Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

-Supporting Information –

Mechanochemical Ring-Opening Metathesis Polymerization: Development, Scope,

and Mechano-Exclusive Copolymer Synthesis

Gue Seon Lee,⁴ Hyo Won Lee,⁴ Hyun Sub Lee,⁴ Taeyang Do,⁴ Jean-Louis Do,^b Jeewoo Lim,^c Gregory I. Peterson,^{d*} Tomislav Friščić,^{b*} and Jeung Gon Kim^{a,c*} a) Department of Chemistry and Research Institute of Physics and Chemistry Jeonbuk National University, Jeonju, 54896, Republic of Korea E-mail: jeunggonkim@jbnu.ac.kr (J. G. Kim) b) Department of Chemistry McGill University, 801 Sherbrooke Street West H3A0B8 Montreal, Canada E-mail: tomislav.friscic@mcgill.ca (T. Friščić) e) Department of Chemistry and Research Institute for Basic Science Kyung Hee University, Seoul 02447, Republic of Korea d) Department of Chemistry Inchon National University, Incheon, 22012, Republic of Korea E-mail: gpeterson@inu.ac.kr (G. I. Peterson) e) Institute of Advanced Composite Materials Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea

1. General Considerations

All polymerization reactions were prepared under nitrogen atmosphere using a glove box to avoid contamination with moisture. All solvents were obtained as HPLC grade and dried over a mixture of preactivated 3 Å molecular sieves and neutral alumina. Anhydrous solvents were prepared by drying them over a mixture of preactivated alumina and 3 Å molecular sieves.¹ The Grubbs **G3** was prepared according to a procedure in the literature.² Reagents from commercial sources were used without further purification. A Retsch Mixer Mill MM 400 instrument was used for the ball-milling experiments with a 10-mL zirconia vessel and zirconia balls with the diameters of 3, 5, 8, and 10 mm. A Teflon seal was placed between the vessel and the top closure.

2. Measurements

The ¹H-NMR spectra were measured by a Bruker AVANCE III HD-400 MHz Fourier transform NMR spectrometer at the Jeonbuk National University, department of chemistry shared facilities. Differential scanning calorimetry (DSC) measurements were recorded on TA Instruments DSC Q20 using a sealed aluminum pan/lid. The heating/cooling cycle from 0 °C to 250 °C at 10 °C/min was repeated twice under an N₂ atmosphere. The heat flow of the second heating was used for the data acquisition. The size exclusion chromatography (SEC) system was composed of a Waters 2414 differential refractive index detector, a Waters 1515 isocratic pump, and a column heating module to determine the relative number-average molecular weight (M_n), and the weight-average molecular weight (M_w).

1) THF system: Shodex HK-403 and HK-404 L columns were eluted with HPLC grade tetrahydrofuran (THF) at 40 °C at 1.0 mL/min. A calibration curve was obtained with 16 monodispersed polystyrene standards (Alfa Aesar).

2) DMF system: Shodex LF804 column were eluted with HPLC grade dimethylfromamide (DMF) at 40 °C at 1.0 mL/min. A calibration curve was obtained with 13 monodispersed polystyrene standards (Alfa Aesar).

3) Water system: Shodex GF-510HQ column were eluted with HPLC grade water (0.02 wt% NaN₃) at 40 °C at 1.0 mL/min. A calibration curve was obtained with 12 monodispersed poly(ethylene oxide) standards (Agilent, EasyCal).

¹ D. B. G. Williams and M. Lawton, J. Org. Chem., 2010, 75, 8351.

² M. S. Sanford, J. A. Love and R. H. Grubbs, Organometallics, 2001, 20, 5314

3. Monomer Synthesis

Monomers were prepared according to prior examples³ except **1c**, **1e and 1i**.

