Supporting Information

Caged Bulky Organic Dyes in a Polyaromatic Framework and Their Spectroscopic Peculiarities

Mayuko Ueda, Natsuki Kishida, Lorenzo Catti, and Michito Yoshizawa*

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Contents

- Materials and methods, and references
- Synthesis of compound 9 (${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and MS spectra)
- Synthesis of ligand $\mathbf{3}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}, \&\right.$ HSQC NMR and MS spectra)
- Formation of cage $1\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}\right.$, \& DOSY NMR, MS, UV-visible spectra, and optimized structure)
- Formation of caged dyes $\mathbf{1 \cdot 4 a - d}$ (UV-visible \& fluorescence spectra, CIE diagram, fluorescence lifetimes, ${ }^{1} \mathrm{H}$ NMR \& MS spectra, and optimized structures)
- Formation of caged dyes 1•5a-c (UV-visible, fluorescence, ${ }^{1} \mathrm{H}$ NMR, DOSY, \& MS spectra, DLS charts, optimized structures, and theoretical data)
- Formation of caged dyes $\mathbf{1 \bullet 6 a - e}$ (UV-visible, fluorescence, \& ${ }^{1} \mathrm{H}$ NMR spectra, DLS charts, and optimized structures)
- Competitive binding experiments of $\mathbf{6 a} / \mathbf{6 b}, \mathbf{6 a} / \mathbf{6 c}$, and $\mathbf{6 a} / \mathbf{6 d}$ with $\mathbf{1}$ (UV-visible and ${ }^{1} \mathrm{H}$ NMR spectra)

Materials and methods

NMR: Bruker AVANCE HD400 (400 MHz) and HD500 (500 MHz), MALDI-TOF MS: Bruker ultrafleXtreme, ESI-TOF MS: Bruker micrOTOF II, UV-vis: JASCO V-670DS, Fluorescence: Hitachi F-7000, Absolute PL quantum yield: Hamamatsu C9920-02G with an integration sphere,FT-IR: SHIMADZU IRSpirit-T, Fluorescence lifetime: Hamamatsu C7700-ABS-N, DLS: Wyatt Technology DynaPro NanoStar, Molecular Modeling: BIOVIA Materials Studio 2020, version 20.1.0.5 (Dassault Systèmes Co.), DFT calculation: Gaussian 16 program package.

Solvents and reagents: TCI Co., Ltd., FUJIFILM Wako Chemical Co., Kanto Chemical Co., Inc., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc. Compounds: Compounds $\mathbf{7}_{n \mathrm{Br}}$ and $\mathbf{4 b}$ were synthesized according to ref. S1 and S3, respectively.

References

[S1] M. Yamashina, T. Yuki, Y. Sei, M. Akita, M. Yoshizawa, Chem. Eur. J. 2015, 21, 4200-4204.
[S2] N. Kishi, Z. Li, K. Yoza, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438-11441.
[S3] S. Jiang, J. Gao, L. Han, Res. Chem. Intermed. 2016, 42, 1017-1028.
[S4] C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc. 2004, 126, 11408-11409.

MU069, 071, 082

Synthesis of compound 9

Compound $\boldsymbol{7}_{n \mathrm{Br}}$ ($n=1-3 ; 4.00 \mathrm{~g}, 5.09 \mathrm{mmol}$ based on $\mathbf{7}_{2 \mathrm{Br}}$) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300$ mL) were added to a 500 mL glass flask filled with N_{2}. $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1.0 M) of $\mathrm{BBr}_{3}(20 \mathrm{~mL}, 20 \mathrm{mmol})$ was slowly added to the solution at $0^{\circ} \mathrm{C}$ and then the mixture was stirred at r.t. overnight. When water was added to the solution, yellow precipitate $\mathbf{8}_{n \mathrm{Br}}$ ($n=1-3 ; 4.28 \mathrm{~g}$) was collected and dried under vacuum. Compound $\mathbf{8}_{n \mathrm{Br}}(n=1-3 ; 4.00 \mathrm{~g})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11.8 \mathrm{~g}, 36.2 \mathrm{mmol})$ were added to a 500 mL glass flask filled with N_{2}. Dry $\mathrm{CH}_{3} \mathrm{CN}(160 \mathrm{~mL})$ was added to the flask and then the mixture was stirred at $85^{\circ} \mathrm{C}$ for 30 min. After addition of 2-(2-(2-methoxyethoxy)ethoxy)ethyl p-toluenesulfonate (5.46 g , $17.1 \mathrm{mmol})$, the mixture was stirred at $85{ }^{\circ} \mathrm{C}$ overnight. The resultant solution was concentrated under reduced pressure. The crude product, 1,3-dibromo-5,5dimethylhydantoin (DBH; $0.117 \mathrm{~g}, 0.407 \mathrm{mmol}$), and THF (70 mL) were added to a 200 mL glass flask at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t. for 2 d . The resultant solution was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (EtOAc) to afford compound 9 as a yellow solid ($0.628 \mathrm{~g}, 0.652 \mathrm{mmol}$, 14% based on $7_{\text {2Br }}$ (3 steps)).

Compound $\mathbf{8}_{n \mathrm{Br}}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, r.t.): $\delta 9.78(\mathrm{~s}, 2 \mathrm{H}$), 8.52 (d, $J=8.7 \mathrm{~Hz}$, 4H), 7.78-7.68 (m, 10H), 7.52 (dd, $J=8.7,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.37$ (s, 2H). MALDI-TOF MS (dithranol): m / z Calcd. for $\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{2}\left[\mathbf{8}_{2 \mathrm{Br}}-\mathrm{H}\right]^{-}$669.13, Found 668.99.

