dihydropyridin-1(2*H*)-yl)(4-bromophenyl)methanone (3f)

The reaction of (4-bromophenyl)(piperidin-1-yl)methanone **1d** (80.5 mg, 0.3 mmol), DBDMH (47.2 mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 °C for 12h, afforded 97.7 mg (47%) of **3f** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.5:1. Both rotamers are described together:

¹**H** NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.80-6.68 (m, 1H), 3.82-3.48 (m, 2H), 2.50 (td, J = 6.4, 1.6 Hz, 2H), 2.08-1.85 (m, 2H). Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 133.0, 131.7, 129.8, 127.5, 125.1, 104.1, 40.1, 31.8, 22.7.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₁₂H₁₂NOBr₂ [M+H]⁺ 343.9286, found: 343.9287.

(5-Bromo-3,4-dihydropyridin-1(2*H*)-yl)(2-bromophenyl)methanone (**3g**)

The reaction of (2-bromophenyl)(piperidin-1-yl)methanone 1e (80.5 mg, 0.3 mmol),

DBDMH (47.2 mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 °C for 12h, afforded 98.0 mg (47%) of **3g** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.4:1.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.57 (m, 1H), 7.43-7.36 (m, 1H), 7.33-7.25 (m, 2H), 6.45-6.42 (m, 1H), 3.99-3.3.74 (m, 2H), 2.55-2.49 (m, 2H), 2.10-1.99 (m, 2H).

Minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.63-7.57 (m, 1H), 7.43-7.36 (m, 1H), 7.33-7.25 (m, 2H), 7.72-7.68 (m, 1H), 3.47-3.17 (m, 2H), 2.55-2.49 (m, 2H), 1.99-1.88 (m, 2H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 136.4, 133.0, 131.0, 128.4, 127.8, 126.4, 119.5, 104.9, 39.4, 31.9, 22.3.

Minor isomer: ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 137.1, 132.7, 130.7, 128.4,127.8, 124.6, 119.0, 108.4, 43.9, 31.9, 23.3. There is an overlapping peak at δ = 128.4 ppm. HRMS *m/z* (ESI) calcd for C₁₂H₁₂NOBr₂ [M+H]⁺ 343.9286, found: 343.9288.

1-(5-Bromo-3,4-dihydropyridin-1(2*H*)-yl)butan-1-one (**3h**)

The reaction of 1-(piperidin-1-yl)butan-1-one 1q (46.6 mg, 0.3 mmol), DBDMH (47.2 mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 °C for 12h, afforded 57.9 mg (42%) of **3h** as colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 2.2:1.

Major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 6.93 (m, 1H), 3.73-3.57 (m, 2H), 2.47-2.41 (m, 2H), 2.37-2.28 (m, 2H), 1.92-1.84 (m, 2H), 1.70-1.60 (m, 2H), 0.98-0.91 (m, 3H).

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 1H), 3.57-3.46 (m, 2H), 2.47-2.41 (m, 2H), 2.37-2.28 (m, 2H), 1.99-1.92 (m, 2H), 1.70-1.60 (m, 2H), 0.98-0.91 (m, 3H).

Major isomer: ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 126.1, 103.7, 38.8, 35.0, 31.7, 22.6, 18.2, 13.8.

Minor isomer: ¹³C NMR could not be clearly identified.

HRMS *m/z* (ESI) calcd for C₉H₁₅NOBr [M+H]⁺ 232.0337, found: 232.0336.

(5-Bromo-4-methyl-3,4-dihydropyridin-1(2*H*)-yl)(*p*-tolyl)methanone (3i)

The reaction of 1-(piperidin-1-yl)butan-1-one 1y (65.2 mg, 0.3 mmol), DBDMH (47.2

mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 °C for 12h, afforded 90.8 mg (51%) of **3i** as a colorless liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.8:1. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 6.90-6.73 (m, 1H), 4.00-3.53 (m, 2H), 2.60-2.51 (m, 1H), 2.38 (s, 3H), 2.19-1.96 (m, 1H), 1.87-1.72 (m, 1H), 1.19 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.9, 131.3, 129.0, 128.3, 34.7, 21.4, 20.1.