3.1. Preparation of 1c

Oxalyl chloride (3.6 mL) was added slowly to the solution of NB-COOH (1.51 g, 10.9 mmol) and CH₂Cl₂ (10 mL) in a 100 mL round-bottom flask at 0 °C. After stirring for 1 h, the complete conversion to NB-COCI was confirmed by ¹H-NMR of an aliquot. The flask was placed under reduced pressure to afford a crude NB-COCI. CH₂Cl₂ (80 mL) was added to the crude NB-COCI, then the mixture was placed in an ice bath. 4-Phenyl phenol (2.23 g) and triethylamine (1.83 mL) were added in sequence. After 6 h, the mixture was washed with 1 N HCI (100 mL), water (100 mL), and brine (100 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by chromatography in silica gel (hexanes:EtOAc = 9:1) to give the desired products **1c** (0.771 g, 24% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 4H), 7.44 (dd, *J* = 10.3, 4.8 Hz, 2H), 7.35 (ddd, *J* = 7.3, 3.9, 1.2 Hz, 1H), 7.20 – 7.14 (m, 2H), 6.25 – 6.17 (m, 2H), 3.26 (s, 1H), 3.01 (s, 1H), 2.52 (ddd, *J* = 8.9, 4.4, 1.3 Hz, 1H), 2.13 – 2.06 (m, 1H), 1.64 (d, *J* = 8.6 Hz, 1H), 1.54 – 1.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 150.4, 140.5, 138.9, 138.4, 135.7, 128.8, 128.2, 127.3, 127.1, 121.8, 46.9, 46.4, 43.4, 41.8, 30.6. High Resolution MS (EI) calcd for C₂₀H₁₆O₂ [M]⁺, 290.1307; found, 290.1308.

³ Compound **1a**: A. M. Rush, D. A. Nelles, A. P. Blum, S. A. Barnhill, E. T. Tatro, G. W. Yeo and N. C. Gianneschi, *J. Am. Chem. Soc.*, **2014**, *136*, 7615; compound **1b**: S. C. Radzinski, J. C. Foster, R. C. Chapleski, Jr., D. Troya and J. B. Matson, *J. Am. Chem. Soc.*, **2016**, *138*, 22, 6998; compound **1d**: S. C. Radzinski, J. C. Foster and J. B. Matson, *Macromol. Rapid Commun.*, **2016**, *37*, 616; compound **1g**: S. Malfait, S. Gérard, R. Plantier-Royon, G. Mignani and C. Portella, *J. Fluorine Chem.*, **2011**, *132*, 760; **1h**: A. E. Levi, J. Lequieu, J. D. Horne, M. W. Bates, J. M. Ren, K. T. Delaney, G. H. Fredrickson and C. M. Bates, *Macromolecules*, **2019**, *52*, 1794; compound **1i**: S. Mukherjee, R. Xie, V. G. Reynolds, T. Uchiyama, A. E. Levi, E. Valois, H. Wang, M. L. Chabinyc and C. M. Bates, *Macromolecules*, **2020**, *53*, 1090.

3.2. Preparation of 1e

Step 1: NB-COOH (1.0 g, 1.0 equiv), ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC, 2.1 g, 1.5 equiv), 4-dimethylaminopyridine (DMAP, 0.18 g, 0.20 equiv), and 3-(dimethylamino)-1-propanol (0.85 mL, 1.0 equiv) were dissolved in CH₂Cl₂ (20 mL). After 12 h, the reaction mixture was washed with aq. CuSO₄ (X M, 100 mL), deionized water (100 mL), and brine (100 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to give NB-AM (1.44 g, 89%).

Step 2: To a 20 mL vial, NB-AM (1.44g), 1,3-propanesultone (1.7 mL, 3.0 equiv) and MeCN (7 mL) were added. After stirring for 12 h, while precipitation **1e** was collected through filtration and dried in vacuo at 70 °C (0.96 g, 43%). ¹H NMR (400 MHz, D₂O) δ 6.23 (ddd, *J* = 19.5, 5.6, 3.0 Hz, 2H), 4.25 (t, *J* = 5.9 Hz, 2H), 3.57 – 3.45 (m, 4H), 3.17 (s, 6H), 3.12 – 3.06 (m, 1H), 3.02 (t, *J* = 7.2 Hz, 2H), 2.99 (s, 1H), 2.36 (ddd, *J* = 9.1, 4.5, 1.1 Hz, 1H), 2.32 – 2.17 (m, 4H), 1.86 (ddd, *J* = 11.8, 4.4, 3.8 Hz, 1H), 1.51 – 1.37 (m, 3H). ¹³C NMR (100 MHz, D₂O) 179.0, 138.4, 135.7, 62.2, 61.6, 61.4, 50.8, 47.2, 46.1, 46.0, 42.9, 41.4, 30.1, 21.7, 18.1. High Resolution MS (FAB) calcd for C₁₆H₂₈NO₅S [M+H]⁺, 346.1688; found, 346.1690.