Compound 9: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 8.60$ (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.73 (d, $J=$ $8.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.69 (s, 2H), 7.59 (ddd, $J=8.6,6.6,1.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.44 (s, 2H), 7.39 (ddd, J $=8.8,6.6,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.17(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 8 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 4 \mathrm{H})$, $3.32(\mathrm{~s}, 6 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): δ $156.5\left(\mathrm{C}_{q}\right), 134.3\left(\mathrm{C}_{q}\right), 131.8(\mathrm{CH}), 131.5\left(\mathrm{C}_{q}\right), 130.2\left(\mathrm{C}_{q}\right), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 125.5(\mathrm{CH}), 122.7\left(\mathrm{C}_{q}\right), 105.8(\mathrm{CH}), 71.7\left(\mathrm{CH}_{2}\right), 70.3\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right), 70.1\left(\mathrm{CH}_{2}\right)$,
$68.9\left(\mathrm{CH}_{2}\right), 68.8\left(\mathrm{CH}_{2}\right), 58.9\left(\mathrm{CH}_{3}\right)$. FT-IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3073,2915,2872,1629,1433$, 1245, 1218, 1104, 920, 874, 752. HR MS (ESI, $\mathrm{CH}_{3} \mathrm{CN}$): m / z Calcd. for $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{Br}_{2} \mathrm{O}_{8} \mathrm{Na}$ [9 + Na] ${ }^{+}$985.1751, Found 985.1751.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}, r.t.) of $\mathbf{8}_{n \mathrm{Br}}$.

Acquisition Parameter

Date of acquisition
Acquisition method name
Aquisition operation mode
Voltage polarity
Number of shots
Name of spectrum used for calibration Calibration reference list used

Instrument Info

User
Instrument
Instrument type

2020-09-17T11:17:45.233+09:00
D:IMethods\flexControlMethods\kinbara_lablRN_0-3kDa.par
Reflector
NEG
1500

NegPeptideCalibStandard mono
testuser
FLEX-PC
ultraflexTOF/TOF

Figure S2. MALDI-TOF MS spectrum (dithranol) of $\mathbf{8}_{n \mathrm{Br}}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of 9 .

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ r.t. $)$ of $\mathbf{9}$.

Figure S5. HR MS spectrum (ESI, $\mathrm{CH}_{3} \mathrm{CN}$) of 9 .

Synthesis of ligand 3

MU087

Compound 9 ($0.60 \mathrm{~g}, 0.62 \mathrm{mmol}$), 3-pyridylboronic acid pinacol ester ($0.38 \mathrm{~g}, 1.9$ $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.80 \mathrm{~g}, 3.8 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.078 \mathrm{~g}, 0.067 \mathrm{mmol})$ were added to a 200 mL glass flask filled with N_{2}. Dry and degassed DMF (60 mL) was added to the flask and then the mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for $17 \mathrm{~h} .{ }^{[52]}$ The resultant solution was concentrated under reduced pressure. The crude product was purified by gel permeation chromatography $\left(\mathrm{CHCl}_{3}\right)$ to afford ligand $\mathbf{3}$ as a yellow solid ($84.0 \mathrm{mg}, 87.6 \mu \mathrm{~mol}, 14 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 8.83$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.77(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H})$, 7.90-7.76 (m, 8H), 7.65-7.55 (m, 6H), 7.53-7.50 (m, 2H), 7.40-7.35 (m, 8H), 4.26-4.22 (br, 4H), 3.54-3.49 (m, 4H), 7.44-7.36 (m, 8H), 3.32 (s, 6H), 3.10-3.02 (m, 4H), 2.96$2.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 148.9-148.8\left(\mathrm{C}_{q}\right), 151.9-151.7(\mathrm{CH})$, 148.9-148.8 (CH), 139.0-138.9 (CH), 136.0-135.9 ($\left.\mathrm{C}_{q}\right)$, 135.0-134.9 (C_{q}), 134.7-134.6 $\left(\mathrm{C}_{q}\right)$, 132.6-132.5 ($\left.\mathrm{C}_{q}\right)$, 132.0-131.8(CH), 127.3-127.2 (CH), 126.2-126.1 (CH), 125.6$125.5(\mathrm{CH}), 125.1-125.0(\mathrm{CH}), 124.2-124.1\left(\mathrm{C}_{q}\right), 123.5-123.3(\mathrm{CH}), 106.0-105.8(\mathrm{CH})$, 71.8-71.7 $\left(\mathrm{CH}_{2}\right), 70.5-70.4\left(\mathrm{CH}_{2}\right), 70.4-70.3\left(\mathrm{CH}_{2}\right), 70.2-70.1\left(\mathrm{CH}_{2}\right), 69.0-68.9\left(\mathrm{CH}_{2}\right)$, 68.9-68.7 $\left(\mathrm{CH}_{2}\right), 59.0-58.9\left(\mathrm{CH}_{3}\right)$. FT-IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3062,2916,2865,1627,1432$, 1406, 1365, 1217, 1157, 1130, 1101, 1025, 766, 719. HR MS (ESI, $\mathrm{CH}_{3} \mathrm{CN}$): m / z Calcd. for $\mathrm{C}_{62} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathbf{3}+\mathrm{Na}]^{+} 981.4104$, Found 981.4085.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{3}$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ r.t.) of $\mathbf{3}$.

