Separation of pyrrolidine from tetrahydrofuran by pillar[6]arene-based nonporous adaptive crystals

Jiajun Cao,^{a,†} Yitao Wu,^{a,†} Qi Li,^a Weijie Zhu,^a Zeju Wang,^a Yang Liu,^a Kecheng Jie,^a Huangtianzhi Zhu,^a* Feihe Huang^{a,b,c,*}

- [a] J. Cao, Y. Wu, Q. Li, W. Zhu, Z. Wang, Y. Liu, Dr. H. Zhu, Prof. Dr. F. Huang State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China, Fax and Tel: +86-571-8795-3189, E-mail: htzzhu@zju.edu.cn, fhuang@zju.edu.cn
- [b] Prof. Dr. F. Huang

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China

[c] Prof. Dr. F. Huang

Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

[†] These authors contributed equally

Electronic Supplementary Information (ESI, 22 pages)

1.	Materials	S 3
2.	Methods	S 3
3.	Crystallography Data	S 5
4.	Characterization of Activated Pillararene Crystals	S 7
5.	Vapor-Phase Adsorption Measurements	S10
6.	Recyclability of EtP6 β	S21
7.	References	S22

1. Materials

All reagents were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. Pillar[*n*]arenes (EtP5 and EtP6) were synthesized as described previously.^{S1} Activated crystalline EtP5 and EtP6 were referred to as EtP5 α and EtP6 β , respectively. EtP5 α and EtP6 β were prepared according to reported procedures.^{S2}

Substance	Melting point (°C)	Boiling point (°C)	Saturated Vapor Pressure at
			298 K (kPa)
Pyrrolidine	-63.0	87.0	1.80
THF	-108	66.8	19.3

Table S1. Physical properties of pyrrolidine and THF

2. Methods

2.1. Powder X-Ray Diffraction

PXRD data were collected on a Rigaku Ultimate-IV X-Ray diffractometer operating at 40 kV/30 mA using the Cu K α line (λ = 1.5418 Å). Data were measured over the range of 5–45° in 5°/min steps over 8 min.

2.2. Thermogravimetric analysis

Thermogravimetric analysis (TGA) was carried out on a DSCQ1000 Thermal Gravimetric Analyzer with an automated vertical overhead thermobalance. The samples were heated in 10 °C/min steps over 8 min.

2.3. Single Crystal Growth

Single crystals of guest-loaded **EtP5** and **EtP6** were grown by volatilization: 5.00 mg of dry **EtP5** or **EtP6** powder were put in a small vial where 1.00 mL of guest was added and the vial was heated until all the powder was dissolved. The crystals were got by volatilization for 2-7 days.

2.4. Single Crystal X-ray Diffraction

Single crystal X-ray diffraction data were collected on a Bruker D8 VENTURE CMOS X-ray diffractometer with graphite monochromatic GaK α radiation ($\lambda = 0.71073$ Å).

2.6. Solution ¹H NMR Spectroscppy

¹**H NMR** spectra were recorded using a Bruker Avance DMX 400 spectrometer and a Bruker Avance DMX 600 spectrometer.

2.7. Gas Chromatography

Gas chromatographic (GC) analysis: GC measurements were carried out using an Agilent 7890B instrument configured with an FID detector and a DB-624 column ($30 \text{ m} \times 0.53 \text{ mm} \times 3.0 \mu\text{m}$). Samples were analyzed using headspace injections and were performed by incubating the sample at 70 °C for 10 min followed by sampling 1.00 mL of the headspace. The total volume of the container was 10 mL; the mass of the solid in the container was about 10 mg; the total volume of the headspace was 1 mL. The following GC method was used: the oven was programmed from 50 °C, and ramped in 10 °C min⁻¹ increments to 150 °C with 15 min hold; the total run time was 25 min; the injection temperature was 250 °C; the detector temperature was 280 °C with nitrogen, air, and make-up flow-rates of 35, 350, and 35 mL min⁻¹, respectively; helium (carrier gas) flow-rate was 3.0 mL min⁻¹. The samples were injected in the split mode (30:1).