3.3. Preparation of 1f

Step 1: NB-OH was synthesized by following paper.⁴ NB-OH (0.71 g 86%)

Step 2: To a 100 mL round bottom flask, NB-OH (0.71 g), sulfamic acid (0.67 g, 1.2 equiv) and anhydrous pyridine (13 mL) were added. After stirring for 16 h at 95 °C, the solution was cooled to room temperature. Methanol (40 mL) was added to the solution mixture. sat. aq. Na₂CO₃ was added dropwise and the solution was stirring for 30min. Na₂SO₄(s) was added and continued for a further stirring for 20 min. The resulting mixture was filtered and the solution was concentrated in vacuo for remove water. The crude product washed with CH₂Cl₂ and shaken. Then, while precipitation **1f** was collected through filtration and dried in vacuo at 70 °C (1.07 g, 83%). ¹H NMR (400 MHz, D₂O) δ 6.18 (s, 2H), 4.13 (dd, J = 9.7, 6.6 Hz, 1H), 3.99 (t, J = 9.4 Hz, 1H), 2.87 (s, 1H), 2.78 (s, 1H), 1.88 – 1.59 (m, 1H), 1.39 – 1.29 (m, 2H), 1.28 – 1.16 (m, 2H). ¹³C NMR (100 MHz, D₂O) 137.45, 136.4, 73.4, 44.4, 43.2, 41.4, 38.0, 28.7. High Resolution MS (FAB+) calcd for C₈H₁₁O₄SNa₂ [M+Na], 249.0173; found, 249.0172.

⁴ S. C. Radzinski, J. C. Foster and J. B. Matson, *Macromol. Rapid Commun.*, 2016, 37. 616.

4. ROMP Experiments

4.1. Initiator scope of ball-milling ROMP (Table 1)

Table S1. Raw data used for Table 1^[a]

$n \xrightarrow{O}_{O} (Ru] 1 \mod \%$ $Zr-ball 8 mm X 3$ $30 \text{ Hz}, 30 \text{ min}$ $1a$								
Entry	[Ru]	Conv ^[b] (%)	<i>M</i> ₅[c] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	Ð	E/Z ^[b]		
1-1	<u> </u>	22	6.4	8.2	1.29	77/23		
1-2	G1 —	24	6.4	8.3	1.29	75/25		
2-1	<u> </u>	98	14.3	24.4	1.70	57/43		
2-2	G2 —	98	13.8	23.0	1.67	57/43		
3-1	<u> </u>	96	15.1	23.2	1.54	57/43		
3-2	G3 -	97	13.8	21.1	1.52	57/43		
4-1		98	20.7	43.4	2.10	57/43		
4-2	HG -	98	21.8	46.7	2.14	57/43		

^[a]Reaction condition: **1a** (50 mg) and [Ru] = 1 mol% in a 10 mL zirconia jar with three zirconia balls (8 mm diameter). 30 Hz vibration for 30 minutes. ^[b]Determined by ¹H-NMR spectroscopy. ^[C]Determined by size exclusion chromatography (SEC) with polystyrene (PS) standards in tetrahydrofuran (THF) at 40 °C.

Figure S1. SEC diagrams of Table 1

4.2. Effect of the ball-milling parameters (Table 2)

Table S2. Raw data used for Table 2^[a]

	n	0 N 0 1a	G3 (0.5 mol %) Varied ba ll s 30 Hz, 30 min		= n
Entry	Balls	Conv ^[b] (%)	<i>M</i> h ^[c] (kg/mol)	<i>M</i> w ^[c] (kg/mol)	Ð
1-1	9 mm v 1	85	25.3	40.5	1.60
1-2	- 8 mm x 1	90	22.9	38.4	1.68
2-1	9 mm v 2	89	23.3	39.3	1.69
2-2	- 8 mm x 3	91	21.9	36.1	1.65
3-1	9 mm v 5	92	23.6	37.7	1.60
3-2	- 011111 x 5 -	95	22.3	38.0	1.70
4-1	- 10 mm v 1 -	97	16.8	27.6	1.64
4-2		99	16.2	26.9	1.65
5-1	Emmy 10	9	-	-	-
5-1	- 511111 X 12 -	23	-	-	-
6-1	2 mm v 20	<5	-	-	-
6-1	3 IIIII X 20 -	<5	-	-	-
7-1	8 mm X3	16	-	-	-
7-2	(20 Hz)	24	-	-	-