Figure S8a. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{3}$.

Figure S8b. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{3}$.

Figure S9a. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{3}$.

Figure S9b. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{3}$.

Figure S10. HR MS spectrum (ESI, $\mathrm{CH}_{3} \mathrm{CN}$) of $\mathbf{3}$.

Formation of cage 1 MU348

Ligand $\mathbf{3}(20.0 \mathrm{mg}, 20.9 \mu \mathrm{~mol}), \mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(4.0 \mathrm{mg}, 12 \mu \mathrm{~mol}), \mathrm{AgNO}_{3}(4.4 \mathrm{mg}$, $26 \mu \mathrm{~mol})$, and DMSO- $d_{6}(0.5 \mathrm{~mL})$ were added to a glass test tube and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 d to give cage $\mathbf{1}$ in a quantitative fashion. After evaporation of the solvent, the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a membrane filter (pore size: 200 nm). When the resultant solution was reprecipitated with hexane, cage 1 was obtained as a yellow solid ($20.6 \mathrm{mg}, 4.6 \mu \mathrm{~mol}, 88 \%$ isolated yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, r.t.): $\delta 9.33$ (d, $J=5.6 \mathrm{~Hz}, 8 \mathrm{H}$), $8.44-8.39$ (m, 16H), 8.22 (dd, $J=7.6,5.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.66(\mathrm{~s}, 8 \mathrm{H}), 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 16 \mathrm{H}), 7.26(\mathrm{dd}, J=8.9,7.2$
$\mathrm{Hz}, 16 \mathrm{H}), 7.18(\mathrm{~s}, 8 \mathrm{H}), 7.02(\mathrm{dd}, J=8.9,7.2 \mathrm{~Hz}, 16 \mathrm{H}), 6.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 8 \mathrm{H}), 4.26-$ $4.23(\mathrm{~m}, 16 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 16 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 32 \mathrm{H}), 3.21$ (s, 24H), 3.06-3.05 (br, 32H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, r.t.): $\delta 155.5\left(\mathrm{C}_{q}\right), 153.7(\mathrm{CH}), 151.5(\mathrm{CH}), 143.3$ $(\mathrm{CH}), 137.5\left(\mathrm{C}_{q}\right), 135.3\left(\mathrm{C}_{q}\right), 135.2\left(\mathrm{C}_{q}\right), 131.3(\mathrm{CH}), 128.8\left(\mathrm{C}_{q}\right), 128.6\left(\mathrm{C}_{q}\right), 127.7\left(\mathrm{C}_{q}\right)$, $127.0(\mathrm{CH}), 126.3(\mathrm{CH}), 125.7\left(\mathrm{CH}\right.$ or $\left.\mathrm{C}_{q}\right), 125.5\left(\mathrm{CH}\right.$ or $\left.\mathrm{C}_{q}\right), 124.5(\mathrm{CH}), 123.8(\mathrm{CH})$, $123.1\left(\mathrm{C}_{q}\right), 105.5(\mathrm{CH}), 70.6\left(\mathrm{CH}_{2}\right), 69.2\left(\mathrm{CH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{CH}_{2}\right), 67.6$ $\left(\mathrm{CH}_{2}\right), 57.0\left(\mathrm{CH}_{3}\right)$. DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$): $D=4.68 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. FTIR (ATR, cm^{-1}): 3062, 2902, 2870, 2824, 1628, 1427, 1339, 1219, 1104, 1028, 769, 702. ESI-TOF MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \mathrm{m} / \mathrm{z} 1056.5\left[\mathbf{1}-4 \bullet \mathrm{NO}_{3}{ }^{-}\right]^{4+}, 1429.4\left[\mathbf{1}-3 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{3+}, 2175.0[\mathbf{1}-$ $\left.2 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{2+}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, r.t.) of $\mathbf{1}$.

Figure S13a. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, r.t.) of $\mathbf{1}$.

Figure S13b. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, r.t.) of $\mathbf{1}$.

Figure S14. ${ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$) of $\mathbf{1}$.

Figure S15. ESI-TOF MS spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1}$.

Figure S16. Temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}=15: 1$) of $\mathbf{1}$ at a) $25^{\circ} \mathrm{C}$ and b) $80^{\circ} \mathrm{C}$.

Figure S17. UV-visible spectra (r.t.) of $\mathbf{1}$ in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(70 \mu \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}(43 \mu \mathrm{M})$.

b)

Figure S18. Optimized structure of cage 1 (DFT, CAM-B3LYP/LanL2DZ (for Pt), 6-31G(d,p) (for other atoms) level of theory): a) side and b) top views. The geometry optimization was performed with DFT calculations (Gaussian 16 program package), on the basis of the crystal structure of cage $\mathbf{1}^{\prime}$ with short side-chains. ${ }^{[51]}$

Cage 1 ($0.61 \mathrm{mg}, 0.14 \mu \mathrm{~mol}$), 3-(2-benzothiazolyl)-7-(diethylamino)coumarin ($\mathbf{4 a}$; $0.11 \mathrm{mg}, 0.41 \mu \mathrm{~mol})$, and $15: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}(0.45 \mathrm{~mL})$ were added to a glass test tube and then the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The selective formation of $1: 1$ host-guest complex 1•4a (50% yield) was confirmed by NMR and UV-visible analyses. In the same way, host-guest complexes $\mathbf{1 \cdot 4 b}$ (89% yield), $\mathbf{1 \cdot 4 c}$ (20% yield) and $\mathbf{1 \cdot 4 d}$ (20% yield) were synthesized using 3-(2-benzoxazolyl)-7-(diethylamino)coumarin (4b), 3-(2-benzimidazolyl)-7-(diethylamino)coumarin (4c) and 7-(diethylamino)-3-(1-methyl-2benzimidazolyl)coumarin (4d), respectively. The yields of the obtained host-guest complexes (uptake ratios) were estimated by UV-visible analysis (with a calibration curve method) in DMSO, after the removal of suspended unbound dyes by filtration and the lyophilization of the aqueous solutions including cage $\mathbf{1}$ and its host-guest complexes.