HRMS *m/z* (ESI) calcd for C14H17NOBr [M+H]⁺ 294.0494, found: 294.0497.

(5-Bromo-4-phenyl-3,4-dihydropyridin-1(2*H*)-yl)(p-tolyl)methanone (**3**j)

The reaction of (4-phenylpiperidin-1-yl)(p-tolyl)methanone **1aa** (83.8 mg, 0.3 mmol), DBDMH (47.2 mg, 0.165 mmol) and TogniN₃ (95.4 mg, 0.33 mmol) in DCE (2.0 mL) under Ar at 80 °C for 12h, afforded 88.9 mg (42%) of **3j** as a colorless liquid. No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39-7.31 (m, 2H), 7.29-7.23 (m, 2H), 7.22-7.10 (m, 5H), 7.10-7.00 (m, 1H), 4.00-3.84 (m, 1H), 3.70 (t, *J* = 5.2 Hz, 1H), 3.43-3.32 (m, 1H), 2.31 (s, 3H), 2.28-2.20 (m, 1H), 2.04-1.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 141.1, 131.1, 129.1, 128.5, 128.3, 127.9, 127.0, 46.5, 31.8, 21.4.

HRMS *m/z* (ESI) calcd for C19H19NOBr [M+H]⁺ 356.0650, found: 356.0652.

(2-Azidopyrrolidin-1-yl)(p-tolyl)methanone (4al)

4al

The reaction of pyrrolidin-1-yl(p-tolyl)methanone **1al** (75.7 mg, 0.4 mmol), FeCl₂ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 $^{\circ}$ C for 12h, afforded 58.2 mg (63%) of **4al** as a light yellow liquid. The desired enamide was obtained as two rotamers in a ratio of around 1.9:1. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.94-5.14 (m, 1H), 3.70-3.67 (m, 2H), 2.36 (s, 3H), 2.11-1.81 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 140.6, 132.9, 128.9, 127.2, 126.8, 73.8, 49.2, 31.8, 23.9, 21.3.

HRMS *m/z* (ESI) calcd for C₁₂H₁₅N₄O [M+H]⁺ 231.1246, found: 231.1243.
N-(1-azidobutyl)-4-methylbenzamide (4am)

The reaction of N-butyl-4-methylbenzamide **1am** (76.5 mg, 0.4 mmol), $FeCl_2$ (5.1 mg, 0.04 mmol), NaI (18.0 mg, 0.12 mmol), PIDA (231.9 mg, 0.72 mmol) and NaN₃ (93.6 mg, 1.44 mmol) in dry EA (4.0 mL) under Ar at 80 °C for 12h, afforded 37.6 mg (40%) of **4am** as a light yellow solid. No rotameric effects were observed via NMR spectroscopy.

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 1H), 5.70-5.63 (m, 1H), 2.38 (s, 3H), 1.76-1.59 (m, 2H), 1.51-1.40 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.4, 142.8, 130.4, 129.3, 127.1, 66.9, 36.7, 21.5, 18.4, 13.5.

HRMS *m/z* (ESI) calcd for C₁₂H₁₆N₄ONa [M+H]⁺ 255.1222, found: 255.1217.

(2-Azido-3-iodopiperidin-1-yl)(*p*-tolyl)methanone (5)

The reaction of piperidin-1-yl(*p*-tolyl)methanone **1a** (40.7 mg, 0.2 mmol), NIS (112.5 mg, 0.5 mmol) and TMSN₃ (57.6 mg, 0.5 mmol) in dry CCl₄ (2.0 mL) under Air at 80 °C for 4 h, afforded 42.2 mg (57%) of **5** as a white solid. No rotameric effects were observed via NMR spectroscopy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.13 (brs, 1H), 4.43-4.35 (m, 1H), 4.01 (brs, 1H), 3.13-2.99 (m, 1H), 2.32 (s, 3H), 2.06-1.94 (m, 2H), 1.93-1.84 (m, 1H), 1.57-1.44 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 140.6, 131.5, 129.1, 127.4, 28.3, 28.1, 21.4, 20.8.