^[a] Reaction conditions: **1a** (50 mg) and **G3** in a 10 mL zirconia jar, followed by 30 Hz vibration for 30 min. ^[b] Determined using ¹H NMR spectroscopy. Conv.(%) = A portion of polymeric alkenes of total alkenes. ^[c] Determined using SEC with PS standards in THF at 40 °C.

4.3. Scope of the monomer in the solid-state ROMP (Table 3)

 Table S3. Raw data used for Table 3^[a]

Entry	monomer	[M]/[G3]	Conv ^[b] (%)	<i>M</i> h ^[¢] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	Ð
1-1	N C	100 (Neat)	96	15.1	23.2	1.54
1-2	1a		97	13.8	21.1	1.52
2-1	О ОН	100	98	70.3 ^[d]	114 ^[d]	1.62 ^[d]
2-2	" 1b	(Neat)	97	69.5 ^[d]	127 ^[d]	1.83 ^[d]
3-1		100	90	17.9	27.6	1.54
3-2	lc	(Neat)	91	18.4	28.1	1.53
4-1	∧ ↓	100 (Neat)	99	N/A ^[e]	N/A ^[e]	N/A ^[e]
4-2	Id SOH		97	N/A ^[e]	N/A ^[e]	N/A ^[e]
5-1		100 (Neat) 100 H ₂ O (η = 0.4)	86	5.4 ^[f]	6.0 ^[f]	1.12 ^[f]
5-2			86	5.4 ^[f]	6.1 ^[f]	1.13 ^[f]
5-3	1e		99	23.3 ^[f]	30.7 ^[f]	1.32 ^[f]
5-4			99	26.1 ^[f]	36.2 ^[f]	1.39 ^[f]
6-1		100	8	4.7 ^[f]	4.8 ^[f]	1.03 ^[f]
6-2		(Neat)	9	4.7 ^[f]	4.8 ^[f]	1.03 ^[f]
6-3 ^[g]	√ O-SO ₃ Na ⁺	100	57	42.6 ^[f]	60.0 ^[f]	1.41 ^[f]
6-4 ^[g]	lf	$H_2O(\eta = 0.4)$	51	46.7 ^[f]	65.5 ^[f]	1.40 ^[f]
6-5 ^[g]		100	99	55.1 ^[f]	70.9 ^[f]	1.29 ^[f]
6-6 ^[g]		DMF ($\eta = 0.4$)	99	59.8 ^[f]	80.4 ^[f]	1.34 ^[f]

7-1	0 C ₈ F ₁₇	50 THE/HEE ^[d] (1.1)	99	N/A ^[e]	N/A ^[e]	N/A ^[e]
7-2	$\mathbf{1g}^{1}$	$(\eta = 0.4)$	99	N/A ^[e]	N/A ^[e]	N/A ^[e]
8-1 ^[g]	N t2 0 (O) H	100	96	94.7	125	1.31
8-2 ^[g]	$M_{\rm n}$ (NMR) = 2.6 kg/mol ${ m lh}$	THF $(\eta = 0.4)$	97	99.9	126	1.26
9-1 ^[g]	NH OFCH3	50	94	65.0 ^[d]	77.6 ^[d]	1.19 ^[d]
9-2 ^[g]	M_n (NMR) = 1.9 kg/mol $1i$	THF $(\eta = 0.4)$	92	79.8 ^[d]	104 ^[d]	1.30 ^[d]
10-1 ^[h]		100	99	26.4	65.3	2.47
10-2 ^[h]	1j	(Neat)	99	26.2	65.1	2.48