Owing to the insolubility of $\mathbf{4 a}$ in a $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ solution, the binding constant of $\mathbf{1 \bullet 4} \mathbf{a}$ was estimated to be $\sim 2.5 \times 10^{4} \mathrm{M}^{-1}$ from the UV-visible analysis under highdilution conditions (0.14 mM to $3.5 \mu \mathrm{M}$; Figure S 19 c). ${ }^{[54]}$
1•4a: ESI-TOF MS (15:1 $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right): ~ m / z 1143.98\left[\mathbf{1} \mathbf{4} \mathbf{a}-4 \bullet \mathrm{NO}_{3}{ }^{-}\right]^{4+}$, $1545.93[\mathbf{1 \bullet 4 a}-$ $\left.3 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{3+}$.

Figure S19. a) UV-visible spectra (r.t.) and photographs of $\mathbf{1 \bullet 4 a}$ before/after 7 d under ambient conditions (in the dark) in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(0.14 \mathrm{mM}$ based on $\mathbf{1})$ and $\mathbf{4 a}$ in $2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(8$ $\mu \mathrm{M}$) and b) their fluorescence spectra with quantum yields ($\lambda_{\mathrm{ex}}=450 \mathrm{~nm}$) and photographs (λ_{ex} $=365 \mathrm{~nm}$). c) Concentration-dependent UV-visible spectra (r.t.) of $\mathbf{1} \mathbf{\bullet} \mathbf{4} \mathbf{a}$ in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$.

Figure S20. a) UV-visible spectra (r.t.) and photographs of $\mathbf{1} \mathbf{\bullet 4 b}$ in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(0.14 \mathrm{mM}$ based on $\mathbf{1}$) and $\mathbf{4 b}$ in $2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(8 \mu \mathrm{M})$ and b) their fluorescence spectra with quantum yields $\left(\lambda_{\mathrm{ex}}=450 \mathrm{~nm}\right)$ and photographs $\left(\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Figure S21. a) UV-visible spectra (r.t.) and photographs of $\mathbf{1} \bullet \mathbf{4 c}$ in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(0.14 \mathrm{mM}$ based on $\mathbf{1}$) and $\mathbf{4 c}$ in $2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(8 \mu \mathrm{M})$ and b) their fluorescence spectra with quantum yields $\left(\lambda_{\mathrm{ex}}=450 \mathrm{~nm}\right)$ and photographs $\left(\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Figure S22. a) UV-visible spectra (r.t.) and photographs of $\mathbf{1} \mathbf{4 d}$ in $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(0.14 \mathrm{mM}$ based on $\mathbf{1}$) and $\mathbf{4 d}$ in $2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(8 \mu \mathrm{M})$ and b) their fluorescence spectra with quantum yields $\left(\lambda_{\mathrm{ex}}=429 \mathrm{~nm}\right)$ and photographs $\left(\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Figure S23. Quantum yields $\left(2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right.$ or $\left.15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right)$ of $\mathbf{4 a}, \mathbf{4 b}, 4 \mathbf{c}$, and $\mathbf{4 d}$ without/within cage 1.

Figure S24. CIE coordinate diagram $\left(2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right.$ or $\left.15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right)$ of $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 c}$, and $4 d$ without/within cage 1 .

Figure S25. Fluorescence lifetimes ($2: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ or $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, \lambda_{\mathrm{ex}}=355 \mathrm{~nm}$, r.t.) of a) $\mathbf{4 a}, \mathbf{b)} \mathbf{4 b}$, and c) $\mathbf{4 c}$ without/within cage $\mathbf{1}$.

Table S1. Solvent-dependent fluorescence lifetimes and quantum yields of $\mathbf{4 a}, \mathbf{4 b}$, and $\mathbf{4 c}$ within/without cage $\mathbf{1}$ in water/acetonitrile (AN) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

		caged dye $15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{AN}^{[\mathrm{ab}}$	$\begin{gathered} 2: 1 \\ \mathrm{H}_{2} \mathrm{O} / \mathrm{AN}^{[b]} \end{gathered}$	$\begin{gathered} 3: 1 \\ \mathrm{H}_{2} \mathrm{O} / \mathrm{AN}^{[c]} \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{[d]}$
4a	τ	5.9 ns	2.8 ns	-	3.6 ns
	$\Phi_{\text {F }}$	62\%	52\%	45\%	90\%
4b	τ	7.1 ns	1.6 ns	-	3.5 ns
	$\Phi_{\text {F }}$	42\%	20\%	20\%	89\%
4c	τ	4.7 ns	2.8 ns	-	4.0 ns
	$\Phi_{\text {F }}$	38\%	54\%	60\%	86\%

[a] $70 \mu \mathrm{M}$ based on $\mathbf{1}$. [b] $8.0 \mu \mathrm{M}$. [c] $2.0 \mu \mathrm{M}$. [d] $40 \mu \mathrm{M}$.