3. Crystallographic Data

Table S2. Experimental single crystal X-ray data for the pyrrolidine@EtP5	structure
---	-----------

	pyrrolidine@EtP5
Crystallization Solvent	Pyrrolidine
Empirical formula	$C_{61}H_{82}N_{1.5}O_{10}$
Formula weight	996.28
Temperature/K	170
Crystal system	triclinic
Space group	P-1
a/Å	14.9616(5)
b/Å	16.3732(6)
c/Å	24.4025(10)
a/o	109.598(3)
β/°	98.054(2)
γ/°	90.000(2)
Volume/Å ³	5568.9(4)
Z	4
$\rho_{calc}g/cm^3$	1.188
μ/mm^{-1}	0.408
F(000)	2154
Crystal size/mm ³	0.16 imes 0.15 imes 0.06
Radiation	$GaK\alpha \ (\lambda = 1.34139)$
2Θ range for data collection/°	5.764 to 110.29
Reflections collected	19009
Independent reflections	19009 [$R_{int} = 0.0986, R_{sigma} = 0.1108$]
Data/restraints/parameters	19009/30/1327
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0986, wR_2 = 0.2537$
Final R indexes [all data]	$R_1 = 0.1502, wR_2 = 0.3009$
Largest diff. peak/hole / e Å ⁻³	1.26/-0.56
CCDC	2132123

	pyrrolidine@EtP6	2THF@ EtP6
Crystallization Solvent	pyrrolidine	THF
Empirical formula	$C_{70}H_{89}NO_{12}$	$C_{70}H_{92}O_{13}$
Formula weight	1136.42	1141.43
Temperature/K	193	213
Crystal system	orthorhombic	monoclinic
Space group	Fddd	P2/n
a/Å	12.5560(3)	12.5731(4)
b/Å	26.6378(7)	22.6648(7)
c/Å	45.7727(10)	14.4358(4)
$lpha/^{\circ}$	90	90
β/°	90	113.995(2)
$\gamma/^{\circ}$	90	90
Volume/Å ³	15309.3(6)	3758.2(2)
Z	8	2
$\rho_{calc}g/cm^3$	0.986	1.009
μ/mm^{-1}	0.342	0.349
F(000)	4896	1232
Crystal size/mm ³	0.06 imes 0.06 imes 0.05	$0.07 \times 0.07 \times 0.05$
Radiation	GaKa ($\lambda = 1.34139$)	GaKa ($\lambda = 1.34139$)
2Θ range for data collection/°	8.444 to 109.904	7.656 to 109.988
Reflections collected	50740	38978
Independent reflections	3627 [$R_{int} = 0.0588$, $R_{sigma} = 0.0262$]	7131 [$R_{int} = 0.0666$, $R_{sigma} = 0.0476$]
Data/restraints/parameters	3627/70/225	7131/40/404
Goodness-of-fit on F ²	1.034	0.949
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0929, wR_2 = 0.2533$	$R_1 = 0.0982, wR_2 = 0.2222$
Final R indexes [all data]	$R_1 = 0.1093, wR_2 = 0.2659$	$R_1 = 0.1261, wR_2 = 0.2387$
Largest diff. peak/hole / e Å $^{-3}$	0.67/-0.33	0.73/-0.33
CCDC	2132121	2132122

 Table S3. Experimental single crystal X-ray data for the pyrrolidine@EtP6 and 2THF@EtP6 structures

4. Characterization of Activated Pillararene Crystals

Fig. S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of EtP5.

Fig. S2. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of EtP6.

Fig. S4. TGA curve of desolvated **EtP6** β

Fig. S6. PXRD pattern of **EtP6***β*.

5. Vapor-Phase Adsorption Measurements

5.1. Single-Component THF and pyrrolidine adsorption

Fig. S8. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of EtP5 α after adsorption of pyrrolidine vapor.

Fig. S10. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of EtP6 β after adsorption of pyrrolidine vapor.

Fig. S11. ¹H NMR spectra (400 MHz, CDCl₃, 298 K): (a) **EtP5**; (b) pyrrolidine; (c) a mixture of THF and **EtP5**; (d) a mixture of pyrrolidine and **EtP5**.

Fig. S12. ¹H NMR spectra (400 MHz, CDCl₃, 298 K): (a) **EtP6**; (b) pyrrolidine; (c) a mixture of THF and **EtP6**; (d) a mixture of pyrrolidine and **EtP6**.

Fig. S13. TGA curve of desolvated **EtP5** α after sorption of THF vapor. The weight loss below 100 °C can be calculated as two THF molecules per **EtP5** molecule.

Fig. S14. TGA curve of desolvated $EtP5 \alpha$ after sorption of pyrrolidine vapor. The weight loss below 120 °C can be calculated as one pyrrolidine molecule per EtP5 molecule.