^[a]Reaction conditions: monomer (50 mg), **G3**, and liquid (20 μ L) in a 10 mL zirconia jar containing three zirconia balls (8 mm diameter), followed by 30 Hz vibration for 30 min. ^[b]Determined using ¹H NMR spectroscopy. ^[c]Determined using SEC with polystyrene standards in tetrahydrofuran at 40 °C. ^[d]Determined using SEC with polystyrene standards in dimethylformamide at 40 °C. ^[e] Products did not elude column. ^[f]Determined using SEC with poly(ethylene oxide) standards in H₂O at 40 °C. ^[g] Milling time = 60min. ^[h]1j (57 μ L), G3 in a 10 mL PTFE jar containing three zirconia balls

Table S4. Raw data used for Table 4^[a]

$n \qquad \qquad$										
Entry	n : m	LAG	Time (min)	Conv ^[c] 1a/1e(%)	<i>M</i> ₁ (kg/mol)	<i>M</i> ⊮ (kg/mol)	Ð			
1-1 ^[a]	10 • 1	THF (18.2 μL)	20	97 / 99	14.3 ^[d]	19.9 ^[d]	1.40 ^[d]			
1-2 ^[a]	10.1	+ H2O (1.8 μL)	30	95 / 99	14.0 ^[d]	18.8 ^[d]	1.35 ^[d]			
2-3 ^[a]	4 • 4	THF (16 μL) +	20	99 / 99	14.0 ^[d]	18.9 ^[d]	1.35 ^[d]			
2-4 ^[a]	4.1	H2O (4 μL)	30	99 / 99	14.0 ^[d]	19.1 ^[d]	1.37 ^[d]			
3-3 ^[a]	2 . 1	THF (13.3 μL)	20	99 / 99	15.5 ^[d]	19.7 ^[d]	1.27 ^[d]			
3-4 ^[a]	2.1	+ H2O (6.7 μL)	30	99 / 99	15.5 ^[d]	20.5 ^[d]	1.32 ^[d]			
4-3 ^[a]	1 . 0	THF (6.7 μL) +	THF (6.7 μL) +	THF (6.7 μL) +	THF (6.7 μL) +	20	99 / 99	14.2 ^[e]	19.6 ^[e]	1.38 ^[e]
4-4 ^[a]	1.2	H2O (13.3 μL)	30	99 / 99	14.2 ^[e]	19.7 ^[e]	1.39 ^[e]			
5-3 ^[a]	1 • 4	THF (4 μL) +	20	99 / 99	17.5 ^[e]	24.1 ^[e]	1.38 ^[e]			
5-4 ^[a]	1.4	H2O (16 μL)	30	99 / 99	17.2 ^[e]	24.3 ^[e]	1.41 ^[e]			
6-3 ^[a]	4 - 40	THF (1.8 μL) +	30	99 / 99	18.4 ^[e]	25.8 ^[e]	1.40 ^[e]			
6-4 ^[a]	1:10	H2O (18.2 μL)		99 / 99	17.7 ^[e]	24.6 ^[e]	1.39 ^[e]			

^[a] Reaction conditions: **1a + 1e** (50 mg), **G3** (1.0 mol%), and liquid (20 μ L) in a 10 mL zirconia jar containing three zirconia balls (8 mm diameter), followed by 30 Hz vibration. ^[b] Reaction conditions: **1a + 1e** (50mg), liquid (concentration 0.5 M) in a 1 mL V-shape vial ^[c] Determined using ¹H NMR spectroscopy. ^[d] Determined using SEC with polystyrene standards in tetrahydrofuran at 40 °C. ^[e] Determined using SEC with poly(ethylene oxide) standards in H₂O at 40 °C

Figure S2. SEC diagrams of Table S4

Figure S3. FT-IR spectra of Table S4.