HRMS m/z (ESI) calcd for C₁₃H₁₆N₄OI [M+H]⁺ 371.0369, found: 371.0364.

Melting Point: 69-70 °C.

IR (neat) v_{max}:2918, 1629, 1568, 1447, 1392, 1348, 1306, 1264, 1183, 1149, 988, 828, 742.

The reaction of morpholino(phenyl)methanone **1ak** (38.2 mg, 0.2 mmol), FeCl₂ (2.5 mg, 0.02 mmol), NaI (9.0 mg, 0.06 mmol), PIDA (116.0 mg, 0.36 mmol) and NaN₃ (46.8 mg, 0.72 mmol) in dry EA (2.0 mL) under Ar at 80 $^{\circ}$ C for 12h, afforded 9.8 mg (26%) of **2ak** as a yellow liquid. Both rotamers are described together:

¹**H NMR** (400 MHz, CDCl₃) δ 7.66-7.35 (m, 5H), 6.80-5.86 (m, 1H), 6.30-5.78 (m, 1H), 4.29-3.97 (m, 2H), 3.95-3.61 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 134.0, 132.7, 130.6, 129.2, 128.4, 128.3, 127.7, 107.6, 105.3, 65.0, 64.8, 45.9, 40.1. The spectral data are consistent with those reported in the literature.⁵

X-Ray Structure and Crystal Data of 3c

Item	Value
Molecular formula	C ₁₂ H ₁₁ BrINO
Formula weight	392.03
Crystal system	monoclinic
Space Group	C2/c
a (Å)	19.7902(14)
b (Å)	6.2266(4)
c (Å)	20.7782(14)
α (°)	90
β (°)	102.111(2)
γ (°)	90
Volume (Å ³)	2503.4(3)
Ζ	8
T (K)	173(2)
ρ (g cm ⁻¹)	2.080
λ (Å)	0.71073
μ (mm ⁻¹)	5.729
# measured refl	8284

# unique refl	2194
R _{int}	0.0310
# parameters	145
$R(F^2)$, all refl	0.0253
R _w (F ²), all refl	0.0612
Goodness of fit	1.117

References:

- 1. G. V. Zyryanov and D. M. Rudkevich, Org. Lett., 2003, 5, 1253-1256.
- 2. M. S. C. Pedras and M. Jha, *Biorg. Med. Chem.*, 2006, 14, 4958-4979.
- 3. M. Zhu, L. Wang and J. He, Angew. Chem. Int. Ed., 2021, 60, 2030-2035.
- 4. J.-C. Gramain, A. Azzouzi, M. Dufour and R. Remuson, *Heterocycles*, 1988, 27, 133-148.
- 5. C. Viuf and M. Bols, Angew. Chem. Int. Ed., 2001, 40, 623-625.
- Y. Fan, W. Wan, G. Ma, W. Gao, H. Jiang, S. Zhu and J. Hao, *Chem Commun (Camb)*, 2014, 50, 5733-5736.
- 7. P. Chuentragool, M. Parasram, Y. Shi and V. Gevorgyan, *J. Am. Chem. Soc.*, 2018, **140**, 2465-2468.
- V. M. de Almeida, R. J. dos Santos, A. J. da Silva Góes, J. G. de Lima, C. R. Duarte Correia and A. R. de Faria, *Tetrahedron Lett.*, 2009, 50, 684-687.
- 9. F. Lepifre, S. Clavier, P. Bouyssou and G. Coudert, *Tetrahedron*, 2001, 57, 6969-6975.
- 10. A. Furukawa, T. Hata, M. Shigeta and H. Urabe, *Tetrahedron Lett.*, 2019, **60**, 815-819.
- G. Barker, J. L. McGrath, A. Klapars, D. Stead, G. Zhou, K. R. Campos and P. O'Brien, J. Org. Chem., 2011, 76, 5936-5953.
- 12. N. Gigant and I. Gillaizeau, Org. Lett., 2012, 14, 4622-4625.

=