Figure S26a. ${ }^{1} \mathrm{H}$ NMR spectra $\left(500 \mathrm{MHz}, 15: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}\right.$, r.t.) of a) $\mathbf{1}$ and b) $\mathbf{1 \bullet 4 a}$.

Figure S26b. ${ }^{1} \mathrm{H}$ NMR spectra ($\left.500 \mathrm{MHz}, 15: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}, 75^{\circ} \mathrm{C}\right)$ of a) $\mathbf{1}$ and b) $\mathbf{1 \bullet 4 a}$.

Display Report

Figure S26c. ESI-TOF MS spectrum $\left(15: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right)$ of $\mathbf{1 \bullet 4}$.

Figure S27a. Optimized structure of $\mathbf{1 \bullet 4 a}\left(\mathrm{R}^{1}=-\mathrm{OCH}_{3}\right)$: a) space-filling and b) stick/space-filling models. The geometry optimization was performed with molecular mechanics calculations (forcite module, BIOVIA Materials Studio 2020, version 20.1.0.5). On the basis of the crystal structure of cage $\mathbf{1}^{\prime}$ with short side-chains, ${ }^{[81]}$ randomly oriented bulky dye $\mathbf{4 a}$ within cage $\mathbf{1}$ in several initial structures converged to a threading conformation without host-guest π-stacking interactions.
a)

c)

b)

Figure S27b. Optimized structures (DFT, CAM-B3LYP, 6-31G(d,p) level of theory) of a) 4a, b) $\mathbf{4 b}$, and c) $\mathbf{4 c}$.

A CH2 Cl_{2} solution (1.0 mM) of N, N '-bis(2,6-diisopropylphenyl)-3,4,9,10-perylene dicarboximide ($\mathbf{5 a} ; 0.14 \mathrm{~mL}, 0.14 \mu \mathrm{~mol}$) was added to a glass tube including cage $\mathbf{1}(0.61$ $\mathrm{mg}, 0.14 \mu \mathrm{~mol})$. After evaporation of the solvent, the mixture was sonicated ($40 \mathrm{kHz}, 150$ $\mathrm{W})$ in $5: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ for 20 min . After the centrifugation and filtration of the resultant suspended solution to remove excess $\mathbf{5 a}$, the selective formation of $1: 1$ hostguest complex $1 \cdot 5$ (48% yield) was confirmed by NMR, MS, DLS, and UV-visible analyses. In the same way, host-guest complexes $\mathbf{1 \cdot 5 b}(20 \%$ yield) and $\mathbf{1 0 5}$ were synthesized using N, N '-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide (5b) and N, N '-bis(3,5-dimethylphenyl)-3,4,9,10-perylenedicarboximide (5c), respectively. The yields of the obtained host-guest complexes (uptake ratios) were estimated by UV-visible analysis in DMSO, after the removal of suspended unbound dyes by filtration and the lyophilization of the aqueous solutions including cage $\mathbf{1}$ and its hostguest complexes.

Owing to the insolubility of $\mathbf{5 a}$ in a $5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ solution, the binding constant of $\mathbf{1 \cdot 5 a}$ was roughly estimated to be $>10^{8} \mathrm{M}^{-1}$ from the UV-visible analysis under highdilution conditions (70 to $3.5 \mu \mathrm{M}$; Figure S28c). ${ }^{[54]}$

1•5a: ESI-TOF MS (5:1 H2 $\mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$): $m / z 1233.97\left[\mathbf{1 \cdot 5 a}-4 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{4+}, 1665.91[\mathbf{1 \cdot 5 a}-$ $\left.3 \cdot \mathrm{NO}_{3}^{-}\right]^{3+}$.
$\mathbf{1} \cdot \mathbf{5 b}$: ESI-TOF MS (5:1 $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right): \mathrm{m} / \mathrm{z} 1248.01\left[\mathbf{1} \cdot \mathbf{5 b}-4 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{4+}, 1684.63[\mathbf{1} \mathbf{5} \mathbf{b} \mathbf{-}$ $\left.3 \cdot \mathrm{NO}_{3}{ }^{-}\right]^{3+}$.

Figure S28a. UV-visible spectra ($5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on 1, r.t.) and photographs of a) $\mathbf{1 \cdot 5 a}, \mathbf{1}$, and $\mathbf{5 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b) $\mathbf{1 \cdot 5 b}, \mathbf{1}$, and $\mathbf{5 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and c) $\mathbf{1 \cdot 5} \mathbf{c}, \mathbf{1}$, and $\mathbf{5 c}$ in DMSO.

Figure S28b. UV-visible spectra ($70 \mu \mathrm{M}$, r.t.) and photographs of $\mathbf{5 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone, and DMSO.

Figure S28c. Concentration-dependent UV-visible spectra (r.t.) of $\mathbf{1} \cdot \mathbf{5 a}$ in $5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathbf{C N}$.

Figure S29. Fluorescence spectra ($\lambda_{\mathrm{ex}}=500 \mathrm{~nm}, 70 \mu \mathrm{M}$, r.t.) and quantum yields of $\mathbf{1 \cdot 5 a}$ in $\mathbf{5 : 1}$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and 5 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{1} \cdot 5 \mathrm{a}$ at a) $25^{\circ} \mathrm{C}$ and b) $75^{\circ} \mathrm{C}$.