Figure S4. ¹H NMR spectrum of Table S4 (in CDCl₃)

Figure S5. ¹H NMR spectrum of Table S4 (in D₂O)

Figure S6. DSC thermograms of Poly(1a+1e) copolymer

Figure S7. DSC Curve of Product of Table 1, entry 1

Figure S8. DSC Curve of Product of Table 3, entry 5

Figure S9. DSC Curve of Product of Table 4, entry 1

Figure S10. DSC Curve of Product of Table 4, entry 2

Figure S11. DSC Curve of Product of Table 4, entry 3

Figure S12. DSC Curve of Product of Table 4, entry 4

Figure S13. DSC Curve of Product of Table 4, entry 5

Figure S14. DSC Curve of Product of Table 4, entry 6

Frature	Solver	nt ratio	Major monomer	Minor monomer
Entry	THF	H ₂ O	Step 1	Step 2
1 (10 : 1)	344 μL	38 μL	1a 44 mg Partially soluble	1e 6 mg Insoluble
2 (4 : 1)	294 µL	74 μL	1a 38 mg Partially soluble	1e 13 mg Insoluble
3 (2 : 1)	235 μL	117 μL	1a 30 mg Partially soluble	1e 20 mg Insoluble
4 (1 : 2)	106 µL	212 μL	1e 37 mg Soluble	1a 13 mg Insoluble
5 (1 : 4)	61 µL	245 μL	1e 42 mg Soluble	1a 7 mg Insoluble
6 (1 : 10)	27 μL	270 μL	1e 47 mg Soluble	1a 3 mg Insoluble

Figure S15. Solubility evaluation of monomer 1a and 1e in one solvent.

4.5. Conversion and number average molecular weight vs. ball-milling time (Figure 2)

 Table S6. Raw data used for Figure 2

	n		G3 Zr-ball 8 mm X 3 30 Hz, 30 min		
		1a			
		[M]	/G3 = 100		
Entry	Conv ^[b] (%)	M₀ ^[c] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	Ð	E/Z ^[b]
E min	42	16.2	52.8	3.25	51/49
	30	7.7	12.6	1.64	54/46
10 min —	70	16.9	24.1	1.43	57/43
	64	13.3	20.5	1.54	56/44
30 min —	90	16.8	24.1	1.44	57/43
	91	16.5	23.3	1.42	57/43
60 min	97	14.2	21.5	1.51	58/42
00 11111	95	14.2	21.5	1.51	57/43
		[M]	/G3 = 200		
Entry	Conv ^[b] (%)	Mh ^[c] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	Ð	E/Z ^[b]
E min	26	13.5	23.1	1.71	56/44
5 min —	24	8.5	15.6	1.84	51/49
10 min —	53	25.0	37.4	1.50	56/44
	53	23.5	36.2	1.54	56/44
30 min —	89	23.3	39.4	1.69	56/44
	91	21.9	36.1	1.65	57/43
60 min -	96	15.8	25.2	1.60	58/42
60 min —	94	16.6	26.6	1.61	57/43

^[a]Reaction condition: **1a** (50 mg) and **G3** in a 10 mL zirconia jar with three zirconia balls (8 mm diameter). 30 Hz vibration. ^[b]Determined by ¹H-NMR spectroscopy. ^[c]Determined by size exclusion chromatography (SEC) with polystyrene (PS) standards in tetrahydrofuran (THF) at 40 °C.

4.6. Ball-milling induced degradation of poly-1a

Table S7. Degradation of Poly(1a)^[a]

^[a]Reaction conditions: **Poly-1a** (50 mg) in a 10 mL zirconia jar containing three zirconia balls (8 mm diameter), followed by 30 Hz vibration. ^[b]Determined using SEC with polystyrene standards in tetrahydrofuran at 40 °C.

Figure S16. SEC diagrams of Table S7.

4.7. Effect of liquid-assisted grinding (Table 5)

Table S8. Raw data used for Table 5^[a]

	n ,	1a 50 mg	G3 (0.5 Liquid Zr-ball 8 30 Hz,	mol %) 20 µL mm X 3 30 min		
Entry	Liquid	Conv ^[b] (%)	M₀ ^[c] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	<i>M</i> ₀ ^[c] (kg/mol)	Ð
1-1	Neze	89	23.3	39.3	35.0	1.69
1-2	- None -	91	21.9	36.1	32.4	1.65
2-1	Toluono -	99	23.2	39.6	48.2	1.71
2-2	Toluene	99	22.9	38.2	45.1	1.67
3-1	. TUC -	97	27.0	45.6	56.5	1.69
3-2	ITE	95	24.3	43.6	55.0	1.79
4-1		99	30.3	42.6	45.5	1.41
4-2	DCE	99	34.3	44.2	46.7	1.29
5 ^[d]	DCE (solution)	99	40.4	48.1	51.4	1.19
6 ^[e]	DCE (20uL)	< 1	-	-	-	-