Fig. S15. TGA of desolvated $EtP6\beta$ after sorption of THF vapor. The weight loss below 150 °C can be calculated as two THF molecule per EtP6 molecule.

Fig. S16. TGA curve of desolvated **EtP6** β after sorption of pyrrolidine vapor. The weight loss below 150 °C can be calculated as one pyrrolidine molecule per **EtP6** molecule.

5.2. Structural analyses after single-component vapor adsorption

Fig. S17. Single crystal structure of 2THF@**EtP5**. C–H···O distances (Å) and C–H···O angles (deg) of hydrogen bonds: (A) 2.547, 111.82; (B) 2.954, 141.57. C–H··· π distance (Å): 2.781.

Fig. S18. PXRD of **EtP5**: (I) original **EtP5** α ; (II) after adsorption of THF vapor; (III) simulated from the single crystal structure of 4THF@2**EtP5**.

Fig. S19. Single crystal structure of pyrrolidine@**EtP5**. C–H···O distance (Å) and C–H···O angle (deg) of hydrogen bond **A**: 2.629, 101.20; N–H···O distance (Å) and N–H···O angle (deg) of hydrogen bond **B**: 2.882, 119.41; C–H··· π distance (Å): 2.839.

Fig. S20. PXRD of EtP5: (I) original **EtP5** α ; (II) after adsorption of pyrrolidine vapor; (III) simulated from the single crystal structure of pyrrolidine@**EtP5**.

Fig. S21. Single crystal structure of 2THF@**EtP6**. C–H···O distance (Å) and C–H···O angle (deg) of hydrogen bond **A**: 2.977, 101.93.

Fig. S22. PXRD patterns of EtP5: (I) original **EtP6** β ; (II) after adsorption of THF vapor; (III) simulated from the single crystal structure of 2THF@**EtP6**.

Fig. S23. Single crystal structure of pyrrolidine@**EtP6**. C–H···O distance (Å) and C–H···O angle (deg) of the hydrogen bond: 2.755, 143.99; C–H··· π distance (Å): 2.805.

Fig. S24. PXRD patterns of EtP6: (I) original EtP6 β ; (II) after adsorption of pyrrolidine vapor; (III) simulated from the single crystal structure of pyrrolidine@EtP6.

5.3. Uptakes of THF and pyrrolidine in **EtP5** α

For each experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **EtP5** α adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 ν/ν THF and pyrrolidine mixture. The relative uptake of THF or pyrrolidine by **EtP5** α was measured by heating the crystals to release the adsorbed vapor using GC. Before measurements, the crystals were placed in the air for 12 h to remove the surface-physically adsorbed vapor.

Fig. S25. Relative uptake of the THF/Pyrrolidine mixture (v:v = 50:50) adsorbed in EtP5 α after 6 hours using gas chromatography.

Fig. S26. ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of **EtP5** α after adsorption of the THF and pyrrolidine mixture vapor (*v*:*v* = 50:50).

5.4. Uptakes of THF and pyrrolidine in **EtP6**β

For each experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **EtP6** β adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of 50:50 *v*/*v* THF and pyrrolidine mixture. The relative uptake of THF or pyrrolidine by **EtP6** β was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were placed for 12 h in the air to remove the surface-physically adsorbed vapor.

Fig. S27. Relative uptake of the THF/pyrrolidine mixture (v:v = 50:50) adsorbed in EtP6 β after 2 hours using GC.

Fig. S28. ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of **EtP6** β after adsorption of the THF and pyrrolidine mixture vapor (*v*:*v* = 50:50).

Fig. S29. TGA curve of desolvated pyrrolidine@EtP6 upon removal of pyrrolidine.

Fig. S30. PXRD of EtP6: (I) original EtP6 β ; (II) desolvated pyrrolidine@EtP6. This means that upon removal of pyrrolidine, pyrrolidine@EtP6 transforms back to EtP6 β .

Fig. S31. Relative uptakes of THF and pyrrolidine by $EtP6\beta$ over 2 h after $EtP6\beta$ was recycled five times.

- 7. References
- S1 Hu, X.-B.; Chen, Z.; Zhang, L.; Hou, J.-L.; Li, Z.-T. Chem. Commun. 2012, 48, 10999.
- S2 Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Pulido, A.; Chong, S. Y.; Stephenson, A.; Hughes, A. R.;
 Sakakibara, F.; Ogoshi, T.; Blanc, F.; Day, G. M.; Huang, F.; A. I. Cooper. J. Am. Chem. Soc. 2018, 140, 6921.