Figure S31. ESI-TOF MS spectrum ($5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$) of $\mathbf{1 \cdot 5 a}$.

Figure S32a. ${ }^{1} \mathrm{H}$ NMR spectra $\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1} \mathbf{\bullet} \mathbf{5 b}$ at a) $25^{\circ} \mathrm{C}$ and b) $75^{\circ} \mathrm{C}$.

Figure S32b. ${ }^{1} \mathrm{H}$ DOSY NMR $\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}\right)$ of $\mathbf{1 \cdot 5 b}$.

Figure S32c. Particle number-size distribution of a) $\mathbf{1 . 5 a}$ and b) $\mathbf{1 \cdot 5 b}$ by DLS analysis (5:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on $\mathbf{1 , 2 5}{ }^{\circ} \mathrm{C}$).

Figure S33. ESI-TOF MS spectrum ($5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$) of $\mathbf{1 \cdot 5 b}$.

Figure S34. Optimized structure of $\mathbf{1 \cdot 5 a}\left(\mathrm{R}^{1}=-\mathrm{OCH}_{3}\right)$: a) space-filling and b) stick/space-filling models. The geometry optimization was performed with molecular mechanics calculations (forcite module, BIOVIA Materials Studio 2020, version 20.1.0.5). On the basis of the crystal structure of cage $\mathbf{1}^{\prime}$ with short side-chains, ${ }^{[51]}$ randomly oriented bulky dye $\mathbf{5 a}$ within cage $\mathbf{1}$ in several initial structures converged to a threading conformation without host-guest π-stacking interactions.
a) $5 a-\mathrm{iii}$

5a-i

b) $5 a-i$

5a-ii

$\phi=90^{\circ} ; 476.3 \mathrm{~nm}(0.04), 502.8 \mathrm{~nm}(0.82)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943618 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 489.5 \mathrm{~nm}(0.11), 497.3 \mathrm{~nm}(0.06), 511.4 \mathrm{~nm}(0.75)$
$\Delta E=+135 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5a-iii

$\phi=90^{\circ} ; 475.7 \mathrm{~nm}(0.04), 500.0 \mathrm{~nm}(0.82)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943653 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 490.8 \mathrm{~nm}(0.07), 498.1 \mathrm{~nm}(0.12), 506.4 \mathrm{~nm}(0.69)$
$\Delta E=+75 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\phi=90^{\circ} ; 476.9 \mathrm{~nm}(0.05), 501.5 \mathrm{~nm}(0.81)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943636 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 490.7 \mathrm{~nm}(0.10), 496.4 \mathrm{~nm}(0.13), 507.6 \mathrm{~nm}(0.66)$
$\Delta E=+63 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5a-iv

$\phi=90^{\circ} ; 475.7 \mathrm{~nm}(0.04), 500.0 \mathrm{~nm}(0.82)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943653 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 482.2 \mathrm{~nm}(0.04), 486.9 \mathrm{~nm}(0.03), 502.5 \mathrm{~nm}(0.80)$ $\Delta E=+40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5a-v

$\phi=90^{\circ} ; 475.9 \mathrm{~nm}(0.04), 499.5 \mathrm{~nm}(0.81)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943666 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 481.5 \mathrm{~nm}(0.03), 489.4 \mathrm{~nm}(0.04), 501.0 \mathrm{~nm}(0.80)$
$\Delta E=+32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$5 a-v i$

$\phi=90^{\circ} ; 476.9 \mathrm{~nm}(0.05), 499.1 \mathrm{~nm}(0.80)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943679 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 488.0 \mathrm{~nm}(0.10), 490.4 \mathrm{~nm}(0.02), 500.0 \mathrm{~nm}(0.74)$ $\Delta E=+14 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Figure S35a. a) Predicted UV-visible spectra and molecular modeling of 5a with different dihedral angles (ϕ) between the phenyl and imide rings and b) their predicted, electronic absorption bands (oscillator strength) and energies. The predicted absorption bands were obtained by TD-DFT calculation (B3LYP/6-31G(d) level of theory). The optimized structures ($\phi=90^{\circ}$ and 70°) and energies were obtained by DFT calculation of 5a (CAM-B3LYP, 6-31G(d,p) level of theory). The torsional structures were created in GaussView 6. DFT/TD-DFT calculations were performed with Gaussian 16 program package.

b) $5 a-\mathrm{iii}$

$\phi=90^{\circ} ; 478.2 \mathrm{~nm}(0.05), 500.8 \mathrm{~nm}(0.81)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5944007 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 493.7 \mathrm{~nm}(0.08), 500.9 \mathrm{~nm}(0.16), 508.4 \mathrm{~nm}(0.63)$ $\Delta E=+85 \mathrm{~kJ} \mathrm{~mol}^{-1}$

5a-i

$\phi=90^{\circ} ; 479.7 \mathrm{~nm}(0.06), 504.2 \mathrm{~nm}(0.80)$
$\Delta E=0 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(E=-5943981 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\phi=70^{\circ} ; 491.9 \mathrm{~nm}(0.13), 500.5 \mathrm{~nm}(0.09), 513.3 \mathrm{~nm}(0.70)$ $\Delta E=+131 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Figure S35b. a) Predicted UV-visible spectra of representative isomers 5a-iii and 5a-i with dihedral angles $\phi=90^{\circ}$ and 70° and b) their predicted, electronic absorption bands (oscillator strength) and energies. The predicted absorption bands were obtained by TD-DFT calculation (B3LYP+D3BJ/6-31G(d) level of theory) and the energies were obtained by DFT calculation (CAM-B3LYP+D3BJ/6-31G(d,p) level of theory), using the optimized structures of 5a-iii and 5a-i obtained in Figure S35a. DFT/TD-DFT calculations were performed with Gaussian 16 program package.