^[a]Reaction condition: **1a** (50 mg), G3, and liquid (20 uL) in a 10 mL zirconia jar with three zirconia balls (8 mm diameter). 30 Hz vibration for 30 minutes. ^[b]Determined by ¹H-NMR spectroscopy. ^[c]Determined by size exclusion chromatography (SEC) with polystyrene (PS) standards in tetrahydrofuran (THF) at 40 °C. ^[d]Reactions were proceeded in 0.4 mL solvent ([M] = 0.5 M) for 30 min in room temperature. ^[e]Reaction is proceeded in 20 uL solvent in V-shaped vial.

Figure S17. Reactions procedure of Table S8, En 6 and Crude NMR spectra.

4.8. Effect of liquid-assisted grinding (Figure 4)

Table S9. Raw data^[a]

	n	0 N 0 1a 50 mg	G3 DCE 20 μL Zr-ball 8 mm X 3 30 Hz, 30 min		
Entry	[1a]/[G3]	Conv ^[b] (%)	<i>M</i> ₁ ^[c] (kg/mol)	<i>M</i> ⊮ ^[c] (kg/mol)	Ð
1-1		96	15.1	23.2	1.54
1-2	100 -	97	13.8	21.1	1.52
1-3		95	16.1	25.0	1.55
1-4		93	15.9	24.4	1.53
2-1		99	30.3	42.6	1.41
2-2	200	99	34.3	44.2	1.29
2-3	200	99	32.4	47.2	1.46
2-4		99	29.8	47.1	1.59
3-1		98	56.5	65.6	1.16
3-2	-	97	53.2	62.3	1.17
3-3	300	99	51.2	55.9	1.09
3-4	-	99	51.3	56.5	1.10

^[a]Reaction condition: **1a** (50 mg), G3, and DCE (20 uL) in a 10 mL zirconia jar with three zirconia balls (8 mm diameter). 30 Hz vibration for 30 minutes. ^[b]Determined by ¹H-NMR spectroscopy. ^[c]Determined by size exclusion chromatography (SEC) with polystyrene (PS) standards in tetrahydrofuran (THF) at 40 °C.

5. Copies of NMR Spectra

Figure S18. ¹H NMR spectrum of Compound 1d (in CDCI₃).

Figure S19. ¹³C NMR spectrum of Compound 1d (in $CDCI_3$).

Figure S20. ¹H NMR spectrum of Compound 1e (in D₂O).

Figure S21. ¹³C NMR spectrum of Compound 1e (in D₂O).

Figure S18. ¹H NMR spectrum of Compound 1f (in CDCl₃).

Figure S22. ¹³C NMR spectrum of Compound 1f (in $CDCI_3$).

Figure S23. ¹⁹F NMR spectrum of Compound 1f (in $CDCI_3$).

Figure S24. ¹H NMR spectrum of Compound 1i (in D₂O).

Figure S25. ¹³C NMR spectrum of Compound 1i (in D₂O).

Figure S26. ¹H NMR spectrum of Compound 1f (in D₂O).

Figure S28. ¹H NMR spectrum of Product of Table 3, entry 1 (in CDCl₃).

Figure S29. ¹H NMR spectrum of Product of Table 3, entry 2 (in DMSO-*d*₆).

Figure S30. ¹H NMR spectrum of Product of Table 3, entry 3 (in DMSO-*d*₆).

Figure S32. ¹H NMR spectrum of Product of Table 3, entry 5 (in D₂O).

Figure S33. ¹H NMR spectrum of Product of Table 3, entry 6 (in D₂O).

Figure S34. ¹H NMR spectrum of Product of Table 3, entry 7 (in CDCl₃).

Figure S35. ¹H NMR spectrum of Product of Table 3, entry 8 (in CDCl₃).

Figure S36. ¹H NMR spectrum of Product of Table 3, entry 9 (in $CDCI_3$).