Figure S36. Energy diagrams and molecular orbitals of 5a $\left(\phi=90^{\circ}\right)$, estimated by DFT calculation (CAM-B3LYP, 6-31G(d,p) level of theory).

Formation of caged dyes 1•6a-e MU145, 151, 158, 163, 203, 336, 343, 347, 349, 350

A CH ${ }_{2} \mathrm{Cl}_{2}$ solution (1.0 mM) of tetraphenylporphyrin $\mathbf{6 a}(0.14 \mathrm{~mL}, 0.14 \mu \mathrm{~mol})$ was added to a glass tube including cage $\mathbf{1}(0.61 \mathrm{mg}, 0.14 \mu \mathrm{~mol})$. After evaporation of the solvent, the mixture was sonicated in $8: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ for $20 \mathrm{~min}(40 \mathrm{kHz}, 150$ W). After the removal of excess $\mathbf{6 a}$ by centrifugation and filtration, the formation of $1: 1$ host-guest complex $\mathbf{1 \bullet 6 a}$ (70% yield) was confirmed by UV-visible analysis. In the same way, $1: 1$ host-guest complexes $\mathbf{1 \cdot 6 b}$ (90% yield), $\mathbf{1 \bullet 6 c}$ (40% yield), $\mathbf{1 \bullet 6 d}$ (80% yield), and $\mathbf{1 \bullet 6 e}(70 \%$ yield) were synthesized using $\mathrm{Zn}(\mathrm{II})$-tetraphenylporphyrin ($\mathbf{6 b}$), octaethylporphyrin ($\mathbf{6 c}$), tetrakis(pentafluorophenyl)- porphyrin ($\mathbf{6 d}$), and Zn (II)diphenylporphyrin ($\mathbf{6 e}$), respectively. The yields of the obtained host-guest complexes (uptake ratios) were estimated by UV-visible analysis (with a calibration curve method) in DMSO, after the removal of suspended unbound dyes by filtration and the lyophilization of the aqueous solutions including cage $\mathbf{1}$ and its host-guest complexes.

Owing to the insolubility of $\mathbf{6 a}$ in a $8: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ solution, the binding constant of $\mathbf{1 \cdot 6} \mathbf{a}$ was roughly estimated to be $>10^{8} \mathrm{M}^{-1}$ from the UV-visible analysis under highdilution conditions (70 to $3.5 \mu \mathrm{M}$; Figure S39c). ${ }^{[54]}$

Figure S37a. UV-visible spectra and photographs (r.t., $8: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on 1) of a) $\mathbf{1} \cdot \mathbf{6 a}$ before/after 7 d under ambient conditions, $\mathbf{1}$, and $\mathbf{6 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b) $\mathbf{1 \cdot 6 b}$, $\mathbf{1}$, and $\mathbf{6 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, c) $\mathbf{1} \cdot \mathbf{6 e}$, $\mathbf{1}$, and $\mathbf{6 e}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S37b. UV-visible spectra and photographs (r.t., $8: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on 1) of a) $\mathbf{1} \cdot \mathbf{6 c}, \mathbf{1}$, and $\mathbf{6 c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b) $\mathbf{1} \cdot \mathbf{6 d}$, $\mathbf{1}$, and $\mathbf{6 d}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S38. Fluorescence spectra ($\lambda_{\mathrm{ex}}=429 \mathrm{~nm}$, r.t., $70 \mu \mathrm{M}$) and quantum yields of $\mathbf{1 \cdot 6} \mathbf{b}$ in $8: 1$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and $\mathbf{6 b}(70 \mu \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S39a. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, 8: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}$, r.t.) of a) $\mathbf{1}$ and b) $\mathbf{1 \bullet 6 a}$.

Figure S39b. ${ }^{1} \mathrm{H}$ NMR spectra $\left(500 \mathrm{MHz}, 8: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN}, 75^{\circ} \mathrm{C}\right)$ of a) $\mathbf{1}$ and b) $\mathbf{1} \cdot 6 \mathbf{6}$.

Figure S39c. Concentration-dependent UV-visible spectra (r.t.) of $\mathbf{1 \bullet 6 a}$ in 8:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$.

Figure S40. Particle number-size distribution of a) $\mathbf{1 \bullet} \mathbf{6 a}$, b) $\mathbf{1} \cdot \mathbf{6 b}$, and c) $\mathbf{1} \cdot \mathbf{6 c}$ by DLS analysis (8:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on $\mathbf{1}, 25^{\circ} \mathrm{C}$).

Figure S41a. UV-visible spectra and photographs (r.t., $8: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 70 \mu \mathrm{M}$ based on $\mathbf{1}$) of a) $\mathbf{6 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and b) $\mathbf{1} \mathbf{\bullet} \mathbf{6 a}$ after HNO_{3} addition. c) UV-visible spectra and a photograph (r.t., $8: 1$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on $\mathbf{1}$) of $\mathbf{1} \cdot \mathbf{6 a}$ and $\mathbf{1}$ after the addition of protonated $\mathbf{6 a}$ with HNO_{3} (50 eq. based on $\mathbf{1}$).

Figure S41b. UV-visible spectra and photographs (r.t., 8:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 70 \mu \mathrm{M}$ based on $\mathbf{1}$) of a) $\mathbf{6 c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and b) $\mathbf{1} \cdot \mathbf{6 c}$ after HNO_{3} addition.

Figure S42. Optimized structure of $\mathbf{1} \mathbf{6} \mathbf{6 a}\left(\mathrm{R}^{1}=\mathrm{OCH}_{3}\right)$: a) space-filling and b) stick/space-filling models. Optimized structures of c) free $\mathbf{6 a}$ and d) $\mathbf{6 a}$ within cage $\mathbf{1}$ (the cage framework is omitted for clarity). The geometry optimization was performed with MM calculations (forcite module, BIOVIA Materials Studio 2020, version 20.1.0.5). On the basis of the crystal structure of cage 1' with short side-chains, ${ }^{[S 1]}$ randomly oriented bulky dye $\mathbf{6 a}$ within cage $\mathbf{1}$ in several initial structures converged to a threading conformation without host-guest π-stacking interactions.

Table S2. Energies of neutral dye 6a and cationic dye 6a' within/without cage $\mathbf{1}$

	$E_{\mathrm{H}}+E_{\mathrm{G}^{[a]}}$ $\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$	$E_{\mathrm{H} \cdot \mathrm{G}^{[\mathrm{b}]}}$ $\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$	$\Delta E^{[\mathrm{cc]}}$ $\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$	method${ }^{[\mathrm{d}]}$
$\mathbf{6 a}$	3792.67	3770.24	-22.43	MM
$\mathbf{6 a}$	4148.02	5275.48	+1127.46	MM
	7983.21	8880.23	+897.02	PM 6

[a] $E_{\mathrm{H}+\mathrm{G}}$: energy of free 6 and cage 1. [b] $E_{\mathrm{H} \cdot \mathrm{G}}$: energy of 6 within cage 1. [c] Determined by $E_{\mathrm{H} \cdot \mathrm{G}}$ $-\left(E_{\mathrm{H}}+E_{\mathrm{G}}\right)$. [d] The calculated energies were obtained by MM (forcite module, BIOVIA Materials

Studio 2020, version 20.1.0.5) and PM6 calculations, from randomly oriented bulky dyes 6 and 6a' within cage $\mathbf{1}$ in several initial structures.

Figure S43. Optimized structure of $\mathbf{1 0 6 a}^{\mathbf{\prime}}\left(\mathrm{R}^{1}=\mathrm{OCH}_{3}\right)$: side and top views. The geometry optimization was performed with PM6 calculation. On the basis of the crystal structure of cage $\mathbf{1}^{\prime}$ with short side-chains, ${ }^{[51]}$ randomly oriented cationic dye $\mathbf{6 a}$ ' within cage $\mathbf{1}$ in several initial structures converged to a distorted host-guest structure.

Competitive binding experiments of $6 a / 6 b, 6 a / 6 c$, and $6 a / 6 d$ with 1

MU211-213

A CH $\mathrm{Cl}_{2} \mathrm{Cl}_{2}$ solution $(1.0 \mathrm{mM})$ of $\mathbf{6 a}(0.14 \mathrm{~mL}, 0.14 \mu \mathrm{~mol})$ and $\mathbf{6 c}(0.14 \mathrm{~mL}, 0.14$ $\mu \mathrm{mol})$ were added to a glass tube including cage $\mathbf{1}(0.61 \mathrm{mg}, 0.14 \mu \mathrm{~mol})$. After evaporation of the solvent, the mixture was sonicated in 5:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ for 20 $\min (40 \mathrm{kHz}, 150 \mathrm{~W})$. After the removal of excess $\mathbf{6 a}$ and $\mathbf{6 c}$ by centrifugation and filtration, the solution was lyophilized to analyze the ratio of bound $\mathbf{6 a}$ and $\mathbf{6 c}$. The
resultant solid was dissolved in CHCl_{3} and then free $\mathbf{1}$ was removed from the solution by silica gel filtration. The 5:1 ratio of $\mathbf{6 a}$ and $\mathbf{6 c}$ bound by $\mathbf{1}$ was estimated by ${ }^{1} \mathrm{H}$ NMR analysis. The competitive binding experiments of $\mathbf{6 a}$ and $\mathbf{6 b}$ as well as $\mathbf{6 a}$ and $\mathbf{6 d}$ with $\mathbf{1}$ were examined under the same conditions.

Figure S44. UV-visible spectra (r.t., $5: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.14 \mathrm{mM}$ based on 1) of products after the competitive binding experiments of a) $6 \mathbf{a}$ and $\mathbf{6 b}$ with $\mathbf{1}, \mathrm{b}$) $\mathbf{6 a}$ and $\mathbf{6 c}$ with 1 , and c) $\mathbf{6 a}$ and $\mathbf{6 d}$ with 1.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of products after the competitive binding experiments of a) $\mathbf{6 a}$ and $\mathbf{6 b}$ with $\mathbf{1}$, b) $\mathbf{6 a}$ and $\mathbf{6 c}$ with $\mathbf{1}$, and c) $\mathbf{6 a}$ and $\mathbf{6 d}$ with $\mathbf{1}$.

